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ABSTRACT

This work aims to enable efficient on-device contrastive learning from input stream-
ing data after a model is deployed on edge devices such as robots or unmanned
aerial vehicles (UAVs) so that they can adapt to a dynamic new environment for
higher accuracy. On the other hand, such data usually does not have any labels,
calling for unsupervised learning. Most recently, contrastive learning has demon-
strated its great potential in learning visual representation from unlabeled data.
However, directly applying it to streaming data requires storing a large dataset
on-the-fly, which will quickly drain edge devices’ storage resources. In this paper,
we propose a framework to automatically select the most representative data from
unlabeled input stream on-the-fly, which only requires the use of a small data buffer
for dynamic learning. What is more, considering the fact that the data are not
independent and identically distributed (iid) as in the traditional training process,
we score new data as they come in by measuring the quality of their representations
without requiring any label information, based on which the data in the buffer will
be updated. Extensive experiments show that the learning speed and accuracy are
greatly improved compared with approaches without data selection.

1 INTRODUCTION

Deep learning models have been widely deployed on the edge and mobile devices to accomplish
different tasks, such as robots (Yang et al., 2016) for search and rescue (Shabbir & Anwer, 2018) and
UAVs for wildfire surveillance (Samaras et al., 2019) and counting cars (Ammour et al., 2017). To
achieve high accuracy for new inputs, the model needs to adapt to real-world data by learning from the
input stream, such as images captured by a camera (Pinto et al., 2016). Using the real-world streaming
data, on-device training has the potential to update the model in-situ for higher accuracy. In this way,
the model on robots and UAVs can quickly adapt to new environments (She et al., 2020; Sünderhauf
et al., 2018). However, it is often inconvenient or even infeasible to send these data to servers for
labeling due to both data privacy, communication cost, and latency concerns (Bonawitz et al., 2019).
Thus, different from conventional training on servers by using labeled datasets, on-device training
has to learn from unlabeled streaming data in-situ.

Contrastive learning, as an effective self-supervised learning approach (He et al., 2020), can learn
visual representations from unlabeled data to improve the model. Contrastive learning is conven-
tionally conducted by using a large dataset, which is completely collected before the training starts.
In the learning process, each mini-batch is randomly sampled from the whole dataset to update
the model (Chen et al., 2020). However, on edge platforms such as robots and UAVs, the data are
collected by sensors such as cameras and fed into the device one-by-one. Storing all the data from the
never-ending input stream to form a large dataset is prohibitive since it will quickly drain the device
storage. For example, a mobile GPU platform NVIDIA Jetson (Nvidia, 2020), which is typically
used for edge devices, has 32GB data storage. Accumulating images from a camera into the storage
at 30 frame-per-second (FPS) will drain the storage in less than 3 hours. Therefore, it is necessary to
use the unlabeled data for training on-the-fly without accumulating a large dataset.

To learn from the unlabeled data stream without accumulating a large dataset, a small data buffer
(i.e. the same size as one mini-batch) can be used to form each mini-batch for training. However,
there are two challenges in maintaining the most representative data in the buffer such that learning
from this buffer will efficiently reach an accurate model. The first challenge is that the streaming data
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cannot be assumed to be independent and identically distributed (iid). Directly learning from these
non-iid data will result in slow learning speed and poor learned representations. The streaming data
collected on edge devices are temporally correlated (Orhan et al., 2020) and result in a correlation
within each mini-batch. A long sequence of data in the temporally correlated stream can be in the
same class (Hayes et al., 2019; Knights et al., 2020). For example, in wildlife monitoring (Dyo
et al., 2012), goats from a group can appear in adjacent images captured by a continuous monitoring
camera (Huynh et al., 2017) at some time, while zebras can appear in adjacent images at another
time. Since typical contrastive learning frameworks (Chen et al., 2020; He et al., 2020) implicitly
assume each mini-batch is sampled uniformly at random from the whole dataset, using the temporally
correlated mini-batch will compromise this assumption and result in slow learning speed and poor
learned representations. The second challenge is that the streaming data are unlabeled and we cannot
employ class information for data selection. If labels were available, we could maintain an exemplar
set for each class (Rebuffi et al., 2017; Hayes et al., 2019). Without labels, we need to select data by
investigating the data itself, instead of relying on the attached labeling information.

