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Gunnar Rätsch raetsch@inf.ethz.ch

Department of Computer Science, ETH Zürich, Zürich, Switzerland

1. Introduction

The success of machine learning applications is greatly influenced by the representation of
the data. Bengio et al. (2013) state that if a representation caters to a certain learning
task, better results and increased robustness may be expected. Data representations used
in recent successful deep learning approaches for certain tasks (Silver et al., 2016; He et al.,
2016; Mnih et al., 2015) overfit to the task at hand (Burgess et al., 2017), which partially
explains why they still fall behind biological intelligence in terms of generality and knowledge
transfer (Lake et al., 2017). Recent research suggests that disentangled representations could
provide a solution (Bengio et al., 2013; Ridgeway, 2016; Tschannen et al., 2018).

While there is no single, widely accepted definition of disentanglement, the intuition
of what constitutes such a representation is shared. Disentangled representations should
separate the independent factors of variation that led to the generation of said data (Bengio
et al., 2013). Such representations have the property that each latent factor is only sensitive
to a change in a single underlying factor of variation. Disentangled representations have
been argued to offer benefits in terms of interpretability (Adel et al., 2018; Bengio et al.,
2013), predictive performance (Locatello et al., 2019b), fairness (Locatello et al., 2019a),
and reducing the sample complexity for downstream tasks (van Steenkiste et al., 2019).

Sequential data appear in a wide variety of settings such as audio and video streams,
communication signal processing, or longitudinal medical data, motivating the investigation
of learning disentangled representations from such data. While there has been previous work
on disentangling static from dynamic factors of sequential data (Li and Mandt, 2018; Hsu
et al., 2017), none have attempted to disentangle the dynamic factors themselves. Previously
introduced models belonging to the class of Gaussian process variational autoencoders (GP-
VAEs) have very successfully leveraged the temporal correlations of such sequential data
to tackle problems such as conditional generation (Casale et al., 2018) or missing value
imputation (Fortuin et al., 2020), but have not explicitly looked at disentangling such data.

Recent work in the disentanglement literature has shown that learning disentangled
representations in a fully unsupervised fashion is fundamentally impossible (Locatello et al.,
2019b). Locatello et al. (2020a) show that inductive biases must be included to achieve this
task and further provide the first model that makes explicit assumptions on the structure of
the input data to improve the disentanglement of the learned representation. Inspired by the
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notion of weak supervision in this model as well as the the successful application of GP-VAE
models to tasks involving sequential data, we investigate the disentanglement properties of
GP-VAE type models. To this end, we study the Disentangled Gaussian Process Variational
Autoencoder (DGP-VAE), an adaptation of Fortuin et al. (2020)’s GP-VAE model, that
exploits the sequential structure of time series data to learn disentangled representations.

We make the following contributions:

• We study the disentanglement properties of the recently proposed GP-VAE model,
by introducing a modification, the DGP-VAE, where latent GP priors with variable
length scales are used to encourage disentanglement between latent dimensions.

• We demonstrate that these VAE models, by the pure virtue of their GP prior, al-
ready achieve disentanglement “for free”, in contrast to conventional disentanglement
models, which heavily rely on engineering tricks and specialized design choices.

• We compare against state-of-the-art disentanglement models and show that we out-
perform all considered baselines in terms of disentanglement on standard benchmark
data sets.

• We perform a study on real-world medical time series data and demonstrate that our
modeling assumptions are better suited to learning disentangled representations of
real time series data compared to those of previously introduced weakly-supervised
models.

2. Disentangled Gaussian Process VAE

We introduce the Disentangled Gaussian Process Variational Autoencoder (DGP-VAE), a
GP-VAE-based model (Fortuin et al., 2020) for learning disentangled representations from
time series data. The main idea of our model is to exploit the correlations in sequential
data sets by the application of latent Gaussian process priors. We make certain smoothness
assumptions about the input data and explicitly exploit this inductive bias for the benefit of
disentanglement. We argue that while our assumptions on the dynamics of the sequential
data are weaker than previous approaches, they are better aligned with real-world data,
which we show on a data set consisting of real-world medical time series.

2.1. Generative model

Previous work has shown that learning fully disentangled representations is fundamentally
impossible without inductive biases and it is beneficial to be explicit about these modeling
assumptions (Locatello et al., 2019b). Following this impossibility result, there have been
approaches that break with the paradigm of the fully unsupervised setting (Locatello et al.,
2020b) and no longer assume the input data to be i.i.d. (Locatello et al., 2020a). While
these models outperform fully unsupervised approaches in terms of disentanglement, we
argue that their assumptions that some underlying generative factors must be shared from
one time step to the next are too restrictive for realistically occurring time series data.

