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ABSTRACT

Latent diffusion has demonstrated promising results in image generation and per-
mits efficient sampling. However, this framework might suffer from the problem
of posterior collapse when applied to time series. In this paper, we first show that
posterior collapse will reduce latent diffusion to a variational autoencoder (VAE),
making it less expressive. This highlights the importance of addressing this is-
sue. We then introduce a principled method: dependency measure, that quantifies
the sensitivity of a recurrent decoder to input variables. Using this tool, we con-
firm that posterior collapse significantly affects time-series latent diffusion on real
datasets, and a phenomenon termed dependency illusion is also discovered in the
case of shuffled time series. Finally, building on our theoretical and empirical
studies, we introduce a new framework that extends latent diffusion and has a sta-
ble posterior. Extensive experiments on multiple real time-series datasets show
that our new framework is free from posterior collapse and significantly outper-
forms previous baselines in time series synthesis.

1 INTRODUCTION

Latent diffusion (Rombach et al., 2022) has achieved promising performance in image generation
and offers significantly higher sampling speeds than standard diffusion models (Ho et al., 2020).
However, we find that, when applied to time series data, this framework might suffer from posterior
collapse (Bowman et al., 2016), an important problem that has garnered significant attention in the
literature on autoencoders (Baldi, 2012; Lucas et al., 2019), where the latent variable contains little
information about the data and it tends to be ignored by the decoder during conditional generation.
In this paper, we aim to provide a systematic analysis on the impact of posterior collapse on latent
diffusion and improve this framework based on our analysis.

Impact analysis of posterior collapse. We first show that a strictly collapsed posterior reduces the
latent diffusion to a variational autoencoder (VAE) (Kingma & Welling, 2013), indicating that this
problem makes the framework less expressive, even weaker than a vanilla diffusion model. We then
introduce a principled method termed dependency measure, which quantifies the dependencies of
an autoregressive decoder on the latent variable and the input partial time series. Through empirical
estimation of these measures, we find that the latent variable has an almost exponentially vanishing
impact on the recurrent decoder during the generation process. An example (i.e., the green bar chart)
is shown in the upper left subfigure of Fig. 1. More interestingly, the upper right subfigure illustrates
a phenomenon we call dependency illusion: Even when the time series is randomly shuffled and thus
lacks structural dependencies, the decoder of latent diffusion still heavily relies on input observations
(instead of the latent variable) for prediction.

New framework to solve the problem. We first point out that the root cause of posterior collapse
lies in the improper design of latent diffusion, which leads to avoidable KL-divergence regularization
and a lack of mechanisms to address the insensitive decoder (Bowman et al., 2016). Building on
these findings, we propose a novel framework that extends latent diffusion, allowing the diffusion
model and autoencoder to interact more effectively. Specifically, by treating the diffusion process as
a form of variational inference, we can eliminate the problematic KL-divergence regularization and
permit an unlimited prior distribution for latent variables. To let the decoder be more sensitive to
the latent variable, we also apply the diffusion process to simulate a collapsed posterior, imposing
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Figure 1: The global and local dependency measures mt,0,mt,t−1 (as defined in Sec. 3.2) respec-
tively quantify the impacts of latent variable z and observation xt−1 on predicting the next one xt.
We can see that the latent variable z of latent diffusion loses control over the condition generation
pgen(X | z), with dependency illusion (as introduced in Sec. 3.3) in the case of shuffled time series.
In contrast, our framework has no such symptoms of posterior collapse.

a significant penalty on the occurrence of dependency illusion. As demonstrated in the lower two
subfigures of Fig. 1, our framework exhibits no signs of posterior collapse, such as the vanishing
impact of latent variables over time.

In summary, our paper makes the following contributions:

• We are the first to systematically study posterior collapse in latent diffusion, introducing
the technique of dependency measure (Sec. 3.2) for analysis. We show that the problem
renders latent diffusion as inexpressive as a simple VAE (Sec. 3.1) and the latent variable
also loses control over time series generation in this case (Sec. 3.3);

• We present a new framework (Sec. 4.2) that improves upon time-series latent diffusion,
which eliminates the risky KL-divergence regularization, permits an expressive prior dis-
tribution, and features a decoder that is sensitive to the latent variable;

• We have conducted extensive experiments (Sec. 6 and Appendix F) on multiple real time-
series datasets, showing that our framework exhibits no symptoms of posterior collapse (or
dependency illusion) and significantly outperforms previous baselines.

We will publicly release our code upon paper acceptance.

2 BACKGROUND: LATENT DIFFUSION

The architecture of latent diffusion consists of two parts: 1) an autoencoder (Baldi, 2012) that
maps high-dimensional or structured data into low-dimensional latent variables; 2) a diffusion
model (Sohl-Dickstein et al., 2015) that learns the distribution of latent variables.

Autoencoder. An implementation for the autoencoder is VAE (Kingma & Welling, 2013). Let X
and qraw(X) respectively denote the raw data of any form (e.g., pixel matrix) and its distribution.
The encoder f enc is designed to cast the data X into a low-dimensional vector v = f enc(X). To get
latent variable z, a reparameterization trick is performed as

µ = Wµv, σ = exp(Wσv), z = µ+ diag(σ) · ϵ, ϵ ∼ N (0, I), (1)

where Wµ,Wσ are learnable matrices, and diag(·) is an operation that casts a vector into a diagonal
matrix. The above procedure, which differentially samples a latent variable z from the posterior
qVI(z | X) = N (z;µ,diag(σ2)), is called variational inference (Blei et al., 2017). The decoder
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fdec takes latent variable z as the input to recover the real sample X. In VAE, the decoder output
fdec(z) is used to parameterize a predefined generation distribution pgen(X | z).
For training, VAE is optimized in terms of the evidence lower bound (ELBO), an upper bound of
the exact negative log-likelihood:

LVAE = Ez∼qVI(z|X)[− ln pgen(X | z)] + DKL(q
VI(z | X) || pprior(z)), (2)

where the prior distribution pprior(z) is commonly set as a standard Gaussian N (0, I). The last term
of KL divergence leads the prior pprior(z) to be compatible with the decoder fdec for inference, but
it is also one cause of posterior collapse (Bowman et al., 2016).