To expedite the learning process and improve the learned representations, it is essential to maintain
a data buffer filled with representative data from the streaming data. To this end, we propose a
data replacement policy by scoring the newly arrived data and old data without leveraging labeling
information. The score of each data measures the quality of feature representation encoded by the
model without using label information. Data with a low quality of encoded representation by the
model is more valuable for learning since they have not been effectively learned. These data will
be maintained in the buffer for further learning. On the other hand, data with a high quality of
representations have been effectively learned, and they will be dropped to save places for more
valuable data.

In summary, the main contributions of the paper include:

• We propose a framework to form mini-batches of training data for contrastive learning
on-the-fly from the unlabeled input stream. It only uses a small data buffer and eliminates
the necessity of storing all the streaming data into the device.
• We propose a data replacement policy by data scoring to maintain the most representative

data in the buffer for on-device contrastive learning. Labels are not needed in the data
replacement process.
• We propose a lazy scoring strategy to reduce the cost of data scoring. The data scores are

updated every several iterations instead of in every iteration to save computation.

Experimental results on multiple datasets including CIFAR-10, CIFAR-100, SVHN, ImageNet-20,
ImageNet-50, and ImageNet-100 show that the proposed framework greatly improves the learning
curve and achieves higher accuracy, and substantially outperforms heuristic baselines.

2 BACKGROUND AND RELATED WORK

2.1 BACKGROUND OF CONTRASTIVE LEARNING

Contrastive learning is a self-supervised approach to learn an encoder for extracting visual repre-
sentations from the input image. In this work, we employ the contrastive learning approach from
(Chen et al., 2020) since it performs on par with its supervised counterpart. For an input image xi, its
representation vector hi is obtained by hi = f(xi), where f(·) is the backbone of a deep learning
model. To boost the performance of learned representation, a project head g(·) is used to map the
data representation to the latent space where contrastive loss is applied. To create a positive pair, xi
is augmented twice. Then for each xi in one mini-batch, the contrastive loss is applied to its two
augmentations to compute the loss L. Minimizing L by iteratively updating the model will learn an
encoder to generate representations.

2.2 RELATED WORK

Contrastive Visual Representation Learning. (Wu et al., 2018; Oord et al., 2018; He et al., 2020;
Chen et al., 2020) employ contrastive loss for representation learning and achieve high accuracy on
classification and segmentation tasks. (Knights et al., 2020; Orhan et al., 2020) use the temporal

2



Under review as a conference paper at ICLR 2021

correlations in the streaming data to improve the representation learning. However, all these works
assume that the whole training dataset is available in the learning process, and each mini-batch can
be formed by sampling from the dataset. Each mini-batch consists of independent and identically
distributed (iid) data. But when learning from the streaming data, which cannot be assumed to be iid
on edge devices, the data is collected sequentially as it is. Besides, random sampling from the entire
input stream to create iid mini-batches is infeasible since it requires storing all the data. Therefore,
an approach to form mini-batches on-the-fly while including the most representative data in each
mini-batch is needed to enable efficient and accurate on-device contrastive learning.

Data Selection in Streaming and Continual Learning. There are several supervised streaming and
continual learning models that can learn from a stream of data (Aljundi et al., 2019). To overcome
the problem of catastrophic forgetting of previously seen data (Kirkpatrick et al., 2017), a data
buffer is usually needed to store previous data for rehearsal (Rebuffi et al., 2017; Hayes et al., 2019;
Aljundi et al., 2019; Lopez-Paz & Ranzato, 2017; Borsos et al., 2020). The main drawback of these
approaches is that data labels are needed to maintain the buffer. However, labeling all the data in the
streaming is inconvenient and even infeasible on edge devices. Therefore, existing methods cannot
be applied directly to contrastive learning and an effective data selection approach that works on
unlabeled data is needed.