We provide a less restrictive set of assumptions on sequential data, namely that neigh-
bouring time steps are correlated and that the changes over time are smooth. Therefore,
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the time series of the latent representations is also assumed to be smooth and correlated in
time. We model these assumptions in the form of a GP prior, z(τ) ∼ GP(mz(·), kz(·, ·)), for
each latent channel. Gaussian processes have been previously shown to be suitable for time
series modeling (Roberts et al., 2013), and we further justify this choice by their ability to
model correlations of points in time while enforcing smoothness, which is congruent with
the aforementioned assumptions we make.

This choice of latent prior distribution further grants our model the additional flexi-
bility to capture a plethora of possible temporal coherence characteristics in the data, by
employing different GP kernels. The Ada-GVAE model (Locatello et al., 2020a) can be
seen as a special case of this architecture, albeit with a very rigid kernel that only cap-
tures pairwise correlations, as opposed to our more flexible architecture that can capture
long-range dependencies. As multivariate time series often exhibit dynamics on a number
of different timescales, we opt for the Cauchy kernel in practice which can be derived from
an infinite mixture of radial basis function (RBF) kernels. The Cauchy kernel therefore
naturally lends itself to modelling dynamics on a variety of time scales. Note that in our
DGP-VAE model, in contrast to the original GP-VAE (Fortuin et al., 2020), the length scale
is variable between different latent channels, in order to encourage the disentanglement of
factors of variation that change with different frequencies over time.

2.2. Inference model

The inference model in our architecture yields the approximate posterior distribution
qψ(z1:T |x1:T ), which is needed to infer the latent representation from the input data and
to learn the parameters of the previously introduced generative model. Since inferring the
exact posterior distribution is intractable, we employ a variational inference scheme (Jordan
et al., 1999; Blei et al., 2017). Based on the architecture proposed by Fortuin et al. (2020),
we use a structured variational distribution (Wainwright and Jordan, 2008) to capture the
temporal correlation of the data, in conjunction with efficient amortized inference (Kingma
and Welling, 2014).

We jointly train the generative network parameters θ and the inference network param-
eters ψ by optimizing the following objective:

max
ψ,θ

T∑
t=1

Eqψ(zt|x1:T )[log pθ(xt|zt)]− βDKL(qψ(z1:T |x1:T )||p(z1:T )). (1)

In summary, our model can be seen as a modified version of the GP-VAE model from
Fortuin et al. (2020) in which we have a higher fidelity of control over the independent
GP priors of the different latent dimensions, given by the different length scales of the GP
kernel. This encourages the disentanglement of underlying dynamic factors which vary with
different rates. While this is not a major extension of the model, our goal is not to propose
a radically new model, but to study the general disentanglement properties of GP-VAE
models when imbued with reasonable assumptions about realistic time series data.

3. Experiments

We performed experiments on time series data synthesized from four different data sets com-
monly used in the disentanglement literature: dSprites (Matthey et al., 2017), SmallNORB
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Figure 1: Results of the baseline experiments for all considered benchmark data sets. Mod-
els: 1) DGP-VAE (ours), 2) Ada-GVAE, 3) AnnealedVAE, 4) β-VAE, 5) β-
TCVAE, 6) FactorVAE, 7) DIP-VAE-I, and 8) DIP-VAE-II.

(LeCun et al., 2004), Cars3D (Reed et al., 2015) and Shapes3D (Burgess and Kim, 2018).
We provide an extensive comparison against state-of-the-art unsupervised approaches (Hig-
gins et al., 2017; Burgess et al., 2017; Chen et al., 2018; Kim and Mnih, 2018; Kumar et al.,
2018) and a recently proposed state-of-the-art weakly-supervised model (Locatello et al.,
2020a). We present strong quantitative evidence that our model outperforms all of the
competing approaches in learning disentangled representations from sequential data.

Additionally, we investigated the disentanglement properties of our model when applied
to real-world medical time series data. To this end, we performed an experiment using the
HiRID data set (Hyland et al., 2020) and compare against the Ada-GVAE model (Locatello
et al., 2020a). This setting allows us to validate our model’s applicability to real-world time
series data, while demonstrating that our modeling assumptions are more closely aligned
with such data than the more restrictive assumptions made by the Ada-GVAE.