Diffusion model. An implementation for the diffusion model is DDPM (Ho et al., 2020). The
model consists of two Markov chains of L ∈ N+ steps. One of them is the diffusion process, which
incrementally applies the forward transition kernel:

qforw(zi | zi−1) = N (zi;
√
1− βizi, βiI), (3)

where βi, i ∈ [1, L] is some predefined variance schedule, to the latent variable z0 := z ∼ qlatent(z).
Here the distribution of latent variable qlatent(z) is defined as

∫
qVI(z | X)qraw(X)dX. The out-

comes of this process are a sequence of new latent variables {z1, z2, · · · , zL}, with the last one zL

approximately following a standard Gaussian N (0, I) for L ≫ 1.

The other is the reverse process, which iteratively applies the backward transition kernel,

pback(zi−1 | zi) = N (zi−1;µback(zi, i), σiI), µback(zi, i) =
1√
αi

(
zi − βi ϵ

back(zi, i)√
1− ᾱi

)
, (4)

where αi = 1−βi, ᾱi =
∏i

k=1 α
k, ϵback(·) is a neural network, zL is an initial sample drawn from

∼ N (0, I), and σi is some backward variance schedule. The outcome of this process is a reversed
sequence of latent variables {zL−1, zL−2, · · · , z0}, where the last variable z0 is expected to follow
the density distribution of real samples: qlatent(z0).

To optimize the diffusion model, common practices adopt a loss function as

LDM = Ei,z0,ϵ[∥ϵ− ϵback(
√
ᾱiz0 +

√
1− ᾱiϵ, i)∥2], (5)

where ϵ ∼ N (0, I), z0 ∼ qlatent(z0), and i ∼ U{1, L}.

3 PROBLEM ANALYSIS

In this section, we first formulate the problem of posterior collapse in the framework of time-series
latent diffusion and show its significance. Then, we define proper measures that quantify the impact
of posterior collapse on the models. Finally, we conduct empirical experiments to confirm that
time-series diffusion indeed suffers from this problem.

3.1 FORMULATION OF POSTERIOR COLLAPSE AND ITS IMPACTS

Let us focus on time series X = [x1,x2, · · · ,xT ], where every observation xt, t ∈ [1, T ] is a
D-dimensional vector and T denotes the number of observations. A potential risk of applying the
latent diffusion to time series is the posterior collapse (Bowman et al., 2016), which occurs to
some autoencoders (Bahdanau et al., 2014), especially VAE (Lucas et al., 2019). Its mathematical
formulation in the framework of latent diffusion is as follows.

Problem formulation. The posterior of VAE: qVI(z | X), is collapsed if it reduces to the Gaussian
prior pprior(z) = N (z;0, I), irrespective of the time-series conditional X:

qVI(z | X) = pprior(z),∀X ∈ RTD.

In this case, the latent variable z contains no information about time series X, otherwise the pos-
terior distribution qVI(z | X) would vary depending on different conditionals. Above is a strict
definition. In practice, one is mostly faced with a situation where qVI(z | X) ≈ pprior(z) and it is
still appropriate to say that the posterior collapses.
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Implications of posterior collapse. A typical symptom of this problem is that, since the latent
variable z carries very limited information of time series X, the trained decoder fdec tends to ignore
this input variable z, which is undesired for conditional generation pgen(X | z). Besides this empir-
ical finding from previous works, we find that posterior collapse is also significant in its impact on
the expressiveness of latent diffusion. Let us first see the below conclusion.
Proposition 3.1 (Gaussian Latent Variables). For standard latent diffusion, suppose its posterior
qVI(z | X) is collapsed, then the distribution qlatent(z) of latent variable z will shape as a standard
Gaussian N (0, I), which is trivial for the diffusion model to approximate.

Proof. The proof is fully provided in Appendix A.

In other words, latent variable z is just Gaussian in the case of posterior collapse. The diffusion
model, which is known for approximating complex data distributions (Dhariwal & Nichol, 2021; Li
et al., 2024), will in fact become a redundant module. Therefore, posterior collapse reduces latent
diffusion to a simple VAE, which also samples latent variable z from a standard Gaussian N (0, I).
We conclude that the problem makes latent diffusion less expressive.

Takeaway: The problem of posterior collapse not only lets the decode fdec tend to ignore the
latent variable z for conditional generation pgen(X | z), but also reduces the framework of
latent diffusion to VAE, making it less expressive.

3.2 INTRODUCTION OF DEPENDENCY MEASURES

It is very intuitive from above that the problem of posterior collapse will make the latent variable
z lose control of the decoder fdec. To make our claim more solid and confirm that the problem
happens to time-series diffusion, we introduce some proper measures that quantify the dependencies
of decoder fdec on various inputs (e.g., variable z).