3 METHODS

This framework aims to efficiently learn data representations from the unlabeled input stream on-the-
fly without accumulating a large dataset due to storage limitations on edge devices.

To achieve this, the first challenge is that the streaming data cannot be assumed to be independent and
identically distributed (iid) since the data is sequentially collected on edge devices as it is. Directly
learning from the non-iid data will result in slow learning speed and poor learned representations. To
tackle this challenge, the proposed framework forms each mini-batch by maintaining a small buffer
with data selected from the input stream. The buffer is filled with the most representative data and
learning from this buffer will benefit the model most. The buffer has the same size as one mini-batch
and data in the buffer serves directly as one mini-batch after each buffer update.

The second challenge is that the streaming data are unlabeled and we cannot use class information
for data selection. To tackle this challenge, we propose a data replacement policy named Contrast
Scoring by measuring the quality of representation for each data without using labels. Data with low
quality of representations have not been effectively learned by the model and will be maintained in
the buffer for further learning, while data with high quality of representations will be dropped.

Data Scoring & Sorting

New data I

Data maintained in buffer B

Unlabeled
Input Stream

Updated data buffer B
Capturing New data Data Replacement by Scoring Model Update

Data with 
High Scores

Figure 1: Overview of on-device contrastive learning framework.

3.1 FRAMEWORK OVERVIEW

The proposed framework consumes the input streaming data on-the-fly to update the model for
improved representation. We only use a small data buffer B (i.e. the same size as one mini-batch) to
maintain the most representative data. As shown in Figure 1, when a segment of new input I arrives,
both the new data in I and the data in the buffer B will be scored to find the most representative
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data. While any size of I can be used, for simplicity we assume I is the size as B by setting
size(I) = size(B). Then the data in buffer B with the lowest scores will be replaced by the new data
in I with the highest scores. In this way, the data replacement process always maintains the most
representative data among the new and the old ones. After each iteration of data replacement, the
data preserved in the data buffer B will serve as one mini-batch for updating the model once.

3.2 DATA REPLACEMENT BY CONTRAST SCORING

The goal of data replacement is to select the most informative data from the newly arrived data I
and the data in the buffer B, which will be put back to the buffer B to form the next mini-batch. At
iteration t, we denote the set of new data I as It and the set of data in buffer B as Bt. The goal is to
form Bt+1 by selecting data from It and Bt. Formally, we have

Bt+1 ⊂ Bt ∪ It, |Bt+1| = |Bt| = N (1)

where N is the buffer size and the batch size. To maximize the improvement of representation by
updating the model with Bt+1, we design a contrast scoring function S(·) that generates a score for
each input xi in Bt ∪ It to select data for Bt+1. By using the contrast scoring function S(·), the next
mini-batch is formed as:

Bt+1 = {xi|xi ∈ Bt ∪ It, i ∈ topN({S(xi)}2Ni=1)} (2)

where topN() returns the indices of xi with the top N scores.
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Figure 2: Contrast scoring for data replacement. The original and flipped inputs are fed into the
encoder to generate representation vectors, which are projected to the unit sphere to compute scores.