Implementation details for all experiments can be found in Appendix A and additional
results in Appendix B. All of our code is available online1.

3.1. Standard benchmark data

Experimental setup We synthesize sequential data from four publicly available and
commonly used data sets to investigate disentanglement. These synthetic data sets lend
themselves to our experimental purposes for the practical reason that we have access to
the underlying factors of variation for each observed sample. We need these underlying
factors to synthesize time series of observations, as well as to qualitatively evaluate the
disentanglement of the learned representations.

In contrast to Locatello et al. (2020a), we do not impose any restriction on the number
of underlying factors that change from one time step to the next and in general this change
can be dense, that is, all underlying factors may change. We believe that this reflects the
nature of multivariate time series in the real world, such as medical time series, where the
underlying causes of observed variables may exhibit dynamics on a wide range of time scales.

The considered baseline methods2 and our model are all trained on the same data
sets. The pairs required for the training of the Ada-GVAE model are taken as neighboring

1. https://github.com/ratschlab/dgp-vae
2. The baseline methods are implemented with the disentanglement lib (Locatello et al., 2019b).
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samples within a time series, as suggested in the original paper (Locatello et al., 2020a).
Locatello et al. (2019b) show that all commonly used disentanglement metrics are corre-
lated and we corroborate this result for our experiments by evaluating additional metrics
(see Appendix B). In the following, we focus on the DCI Disentanglement (Eastwood and
Williams, 2018) as a proxy for disentanglement in general.

Experimental results We see in Figure 1 that our approach outperforms all considered
baseline methods on all considered data sets. Our model learns the most disentangled
representations from the sequential data in all cases, which shows that GP-VAE models
are well suited for the task of learning such representations when we consider data with
a clear temporal structure. The additional metrics we evaluate confirm these results (see
Appendix B.1). We observe that the weakly-supervised Ada-GVAE model is the runner-up
in terms of its disentanglement in all of our experiments, probably due to the fact that it is
the only other model that explicitly exploits potential correlations in time. While the Ada-
GVAE approach outperforms the other (fully unsupervised) models, our model outperforms
it on time series data with potentially dense changes of underlying factors. This is likely
due to the fact that the Ada-GVAE assumes that changes in the underlying factors between
consecutive time points are sparse, while we make the less restrictive assumption that the
underlying factors change smoothly over time, as modeled by the chosen GP kernel. We
argue that our more general assumptions about the structure of sequential data are better
aligned with data found in the real world and test this hypothesis in the next experiment.

3.2. Real medical data

Real-world clinical time series data commonly consist of noisy, high-dimensional observa-
tions. Clinicians are trained to interpret these data and find patterns that help them identify
the underlying causes for these observations. The observations give clues, but the real in-
terest lies in the underlying health states that give rise to the data. Learning disentangled
representations from high-dimensional medical time series could allow us to infer the state
of independent clinical entities from these data, making the health states more salient.

Experimental setup To investigate the ability of our model to disentangle real-world
medical time series data, we consider the HiRID data set (Hyland et al., 2020), consisting
of 18 clinical variables for over 33,000 patients. We chose to compare our model with the
Ada-GVAE since it is the only baseline model for disentanglement that explicitly takes the
time series aspect into account. Moreover, it was the second-best model in our previous
experiment and therefore the most serious competitor.

Measuring the disentanglement of learned representations on the HiRID data is not as
straightforward as for the benchmark experiments since we do not have access to the under-
lying factors of generation. First, we group the different clinical variables into independent
clinical concepts, with the help of a medical expert (for details, see Appendix C). Then, we
train a classifier to predict the observed variables from the learned latent representation.
The classifier returns the importance of each latent factor for predicting a given input vari-
able and, by aggregating the variables into the aforementioned groups, we get a distribution
over which latent variable each clinical concept is mapped to. We calculate the Disentangle-
ment and Completeness of these distributions according to the DCI Disentanglement metric
(Eastwood and Williams, 2018) in order to enable a quantitative comparison.
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Metric DGP-VAE Ada-GVAE

Dis 0.325± 0.013 0.133± 0.005
Com 0.358± 0.013 0.185± 0.007
AUROC 0.769± 0.010 0.684± 0.019

Table 1: DCI Disentanglement (Dis), DCI
Completeness (Com), and down-
stream performance (AUROC) on a
mortality prediction task.

