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Abstract

Personalizing large-scale diffusion models poses serious privacy risks, especially
when adapting to small, sensitive datasets. A common approach is to fine-tune the
model using differentially private stochastic gradient descent (DP-SGD), but this
suffers from severe utility degradation due to the high noise needed for privacy,
particularly in the small data regime. We propose an alternative that leverages
Textual Inversion (TI), which learns an embedding vector for an image or set
of images, to enable adaptation under differential privacy (DP) constraints. Our
approach, Differentially Private Aggregation via Textual Inversion (DPAgg-TI),
adds calibrated noise to the aggregation of per-image embeddings to ensure formal
DP guarantees while preserving high output fidelity. We show that DPAgg-TI
outperforms DP-SGD finetuning in both utility and robustness under the same
privacy budget, achieving results closely matching the non-private baseline on
style adaptation tasks using private artwork from a single artist and Paris 2024
Olympic pictograms. In contrast, DP-SGD fails to generate meaningful outputs in
this setting.

DPAgg-TI
(ours)

regular TI +
DP-SGD
(baseline)

T
.

Figure 1: We compare our method (DPAgg-TI, top) to a baseline applying DP-SGD to Textual
Inversion (bottom), using the prompt “an icon of the Eiffel Tower in the style of the Paris 2024
Olympic Pictograms.” While the baseline learns a single embedding over the dataset, our method
privately aggregates per-image embeddings. At privacy budget € = 1, DPAgg-TI preserves visual
fidelity much better than the baseline, and closely matches the non-private output (left), demonstrating
a superior privacy-utility tradeoff.

1 Introduction
The rapid adoption of diffusion models Ho et al.|[2020], Song et al.|[2021b]],|Rombach et al.| [2022]

has raised significant privacy and legal concerns. These models are vulnerable to privacy attacks, such
as membership inference Duan et al.|[2023]], where attackers determine if a specific data point was
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used for training, and data extraction [Carlini et al.| [2023]], which enables reconstruction of training
data. This risk is amplified during fine-tuning on smaller, domain-specific datasets, where each record
has a greater impact. Additionally, reliance on large datasets scraped without consent raises copyright
concerns |Vyas et al.|[2023]], as diffusion models can reproduce original artworks without credit or
compensation. These issues highlight the urgent need for privacy-preserving technologies and clearer
ethical and legal guidelines for generative models.
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Figure 2: Overview of DPAgg-TI. We first apply Textual Inversion to extract embeddings for each
image in the private dataset. These embeddings are then aggregated with differentially private
mechansim, incorporating subsampling to produce a private embedding upp. Finally, images are
generated using the corresponding token <S5*>.

Differential privacy (DP) Dwork] [20006] is a widely adopted framework for addressing these chal-
lenges. One standard approach for ensuring DP in deep learning is Differentially Private Stochastic
Gradient Descent (DP-SGD) |Abadi et al.|[2016]], which modifies traditional SGD by adding noise to
clipped gradients. However, applying DP-SGD to train diffusion models poses several challenges.
It introduces significant computational and memory overhead due to per-sample gradient clipping
Hoory et al.| [2021]], which is essential for bounding gradient sensitivity Dwork et al.| [2006], Abadi
et al.[[2016]]. DP-SGD is also incompatible with batch-wise operations like batch normalization, as
these link samples and hinder sensitivity analysis. Furthermore, training large models with DP-SGD
often leads to substantial performance degradation, particularly under realistic privacy budgets since
the required noise scales with the gradient norm. Consequently, existing diffusion models trained
with DP-SGD are limited to relatively small-scale images.

Independent of privacy concerns, Textual Inversion (TT)|Gal et al.|[2023] provides an effective method
for adapting diffusion models to specific styles or content without modifying the model. Instead, TI
learns an external embedding vector that captures the style or content of a target image set, which
is then incorporated into text prompts to guide the model’s outputs. A key advantage of TI is its
ability to compress a style into a compact vector, reducing computational and memory demands
while simplifying the application of privacy-preserving mechanisms, as privacy constraints can be
applied directly to embeddings rather than the full model. Additionally, since TI avoids direct model
optimization, it remains efficient and compatible with DP constraints on smaller datasets.

In this work, we propose a novel privacy-preserving adaptation method for smaller datasets, lever-
aging TI to avoid the extensive model updates required by DP-SGD. Standard TI does not offer
formal privacy guarantees, so to address this limitation, we introduce a private variant of T1, called
Differentially Private Aggregation via Textual Inversion (DPAgg-TI) and summarize it in Figure 2]
Our method decouples interactions among samples by learning a separate embedding for each target
image, which are then aggregated into a noisy centroid. This approach ensures efficient and secure
adaptation to private datasets.

Our experiments demonstrate the effectiveness of DPAgg-TI, showing that TI remains robust in
preserving stylistic fidelity even under privacy constraints. Applying our method to a private artwork
collection by @eveismyname and Paris 2024 Olympics pictograms Paris 2024, we show that
DPAgg-TI captures nuanced stylistic elements while ensuring privacy. We observe a trade-off
between privacy (controlled by DP parameter ¢) and image quality: lower € reduces fidelity but
maintains the target style under moderate noise. Subsampling further amplifies privacy by reducing
sensitivity to individual data points, mitigating noise impact on image quality. This framework
enables privacy-preserving adaptation of diffusion models to new styles and domains while protecting
sensitive data.

Our contributions can be summarized as follows:
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(1) We propose DPAgg-TI that ensures privacy by learning separate embeddings for individual images
and aggregating them into a noisy centroid.