Contrast Scoring for Data Replacement. For each input xi, The contrast scoring function S(xi)
aims to measure the quality of representation vector hi = f(xi) generated by the base encoder f(·).
Intuitively, if the representation of xi is not good, xi will be valuable data for updating the base
encoder since it can still learn from xi to improve its capability of encoding xi. To achieve this,
as shown in Figure 2, for each image xi from the input stream and the buffer, we generate another
view x′i by horizontal flipping. Then we feed both xi and x′i into the encoder and generate the
representation vectors hi and h′i for these two views. Ideally, if the encoder has learned to generate
effective representations of xi, hi and h′i will be identical or very similar. After that, based on hi and
h′i, the score for xi is computed by the contrast scoring function S(·).
The contrast scoring function S(·) is defined as:

S(xi) = dissim(xi, x
′
i) = 1− similarity(zi, z′i) = 1− zTi z′i, xi ∈ Bt ∪ It (3)

zi = g(hi)/‖g(hi)‖`2, z′i = g(h′i)/‖g(h′i)‖`2 (4)

where hi and h′i are the representation vectors generated by the base encoder f(·) as hi = f(xi) and
h′i = f(x′i), taking data xi and its horizontally flipped view x′i as inputs, respectively. zi and z′i are
`2-normalized vectors from the projection head g(·) to enforce ‖zi‖`2 = ‖z′i‖`2 = 1. In this way, the
dot product zTi z

′
i is in the range [-1,1], and S(xi) is non-negative and in the range [0,2].
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The contrast scoring function Eq.(3) measures the dissimilarity between the projected representations
of an image xi and its horizontal flip x′i, where a higher score means a larger dissimilarity. Essentially,
the representation of one image needs to be invariant to image transformations (Ji et al., 2019). Since
a higher score represents a larger dissimilarity and less invariance, input xi with a higher score is
more valuable for updating the base encoder in a sense that the base encoder still cannot generate
sufficiently good representations of it. By updating the encoder with xi using the contrastive loss
(Chen et al., 2020), which aims to maximize the similarity of two strongly augmented views of xi
(Khosla et al., 2020), the score of xi in Eq.(3) will decrease and xi will have a lower probability of
being selected into the next mini-batch in Eq.(2). In this way, more valuable data to update the base
encoder will have a higher probability of being selected into the next mini-batch and others are more
likely to be dropped.

Weak Augmentation is Important for Contrast Scoring. Contrast scoring is a metric to represent
the capability of the base encoder in generating the representation hi = f(xi) for xi. Thus, it should
only relate to the image itself and the encoder. In Figure 2, when generating a pair of inputs (xi, x′i)
to S(·) from an image xi, we find it crucial to avoid any randomness and only apply the weak data
augmentation (i.e. horizontal flipping) to generate x′i. The reason is that this weak augmentation
is deterministic and provides consistent inputs to S(·). In this way, the score S(·) is deterministic
to xi and is consistent in different runs of S(·). If strong data augmentation such as random crop,
random color distortion, and random Gaussian blur were used here, the score will change due to the
randomness introduced in these augmentation techniques. Involving the randomness into the inputs
to the contrast scoring function will generate biased scores, in which the scores will mainly reflect
the randomness. In that case, the score will not be an objective evaluation of the encoder’s capability.

The data replacement policy by contrast scoring is capable of maintaining a core set of data collected
from different time, which increases the data diversity in the buffer. This provides the model with the
opportunity of seeing data across a long time span within one mini-batch, instead of always seeing
the mini-batches of highly temporally correlated data. Data from different times in the input stream
have a higher probability of being in different classes (Knights et al., 2020), and data from different
classes provide better negative samples for the contrastive loss (Khosla et al., 2020). In this way, the
learning process will be expedited.

3.3 LAZY SCORING

Computing the scores for new data and data in the buffer requires feeding these data into the base
encoder to generate the representations. This computation incurs additional time overhead. To
minimize the overhead, we propose lazy scoring, in which part of the data scores can be reused to
reduce computation.

We made the following two observations as the foundation of lazy scoring. First, during each iteration
of data replacement, most of the data (i.e. about 90%) in the buffer are preserved while most of
the new data are directly dropped. Second, the score S(xi) only slightly changes across several
adjacent iterations. This is because the score of one data xi only depends on itself and the base
encoder f(·). xi remains constant and f(·) is slowly updated across iterations. Therefore, S(xi) is
only slowly updated following the pace of f(·), and the score S(xi) computed iterations ago still
provides meaningful information of xi.