Additionally, we define a downstream
mortality prediction task as a proxy mea-
sure for the informativeness of the repre-
sentations. We train a linear classifier to
predict the mortality label of each sample
using the learned representation and report
the performance in terms of the area un-
der the receiver-operator-chracteristic curve
(AUROC). Intuitively, a more disentangled
representation should improve the test per-
formance of a downstream classifier trained
on this representation, as has indeed been
shown by Locatello et al. (2020a).

Experimental results We observe that our model outperforms the Ada-GVAE approach
in terms of Disentanglement and Completeness of the learned representations of the HiRID
data set (Table 1). The additional metrics we report in Appendix B.2 reflect this as well.
This indicates that we are able to more successfully learn which observed features arise from
a shared clinical concept and to separate these independent concepts in the latent space.
Qualitatively, this can also be observed in the comparison of the resulting feature mappings
to the latent space, presented in Appendix B.2. Our representations also lead to a higher
downstream performance on the mortality prediction task (Table 1), further highlighting
their usefulness and confirming the superiority of our model.

The comparison of our model to the Ada-GVAE demonstrates that our assumptions are
better aligned with realistically occurring time series data, at least in the medical setting.
The experimental results can furthermore be explained by our model’s ability to capture
long-range dependencies in sequential data, while the Ada-GVAE can only hope to exploit
correlations in directly neighbouring samples. Since we use GP priors to model the latent
space, our model also automatically yields smooth and denoised latent time series, providing
a more interpretable representation of a patient’s physiological state than the original noisy
and high-dimensional observations, which we visualize in Appendix B.2.

4. Conclusion

In this paper, we investigated the properties of a GP-VAE model to learn disentangled
representations from time series data. Our model uses Gaussian process priors to model
the latent space together with a structured variational distribution to capture dependencies
in time. We showed that, in contrast to previous disentanglement methods, our approach
yields disentangled representations “for free” by virtue of its prior, without relying on
additional engineering tricks. We also demonstrated that it outperforms state-of-the-art
models on benchmark disentanglement tasks involving sequential image data. Our modeling
assumptions for the structure of time series data are more permissive than those of previous
methods (Locatello et al., 2020a), and we provide evidence that they are better aligned
with realistically occurring data by showing our model’s favorable performance on real-
world medical time series data in terms of disentanglement and downstream classification
performance.
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Appendix A. Implementation details

The inference network in our model is implemented with a convolutional neural network
(CNN) and for the generative network we use a multilayer perceptron (MLP). Details of
the network hyperparameters used in the respective experiments are provided in the follow-
ing. Our experiments took a combined 850 GPU hours on our internal cluster of NVIDIA
GeForce GTX 1080 Ti GPUs.

A.1. Benchmark experiment

Since all data sets we consider in our benchmark experiment consist of images, we preprocess
them using 2D convolutional layers. This intermediate representation at each time step is
then flattened before being used as the input to a 1D convolution over time. Since the input
to our model is the entire time series, for practical reasons we consider subsections of the
original sequence for the temporal convolution step. This may be viewed as a limitation
of our model compared to architectures that use RNNs, but we our results indicate that
it did not prove to cause problems in practice. The hyperparameters of our model for
this experiment are provided in Table A.1. It is worth noting that we found setting the β
hyperparameter to 1.0 yielded the best results in terms of disentanglement, although one
would expect higher values to encourage disentanglement more.

All baseline methods that we compare against are implemented with the disentan-

glement lib (Locatello et al., 2019b) and their hyperparameters are given in Table A.2.
The evaluation of the DCI metric is also implemented with the disentanglement lib. We
consider a train/test split of 8000/2000 data points for the classifier used in the DCI score
calculation.
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Hyperparameter Value

Number of CNN layers in inference network 1
Number of filters per CNN layer 32
Filter size 3
Number of feedforward layers in inference network 2
Width of feedforward layers 256
Dimensionality of latent space 64
Length scale of Cauchy kernel 2.0
Number of feedforward layers in generative network 3
Width of feedforward layers 256
Activation function ReLU
Optimizer Adam (Kingma and Ba, 2015)
Learning rate 0.001
Training epochs 1
Train/test split (dSprites, SmallNORB) 10000/500
Train/test split (Cars3D, Shapes3D) 6190/310
Dimensionality if time points (dSprites, SmallNORB) 4096
Dimensionality if time points (Cars3D, Shapes3D) 12288
Original time series length 100
Training time series subsection length 5
Tradeoff parameter β 1.0

Table A.1: Hyperparameters used in the DGP-VAE model for the benchmark experiments.

