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Abstract

The unwieldy size of state-of-the-art language models presents significant obstacles
for deployment, driving up cost and latency. While prior works have offered
methods for distilling these larger language models into smaller students, the best
previous method is somewhat complex, relying on an RL-based optimization. In
this work, we introduce SLIM (Sparse Logit Infused Modeling), a simple method
for distilling LLMs that leverages not only samples from the teacher LLM but also
the values of the logits produced at each decoding step. Our distillation method
uses only the top-5% highest logits along with a dynamic weighting scheme that
assigns weights to the KL divergence and cross-entropy loss based on the relative
confidence between the student and teacher models. Our experiments demonstrate
that SLIM produces models that are better at a wide range of downstream NLP
tasks compared to supervised finetuning, vanilla knowledge distillation, and the
recently proposed MiniLLM. Contrary to other methods, our method is scalable
to much larger teacher (∼ 70B parameters). We also provide an intuition for the
superior performance of SLIM via established sample complexity bounds within
simplified scenarios.

1 Introduction

Recent work in large language modeling has demonstrated that increasing the number of parameters
and overall model size [OpenAI, 2023, Brown et al., 2020] results in significantly improved gener-
alization across a diverse set of tasks [Bubeck et al., 2023]. State-of-the-art large language models
(LLMs), such as PaLM [Chowdhery et al., 2022], ChatGPT [OpenAI, 2023], and Claude, have
grown so large that experimenting with them has become impractical for many researchers in both
academia and industry alike.

In tandem, the impressive quality of responses produced by LLMs have led to their widespread
application to data annotation [Wang et al., 2021]. Along these lines, methods like instruction
tuning [Ouyang et al., 2022] and Self-Instruct [Wang et al., 2022a] have resulted in successful
instruction-tuned models such as InstructGPT [Ouyang et al., 2022] and Alpaca [Taori et al., 2023].
In particular, Ouyang et al. [2022] showed that a 1.3B parameter model, after instruction tuning, can
outperform its 175B parameter GPT-3 counterpart.

Yet, despite the surge in popularity of synthetically labeled corpora and instruction tuning, methods
have not evolved beyond the basics – practitioners typically perform supervised finetuning (SFT) on
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Figure 1: An illustration of our method. First, for a sequence of length C from the dataset, we
calculate the logits using the teacher model. Next, we retain the top 5% of these logits and save them
in a sparse form on disk. During training, we calculate a modified KLD loss. This loss is based on
both the stored sparse logits from the teacher and the outputs from the student model. We then use
this loss to update the student model.

raw generated text, or hard labels, while hoping to learn the conditional distributions characteristic
of the original LLMs that were used to generate these labels. However, it’s clear that each hard
label, or individual token, provides only a shallow glimpse of the underlying distribution it was
sampled from. One can only hope that over a large number of samples, we can approximate this
underlying distribution. By leveraging the model’s output distribution over the entire vocabulary
at each time-step as in knowledge distillation (KD) [Hinton et al., 2015], we uncover information
equivalent to many samples from the underlying latent distribution.

While work in the area of knowledge distillation is well-studied for small (<1B parameter) models
[Sanh et al., 2019] [Wang et al., 2020], the application of KD to LLMs has several known issues. One
particular issue arises when the student model overestimates the low-probability regions of the teacher
distribution while being insufficiently expressive to cover all modes of the teacher model [Ji et al.,
2023]. Recent work like MiniLLM [Gu et al., 2023], proposes replacing the forward Kullback-Leibler
divergence (KLD) objective in the standard KD approach with reverse KLD to prevent the student
model from overestimating the low-probability regions of the teacher distribution. Then, the authors
derive a reinforcement learning based optimization procedure to learn this objective. In this paper, we
strip away these layers of complexity and provide an approach that is not only significantly simpler
and more scalable to larger teacher models, but also results in a student model that outperforms both
MiniLLM and SFT on multiple evaluation sets.

Overall, our contributions are thus,

• We introduce SLIM (Sparse Logit Infused Modeling), a method that utilizes the top 5%
of logits from an open-source Large Language Model (LLM) to create a dataset of logit
values. This compact dataset is subsequently employed to train models through knowledge
distillation using a modified KL divergence loss.