(2) Our approach enables style adaptation without extensive model updates, reducing computational
overhead while preserving privacy.

(3) We analyze the trade-off between privacy and image quality, showing that moderate noise
maintains stylistic fidelity while protecting sensitive data.

(4) We validate our method on diverse datasets, demonstrating its effectiveness in capturing stylistic
elements under privacy constraints.

2 Background and Related Work

2.1 Diffusion Models

Diffusion models [Ho et al.|[2020], Song et al.[[2021blla], Rombach et al.|[2022] leverage an iterative
denoising process to generate high-quality images that align with a given conditional input from
random noise. In text-to-image generation, this conditional input is based on a textual description (a
prompt) that guides the model in shaping the image to reflect the content and style specified by the
text. To convert the text prompt into a suitable conditional format, it is first broken down into discrete
tokens, each representing a word or sub-word unit. These tokens are then converted into a sequence
of embedding vectors v; that encapsulate the meaning of each token within the model’s semantic
space. Next, these embeddings pass through a transformer text encoder, such as CLIP Radford et al.
[2021]}, outputting a single text-conditional vector y that serves as the conditioning input. This vector
vy is then incorporated at each denoising step, guiding the model to align the output image with the
specific details outlined in the prompt.

The image generation process, also known as the reverse diffusion process, comprises of 71" discrete
timesteps and starts with pure Gaussian noise x7. At each decreasing timestep ¢, the denoising model,
which often utilizes a U-Net structure with cross-attention layers, takes a noisy image x; and text
conditioning y as inputs and predicts the noise component ey (x¢, y, t), where 6 denotes the denoising
model’s parameters. The predicted noise is then used to make a reverse diffusion step from z; to
i1, iteratively refining the noisy image closer to a coherent output z that aligns with the text
conditional y.

The objective function for a text-conditioned diffusion model, given both the noisy image x; and
the text conditioning y, is typically a mean squared error (MSE) between the true noise € and the
predicted noise eg(z¢, y,t). The denoising model is therefore trained over:

0" = argr%inIEz,eN./\/(O,I),tN[T][H6 - 69($t,y,t)H2]. (1)

2.2 Textual Inversion.

Textual Inversion (TT)|Gal et al|[2023] is an adaptation technique that enables personalization using a
small dataset of typically 3-5 images. This approach essentially learns a new token that encapsulates
the semantic meaning of the training images, allowing the model to associate specific visual features
with a custom token.

To achieve this, TI trains a new token embedding, denoted as u, representing a placeholder token,
denoted as S. During training, images are conditioned on phrases such as “A photo of S” or “A
painting in the style of S”. However, unlike the fixed embeddings of typical tokens v;, u is a learnable
parameter. Let y,, denote the text conditioning vector resulting from a prompt containing the token S.
Through gradient descent, TI minimizes the diffusion model loss given in (1)) with respect to u, while
keeping the diffusion model parameters 6 fixed, iteratively refining this embedding to capture the
unique characteristics of the training images. The resulting optimal embedding «* is formalized as:

u* = arg mljn Em,ewN(O,I),tN[T] [HE — €9 (Itv Yus t) ||2] 2

Hence, u* represents an optimized placeholder token S*, which can employed in prompts such as “A
photo of S* floating in space” or “A drawing of a capybara in the style of S*”, enabling the generation
of personalized images that reflect the learned visual characteristics.
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2.3 Differential Privacy.

In this work, we adopt differential privacy (DP) Dwork et al.| [2006]], Dwork! [2006] as our privacy
framework. Over the past decade, DP has become the gold standard for privacy protection in both
research and industry. It measures the stability of a randomized algorithm with respect to changes in
an input instance, thereby quantifying the extent to which an adversary can infer the existence of a
specific input based on the algorithm’s output.

Definition 1 ((Approximate) Differential Privacy). For €,6 > 0, a randomized mechanism M :
X" — Y satisfies (¢,0)-DP if for all neighboring datasets D, D’ € X™ which differ in a single
record (i.e., |D — D'||y < 1 where ||-||,, is the Hamming distance) and all measurable S in the range
of M, we have that

P(M(D) € S) <eP(M(D') € S) + 4.
When § = 0, we say M satisfies e-pure DP or (e-DP).

To achieve DP, the Gaussian mechanism is often applied Dwork et al.| [2014], Balle and Wang| [2018]],
adding Gaussian noise scaled by the sensitivity of the function f and privacy parameters ¢ and .

Specifically, noise with standard deviation o = £sy/21In(1.25/9) V21n€(1'25/6) is added to the outpu Balle and
Wang| [2018]], where A ; represents ¢5-sensitivity of the target function f(-). When the context is
clear, we may omit the subscript f. This mechanism enables a smooth privacy-utility tradeoff and is
widely used in privacy-preserving machine learning, including in DP-SGD |Abadi et al.| [2016]], which
applies Gaussian noise during model updates to achieve DP.

Privacy Amplification by Subsampling. = Subsampling is a standard technique in DP, where a
full dataset of size n is first subsampled to m records without replacement (typically with m < n)
before the privatization mechanism (such as the Gaussian mechanism) is applied. Specifically, if
a mechanism provides (e, §)-DP on a dataset of size m, it achieves (¢’,’)-DP on the subsampled
dataset, where ¢’ = "0 and

¢’ =log (1 + % (ef — 1)) =0 (%5) ) ?3)

This result is well-known (Steinke|[2022] Theorem 29]), with tighter amplification bounds available
for Gaussian mechanisms Mironov]| [2017]].