Model Hyperparameter Value

Ada-GVAE β 1.0
AnnealedVAE cmax 25

Iteration threshold 100000
γ 100

β-VAE β 4.0
β-TCVAE β 4.0
FactorVAE γ 30
DIP-VAE-I λod 5

λd 10λod
DIP-VAE-II λod 5

λd λod

Table A.2: Hyperparameters used for the baseline models.

A.2. HiRID experiment

Since the HiRID data does not consist of images, we omit the convolutional preprocessing
and perform the 1D convolution time directly on the input data. The details of the utilized
hyperparameters for this experiment are provided in Table A.3. For the calculation of the
DCI score we use a train/test split of 20000/5000.
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Hyperparameter Value

Number of CNN layers in inference network 1
Number of filters per CNN layer 128
Filter size 12
Number of feedforward layers in inference network 1
Width of feedforward layers 128
Dimensionanlity of latent space 8
Length scales of Cauchy kernel [20.0, 10.0, 5.0, 2.5]
Number of feedforward layers in generative network 2
Width of feedforward layers 256
Activation function ReLU
Optimizer Adam (Kingma and Ba, 2015)
Learning rate 0.001
Training epochs 1
Train/test split 517995/25900
Dimensionality if time points 18
Original time series length 100
Training time series subsection length 25
Tradeoff parameter β 1.0

Table A.3: Hyperparameters used in the DGP-VAE model for the HiRID real-world medical
data set experiment.

Appendix B. Additional results

B.1. Benchmark experiment

While we focus on the disentanglement component of the the DCI metric (Eastwood and
Williams, 2018), we also evaluate the DCI Completeness, DCI Informativeness, Mutual
Information Gap (MIG) (Chen et al., 2018), Modularity (Ridgeway and Mozer, 2018), and
Seperated Attribute Predictability (SAP) (Kumar et al., 2018) scores for the benchmark
experiment (see Figure B.1). Overall, we observe that these additional scores reflect the
results reported in Section 3.1 and that our model outperforms the considered baselines,
with some minor exceptions. This confirms the findings of Locatello et al. (2019b) that all
common disentanglement metrics are positively correlated, and further justifies our focus
on the DCI Disentanglement in this work.

B.2. HiRID experiment

We also report the Modularity and the SAP score for the experiment with real-world medical
time series data in Table B.1. Both of these metrics are calculated in a similar spirit to the
modified DCI Disentanglement and Completeness scores, i.e. treating the observed input
features as the ground truth for the respective score calculation and aggregating them in
an intermediate step according the their mapping to independent clinical concepts. This
facilitates the calculation of the respective metrics even without having access to ground
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Figure B.1: Results for additional metrics on the benchmark experiment described in
Sec. 3.1. The models we compare are: 1) DGP-VAE (ours), 2) Ada-GVAE,
3) AnnealedVAE, 4) β-VAE, 5) β-TCVAE, 6) FactorVAE, 7) DIP-VAE-I, and
8) DIP-VAE-II.

truth factors of variation. We omit the MIG score for this experiment, as its calculation does
not lend itself to this reformulation by mapping features into independent clinical concepts.

Additionally, we visualize the latent time series obtained by our model and compare
them to those given by the Ada-GVAE on Figure B.2. In Figure B.3, we compare the
mapping of concepts to latent dimensions obtained by our model to the mappings of the
Ada-GVAE. While our model learns to cluster related clinical concepts, the Ada-GVAE
does not display such disentangled mappings.

14



On Disentanglement in Gaussian Process Variational Autoencoders

Metric DGP-VAE Ada-GVAE

Modularity 0.873± 0.005 0.790± 0.010
SAP 0.066± 0.007 0.022± 0.002

Table B.1: Comparison of the Modularity and SAP scores between our model and the
Ada-GVAE trained on the HiRID data set. Our model also outperforms the
Ada-GVAE in terms of these additional metrics.

0 25 50 75 100 0 25 50 75 100

DGP-VAE Ada-GVAE

0 25 50 75 100

DGP-VAE

0 25 50 75 100

AdaGVAE

Figure B.2: (left) The latent time series in our model display dynamics on multiple time
scales and multiple channels may change at once, while the latent series of the
Ada-GVAE model does not display dense changes of latent factors. (right)
Detailed time series of two latent channels. Our model learns smooth latent
time series, while the Ada-GVAE exhibits more noisy dynamics.