• Our experiments reveal that SLIM effectively boosts LLM capabilities in both instruction
following and multiple downstream tasks.

• We provide an intuition for the superior performance of SLIM via established sample
complexity bounds within simplified scenarios. These bounds offer valuable insights into
the factors contributing to the success of our approach, enhancing our understanding of
instruction tuning processes.

2 Method

Notation We denote the timestep in a sequence with subscript and sample in a dataset with
superscript. Thus, n sequences are denoted as {(xm)im>0}ni=1. For ease of writing, where convenient,
we drop the superscript when considering any arbitrary sample sequence. Accordingly, xm is
the m-th element from an arbitrary sequence sample. Further, we sometimes denote a sequence
x1, x2, . . . , xi−1 using xi. For labels, we use yi to represent the correct label at timestep i in an
arbitrary sequence sample. For instance, (xi, yi) represents an arbitrary datapoint of input sequence
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x1, x2, . . . , xi−1 and the correct completion label yi. We use yi to represent a one-hot vector over
the vocabulary representing yi.

We are focused on distilling from commercial LLMs to student language models with parameter
counts in the range of 70M − 13B. Our dataset consists of n sequences {(xm)im>0}ni=1. Our
objective is to approximate p(xm | x1x2 · · ·xm−1). Conventionally, this is done by modeling the
distribution as pθ(xm | x1x2 · · ·xm−1), where θ represents the learnable parameters. θ is then
obtained by minimizing the Causal Language Modeling (CLM) loss, defined for a sample as:

LCLM = − 1

N

N∑
i=1

log pθ(xi | x1, x2, . . . , xi−1) (1)

where N is the length of the sequence, and yi and x1, x2, . . . , xi−1 are the actual and preceding
tokens, respectively. It is useful to note that (i) the model parameters θ are shared across all time
steps to achieve better generalization for longer sequences while maintaining a manageable model
size; (ii) each term in the CLM loss includes the KL-divergence between the predicted distribution
and the one hot distribution of each ground truth sample. When several samples are obtained for the
same input location, the terms in the CLM loss corresponding to these samples begin to resemble the
KL-divergence between the predicted distribution and the true ground truth distribution. In contrast
to this traditional method, our approach leverages logits from a larger and more capable model. Our
methodology (Figure 1) consists of two primary components: first, a logit dataset creation pipeline,
and second, training our consumer-grade model using knowledge distillation [Hinton et al., 2015]
with a modified KL-divergence loss.

2.1 Logit Dataset Creation

In the context of our dataset, we introduce a strategy that leverages a larger and more proficient
teacher model to generate a supplementary dataset comprising logits. These logits are calculated by
applying the teacher model on the same data points as in our original dataset. The idea is to exploit
the intricate relationships captured by the teacher model, and to use these as soft targets for training
our consumer-grade model. To elaborate, for any given example in the dataset with a context length
of C, and considering a vocabulary size of V , the resulting logit matrix would naturally assume
dimensions of C × V .

Storing such extensive logit matrices for every example in the dataset could potentially lead to
significant memory overhead, especially if the intent is to persistently store these logits on disk for
future use. As a remedy for this scalability issue, our proposal involves a trade-off between granularity
and computational efficiency. Specifically, we retain only the top 5% of logits for each token within
the example, while zeroing out all other entries in the logit matrix. This strategic pruning enables
us to store the complete logit matrix in a sparse representation, dramatically reducing the memory
footprint.

Our empirical analysis substantiates the efficacy of this approach. In Section 3, we present empirical
evidence showing that, despite the sparsity introduced, our logit-based distillation method consistently
outperforms traditional supervised fine-tuning methods across various benchmarks. This serves as
a validation of the effectiveness of our approach in balancing the need for a rich feature set with
computational and storage constraints.

2.2 Training via knowledge distillation

Consider a dataset, denoted as D, that comprises n sequences. Correspondingly, we have constructed
a logit dataset, symbolized as T . With these resources at hand, our objective is to fine-tune our
model using the principles of knowledge distillation. This entails a process wherein the knowledge
encapsulated in a more complex, often pre-trained model (the teacher) is distilled into a simpler
model (the student). To achieve this, we employ a modified KL-divergence loss.