2.4 Private Adaptation of Diffusion Models

Recent advancements in applying DP to diffusion models have aimed to balance privacy preservation
with the high utility of generative outputs. Dockhorn et al. Dockhorn et al| [2023]] proposed a
Differentially Private Diffusion Model (DPDM) that enables privacy-preserving generation of realistic
samples, setting a foundational approach for adapting diffusion processes using DP-SGD. Another
common strategy involves training a model on a large public dataset, followed by differentially private
fine-tuning on a private dataset, as explored by |Ghalebikesabi et al.| [2023]]. While effective in certain
contexts, this approach raises privacy concerns, particularly around risks of information leakage
during the fine-tuning phase Tramer et al.|[2024]).

In response to these limitations, various adaptation techniques have emerged. Although not spe-
cific to diffusion models, some methods focus on training models on synthetic data followed by
DP-constrained fine-tuning, as in the VIP approach |Yu et al.|[2024], which demonstrates the fea-
sibility of applying DP in later adaptation stages. Other approaches explore differentially private
learning of feature representations [Sander et al.| [2024], aiming to distill private information into
a generalized embedding space while maintaining DP guarantees. Although these adaptations are
not yet implemented for diffusion models, they lay essential groundwork for developing secure and
efficient privacy-preserving generative models.

3 Differentially Private Adaptation via Textual Inversion

Let (D, ..., (") represent a target dataset of images whose characteristics we wish to privately
adapt our image generation towards. Instead of training a single token embedding on the entire

"In practice, we use numerical privacy accountant such as [Balle and Wang| [2018]], Mironov| [|2017] to
calibrate the noise.
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Figure 3: Samplés of images used in our style adaptation experiments. Left: artwork by
@eveismyname (n = 158). Right: Paris 2024 Olympic pictograms (n = 47), © International
Olympic Committee, 2023.
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Figure 4: Images generated by S“nt:blesﬁiffu;ion vi5 usulng the proinptm‘g‘“leainting of Taylor Swift in
the style of <Qeveismyname>", with the embedding <Q@eveismyname> trained using different
values of m and €.

dataset as in regular TI, we train a separate embedding u(*) on each 2(*) to obtain a set of embeddings
u®, ..., u(), as illustrated in Figure We can formalize the encoding process as follows:

le — co (), yu, )17, )

u?) = arg muin Een(0,1),t]

Then, we can aggregate the embeddings vV, ..., u(") by calculating the centroid. The purpose of
this aggregation is to limit the sensitivity of the final output to each z(*). In order to provide DP
guarantees, we also add isotropic Gaussian noise to the centroid. We can therefore define the resulting
embedding vector upyp as follows:

I
upp = — > _ul + N(0,0°1), ©)
=1

where the minimum o required to provide (&, §)-DP is given by the following expression based on

Balle and V‘Vang 2()18', The()l‘em 1 .
A \/21][ 12:[) (5

n 3

In the context of our problem, A = sup; ; [u —u(9)||. Since our embedding vectors are directional,
we can normalize each u(i), allowing us to set A = 2.

The noisy centroid embedding ujjp can then be used to adapt the downstream image generation
process. Similar to regular TI's u*, we can use ujyp to represent a new placeholder token S™ that
can be incorporated into prompts for personalized image generation. While w5 may not fully solve
the TI optimization problem presented in (2)), it provides provable privacy guarantees, with only a
minimal trade-off in accurately representing the style of the target dataset.

To reduce the amount of noise needed to provide the same level of DP, we employ subsampling:
instead of computing the centroid over all n embedding vectors, we randomly sample m < n
embedding vectors without replacement and compute the centroid over only the sampled vectors.
Then the standard privacy amplification by subsampling bounds (such as (3))) can be applied. Formally,
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Figure 5: Images genréorte)lried by Stable Diffusion’vi.5 usfifg(]'sthe pbf(:)%pt “Idon of a &?’Sg&l in the style
of <Paris 2024 Pictograms>", with the embedding <Paris 2024 Pictograms> trained using different
values of m and ¢.

we sample Dy, € {u™, ... u(™} where |Dyyp| = m, and compute the output embedding as
follows: )
upp=— Y ul) + N (0,0°D), @)
u(i)eDsub

where o can be computed numerically for any target ¢, § and subsampling rate ™.

4 Experimental Results

4.1 Datasets

We compiled two datasets to evaluate our style adaptation method, specifically selecting content
unlikely to be recognized by Stable Diffusion v1.5, our base model.

The first dataset consists of 158 artworks by the artist @eve i smyname, who has granted consent
for non-commercial use. This dataset allows us to assess whether models can capture artistic styles
without memorizing individual works. While some of these artworks may have been publicly
accessible on social media, making incidental inclusion in Stable Diffusion’s pretraining possible,
the artist’s limited recognition and relatively small portfolio reduce the likelihood that the model has
internalized her unique style. This dataset serves as a controlled test for privacy-preserving style
transfer on individual artistic collections.

The second dataset contains 47 pictograms from the Paris 2024 Olympics [Paris 2024, permitted
strictly for non-commercial editorial use [International Olympic Committeel These pictograms were
officially released in February 2023, several months after the release of Stable Diffusion v1.5, ensuring
they were absent from the model’s pretraining data. This dataset allows us to assess how well our
approach adapts to newly introduced visual styles that the base model has never encountered.