To achieve lazy scoring, as long as data xi remains in buffer B, its score is updated every T iterations
instead of in every iteration. More specifically, for each xi in set B, we track its age age(xi) in the
number of iterations since it was placed in B. When performing scoring, we separate data in B into
two subsets, in which one needs scoring while the other does not. The subset of data that needs
scoring is denoted as:

B′t = {xi | x ∈ Bt and age(xi)mod T = 0} (5)

When scoring data in B, the scores are updated as:

St(xi) =

{
dissim(xi, x

′
i), xi ∈ B′t

St−1(xi), otherwise
(6)

In the above equation, if xi needs scoring, its score is computed by Eq.(3). Otherwise, its score in the
last iteration is copied to save computation.
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4 EXPERIMENTS

In this section, we first evaluate the learning curve of our proposed framework. Then, we perform
ablation studies on the impact of buffer size, strength of temporal correlation (STC), and lazy scoring
interval. Kindly note that learning from unlabeled streaming data is a challenging task (Borsos et al.,
2020; Aljundi et al., 2019), and we do not aim to beat the state-of-the-art methods that do not use
streaming data. Instead, we aim to achieve fast on-device learning from streaming such that new
knowledge can be quickly learned (Hayes et al., 2019).

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Protocols. We use multiple datasets, including CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), ImageNet-20, ImageNet-50, and ImageNet-100
to evaluate the proposed approaches. ImageNet-20, ImageNet-50, and ImageNet-100 (Van Gansbeke
et al., 2020) are subsets of the ILSVRC-2012 dataset (Russakovsky et al., 2015) with 20, 50, and
100 randomly sampled classes. Kindly note that learning from streaming is a challenging task and
existing works (Aljundi et al., 2019; Lopez-Paz & Ranzato, 2017; Nguyen et al., 2017) are usually
evaluated on labeled small-scale datasets such as variants of MNIST or CIFAR datasets. Therefore,
our evaluation on unlabeled streaming from subsets of large-scale ImageNet can be considered
as a more challenging task. To evaluate the learned representations, we employ two widely used
evaluation protocols, including linear evaluation (Khosla et al., 2020; Kolesnikov et al., 2019; Chen
et al., 2020; Bachman et al., 2019) and K-nearest neighbor (KNN) classifiers (Caron et al., 2020;
Asano et al., 2019; Wu et al., 2018) on frozen features. For linear evaluation, we replace the projection
head with a linear classifier. When training, the encoder is kept frozen and the linear layer is trained
with standard cross-entropy loss. We report the top-1 accuracy on the held-out test/validation part of
the datasets. KNN classifier is also applied to the output of the encoder without projection. We report
the top-1 accuracy with 200 nearest neighbors. Training details can be found in Appendix A.1.

Strength of Temporal Correlation (STC). We use the metric Strength of Temporal Correlation
(STC) to represent the temporal correlation of the input stream. STC represents how many consecutive
data in the input stream are from the same class until a class change happens, and a larger STC
represents a stronger temporal correlation.

Baselines. Due to the lack of literature on data selection from unlabeled streaming for representation
learning, we compare the proposed data replacement policy with two heuristic baselines. Random
replacement selects data uniformly at random from new data and data in the buffer to form the new
data buffer. FIFO replacement always replaces the oldest data in the buffer with new data.

For conciseness, in the following figures and tables, we use Contrast Scoring to represent the
proposed approaches, and use Random Replace and FIFO Replace to represent the two baselines.

4.2 MAIN RESULTS: LEARNING CURVE

We evaluate the learning curve of the proposed approaches and baselines on CIFAR-10 and ImageNet-
100 datasets. Additional results on ImageNet-20, ImageNet-50, SVHN, and CIFAR-100 datasets can
be found in Appendix A.2. The learning curve represents how fast the model learns representations
from the new inputs. The x-axis is the number of seen inputs and the y-axis is the accuracy following
the linear or KNN classification protocol.