For every datapoint (xi, yi) ∈ D and its associated logit ti ∈ T (vector of length equal to the
vocabulary), the input xi is processed through our student model to produce logits si. To regulate
the influence of these logits, a temperature parameter τ is introduced, leading to normalized logits
sτi = si/τ and tτi = ti/τ .

We can delineate our loss computation as:
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• Cross-Entropy Loss:
Lce = −yT

i · log(si) (2)

• KD Loss:
Lkd = −(tτi )

T · log(sτi ) (3)

Our final loss formulation draws inspiration from the work of Zhou et al. [2021]. We inform the
weight given to the KD loss by factoring in the ratios of the true/teacher logit corresponding to the
hard label against the student logit for the hard label. We could express the teacher logit for the hard
label as ti = yT

i · ti and likewise the student logit as si = yT
i · si. We then compute our loss as:

Lfinal = Lce + α

(
1− exp

(
−si
ti

))
Lkd (4)

Here, α is a tunable hyperparameter. Note that this loss is adaptive by nature: if the teacher
(represented by logits from T ) presents higher confidence for a given sample, the influence of the KD
loss is amplified. Conversely, if the student model is more confident in its prediction, the weight on
the KD loss is attenuated. This weighting strategy allows our student model to learn from the teacher
while being robusts to contexts where the teacher model is subpar.

3 Experiments

3.1 Instruction Following

To understand the effectiveness of our approach, we initially focus on the instruction-following task.
In this context, we use the train and val splits of Dolly dataset constructed by Gu et al. [2023]. An
important distinction in our methodology, as compared to that of Gu et al. [2023], is our decision to
forego the use of Dpt for pretraining.

We evaluate the trained models on 3 different instruction-following datasets:

• DollyEval: A test split of Dolly dataset consisting of 500 examples created by Gu et al.
[2023].

• VicunaEval [Xu et al., 2023a]: The 80 challenging questions used in the evaluation of the
Vicuna model.

• SelfInst [Wang et al., 2022a]: A user-oriented instruction-following set with 252 samples.

We use Rouge-L [Lin, 2004] score and GPT-4 [OpenAI, 2023] feedback to evaluate the instruction
following capability of the models. Wang et al. [2022b] demonstrated that Rouge-L is suitable
for large-scale instruction-following evaluation. In addition to reporting Rouge-L scores, we also
leverage GPT-4 to provide a feedback score similar to Gu et al. [2023] in the range of 1-10 and
then report the ratio of the average GPT-4 score of the model generations to that of the ground truth.
We use supervised finetuning using hard labels (SFT) and MiniLLM as our baselines and use the
7B models as the backbone for training. We don’t compare SLIM against vanilla KD since it is
computationally infeasible with a 30B parameter teacher model.

From our experiments on three distinct datasets and model versions, as presented in Table 1, our
approach consistently outperforms the supervised finetuning using hard labels (SFT) across all
metrics, datasets and model types while also outperforming MiniLLM across all dataset using the
LLaMA model. Notably, in the LLaMA 2 and MPT experiments, MiniLLM results are absent as the
authors did not release their models for these versions.

3.2 Downstream Tasks

Beyond merely examining our method’s proficiency in instruction-following tasks, we extended our
evaluation to encompass a variety of downstream tasks. For this assessment, we train our models
using the open assistant Guanaco dataset introduced by Dettmers et al. [2023].

Post-training, we test the models across four distinct tasks in the 5-shot setting:
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LLaMA
DollyEval VicunaEval SelfInst

Rouge-L GPT-4 Rouge-L GPT-4 Rouge-L GPT-4

Teacher (LLaMA 13B) 29.7 85.3 19.4 66.3 23.4 76.2
SFT 26.3 79.47 17.5 61.5 20.8 70.6
MiniLLM 28.7 82 19.8 63.8 20.5 72.1
SLIM (Ours) 29.2 82.6 20.1 64.1 23.2 73.2

LLaMA 2
DollyEval VicunaEval SelfInst

Rouge-L GPT-4 Rouge-L GPT-4 Rouge-L GPT-4

Teacher (LLaMA 2 13B) 30.2 88.9 21.3 69.3 25.1 79.1
SFT 26.5 80.3 18.3 62.8 21.3 73.4
SLIM (Ours) 29.3 84.6 19.9 67.1 23.4 75.1