Both datasets are used to test the ability of our method to extract and transfer stylistic elements while
preserving privacy. Representative samples are shown in Figure 3]

4.2 Style Transfer Results

Using both the @Reveismyname and Paris 2024 pictograms dataset, we trained TIT|Gal et al.| [2023]]
embeddings on Stable Diffusion v1.5 Rombach et al.|[2022] using DPAgg-TI. Our primary goal
is to investigate how DP configurations, specifically the privacy budget ¢ and subsampling size m,
affect the generated images quality and privacy resilience. For regular TI, we utilize the default
process to embed the private dataset without any additional noise. For the DPAgg-TI, we test multiple
configurations of m and ¢ to analyze the trade-off between image fidelity and privacy.

Figures ] and [5] present generated images across two key configurations: (1) regular TI without
DP, (2) DPAgg-TI with DP at different values of m and €. We used the same random seed to
generate embeddings, subsample images, and sample DP noise for ease of visual comparison between
different configurations. As with common practice, we set 6 = 1/n. Since o is undefined for
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¢ = 0, we demonstrate the results of ¢ ~ 0, in other words, infinite noise, by setting ¢ = 1075,
The purpose of this parameter value is to demonstrate the image generated when ujp contains zero
information about the target dataset. Images generated without DP closely resemble the unique
stylistic elements of the target dataset. In particular, images adapted using @eve i smyname images
displayed crisp details and nuanced color gradients characteristic of the artist’s work, while those of
Paris 2024 pictograms captured the logo’s original structure. In contrast, DP configurations introduce
a discernible degradation in image quality, with lower epsilon values and smaller subsampling sizes
resulting in diminished stylistic fidelity.

As ¢ — 0, the resulting token embedding ugjp gradually loses its semantic meaning, leading to a
loss of stylistic fidelity. In particular, v, tends towards y (a conditioning vector independent of
the learnable embedding). In our results, this manifests as a painting of Taylor Swift devoid of the
artist-specific stylistic elements, or a generic icon of a dragon (with color, as opposed to the black
and white design of the pictograms). With this in mind, € can be interpreted as a drift parameter,
representing the progression from the optimal uyp towards infinity, gradually steering the generated
image away from the target style in exchange for stronger privacy guarantees. We also observe
instances where there is a temporary drop in prompt fidelity (e.g., m = 16,e € [0.5,1] in Figure
and intermediate ¢ values in Figure[5) which restores as ufp drifts even further from its optimal value.
We hypothesize that this is due to drifted ufp capturing a different meaning unrelated to the prompt,
before losing any meaning that could be interpreted by Stable Diffusion’s text encoder, causing ujp
to be disregarded from y,,- and the prompt fidelity to be restored. Another possible explanation is
that the temporary drop in prompt fidelity is due to the drift path of w5, passing through non-linear
regions within embedding space. We leave further investigations into this observation for future work.

Meanwhile, reducing m also reduces the sensitivity of the generated image to ¢, as evident by the
observation that, on both datasets at m = 4, (subsampling rate below 0.1) image generation can
tolerate ¢ as low as 0.5 without significant changes in visual characteristics, and retaining stylistic
elements of the target dataset at € as low as 0.1. This strong boost in robustness comes at a small
price of base style capture fidelity. As observed in Figures[d]and[5] we can also treat subsampling as
an introduction of noise. Mathematically, the subsample centroid is an unbiased estimate of the true
centroid, and so the subsampling process itself defines a distribution centered at the true centroid.
However, the amount of noise introduced by the subsampling process is limited by the individual
image embeddings, as a subsample centroid can only stray from the true centroid as much as the
biggest outlier in the dataset.

4.3 Quantitative Evaluation

User Study To evaluate the utility of our approach under different DP and subsampling configura-
tions, we conducted a user study with 25 participants. Each participant was shown reference images
from the target dataset and asked to compare pairs of generated images, selecting the one that better
captured the style of the reference images. Images were generated using 10 prompts and adapted
TI embeddings for the @eveismyname and Paris 2024 Pictogram datasets, resulting in 20 groups
of images. Each participant evaluated two groups, one randomly selected from each dataset, with
comparisons focusing on model configurations differing by DP noise and subsampling size.

Survey results, summarized in Table [T]in Appendix [A] align with our design goals. Participants
showed no clear preference between regular TT and DPAgg-T1I, suggesting that our privacy-preserving
approach maintains perceptual quality. As expected, both DP noise and reduced subsampling size
degraded style fidelity, consistent with the trade-offs inherent in differential privacy. Preferences at
€ = 1 were split, but subsampling was generally favored, reinforcing its role in reducing noise impact
while preserving style.

Kernel Inception Distance The Kernel Inception Distance (KID) Binkowski et al.| [2018] is a
metric for evaluating generative models by measuring the difference between the distributions of
generated and training images in an embedding space. To compute KID, images generated by the
model and real training images are passed through an Inception network [Szegedy et al.|[2015]], and
their distributional differences are estimated. Unlike the more commonly used Fréchet Inception
Distance (FID) |Heusel et al.|[2017]], KID is an unbiased estimator of the true divergence between the
learned and target distributions Jayasumana et al.|[2024]], making it more suitable for smaller datasets,
as in our case.
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We report KID scores for different parameters in Tables [2]and [3] (see Appendix [B]), showing that
DPAgg-TI maintains the style transfer fidelity of TI while ensuring differential privacy. Further
discussion of these results is also provided in Appendix B