Figure B.3: Learned HiRID concept mappings. Our model learns to cluster related clinical
concepts, indicated by features being mapped to a single latent, while disentan-
gling unrelated concepts from each other, i.e. mapping independent concepts
to different latents. The Ada-GVAE is not as successful in learning such map-
pings and also finds spurious relationships in the data. The mapping of HiRID
features to clinical concepts is presented in Appendix C.
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Figure B.4: Comparison of the Disentanglement score of our model (1), which uses a Cauchy
kernel, to the MGP-VAE model with a Brownian bridge kernel (2) and a frac-
tional Brownian motion kernel (3). For details on these additional kernels, see
the original MGP-VAE paper (Bhagat et al., 2020).

B.3. Kernel comparison

We also investigated the kernels that the authors of the MGP-VAE model propose (Bhagat
et al., 2020), namely the Brownian bridge kernel (BB) and the fractional Brownian motion
kernel (fBM). The results presented in Figure B.4 show that these kernels do not provide
any notable benefits in terms of disentanglement over the Cauchy kernel in our model, which
is also computationally simpler.

Appendix C. Ground truth HiRID feature mapping

To evaluate how well our model can learn disentangled representations of medical time series
data we require a ground truth mapping of the occuring medical variables to independent
clinical concepts. This mapping, which was provided by a medical expert, is given in
Table C.1.

Appendix D. Detailed related work

D.1. Sequential data in VAEs

Models based on variational autoencoders (VAEs) have succesfully been applied to tasks
involving—to some extent—the disentanglement of these data. The factorized hierarchi-
cal variational autoencoder (FHVAE) introduced by Hsu et al. (2017) aims to exploit the
correlations of sequential data by introducing two different hierarchical priors to the latent
representation. The authors argue that this captures the multi-scale nature of sequential
data and disentangles features that are shared across a sequence from those that vary from
one sequence segment to another.

In a similar spirit, Li and Mandt (2018) introduce the Disentangled Sequential Au-
toencoder, a model that learns to disentangle static from dynamic parts of the data’s
representation. This is achieved by means of a factorized graphical model that encodes
sequence-invariant information into one latent variable and all dynamic information into a
separate set of latent variables. While both of the aforementioned models successfully dis-
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Concept Variable Unit

1) Cardiovascular Heart rate [bpm]
Systolic blood pressure (invasive) [mmHg]
Diastolic blood pressure (invasive) [mmHg]
MAP [mmHg]
Cardiac output [l/min]

2) Lungs SpO2 [%]
Peak inspiratory pressure (ventilator) [cmH2O]

3) Sedation level RASS [-]
4) Glucose Serum glucose [mmol/l]
5) Blood clotting INR [-]
6) Metabolic Lactate arterial [mmol/l]

Lactate venous [mmol/l]
7) Inflammation C-reactive protein [mg/l]
8) Heart medication Dobutamine Flow [mg/min]

Milrinone Flow [mg/min]
Levosimendan Flow [mg/min]
Theophyllin Flow [mg/min]

9) Pain medication Non-opiod analgesics [-]

Table C.1: Mapping of HiRID variables into independent clinical concepts.

entangle static from dynamic features, they do not disentangle the underlying, individual
dynamic factors.

The class of models that employ Gaussian process priors for the latent variables of a
variational autoencoder and thereby exploit the correlation of sequential data it the latent
space have been successfully applied to a wide range of tasks. The Gaussian Process Prior
Variational Autoencoder (GPPVAE) (Casale et al., 2018) was the first model to introduce
this family of priors in the context of VAEs and break with the assumption that samples
of the latent distribution must be independent and identically distributed (i.i.d.), thereby
better modeling the specifications of sequential data. While the basis of this model is shared
with ours, we use one GP per latent channel, as opposed to a joint GP prior over the whole
data. This allows us to rely on standard inference techniques as opposed to the specialized
inference method of the GPPVAE model, while also encouraging disentanglement between
the latent channels.

The Multi-disentangled-features Gaussian Process Variational Autoencoder (MGP-
VAE) (Bhagat et al., 2020) extends the GPPVAE model by using fractional Brownian
motion and Brownian bridge kernels for the latent GP prior of each channel. The authors
argue that this setting allows for the disentanglement of static as well as dynamic features,
but only show qualitative results for sparsely changing input time series. In contrast, we
show the efficacy of our approach to dynamic sequential data with dense changes of the
factors in time.