Autoregressive decoder. Consider that decoder fdec has an autoregressive structure, which con-
ditions on latent variable z and prefix X1:t−1 = [x1,x2, · · · ,xt−1] to predict the next observation
xt. With abuse of notation, we set x0 = z and formulate the decoder as

ht = fdec(X0:t−1), X0:t−1 = [x0,x1,x2, · · · ,xt−1] (6)

where the representation ht, t ≥ 1 is linearly projected to multiple parameters (e.g., mean vector
and covariance matrix) that determine the distribution pgen(xt | z,X1:t−1) of some family (e.g.,
Gaussian). Examples of such a decoder include recurrent neural networks (RNN) (Hochreiter &
Schmidhuber, 1997) and Transformer (Vaswani et al., 2017). We put the formulation details of these
example in Appendix B.

Dependency measure. The symptom of posterior collapse is that the decoder fdec heavily relies
on prefix X1:t−1 (especially the last observation xt−1) to compute the representation ht, ignoring
the guidance of latent variable x0 = z. In other words, the variable z loses control of decoder fdec
in that situation, which is undesired for conditional generation pgen(X | z).
Inspired by the technique of integrated gradients (Sundararajan et al., 2017), we present a new tool:
dependency measure, which quantifies the impacts of latent variable x0 = z and prefix X1:t−1 on
decoder fdec. Specifically, we first set a baseline input O0:t−1 as [x0 = 0,x1 = 0, · · · ,xt−1 = 0]

and denote the term fdec(O0:t−1) as h̃t. Then, we parameterize a straight line γ(s) : [0, 1] → RtD

between the actual input X1:t−1 and the input baseline O0:t−1 as

γ(s) = sX0:t−1 + (1− s)O0:t−1 := [sx0, sx1, · · · , sxt−1]. (7)

Applying the chain rule in differential calculus, we have

dfdec(γ(s))

ds
=

t−1∑
j=0

k=D∑
k=1

dfdec(γj,k(s))

dγj,k(s)

dγj,k(s)

ds
=

t−1∑
j=0

k=D∑
k=1

xj,k
dfdec(γj,k(s))

dγj,k(s)
, (8)

where γj,k(s) denote the k-th dimension s ·xj,k of the j-th vector sxj in point γ(s). With the above
elements, we can define the below measures.

4
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Definition 3.2 (Dependency Measures). For an autoregressive decoder fdec that conditions on both
latent variable x0 = z and the prefix X1:t−1 to compute representation ht, the dependency measure
of every input variable xj , j ∈ [0, t− 1] to the decoder is defined as

mt,j =
1

∥ht − h̃t∥2
〈
ht − h̃t,

D∑
k=1

(
xj,k

∫ 1

0

dfdec(γj,k(s))

dγj,k(s)
ds
)〉

, (9)

where operation < ·, · > represents the inner product. In particular, we name mt,0 as the global
dependency and mt,t−j , 1 ≤ j < t as the j-th order local dependency.

We provide the derivation for dependency measure mt,j and detail its relations to integrated gradi-
ents in Appendix C. In practice, the integral term can be approximated as∫ 1

0

dfdec(γj,k(s))

dγj,k(s)
ds = Es∈U{0,1}

[dfdec(γj,k(s))
dγj,k(s)

]
≈ 1

|S|
∑
s∈S

dfdec(γj,k(s))

dγj,k(s)
, (10)

where S is the set of independent samples drawn from uniform distribution U{0, 1}. According to
the law of large numbers (Sedor, 2015), this approximation is unbiased and gets more accurate for a
bigger sample set |S|. Notably, the defined measures have the following properties.
Proposition 3.3 (Signed and Normalization Properties). The dependency measure mt,j ,∀j ∈ [0, t−
1] is a signed measure and always satisfies

∑t−1
j=0 mt,j = 1.

Proof. The proof is fully provided in Appendix D.

We can see that the measure mt,j can be either positive or negative, with a normalized sum over
the subscript j as 1. If mt,j ≥ 0, then we say that vector xj has a positive impact on the decoder
fdec for computing representation hj : the bigger is mt,j , the larger is such an impact; Similarly, if
mt,j < 0, then the vector xj has a negative impact on the decoder: the smaller is mt,j , the greater is
the negative influence. Besides, it is also not hard to understand that there exists a negative impact.
For example, the latent variable z ∼ qlatent(z) might be an outlier for the decoder fdec, which
locates at a low-density region in the prior distribution qprior(z).

Example Application. Fig. 1 shows several examples of applying the dependency measures,
where each subfigure contains a sample of time series (i.e., blue curve) generated by some model and
two types of dependency measures (i.e., red and green bar charts) estimated by Eq. (9). Specifically,
every point xt in the time series corresponds to a green bar that indicates the global dependency
mt,0 and a red bar that represents the first-order local dependency mt,t−1. In the upper left subfig-
ure, we can see that the positive impact of latent variable z on the decoder (e.g., mt,0) decreases
over time and vanishes eventually. From the lower right subfigure, we can even see that some bars
(i.e., local dependency mt,t−1) are negative, indicating that the variable xt−1 has a negative impact
on predicting the next observation xt.

Takeaway: Dependency measure mt,j , 0 ≤ j < t quantifies the impact of latent variable
x0 = z or observation xj , j ≥ 1 on the decoder fdec. This type of impact can be either
positive or negative, which is reflected in the value of measure mt,j .

3.3 EMPIRICAL DEPENDENCY ESTIMATIONS

We are mainly interested in two types of defined measures: One is the global dependency mt,0,
which estimates the impact of latent variable x0 = z on the decoder fdec; The other is the first-order
local dependency mt,t−1, which estimates the dependency of decoder fdec on the last observation
xt,t−1 for computing representation ht. In this part, we empirically estimate these measures, with
the aims to confirm that posterior collapse occurs and show its impacts.