Learning Curve on CIFAR-10. The proposed data replacement policy quickly learns data represen-
tations and achieves a significantly faster learning curve and a higher accuracy than the baselines. The
learning curves on CIFAR-10 with linear and KNN classification protocols are shown in Figure 3 (a)
and (b), respectively. Under the linear evaluation, the accuracy of the proposed approaches quickly
increases to 76.1% with 3.74M seen data, which is 2.67× faster than the random replacement policy
that needs 9.98M data to achieve similar accuracy. The FIFO replacement policy cannot achieve this
accuracy even with 25M data. Similar results can be observed under the KNN protocol. Besides,
the proposed approaches achieve a much higher final accuracy than the baselines. Under the linear
evaluation, the proposed approaches achieve a final accuracy of 82.13%, while the random and FIFO
replacement policies only achieve 79.63% and 74.51%, respectively. Kindly note that while the
standard training approach (e.g. random sampling from the whole dataset to form each mini-batch)
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Figure 3: Learning curve on CIFAR-10 (a), (b) and ImageNet-100 (c), (d) datasets. The learned
representations by the proposed data replacement with scoring substantially outperform the baselines
under two evaluation protocols.

can achieve a higher accuracy of 91.7%, it is infeasible in the challenging streaming task since the
data comes in sequentially and the whole dataset is not available for random sampling. Under the
KNN protocol, the proposed approaches and the baselines achieve 74.01%, 69.32%, and 63.26%,
respectively.

Learning Curve on ImageNet-100. We further evaluate the proposed approaches on the ImageNet-
100 dataset. As shown in Figure 3 (c) and (d), the proposed approaches achieve a consistently faster
learning curve than the baselines. Under the linear evaluation protocol, the proposed approaches
achieve 55.05% top-1 accuracy and outperforms the baselines by 3.69% and 6.39%, respectively.
Under the KNN protocol, the proposed approaches achieve 49.40% top-1 accuracy and outperforms
the baselines by 3.92% and 6.24%, respectively.

4.3 ABLATION STUDY

Buffer Size. We evaluate the impact of buffer size on the performance of the proposed approaches.
The model is trained on the CIFAR-10 dataset. The buffer size is in {8, 32, 128, 256}. The
corresponding learning rate is scaled to 1×10−5, 3×10−5, 5×10−5, and 1×10−4, roughly following
a learning rate ∝

√
batch size scaling scheme (Krizhevsky, 2014). We train the models for 100

epochs for efficient and fair ablations.

Table 1: Top-1 accuracy on CIFAR-10 dataset with different buffer sizes.

Buffer Size Method Linear Eval. KNN Eval.

8
Contrast Scoring 69.38 53.66
Random Replace 66.71 (-2.67) 48.08 (-5.58)
FIFO Replace 65.91 (-3.47) 45.83 (-7.83)

32
Contrast Scoring 73.26 59.47
Random Replace 70.65 (-2.61) 54.10 (-5.37)
FIFO Replace 70.80(-2.46) 54.72 (-4.75)

128
Contrast Scoring 73.97 64.59
Random Replace 71.28 (-2.69) 58.09 (-6.50)
FIFO Replace 70.65 (-3.32) 54.39 (-10.2)

256
Contrast Scoring 76.06 66.64
Random Replace 72.75(-3.31) 61.07 (-5.57)
FIFO Replace 70.53 (-5.53) 57.06 (-9.58)

The proposed approaches consistently outperform the baselines under different buffer sizes. As
shown in Table 1, under different buffer sizes, the accuracy by the proposed approaches maintains
a clear margin over the baselines. Besides, under the linear evaluation, the margin becomes larger
when the buffer size increases to 256. This is because a larger buffer size provides the framework a
better opportunity to select more informative data, and the proposed approaches can leverage this
opportunity to maintain more representative data in the buffer for learning, while the baselines cannot.
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Also, all the approaches achieve higher accuracy when the buffer size becomes larger. This is because
a larger buffer size provides a larger batch size, and contrastive learning naturally benefits from a
large batch size since it provides more negative samples (Chen et al., 2020).