Ablation Study: Textual Inversion with DP-SGD A natural question that arises is how well
our approach compares to the naive method of applying DP-SGD to regular TI training. We there-
fore integrated DP-SGD into the TT codebase using the Opacus library and trained similar embed-
dings on the @eveismyname and Paris 2024 datasets. We found that in most cases, notably the
@eveismyname dataset, the amount of noise required for DP-SGD to achieve a reasonable value of
¢ for DP is so high that the resulting embedding contains negligible information about the training
dataset. In particular, the results for € = 1 are almost indistinguishable to € ~ 0, as shown in Figure
[6] We believe that this is simply because DP-SGD is not designed to handle such small datasets in
the order of 100 images. Additional results can be found in Appendix [

DPAgg-TI
(m=4)

(ours)

DPAgg-TI
(m=28)
(ours)

\ | regular TI +
DP-SGD
(baseline)

regular TI +
DP-SGD
(baseline)

) 2. &.\.‘} N T

Figure 6: Comparing our approach to applying DP-SGD to regular TI using prompts “an icon of a
dragon in the style of the Paris 2024 Olympic Pictograms” and “a painting of Taylor Swift in the style
of Reveismyname” respectively. Note that our method aggregates individual TI embeddings for
each training image, whereas the baseline trains a single TI embedding over the entire dataset.

5 Copyright Protection Implications

Our proposed mechanism can also be interpreted through the lens of copyright protection. This
connection is grounded in the framework of Near Access-Freeness (NAF) [Vyas et al.,[2023]], which
evaluates whether a model’s outputs reveal undue influence from specific data points by comparing
them to those from a safe model trained without access to the same data. Since DPAgg-TT satisfies
e-DP, it also satisfies e-NAF, which means the adapted model behaves similarly to one that never
saw the private images, under the NAF criterion. However, we emphasize that this guarantee holds
only within the NAF framework; it does not constitute a general claim about content similarity or
legal compliance. Crucially, DPAgg-TI is designed to adapt to the style of private images, not their
specific content. Prior work and legal precedent suggest that style imitation is generally considered
fair use and does not constitute infringement [[Vyas et al.,2023|]. Thus, our mechanism aligns with the
intended protections of NAF: it avoids memorization while still enabling meaningful personalization
and stylistic adaptation. We defer the details of copyright protection to Appendix

6 Conclusion

We presented a differentially private adaptation method for diffusion models based on Textual
Inversion, enabling privacy-preserving style transfer without the need for full model fine-tuning. By
learning per-image embeddings and aggregating them with calibrated noise, our method, DPAgg-TI,
achieves strong formal privacy guarantees while maintaining high output fidelity. Experiments
on private artwork and Paris 2024 pictograms show that DPAgg-TI consistently outperforms DP-
SGD, which fails to produce meaningful results under comparable privacy budgets. These results
highlight the effectiveness of embedding-level adaptation as an efficient and scalable alternative
to traditional gradient-based approaches, especially in low-data regimes. Unlike DP-SGD, which
introduces significant computational overhead and utility degradation, DPAgg-TTI is lightweight,
modular, and compatible with existing diffusion backbones. Our findings suggest that embedding-
centric approaches offer a promising direction for privacy-aware personalization, and motivate further
research into cross-modal extensions, improved aggregation techniques, and integration with broader
privacy-preserving frameworks.
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A User Study

regular TI No Adaptation Unsure
@eveismyname 19 4 2
Paris 2024 16 6 3
DPAgg-TI (no DP, no subsampling) | No Adaptation Unsure
@eveismyname 16 9 0
Paris 2024 15 4 6
regular TI DPAgg-TI (no DP, no subsamp.) Unsure
@eveismyname | 12 13 0
Paris 2024 9 10 6
regular TI DPAgg-TI (no DP, subsamp. m = 8) | Unsure
@eveismyname 16 6 3
Paris 2024 7 13 5
DPAgg-TI (no DP, no subsampling) | DPAgg-TI (no DP, subsamp. m = 8) | Unsure
@eveismyname 18 4 3
Paris 2024 10 8 7
DPAgg-TI (¢ = 1) no subsampling DPAgg-TI (¢ = 1, subsamp. m = 8) | Unsure
@eveismyname 14 10 1
Paris 2024 3 16 6
DPAgg-TI (no DP, no subsampling) | Style Guidance Unsure
@eveismyname | 16 8 1
Paris 2024 20 2 3
DPAgg-TI (¢ = 1, subsamp. m = 8) | Style Guidance Unsure
@eveismyname 16 8 1
Paris 2024 19 2 4
DPAgg-TI (no DP, subsamp. m = 8) | DPAgg-TI (¢ = 1, subsamp. m = 8) | Unsure
@eveismyname 8 5 12
Paris 2024 15 4 6

Table 1: Survey Results.

A.1 Study Design and Objective

The user study aimed to assess the utility of our approach under different DP and subsampling

configurations by evaluating the models’ ability to adapt to novel styles. The study involved 25
participants, each of whom was tasked with comparing images generated using various configurations
and selecting the one that better captured the style of reference images.

A.2 Experimental Setup

Participants were shown reference images from two datasets:

* The @eveismyname dataset of private artwork.
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Figure 7: Samples of image sets used in our user study. Participants are asked to compare 2 images at
a time.

* The Paris 2024 Pictogram dataset.

For each dataset, 10 prompts were used to generate images, resulting in 20 groups of images (10
prompts per dataset). Each group included images generated using the same prompt and dataset but
with different model configurations. Configurations varied in the addition of DP noise and the size of
subsampling.