Experiment setup. Two time-series datasets: WARDS (Alaa et al., 2017b) and MIMIC (Johnson
et al., 2016) are adopted. For each dataset, we extract the observations of the first 12 hours, with
the top 1 and 5 features that have the highest variances to form univariate and multivariate time
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Figure 2: Dependency measures mt,0,mt,t−1 averaged over 500 multivariate time series, with 3
standard deviations as the error bars. We can see that the latent variable z of latent diffusion has a
vanishing impact on the decoder fdec, a typical symptom of posterior collapse. We also observe a
phenomenon of dependency illusion in the case of shuffled time series.

series. To study the case where time series have no structural dependencies, we also try randomly
shuffling the time steps of ordered time series. With the prepared datasets, we respectively train
latent diffusion models on them and sample time series from the models.

Insightful results. The upper two subfigures of Fig. 1 illustrate the estimated dependencies
mt,0,mt,t−1 for a single time-series sample X, while Fig. 2 shows the dependency measures av-
eraged over 500 samples. We can see that, for both ordered and shuffled time series, the global
dependency mt,0 exponentially converges to 0 with increasing time step t, indicating that latent
variable z loses control of the generation process of decoder fdec and the posterior is collapsed.
More interestingly, as shown in the right part of Fig. 1, while there is no dependency between ad-
jacent observations xt−1,xt in shuffled time series, we still observe that the first-order measure
mt,t−1 is significantly different from 0 (e.g., around 0.1 to 0.2). This phenomenon might arise as
neural networks overfit and we name it as dependency illusion.

Takeaway: Time-series latent diffusion exhibits a typical symptom of posterior collapse: latent
variable z has an almost exponentially decreasing impact on generation process pgen(X | z).
More seriously, we observe a phenomenon of dependency illusion.

4 PROBLEM RETHINKING AND NEW FRAMEWORK

In this section, we first analyze how the framework design of latent diffusion makes it tend to suffer
from posterior collapse. Then, based on our analysis, we propose a new framework, which extends
latent diffusion but addresses the problem.

4.1 RISKY DESIGN OF LATENT DIFFUSION

Previous works (Semeniuta et al., 2017; Alemi et al., 2018) have identified two main causes of the
problem: KL-divergence term and strong decoder. For time-series latent diffusion, we will explain
as below that those causes indeed exist, but are in fact avoidable.

Unnecessary regularization. The KL-divergence term DKL(q
VI(z | X) || pprior(z)) in Eq. (2)

moves the posterior qVI(z | X) towards prior pprior(z), which has the side effect of posterior
collapse by definition. In essence, this term is tailored for VAE, such that it is valid to sample latent
variable z from the Gaussian prior pprior(z) for inference. However, for latent diffusion, the variable
z is sampled from the diffusion model, which can approximate a non-Gaussian prior distribution.
Hence, the interaction between the VAE and diffusion model is not properly designed, which incurs
a limited prior pprior(z) and a risky KL-divergence term DKL(·).

6
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Figure 3: In this example, path X → z1 is the variational inference (which gets rid of KL-divergence
regularization) and path X → z3 shows the collapse simulation (which is to increase the sensitivity
of decoder fdec to latent variable z). Compared with time-series latent diffusion, our framework is
free from posterior collapse and has a unlimited prior pprior(z).

Unprepared for recurrence. The strong decoder is also a cause of posterior collapse, which hap-
pens to sequence autoencoders (Bowman et al., 2016; Eikema & Aziz, 2019). Time series X ∈ RTD

have a clear temporal structure, so the corresponding decoder fdec is typically a RNN, which ex-
plicitly models the dependency between different observations xi,xj , i ̸= j. For predicting the
observation xj , both latent variable z and previous observation xi, i < j are the inputs to the de-
coder fdec, so variable z is possible to be ignored.

Latent diffusion is primarily designed for image generation, with U-net (Ronneberger et al., 2015)
as the backbone, which consists of many layers of feedforward neural networks (FNN) (Svozil
et al., 1997). For example, convolution neural networks (CNN) (Krizhevsky et al., 2012), self-
attention (Vaswani et al., 2017), and MLP (Lu et al., 2017). These FNN layers are highly sensitive
to the input variables, so the original design of latent diffusion lacks a mechanism to address the
possible insensitivity, which is the case of time-series decoder.

Takeaway: The improper design of latent diffusion is the root cause of posterior collapse,
which results in the avoidable KL-divergence regularization, limits the form of prior distribu-
tion pprior(z), and lacks a mechanism to handle the insensitive decoder.

4.2 NEW FRAMEWORK

In light of previous analyses, we propose a new framework that lets the autoencoder interact with the
diffusion model more effectively than latent diffusion. With this better framework design, we can
eliminate the KL-divergence term, permit a free from of prior distribution pprior(z), and increase the
sensitivity of decoder fdec to latent variable z.

Importantly, we notice a conclusion (Ho et al., 2020) for the diffusion process (i.e., Eq. (3)):

qforw(zi | z0) = N (zi;
√
ᾱiz0, (1− ᾱi)I), (11)

where the coefficient ᾱi monotonically decreases from 1 to approximately 0 for i ∈ [0, L]. In
this sense, suppose the initial variable z0 is set as v = f enc(X), then we can infer that the random
variable zi ∼ qforw(zi | z0) contains ᾱi×100% information about the vector v, with (1−ᾱi)×100%
pure noise. For i → 0, the diffusion process is similar to the variational inference (i.e., Eq. (1)) of
VAE, adding slight Gaussian noise to the encoder output v. For i → T , the variable zi simulates the
problem of posterior collapse since qforw(zi | z0) ≈ N (zi;0, I).