The Gaussian Process Variational Autoencoder (GP-VAE) model introduced by For-
tuin et al. (2020) can be viewed as a further extension to Casale et al. (2018)’s GPPVAE
model. This model introduces a GP prior with a Cauchy kernel to each latent channel in
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combination with a structured variational inference technique to impute missing values in
time series data. While the GP-VAE was designed and used for missing data imputation we
show that a very similar architecture lends itself to learning disentangled representations
from dynamic sequential data.

The Sparse GP-VAE (SGP-VAE) (Ashman et al., 2020) and Scalable GP-VAE (SVGP-
VAE) (Jazbec et al., 2020) extend the class the GP-VAE models with a sparse GP approx-
imation, parameterized by a partial inference network. Moreover, the Factorized GP-VAE
(FGP-VAE) (Jazbec et al., 2021) further improves the inference speed by using Kronecker-
factorized kernels. These extensions could also be readily applied to our model, which we
have not done in this study, since exact inference was still feasible in our experiments.

D.2. Disentangled representation learning

All state-of-the-art approaches to disentangled representation learning rely on variational
autoencoders (Kingma and Welling, 2014) as their architectural backbone. Alternatives
based on generative adversarial networks (GANs) (Goodfellow et al., 2014) such as variants
of InfoGAN (Chen et al., 2016) have also been proposed, but previous work has found their
performance to not be competitive when compared to VAE-based approaches (Kim and
Mnih, 2018).

In the VAE setting, the representation r(x) of a sample x is taken as the mean of
the approximate posterior distribution q(z|x), that is, the encoding of a sample from the
feature space to the latent space. The following approaches share the common theme of
disentangling this approximate posterior, while their main differences arise from how this
disentanglement is enforced.

Unsupervised models The β-VAE model (Higgins et al., 2017) adds a simple hyper-
parameter to the KL term of the standard ELBO. This β hyperparameter balances recon-
struction quality with latent channel capacity and setting it greater than unity enforces the
encoder distribution to better match the factorized Gaussian prior.

The AnnealedVAE model (Burgess et al., 2017) also focuses on latent bottleneck ca-
pacity. The authors argue that limiting the latent channel capacity forces the model to
learn a single factor of variation at a time. Therefore, the bottleneck capacity is gradually
increased during training to enforce the sequential learning of separate underlying factors
of variation.

By further decomposing the vanilla VAE objective, the authors of the β-TCVAE model
(Chen et al., 2018) identify a term which measures the total correlation between latent
variables. By specifically penalizing this total correlation term, the model enforces disen-
tanglement without adding any additional hyperparameters compared to β-VAE.

The FactorVAE model (Kim and Mnih, 2018) also penalizes the total correlation term,
but differs in implementation compared to β-TCVAE. The idea however remains to push
the aggregated posterior q(z) towards a factorized form, thus enforcing independence across
latent dimensions, without having to sacrifice reconstruction quality for disentanglement.

The authors of the DIP-VAE model (Kumar et al., 2018) propose to enforce disen-
tanglement by means of disentangled priors. The aggregated posterior is pushed towards
these disentangled priors by means of penalizing an arbitrary convergence between the two.
Subtle implementation differences result in two models: DIP-VAE-I and DIP-VAE-II.
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Weakly-supervised model The Ada-GVAE model (Locatello et al., 2020a) differs from
the previously introduced approaches in that it is not a fully unsupervised approach, but
utilizes a form of weak supervision to improve disentanglement. The authors acknowledge
Locatello et al. (2019b)’s proof that learning disentangled representations is impossible
without inductive biases. They therefore attempt to explicitly include such an inductive bias
in their modeling assumptions and exploit this for the purposes of disentanglement. They
make the assumption that some underlying factors of variation may be shared across pairs
of input data. They then go on to prove that knowing the number of shared factors across
individual pairs is sufficient to learn a fully disentangled representation. The introduced
model provides an algorithm that is an extension of β-VAE (Higgins et al., 2017), which
estimates the number of shared factors in a pair of samples and enforces the sharing of a
latent representation for these estimated shared factors. The authors argue that a source
of data where this assumption could be justified is sequential data, which inspired us to be
explicit about the assumptions we make on sequential data and include these in the form
of the inductive bias of smoothly varying GP priors.
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