* Original Textual Inversion (TI)

* DPAgg-TI (¢ = oo, no DP) w/o subsampling
DPAgg-TI (¢ = 1) without subsampling

* No Adaptation

DPAgg-TI (¢ = oo, no DP) with subsampling (m = 8)
DPAgg-TI (¢ = 1) with subsampling (m = 8)

* Style Guidance (SG)

A.3 Survey Procedure

Participants were asked to evaluate two groups of images: one randomly selected from the
@eveismyname dataset and one from the Paris 2024 Pictogram dataset. For each group:

1. Participants were shown reference images from the target dataset.

2. They were presented with pairs of images generated using different model configurations
for the same prompt.

3. Participants selected the image they felt better captured the style of the reference images.

A.4 Evaluation Metrics

The study focused on assessing:
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* Participants’ preference between regular TT and DPAgg-TT for style adaptation.
* The impact of DP noise and subsampling size on the perceived utility of style transfer.

A.5 Results and Analysis
The results are summarized in Table[I] Key observations include:
* Participants showed no clear preference between regular TT and DPAgg-TI in capturing

styles for either dataset.

* Both DP noise and reduced subsampling size decreased the perceived quality of style
transfer.

* Preferences were split between configurations with ¢ = 1 with and without subsampling,
though subsampling generally had favorable outcomes.

These findings highlight the trade-off between increased DP robustness and reduced utility, suggest-
ing that the optimal configuration may depend on subjective preferences and specific application
requirements.

B Kernel Inception Distance

m No DP e=>5.0 e=1.0 e=0.5 e=0.1 e~0
- 0.0441 £0.0027 0.0798 +£0.0032 0.0526 +£ 0.0022 0.0688 + 0.0020 0.1114 +0.0032 0.0654 = 0.0027
32 0.0753 £0.0047 0.0836 +0.0042 0.1166 +0.0037 0.0295 +0.0019 0.0644 +0.0021 0.0650 = 0.0025
16 0.0350 +£0.0020 0.0381 +£0.0018 0.0663 +0.0025 0.1303 £0.0033 0.0438 £0.0030 0.0660 + 0.0029
8 0.0359 +£0.0018 0.0364 +0.0017 0.0366 +0.0019 0.0394 +0.0025 0.0527 £0.0033 0.0654 + 0.0024
4 0.0246 £ 0.0013  0.0251 £0.0016  0.0249 +0.0014 0.0256 + 0.0012 0.0313 £0.0017 0.0653 = 0.0023

ctrl | 0.0314 £0.0010

Table 2: KID scores of DPAgg-TI on @eveismyname dataset for various ¢ values ranging from
e =107°,0.1,0.5,1.0, 5.0 (including no DP) under different subsampling levels (m = 4, 8, 16, 32)
as well as regular TI (ctr1). Reported values are the mean + standard deviation over 100 random

subsamples.

m No DP =50 e=1.0 =05 e=0.1 ex0
- 0.1153 £0.0055 0.1194 +£0.0054 0.1306 £ 0.0046  0.1395 £ 0.0057 0.1201 £ 0.0053 0.1274 + 0.0055
32 0.1222 £0.0066 0.1036 + 0.0065 0.1375+0.0047 0.1311 £0.0048 0.1248 £ 0.0060 0.1258 +0.0054
16 0.1321 £0.0057 0.1411 £ 0.0077 0.1309 = 0.0061 0.1380 +0.0047 0.1359 +£0.0060 0.1273 +0.0057
8 0.1303 £0.0084 0.1303 +£0.0074 0.1112+0.0062 0.1311 £0.0064 0.1318 £0.0052 0.1267 +0.0056
4 0.1158 +£0.0057 0.1085 +0.0056 0.1184 +0.0068 0.1194 +0.0065 0.1592 +0.0065 0.1268 = 0.0055
ctrl | 0.1383 £0.0066 - - - - -

Table 3: KID scores of DPAgg-TI on Paris dataset for various € values ranging from ¢ = le —
5,0.1,0.5, 1.0, 5.0 (including no DP) under different subsampling levels (m = 4, 8, 16, 32) as well as
regular TI (ct r1). Reported values are the mean =+ standard deviation over 100 random subsamples.

Our results indicate that DPAgg-TT preserves the style transfer fidelity of TI while also ensuring
differential privacy. Notably, for Geveismyname (m = 4) at low privacy budgets, we observe even
lower KID values than standard TI, suggesting enhanced style alignment. Similarly, results for the
Paris 2024 dataset follow a comparable trend, with DPAgg-TI achieving KID scores similar to TT at
low privacy budgets. However, the overall KID scores for this dataset remain high within the context
of diffusion model style transfer.

Upon inspecting the generated images (Figure [8), we hypothesize that the abstract and out-of-
distribution nature of the Paris 2024 images poses a challenge for the Inception network, leading to
less meaningful feature embeddings. This likely inflates the measured embedding distances between
generated and reference images, resulting in higher-than-expected KID values.
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For KID evaluations, we used prompts similar to those employed during TI training: “A painting/icon
in the style of S*”. Consistent with the training image captions, these prompts do not specify a
subject. For each parameter configuration, we generate 100 images and compute KID by repeatedly
subsampling the larger of the real and generated sets to match the size of the smaller set, 100 times,
then averaging the resulting KID scores.

Figure 8: Sample of generated images for KID evaluations with respect to the Paris 2024 dataset.