Diffusion process as variational inference. Considering the above facts, we first treat the starting
few iterations of the diffusion process as the variational inference. Specifically, with a fixed small
integer N ≪ L, we sample a number i from uniform distribution U{0, N} and let the diffusion
process convert the encoder output v = f enc(X) into the latent variable:

z = zi ∼ qforw(zi | z0), z0 = v. (12)

In terms of the formerly defined generation distribution pgen(X | z) (parameterized by the decoder
fdec), a negative log-likelihood loss LVI is incurred as

LVI = Ei∼U{0,N},z0 [−ᾱγi ln pgen(X | z = zi)], (13)

7
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Algorithm 1 Training
1: repeat
2: Sample time series X from the dataset
3: Representation encoding: v = f enc(X)
4: zj ∼ qforw(zj | z0 = v), j ∼ U{0, N}
5: L̂VI = −ᾱγj ln pgen(X | z = zj)

6: i ∼ U{j, L}, ϵ ∼ N (0, I)

7: L̂DM = ∥ϵ− ϵback(
√
ᾱizj +

√
·ϵ, i)∥2

8: zk ∼ qforw(zk | z0 = v), k ∼ U{M,L}

9: L̂CS = (1− ᾱ
⌈ k
η
⌉
) ln pgen(X | z = zk)

10: Gradient descent with ∇(L̂VI + L̂DM + L̂CS)
11: until converged

Algorithm 2 Sampling

1: zL ∼ pback(zL) = N (0, I)

2: Set stop time: i ∼ U{0, N}
3: for l = L,L− 1, . . . , i+ 1 do
4: zl−1 ∼ pback(zl−1 | zl)
5: end for
6: Conditional generation: pgen(X̂ | z = zi)

7: return Time series X̂

where γ ∈ N+, γN ≤ L is a hyper-parameter, with the aim to reduce the impact of a very noisy
latent variable z. As multiplier γ increases, the weight ᾱγi decreases.

Similar to VAE, the variational inference in our framework also leads the latent variable z to be
smooth (Bowman et al., 2016) in its effect on decoder fdec. However, our framework is free from
the KL-divergence term DKL(q

VI(z | X) || pprior(z)) of VAE (i.e., one cause of the posterior
collapse), since we can facilitate z ∼ qlatent(z) at test time through applying the reverse process of
the diffusion model (i.e., Eq. (4)) to sample variable zi, i ∈ [0, N ].

Diffusion process for collapse simulation. Then, we apply the last few iterations of the diffusion
process to simulate posterior collapse, with the purposes of increasing the impact of latent variable
z on conditional generation pgen(X | z) and reducing dependency illusion.

Following our previous variational inference, we set z0 = f enc(X) and apply the diffusion process
to cast the initial variable z0 into a highly noisy variable zi, i → L. Considering that the variable zi

contains little information about the encoder output f enc(X), it is unlikely that the decoder fdec can
recover time series X from variable zi, otherwise there is posterior collapse or dependency illusion.
In this sense, we have the following regularization:

LCS = Ei∼U{M,L},zi [(1− ᾱ⌈ i
η ⌉) ln pgen(X | z = zi)], (14)

which penalizes the model for having a high conditional density pgen(X | z) for non-informative
latent variable z = zi, i ∈ [M,L]. Here M ∈ N+ is close to L, ⌈·⌉ is the ceiling function, and η ≥ 1
is set to reduce the impact of informative variable zi.

For a strong decoder fdec, such as long short-term memory (LSTM), the regularization LCS will
impose a heavy penalty if the decoder solely relies on previous observations {xk | k < j} to predict
an observation xj . In that situation, a high prediction probability will be assigned to the observation
xj even if the latent variable z contains very limited information about the raw data X.

Training, inference, and running times. Our framework is very different from the latent diffusion
in both training and inference. We depict the workflows of our framework in Fig. 3, with the training
and sampling procedures respectively placed in Algorithm 1 and Algorithm 2. For training, the key
points are to compute three loss functions: L̂VI for likelihood maximization, L̂DM for training
diffusion models, and L̂CS for collapse regularization. For inference, the main difference is that the
stopping time of the backward process is not 0, but a random variable. From these pseudo codes, we
can see that our framework is almost as efficient as latent diffusion. We provide an in-depth analysis
and empirical experiments about the running times of our framework in Appendix F.2.

5 RELATED WORK

Besides latent diffusion, our paper is also related to previous works that aim to mitigate the problem
of posterior collapse for VAE (Kingma & Welling, 2013). We collect three main types of such

8
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Figure 4: The results of averaged dependency measures and error bars for our framework, which
should be compared with those (e.g., Fig. 2) of latent diffusion, showing that our framework has a
stable posterior and is without dependency illusion.

methods and apply them to improve the VAE of latent diffusion, with the corresponding experiment
results shown in Table 1 of Sec. 6 and Table 4 of Appendix F.3. In the following, we briefly introduce
those baselines and explain their limitations.

KL annealing. This method (Bowman et al., 2016) assigns an adaptive weight to control the effect
of KL-divergence term, so that VAE is unlikely to fall into the local optimum of posterior collapse
at the initial optimization stage. While this method indeed mitigates the problem, it still cannot fully
eliminate the negative impact of the risky KL-divergence regularization.