MPT
DollyEval VicunaEval SelfInst

Rouge-L GPT-4 Rouge-L GPT-4 Rouge-L GPT-4

Teacher (MPT-30B-instruct) 44.0 94.7 19.3 67.3 23.5 76.1
SFT 28.6 79.5 16.62 60.7 19.9 70.7
SLIM (Ours) 31.1 83.3 17.83 63.4 22.9 73.8

Table 1: We report the Rouge-L and GPT-4 agreement scores on 3 different datasets across 3 different
models. We do not have MiniLLM numbers for LLaMA 2 and MPT experiments since the authors
did not open-source their models with these backbones.

• ARC [Clark et al., 2018]: A challenge focused on reasoning-based question answering.

• Hellaswag [Zellers et al., 2019]: A task-centered on predicting the most likely ending to a
given situation.

• MMLU [Hendrycks et al., 2020]: Designed to evaluate models on multiple-choice questions.

• TruthfulQA [Lin et al., 2021]: A dataset that emphasizes truthful answering capabilities.

For comparative evaluation, we use SFT as our reference benchmark. We don’t compare SLIM
against vanilla KD since it is computationally infeasible with a 70B parameter teacher model. In
our setup, the LLaMA 2 70B served as the teacher model. Notably, our method exhibited a marked
improvement in the performance of a 7B model, reflecting an average improvement of 1% across
the four mentioned tasks. Especially significant were the performance boosts observed for MMLU
and Hellaswag, each surpassing the 1% mark (as detailed in Table 2). A parallel trend was observed
when employing a more sizeable 13B model, as evidenced in Table 3.

SFT SLIM (Ours)

MMLU 46.3 47.6
Hellaswag 79.6 81.3
ARC 54.2 54.2
Truthful_qa 43.9 44.9
Average 56.0 57.0

Table 2: Performance of Llama2-7B model on various downstream tasks when finetuned using the
open assistant guanaco dataset. Since MMLU is an ensemble of 57 tasks, we believe that 1.3% is a
sizeable boost in performance.
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SFT SLIM (Ours)

MMLU 52.4 54.6
Hellaswag 82.5 83.8
ARC 59.6 60.2
Truthful_qa 43.9 44.6
Average 59.6 60.8

Table 3: Performance of Llama2-13B model on various downstream tasks when finetuned using the
open assistant guanaco dataset. Since MMLU is an ensemble of 57 tasks, we believe that 2.2% is a
sizeable boost in performance.

3.3 Pretraining

Recent work by Li et al. [2023] demonstrated the value of generating synthetic data using larger, more
capable teacher LLMs to train smaller, consumer-grade student LLMs. In light of this effective method
of data generation, we decided to analyze the sample efficiency of our method on such synthetic
datasets. We additionally compare our method against SFT and vanilla knowledge distillation.

Specifically, we leverage a pretrained Pythia-6.9B model and sample a synthetic dataset of 10000
generations using a temperature of 1.0 without any seed context. Along with these generations, we
also extract the top 5% of logits for each token in each generated sequence. We then train a randomly
initialized Pythia-160M model for 100 epochs on various subsamples of the dataset (from 625 to
10000 examples in each subsampling).

Overall, we show in 2 that our method is consistently more sample efficient than both vanilla KD
and SFT across all sizes of subsamples.

Figure 2: Perplexity of a Pythia-160M model when trained using different data sizes of a synthetic
dataset generated using the Pythia-6.9B model. It is clear that SLIM requires less than half as many
samples to achieve the same perplexity as SFT while being slightly better than vanilla KD as well.
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4 Analysis

In this section, we will formalize the intuition on the benefits of using whitebox KD over vanilla
supervised finetuning from a sample complexity perspective in a simplified setup. We make the
following assumptions:

A.1 We have access to a vocabulary V of tokens which has a cardinality of V .
A.2 Given an input sequence s ∈ S , we have access to xs which is a d-dimensional embedding

vector corresponding to s

A.3 Existence of ground truth distribution: Given an input sequence embedding xs, there exists
a distribution p(y | xs) such that the ground truth token t ∼ p(y | xs)

A.4 Existence of a perfect teacher: Given an input sequence embedding xs, there exists a
function q(x) such that softmax(q(xs)) = p(y | xs). We call q(x) as the teacher.