C Differentially Private Adaptation via Style Guidance

C.1 Background: Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) sampling [Song et al.|[2021a] uses the predicted noise
€o(7t,y,t) and a noise schedule represented by an array of scalars {; }7_; to first predict a clean
image g, then makes a small step in the direction of & to obtain z;_;. The reverse diffusion process
for DDIM sampling can be formalized as follows:

Ty —+/1— atﬁe(ﬂﬁt,%t)
VOt

Ti—1 = m:fo =+ m@(xhy’t)' ©)

®

To =

C.2 Implementation

We extend our approach to style guidance (SG) by leveraging the framework of Universal Guid-
ance Bansal et al.| [2024]]. Specifically, we focus on CLIP-based style guidance, which optimizes the
similarity between the CLIP embeddings of a target image and the generated image.

We encode each target image =) as u(") via a CLIP image encoder, then aggregate the embeddings
u® ... u™ into ujp using @) or (@), depending on whether subsampling is applied. The aggregated
embedding upyp is then incorporated into the reverse diffusion process as a style guide.

Let x. denote the target style image, x; the noisy image at step ¢, and £(-) the CLIP image encoder.
The forward guidance process is defined as follows:

é@(xtay7t) = 69(£t7yat) + wy 1- Oétthécos(g(xt),g(ﬂ}o)% (10)

where w is a guidance weight and /.. is the negative cosine similarity loss. For a detailed description
of Universal Guidance, including the backward guidance process and per-step self-recurrence, we
refer the reader to the original paper. The reverse diffusion step replaces €q (x4, y, t) with €9 (x4, y, t),
generating an image x that aligns with the text conditioning y while incorporating the stylistic
characteristics of x..

To integrate differential privacy, we encode each target image (¥ into u(®) = & (x(i)) and aggregate
these embeddings into upp using the centroid method. The aggregated upp guides the reverse
diffusion process:

€9(xt7yat) = ee(wtvyvt) + wv 1- atvztecos(uik)P; S(QO)) (11)

This ensures privacy-preserving style transfer while maintaining high stylistic fidelity.

C.3 Style Transfer Results

We apply our SG-based approach to both datasets. While it provides privacy protection by obfuscating
embedding details, the resulting images captured only generalized stylistic elements and lack the

detailed fidelity and coherence achieved with the TI-based method. As shown in Figure 0] this
highlights the superiority of TI in balancing privacy and high-quality image generation.
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Figure 9: Attempts of using universal guidance to generate drawings of Taylor Swift and icons of
the Eiffel Tower in the styles of @eveismyname and Paris 2024 Pictograms respectively. Here, we
apply no subsampling or DP-noise.

The reduced effectiveness of SG for style transfer may stem from its sensitivity to hyperparameters
such as the guidance weight w, leading to instability. Although |[Bansal et al.| [2024] proposed
remedies, namely backward guidance and per-step self-recurrence, these proved insufficient for our
application. Additionally, the CLIP embeddings may not retain enough stylistic detail after the
aggregation.

C.4 Ablation

To better understand the limited effectiveness of style guidance in our experiments, despite its success
in Bansal et al] [2024]], we applied our approach to a dataset of 143 paintings from Van Gogh’s
Saint-Paul Asylum, Saint-Rémy collectionInnat (Figure[T0). Unlike the @eveismyname and Paris
2024 datasets, it is highly likely that Stable Diffusion has been trained on these images. Additionally,

456 |Bansal et al.|[2024] demonstrated successful adaptation towards the style of Van Gogh’s Starry Night

457
458

459
460
461

462

463
464

466
467

469
470

as a single reference image, making this dataset a reasonable interpolation between their successful
results and our more limited findings.

Without DP noise or subsampling, we obtained reasonable style transfer results, as shown in Figure[TT]
This suggests that style guidance struggles when applied to previously unseen target styles, and that
its effectiveness may depend on prior exposure within the pre-training data.

Figure 11: Images generated by Stable Diffusion v1.5 with style guidance towards Van Gogh’s
Saint-Paul Asylum, Saint-Rémy collection using prompts “A painting of Taylor Swift (left) / the Eiffel
Tower (center) / a tree (right)”.

D Copyright Protection

Modern generative models typically produce outputs via randomized sampling. Leveraging this
inherent randomness, [Vyas et al.| [2023] introduced Near Access-Freeness (NAF) as a metric to
quantify the similarity between a model’s output and copyrighted content. The key idea is to compare
the output distribution of a potentially infringing model to that of a safe model — one trained without
access to the target content.

Formally, let safe be a mapping from a data point = € C (where C is the collection of copyrighted
samples) to a generative model safe(z) € W that is trained without using 2. A canonical example is
the leave-one-out-safe model, trained on the full dataset excluding . Since safe(x) does not have
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access to x, the probability that it generates content resembling x is exponentially small. Any such
resemblance is considered fortuitous. Formally, the NAF criterion is defined as follows:

Definition 2 (Near Access-Freeness [Vyas et al[2023]]). Let C be a set of copyrighted samples and
W a set of generative models. Given a mapping safe : C — W and a divergence measure A\, we say
a model w is k,-near access-free (or k,-NAF) on prompt y € Y if for every x € C,

A (p(-ly) || safez(-y)) < ky.

If k,, = 0, the model is indistinguishable from a safe model, meaning any resemblance to copyrighted
material is by random chance. More generally, a small k, suggests the model is unlikely to generate
outputs resembling = with higher probability than a model that has never seen x.