Decoder weakening. A representative method in this class is Variable Masking (Semeniuta et al.,
2017), which randomly masks input observations to the autoregressive decoder, such that the de-
coder is forced to rely more on the latent variable for predicting the next observation. However, this
method will make the model less expressive since the decoder is weakened.

Skip connections. With the aim to improve the impact of latent variables on the recurrent decoder,
this approach (Dieng et al., 2019) directly feeds the latent variable into the decoder at every step, not
only at the first step. However, the latent variable in that case acts as a constant input signal at every
time step, so the decoder will still tend to ignore this redundant information.

Compared with the above baselines, our framework can address the problem of posterior collapse
and is free from their side effects (e.g., less expressive decoder). The experiment results in Sec. 6
and Appendix F confirm that our framework indeed performs better in practice.

6 EXPERIMENTS

We have conducted extensive experiments to verify that our framework is free from posterior col-
lapse and outperforms latent diffusion (with or without previous baselines) in terms of time series
generation. Due to the limited space, some other important empirical studies are put in the appendix,
including more time-series datasets and another evaluation metric in Appendix F.3, diverse data
modalities (e.g., text) in Appendix F.4, ablation studies in Appendix F.1, and the study of running
times in Appendix F.2. The experiment setup is also placed in Appendix E.

6.1 STABLE POSTERIOR OF OUR FRAMEWORK

To show that our framework has a non-collapsed posterior qVI(z | X), we follow the same experi-
ment setup (e.g., datasets) as Sec. 3.3 and average the dependency measures mt,0,mt,t−1 over 500
sampled time series. The results are illustrated in Fig. 4. For ordered time series in the left two

9
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Model Backbone MIMIC WARDS Earthquakes
Latent Diffusion LSTM 5.19 7.52 5.87

Latent Diffusion w/ KL Annealing LSTM 4.28 5.74 3.88
Latent Diffusion w/ Variable Masking LSTM 4.73 6.01 4.26
Latent Diffusion w/ Skip Connections LSTM 3.91 4.95 3.74

Our Framework LSTM 2.29 3.16 2.67
Latent Diffusion Transformer 5.02 7.46 5.91

Latent Diffusion w/ KL Annealing Transformer 4.31 5.54 3.51
Latent Diffusion w/ Variable Masking Transformer 4.42 5.97 4.45
Latent Diffusion w/ Skip Connections Transformer 3.75 4.67 3.69

Our Framework Transformer 2.13 3.01 2.49

Table 1: Wasserstein distances of different models on three widely used time-series datasets. The
lower the distance metric, the better the generation quality. More results from other time-series
datasets, with another evaluation metric, are placed in Table 4 of Appendix F.3.

subfigures, we can see that, while the global dependency mt,0 still decreases with increasing time
step t, it converges into a value around 0.5, which is also a bit higher than the converged first-order
local dependency mt,t−1. These results indicate that latent variable z in our framework maintains
its control of decoder fdec during the whole conditional generation process pgen(X | z).
For shuffled time series in the right two subfigures, we can see that the global dependency mt,0 is
always around or above 1, and the local dependency mt,t−1 is negative most of the time. These
results indicate that the decoder fdec only relies on latent variable z and the context xt−1 even
has a negative impact on conditional generation pgen(X | z), suggesting our framework is without
dependency illusion. Based on all our findings, we conclude that: compared with latent diffusion
(Fig. 2), our framework is free from the effects of posterior collapse (e.g., strong decoder).

6.2 PERFORMANCES IN TIME SERIES GENERATION

In this part, we aim to verify that our framework outperforms latent diffusion in terms of time series
generation, which is intuitive since our framework is free from posterior collapse. We also include
some other methods that are proposed by previous works to mitigate the problem, including KL
annealing (Fu et al., 2019a), variable masking (Bowman et al., 2016), and skip connections (Dieng
et al., 2019). We adopt the Wasserstein distances (Bischoff et al., 2024) as the metric.

The experiment results on three commonly used time-series datasets are shown in Table 1. From
the results, we can see that, regardless of the used dataset and the backbone of autoencoder, our
framework significantly outperforms latent diffusion and the baselines, which strongly confirms our
intuition. For example, with the backbone of Transformer, our framework achieves 2.53 points lower
than latent diffusion w/ KL Annealing on the WARDS dataset.

7 CONCLUSION

In this paper, we provide a solid analysis of the negative impacts of posterior collapse on time-series
latent diffusion and introduce a new framework that is free from this problem. For our analysis, we
begin with a theoretical insight, showing that the problem will reduce latent diffusion to VAE, ren-
dering it less expressive. Then, we introduce a useful tool: dependency measure, which quantifies
the impacts of various inputs on an autoregressive decoder. Through empirical dependency esti-
mation, we show that the latent variable has a vanishing impact on the decoder and find that latent
diffusion exhibits a phenomenon of dependency illusion. Compared with standard latent diffusion,
our framework gets rid of the risky KL-divergence regularization, permits an unlimited prior distri-
bution, and lets the decoder be sensitive to the latent variable. Extensive experiments on multiple
real-world time-series datasets show that our framework has no symptoms of posterior collapse and
notably outperforms the baselines in terms of time series generation.
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A THE IMPACT OF POSTERIOR COLLAPSE

Under the assumption of posterior collapse, the below equality:

qVI(z | X) = pprior(z) = N (z;0, I), (15)

holds for any latent variable z ∈ RD and any conditional X ∈ RTD. Then, note that

qlatent(z) =

∫
qVI(z | X)qraw(X)dX =

∫
N (z;0, I)qraw(X)dX

= N (z;0, I)

∫
qraw(X)dX = N (z;0, I),

(16)

which is exactly our claim.