Table 2: Top-1 accuracy on CIFAR-10 dataset with different strengths of temporal correlations.

Strength of Temporal Correlation (STC)
Methods 40 100 400 800 3000 5000

Contrast Scoring 79.64 78.93 76.43 75.74 73.82 71.61
Random Replace 79.36(-0.28) 78.12(-0.81) 74.18(-2.25) 72.35(-3.39) 69.55(-4.27) 69.37(-2.24)
FIFO Replace 78.01(-1.63) 74.76(-4.17) 71.45(-4.98) 70.43(-5.31) 69.58(-4.24) 69.17(-2.44)

Strength of Temporal Correlation (STC). We evaluate the impact of the strength of temporal
correlations (STC) in the input stream. The model is trained on the CIFAR-10 dataset for 100 epochs
with a fixed buffer size 256. The top-1 accuracy is reported using the linear evaluation protocol.

With a larger STC in the input stream, the proposed approaches outperform the baselines by a larger
margin. As shown in Table 2, when STC increases from 40 to 3000, the performance margin over
two baselines increases from 0.28 to 4.27 and from 1.63 to 4.24, respectively. When STC is small,
the input stream is similar to the data stream that is randomly sampled from the whole dataset in
conventional training. Therefore, the baselines can maintain a data buffer similar to conventional
mini-batches and achieve fair performance. When STC becomes large, temporal correlation in
the inputs becomes strong, and it is more essential to select data for training instead of naively
following the input sequence. With a large STC, the proposed approaches can still maintain the most
representative data in the buffer and achieve high accuracy, while the baselines cannot.

Table 3: Top-1 accuracy, average re-scoring percent, and batch time (relative to that without scoring)
on CIFAR-10 with different lazy scoring intervals.

Lazy Scoring Interval Disabled 4 20 50 100 200

Accuracy (%) 76.06 77.04(+0.98) 77.18(+1.12) 77.23(+1.17) 76.38(+0.32) 74.22(-1.84)

Re-scoring Pct. (%) 100.0 21.78 4.31 1.71 0.89 0.44

Relative Batch Time 1.478 1.312 1.232 1.199 1.191 1.172

Lazy Scoring. We evaluate the impact of lazy scoring on the accuracy, average percent of re-scored
data in the buffer in each training iteration, and batch time relative to the approach without scoring.
The lazy scoring interval is in {4, 20, 50, 100, 200} iterations. The model is trained on the CIFAR-10
dataset with buffer size 256 and STC 500. The learned representation is evaluated by the linear
evaluation protocol.

Lazy scoring reduces the additional computation for scoring during training and reduces the batch
time. As shown in Table 3, when lazy scoring interval T in Eq.(5) increases, the average re-scoring
percent and the relative batch time are effectively reduced. When lazy scoring is not used, each
training step of our method is 47.8% slower than the baselines (without scoring). When lazy scoring is
employed with interval 50, each training step is only about 19.9% slower than the baselines. Besides,
lazy scoring slightly increases the final accuracy by up to 1.17%. We conjecture that the increased
accuracy is because the lazy scoring performs similarly to the momentum encoder in (He et al., 2020).
The score computed multiple iterations ago serves as a momentum score. This slowly updated score
brings more information from the past and benefits the data selection.