D.1 Connection to Differential Privacy

NAF is closely related to concepts in Differential Privacy (DP) [Elkin-Koren et al.||2023]]. Depending
on the divergence measure A, NAF resembles different DP variants — for example, ¢-DP when
A = Ap .« [Dwork et al. 2006], and (1, ¢)-Rényi DP when A = Ak,

Translating DP to generative models yields the following definition:

Definition 3 (Differentially Private Generation (DPG)). Let S and S’ be neighboring datasets.
Denote by Ps(-|y) the distribution over outputs generated by a model trained on, or adapted from, S
with algorithm A, where randomness includes both training and generation stages. The generation is
said to satisfy e-Differentially Private Generation (¢-DPG) if for every y € ),

A(Ps(-|y) | Ps:(-ly)) < e.

Here, neighboring datasets differ by a single data point (or privacy unit). If the training process is
e-DP, then the outputs naturally satisfy e-DPG via the data processing inequality. One benefit of
DPG is the flexibility to add noise during generation rather than training, potentially improving the
utility-privacy tradeoff.

However, there are notable distinctions. e-DP offers protection under arbitrary post-processing and
multiple outputs, whereas e-DPG only guarantees privacy for single outputs. Also, under DP, the
trained model can be released, but under DPG, only the outputs are safe to share.

Elkin-Koren et al.| [2023]] highlight further differences: NAF is one-sided—comparing a model to a
fixed safe reference—whereas DPG is symmetric. This asymmetry in NAF can enable better utility.
Additionally, NAF allows more flexibility in choosing the safe model, which can be exploited in
algorithm design.

Given these conceptual overlaps, both DP-SGD based training and our proposed private adaptation
method DPAgg-T1 satisfies e-DP, so they naturally satisfy e-NAF with the leave-one-out safe model.

We emphasize that this guarantee is meaningful only within the formal framework of NAF. It does not
imply broader legal immunity or empirical indistinguishability from the original content. However,
within this framework, satisfying e-NAF allows us to argue that any close resemblance between
outputs and private training data is no more likely than would be expected from a model that never
had access to that data. This theoretical grounding supports the privacy and safety claims of our
adaptation method.

Importantly, the goal of DPAgg-TI is to adapt to the style of a private image set—not its precise
content. This distinction matters: style transfer is widely considered to fall under the doctrine of
fair use, particularly in artistic and creative contexts. As discussed in [Elkin-Koren et al.|[2023]]
and further elaborated in legal analysis such as Carlini et al.| [2023]], generating new content in the
style of a work, without reproducing its substantive elements, is generally not considered copyright
infringement. Therefore, the use of DPAgg-TI to learn and reproduce stylistic attributes does not
contradict the spirit or intent of the NAF framework. Instead, it offers a promising direction for
responsibly fine-tuning generative models on private or copyrighted sources while respecting both
privacy and intellectual property boundaries.
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E Computational Cost Comparisons

Direct comparisons of computational cost across methods are inherently challenging due to differing
training paradigms, optimization procedures, and parameter settings. Nonetheless, to provide a
concrete sense of scale, we report representative computational costs for each method based on
experiments conducted using a Stable Diffusion v1.5 model on a single NVIDIA A100 GPU. Below
we summarize both training and inference overheads (the number of steps are optimized for each
setup):

Method Steps Batch Size Time Memory Usage
TI (no DP) 10,000 (for 150 images) 1 25 min 7 GB

8 2.5 hours 20 GB
TI (DP-SGD) 30,000 (for 150 images) 1 80 min 7 GB

8 7 hours 20 GB
DPAgg-TI 2,000 per image N/A ~5 min/image 7 GB
SG N/A N/A N/A N/A

Table 4: Training cost comparison across methods. Overhead from DP-SGD is relatively modest due
to the low-dimensional embedding being optimized. N/A for SG means nothing is trained aside from
the base model.

Method Steps Batch Size Time Memory Usage
TI (no DP, DP-SGD, DPAgg-TI) 50 1 1-2sec 4GB

100 1 1-2min 58 GB
SG (no DP, DPAgg-SG) 500 1 ~30min 17 GB

Table 5: Inference cost comparison across methods.

F Additional Style Transfer and Ablation Results

17



DPAgg-T1
(no subsampling)

DPAgg-TI
(m=132)

DPAgg-TI
(m=16)

DPAgg-TI
(m=4)

regular TI +
DP-SGD

no DP e=5 e=2 e=1 e=0.5 e=0.1 e~0

Figure 12: Images generated by Stable Diffusion v1.5 using the prompt “A painting of Taylor Swift in
the style of <@eveismyname>”, with the embedding <@eveismyname> trained using DPAgg-
TI (with different subsample sizes m) and TT with DP-SGD using different values of e.

DPAgg-TI
(no subsampling)

DPAgg-TI
(m=16)

DPAgg-TI
(m=238)

DPAgg-TI
(m=4)

regular TT +
DP-SGD

no DP e=5 e=2 e=1 e=0.5 e=0.1 e=0

Figure 13: Images generated by Stable Diffusion v1.5 using the prompt “An icon of the Eiffel Tower
in the style of <Paris 2024 Pictograms>", with the embedding <Paris 2024 Pictograms> trained
using DPAgg-TI (with different subsample sizes m) and TI with DP-SGD using different values of ¢.
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DPAgg-TI
(no subsampling)

DPAgg-TI
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Figure 14: Images generated by Stable Diffusion v1.5 using the prompt “An icon of a dragon in the
style of <Paris 2024 Pictograms>", with the embedding <Paris 2024 Pictograms> trained using
DPAgg-TI (with different subsample sizes m) and TI with DP-SGD using different values of €.
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