B RECURRENT ENCODERS

We mainly implement the backbone of decoder fdec as LSTM (Hochreiter & Schmidhuber, 1997)
or Transformer (Vaswani et al., 2017). In the former case, we apply the latent variable z to initialize
LSTM and condition it on prefix X1:t−1 to compute the representation ht. Formally, the LSTM-
based decoder fdec is as {

st = LSTM(st−1,xt−1),∀t ≥ 1

ht = W2
f tanh(W

1
fst)

, (17)

where st is the state vector of LSTM and W2
f ,W

1
f are learnable matrices. In particular, for the

corner case t = 1, we fix s0,x0 as zero vectors.

In the later case, we just treat latent variable z as x0. Therefore, we have{
[st−1, ss−2, · · · , s0] = Transformer(xt−1,xt−2, · · · ,x0)

ht = W2
f tanh(W

1
fst−1)

, (18)

where the subscript alignment results from self-attention mechanism.

C DERIVATION OF DEPENDENCY MEASURES

Integrated gradient (Sundararajan et al., 2017) is a very effective method of feature attributions. Our
proposed dependency measures can be regarded as its extension to the case of sequence data and
vector-valued neural networks. In the following, we provide the derivation of dependency measures.

For the computation ht = fdec(X0:t−1), suppose the output of decoder fdec at origin O0:t−1 is h̃t,
then we apply the fundamental theorem of calculus as

ht − h̃t =

∫ 1

0

dfdec(γ(s))

ds
ds, (19)

where γ(s) is a straight line connecting the origin O0:t−1 and the input X0:t−1 as γ(s) = sX0:t−1+
(1− s)O0:t−1. Based on the chain rule, the above equality can be expanded as

ht − h̃t =

∫ 1

0

t−1∑
j=0

k=D∑
k=1

dfdec(γj,k(s))

dγj,k(s)

dγj,k(s)

ds
ds

=

t−1∑
j=0

(∫ 1

0

k=D∑
k=1

xj,k
dfdec(γj,k(s))

dγj,k(s)
ds
)
,

(20)

where γj,k(s) denote the k-th dimension s · xj,k of the j-th vector sxj in point γ(s). Intuitively,
every term inside the outer sum operation

∑t−1
j=0 represents the additive contribution of variable xj

(to the output difference ht − h̃t) along the integral line γ(s).
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Model Backbone N for LVI M for LCS Diffusion Iterations L MIMIC WARDS
Latent Diffusion Transformer − − 1000 5.02 7.46

LD w/ Skip Connections Transformer − − 1000 3.75 4.67
Our Framework Transformer 50 100 1000 2.13 3.01
Our Framework Transformer 50 50 1000 2.59 3.32
Our Framework Transformer 50 150 1000 2.71 3.46
Our Framework Transformer 50 200 1000 2.83 3.75
Our Framework Transformer 10 100 1000 2.31 3.16
Our Framework Transformer 100 100 1000 2.38 3.24
Our Framework Transformer 150 100 1000 2.75 3.41

Table 2: Ablation studies of the hyper-parameters N,M , which are respectively used in the estima-
tions of likelihood loss LVI and collapse penalty LCS. Here LD is short for latent diffusion and the
symbol − means “Not Applicable”.

To simplify the notation, we denote the mentioned term as

mt,j =

∫ 1

0

k=D∑
k=1

xj,k
dfdec(γj,k(s))

dγj,k(s)
ds. (21)

Since mt,j is a vector, we map the new term to a scalar and re-scale it as

mt,j =
< mt,j ,ht − h̃t >

< ht − h̃t,ht − h̃t >
, (22)

which is exactly our definition of the dependency measure.

D PROPERTIES OF OF DEPENDENCY MEASURES

Firstly, in terms of Eq. (22), it is obvious that the dependency measure mt,j is signed: the measure
can be either positive or negative. Then, based on Eq. (20), we have

ht − h̃t =

t−1∑
j=0

mt,j . (23)

By taking an inner product with the vector ht − h̃t at both sides, we get

< ht − h̃t,ht − h̃t >=<

t−1∑
j=0

mt,j ,ht − h̃t >=

t−1∑
j=0

< mt,j ,ht − h̃t > . (24)

By rearranging the term, we finally arrive at

1 =

t−1∑
j=0

< mt,j ,ht − h̃t >

< ht − h̃t,ht − h̃t >
=

t−1∑
j=0

mt,j , (25)

which is exactly our claim.

E EXPERIMENT DETAILS

We have adopted three widely used time-series datasets for both analysis and model evaluation,
including MIMIC (Johnson et al., 2016), WARDS (Alaa et al., 2017a), and Earthquakes (U.S. Ge-
ological Survey, 2020). The setup of the first two datasets are introduced in Sec. 3.3. For MIMIC,
we specially simplify it into a version of univariate time series for the illustration purpose, which
is only used in the experiments shown in Fig. 1. All other experiments are about multivariate time
series. For the Earthquakes dataset, it is about the location and time of all earthquakes in Japan from
1990 to 2020 with magnitude of at least 2.5 from U.S. Geological Survey (2020). We follow the
same preprocessing procedure for this dataset as Li (2023).
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Method Training Time Inference Time
Latent Diffusion 2hr 10min 5min 12s
Our Framework 2hr 50min 5min 17s

Table 3: Comparison of Training and Inference Times on the MIMIC dataset.