A.5 Linear Assumption: Our goal is to learn θ∗ ∈ Rd×V such that θ∗ ∈ argmin E∥θTxs −
q(xs)∥22

Assumptions A.1–A.3 are generally benign. While A.4 may not apply to a wider class of problems, it
is a common assumption for the distillation problem class. A.5 is a strong assumption that qualifies
our setup as simplistic.

Proposition 1 (adapted from [Haussler, 1992]) With high probability, ∥θ̂∗ − θ∗∥ < ϵ holds when
n > O( 1

ϵ2 ) and the optimization algorithm is SFT, where θ̂∗ is derived using Empirical Risk
Minimization.

We refer readers to [Haussler, 1992] for the original statement and proof. The idea in adapting to our
work is that, for SFT, we do not use the teacher and directly rely on the ground truth next token t
for a given sequence s. In this setup, predicting the next token can be approached as a classification
problem, with V representing the set of potential classes. Given that the teacher might not always be
linear, the agnostic PAC learning theory [Haussler, 1992] indicates the need for O( 1

ϵ2 ) samples to
derive an estimator that is within ϵ distance of the optimal linear estimator.

Proposition 2 With high probability, ∥θ̂∗− θ∗∥ < ϵ holds when n > O( 1ϵ ), given that θ̂∗ is obtained
via SGD on the function h(θ) = E[∥θTxs − q(xs)∥22] in the context of whitebox KD.

With knowledge distillation, it is presumed that we can access q(x). This allows us to apply SGD
to the function h(θ), which is inherently a strongly convex function in θ. Building on the work
of Lacoste-Julien et al. [2012], we deduce that knowledge distillation necessitates O( 1ϵ ) samples to
learn an estimator at an ϵ distance from the best linear estimator. This insight underscores the efficacy
of knowledge distillation, especially in straightforward scenarios. Our experiments confirm that even
for Large Language Models, knowledge distillation consistently delivers better results. The sample
efficiency of knowledge distillation and our method is evident from Figure 2.

5 Prior Work

Instruction Tuning The paradigm of instruction tuning was introduced by Ouyang et al. [2022] and
they demonstrated that smaller models could perform at par with 100x larger models using instruction
tuning. Since then, there have been a lot of work on improving instruction tuning by curating high
quality datasets [Taori et al., 2023, Han and Tsvetkov, 2022, Lee et al., 2023, Zhou et al., 2023] and
improving the efficiency of finetuning [Dettmers et al., 2023, Xu et al., 2023b].

Knowledge Distillation Knowledge distillation was first proposed by Hinton et al. [2015]. Since
its introduction, it has been widely adopted in Computer Vision [Chen et al., 2017, Zhang et al., 2019,
2020, Xu et al., 2020] and Natural Language Processing [Liu et al., 2019, Haidar and Rezagholizadeh,
2019, Arora et al., 2019]. While there have been studies on knowledge distillation for small-scale
language models [Sanh et al., 2019, Wu et al., 2021], there are very few works [Gu et al., 2023]
that address knowledge distillation for Large Language Models. Ma et al. [2021] explores a similar
concept in computer vision by keeping the top 10% of logits for knowledge distillation. Their results
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on CIFAR-10 and Tiny-ImageNet show that this method results in a 20% drop compared with training
from scratch. We hypothesize that causal language modeling, unlike image classification, contains
classes (tokens) that follow a Zipfian distribution and a overwhelming majority of the probability
mass is contained within the top 5% of tokens.

6 Conclusion

In this work we introduce SLIM, a simple augmentation to the classic knowledge distillation recipe
to produce high quality instruction tuned Large Language Models. SLIM both prevents the student
model from overestimating the low-probabilty regions of the teacher distribution while also producing
a compact yet substantial dataset of sparse logit and raw text sequence pairs that can be easily shared –
especially in resource constrained cases where performing inference using the original teacher model
is difficult. Our extensive experiments demonstrate the efficacy of SLIM as compared with standard
instruction tuning, vanilla knowledge distillation, and competing distillation methods like MiniLLM
on a range of downstream NLP tasks.
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