5 CONCLUSION

This work aims to achieve efficient on-device contrastive learning from input streaming data. We
propose a framework to maintain a small data buffer filled with the most representative data for
learning. To achieve the data selection without requiring labels, we propose a data replacement policy
by scoring each data. Experimental results on multiple datasets show that the proposed approaches
achieve superior learning curves and accuracy compared with baselines.
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A APPENDIX

A.1 DEFAULT TRAINING SETTING

We use ResNet-18 as the base encoder and a 2-layer MLP projection head to project the representations
from the encoder to a 128-dimensional latent space. For subsets of ImageNet, we use ResNet-18
with the standard architecture (He et al., 2016). For datasets CIFAR-10, CIFAR-100, and SVHN
with small images, following (Chen et al., 2020), we replace the first 7×7 Conv of stride 2 with 3×3
Conv of stride 1 and remove the first max pooling layer in ResNet-18. For data augmentation, we
use random cropping, resizing, horizontal flipping, and color distortions (color jittering and color
dropping). We train the encoder from scratch with the SimCLR (Chen et al., 2020) objective and
use Adam optimizer. Unless otherwise specified, the batch size is 256 with weight decay 0.0001.
For subsets of ImageNet, the learning rate is 0.0004, the temperature τ is 0.07, and STC is 100.
The model is trained for 300 epochs for ImageNet-20/50 and 100 epochs for ImageNet-100. For
CIFAR-10, CIFAR-100, and SVHN, the learning rate is 0.0001, the temperature τ is 0.5, and the
model is trained for 500 epochs with STC 500. For all datasets, the linear classifier is trained for 500
epochs with Adam optimizer and learning rate 0.0003. The lazy scoring is disabled by default to have
a fair comparison of different data replacement approaches. The results are averaged over three runs
with different random seeds. All experiments are conducted on 2 Nvidia V100 GPUs.

A.2 LEARNING CURVE ON VARIOUS DATASETS
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(a) Linear classification.
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(b) KNN classification.

Figure 4: Learning curve on ImageNet-20 dataset.

Learning Curve on ImageNet-20. We evaluate the proposed approaches on the ImageNet-20 dataset.
While this dataset is a subset of the large-scale ImageNet dataset, it still features high-resolution
images and is challenging for the stream setting. As shown in Figure 4, the proposed data selection
approach quickly learns representations and substantially outperforms the baselines. Under the linear
evaluation protocol, the proposed approaches achieve 70.64% top-1 accuracy and outperforms two
baselines by 5.76% and 8.19%, respectively. Similar results are observed under the KNN evaluation
protocol, in which the proposed approaches and two baselines achieve 66.50%, 61.90%, and 58.20%
top-1 accuracy.

Learning Curve on ImageNet-50. We evaluate the proposed approaches on the ImageNet-50 dataset.
As shown in Figure 5, the proposed approaches achieve a significantly faster learning curve than
the baselines. Under the linear evaluation protocol, the proposed approaches achieve 60.99% top-1
accuracy and outperforms the baselines by 3.94% and 6.39%, respectively. Under the KNN protocol,
the proposed approaches achieve 57.23% top-1 accuracy and outperforms the baselines by 3.35% and
6.43%, respectively.
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Figure 5: Learning curve on ImageNet-50 dataset.
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(b) KNN classification.
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(c) Linear classification.
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(d) KNN classification.

Figure 6: Learning curve on SVHN (a), (b) and CIFAR-100 (c), (d) datasets.

Learning Curve on SVHN and CIFAR-100. We evaluate the learning curve on the SVHN and
CIFAR-100 datasets, and the results are shown in Figure 6. The learning curve of the proposed
approaches substantially outperform the baselines. For the results on the SVHN dataset shown in
Figure 6 (a) and (b), under the linear evaluation protocol, the proposed approaches achieve 89.71%
accuracy, while the random and FIFO replacement baselines only achieve 86.66% and 85.96%,
respectively. Under the KNN protocol, the proposed approaches and the baselines achieve 75.46%,
56.10%, and 45.41%, respectively. For the CIFAR-100 dataset shown in Figure 6 (c) and (d), under
the linear evaluation protocol, the proposed approaches and the baselines achieve 50.22%, 45.40%,
and 42.68% top-1 accuracy, respectively. Under the KNN protocol, the proposed approaches and the
baselines achieve 35.79%, 30.99% and, 28.71% top-1 accuracy, respectively.
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