Method Backbone Retail Energy
Latent Diffusion Transformer 0.037 0.052

Latent Diffusion w/ Skip Connections Transformer 0.033 0.043
Our Framework Transformer 0.025 0.031
Latent Diffusion LSTM 0.041 0.057

Latent Diffusion w/ Skip Connections LSTM 0.035 0.047
Our Framework LSTM 0.027 0.033

Table 4: Comparison on two new time-series datasets, with another metric: MMD.

We use almost the same model configurations for all experiments. The diffusion models are pa-
rameterized by a standard U-net (Ronneberger et al., 2015), with L = 1000 diffusion iterations and
hidden dimensions {128, 64, 32}. The hidden dimensions of autoencoders and latent variables are
fixed as 128. The conditional distribution pgen(X | z) is parameterized as a Gaussian, with learnable
mean vector and diagonal covariance matrix functions. For our framework, N,M are respectively
selected as 50, 100, with γ = 2 and η = 1. We also apply dropout with a ratio of 0.1 to most
layers of neural networks. We adopt Adam algorithm (Kingma & Ba, 2015) with the default hyper-
parameter setting to optimize our model. For Table 1 and Table 2, every number is averaged over 10
different random seeds, with a standard deviation less than 0.05. For the computing resources, all
our models can be trained on 1 NVIDIA Tesla V100 GPU within 10 hours.

F ADDITIONAL EXPERIMENTS

Due to the limited space of our main text, we put the results of some minor experiments here in the
appendix. Notably, we will adopt more datasets and another evaluation metric.

F.1 ABLATION STUDIES

We have conducted ablation studies to verify that our hyper-parameter selections N = 50,M = 100
are optimal. The experiment results are shown in Table 2. For both N and M , either increasing or
decreasing their values results in worse performance on the two datasets.

F.2 STUDY ON RUNNING TIMES

Our framework only incurs a minor increase in training time and enjoys the same inference speed
as the latent diffusion. For training, while our framework will run the decoder a second time for
collapse simulation LCS, it can be made in parallel with the first run of decoder fdec for likelihood
computation LVI. Therefore, the training is still efficient on GPU devices. Our framework also has
a different way of variational inference to infer latent variable z from data X. However, it admits a
closed-form solution and is thus as efficient as the reparameterization trick of latent diffusion. For
inference, our framework has no difference from the latent diffusion: sampling the latent variable z
with the reverse diffusion process and running the decoder fdec in one shot.

To show the running times in practice, we perform an experiment on the MIMIC dataset as shown
in Table 3. We can see that our framework indeed only has a minor increase for training. Given
that our framework is free from posterior collapse and delivers better generation performances, this
slight time investment is well worth it.

F.3 MORE DATASETS AND ANOTHER EVALUATION METRIC

We conduct additional experiments on 2 more public UCI time-series datasets (Bay et al., 2000):
Retail and Energy, with another widely used evaluation metric: maximum mean discrepancy
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Method Backbone ATIS SNIPS
Latent Diffusion Transformer 37.12 59.36

Latent Diffusion w/ Skip Connections Transformer 40.56 65.41
Our Framework Transformer 51.73 78.12
Latent Diffusion LSTM 35.38 55.72

Latent Diffusion w/ Skip Connections LSTM 39.27 60.31
Our Framework LSTM 48.46 71.45

Table 5: Performance comparison on two text datasets, with BLEU as the metric.

Method Backbone CIFAR-10
Latent Diffusion U-Net 3.91

Latent Diffusion w/ KL Annealing U-Net 3.87
Our Framework U-Net 3.85

Table 6: Performance comparison on an image dataset, with FID as the metric.

(MMD) (Dziugaite et al., 2015). Lower MMD scores indicate better generative models. From
the results shown in Table 4. We can see that our framework still significantly outperforms the base-
lines in terms of all the new benchmarks. For example, with LSTM as the backbone, our framework
achieves a score that is 29.79% lower than Skip Connections on the Energy dataset.

F.4 MORE DATA MODALITIES

While our paper primarily focused on time series data, our framework is generally applicable to
other types of data, including your mentioned text and images.

Experiment on text data. For text data, considering that natural language sentences exhibits a
sequential structure similar to time series, it is intuitive that the posterior of text latent diffusion might
also collapse. This intuition is supported by many evidences from previous works (Bowman et al.,
2015; Fu et al., 2019b). To verify that our framework is capable of improving text latent diffusion,
we have conducted an experiment using two publicly available text datasets: ATIS (Hemphill et al.,
1990) and SNIPS (Coucke et al., 2018).

The numbers in this table represent BLEU scores (Papineni et al., 2002), a widely used metric
for evaluating text generation models. Higher scores indicate better performance. As the results
shown in Table 5, we can see that our framework has significantly improved the text latent diffusion
and notably outperformed a strong baseline—Skip Connections—across all datasets and backbones.
Therefore, our framework also applies to text data.

Experiment on image data. For image data, we provide a detailed discussion in Sec. 4.1 of our
paper: Image latent diffusion is rarely affected by posterior collapse due to its non-autoregressive
decoder. To confirm this claim in practice, we conduct an experiment comparing latent diffusion
with our framework on the widely used CIFAR-10 dataset (Krizhevsky et al., 2009).

The results are shown in Table 6. The numbers in this table represent FID scores (Naeem et al.,
2020), a common metric for evaluating image generation models. Lower scores indicate better per-
formance. Our results show that both the baseline model (i.e., KL Annealing) and our framework
improve the image latent diffusion to some extent. However, the improvements are minor, suggest-
ing that image models are almost free from posterior collapse.
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