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3D Reconstruction and Novel View Synthesis of Indoor
Environments based on a Dual Neural Radiance Field

Anonymous Authors

Figure 1: NeRF-based view synthesis methods (eg. DVGO) often produce noisy 3D reconstruction results (top right in fig. 1 (a)),
while NeRF-based reconstruction approaches (eg. Go-Surf ) struggle to produce satisfactory rendering image (middle right
in fig. 1 (a)). We propose a dual-field architecture to simultaneously obtain high-fidelity view synthesis and reconstruction
performance (bottom right in fig. 1 (a)). Fig. 1 (b) illustrates the view-independent and view-dependent color components
disentangled by our proposed method.

ABSTRACT
Simultaneously achieving 3D reconstruction and novel view syn-
thesis for indoor environments has widespread applications but
is technically very challenging. State-of-the-art methods based on
implicit neural functions can achieve excellent 3D reconstruction
results, but their performances on new view synthesis can be unsat-
isfactory. The exciting development of neural radiance field (NeRF)
has revolutionized novel view synthesis, however, NeRF-based mod-
els can fail to reconstruct clean geometric surfaces. We have de-
veloped a dual neural radiance field (Du-NeRF) to simultaneously
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achieve high-quality geometry reconstruction and view render-
ing. Du-NeRF contains two geometric fields, one derived from the
SDF field to facilitate geometric reconstruction and the other de-
rived from the density field to boost new view synthesis. One of
the innovative features of Du-NeRF is that it decouples a view-
independent component from the density field and uses it as a
label to supervise the learning process of the SDF field. This re-
duces shape-radiance ambiguity and enables geometry and color
to benefit from each other during the learning process. Extensive
experiments demonstrate that Du-NeRF can significantly improve
the performance of novel view synthesis and 3D reconstruction for
indoor environments and it is particularly effective in constructing
areas containing fine geometries that do not obey multi-view color
consistency.

CCS CONCEPTS
• Computing methodologies→ Computer vision; Computer
graphics.
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1 INTRODUCTION
Novel view synthesis and 3D reconstruction for indoor environ-
ments are of great interest in the computer vision and graphics
communities [1, 8, 11, 13, 15, 16, 23, 24, 46, 50]. They provide fun-
damental support for applications such as robot perception and
navigation, virtual reality, and indoor design. Classical indoor 3D
reconstruction methods perform registration and fusion to obtain
dense geometry using depth images in an explicit manner where
the depth images are obtained either with range sensors like Kinect
or inferred from RGB images [5, 7, 10, 12, 14, 25, 34, 43]. However,
due to noise and holes in the depth images, complete and smooth
indoor geometry is difficult to generate. Additionally, such an ex-
plicit representation can often fail to preserve sufficient details due
to storage limitations thus making it very difficult to synthesize
realistic novel views.

In recent years, coordinate neural networks have been exten-
sively used to describe 3D geometry and appearance due to their
powerful implicit and continuous representation capacities [22, 23,
28, 29, 38, 40, 44]. These models take the 3D coordinates as input
and output the signed distance value [28, 40, 44], density [23, 24],
or occupancy of the scene [22, 29, 38]. Although methods such as
Neus [40] and VolSDF [44] can achieve accurate 3D reconstruction
of objects, they do not perform well in indoor scenes containing
textureless regions or when the observations are sparse. In such
cases, depth images are often introduced to provide additional su-
pervision for network training to improve performances [1, 39, 46].
Furthermore, these methods focus on 3D reconstruction and their
performances on novel view synthesis can be unsatisfactory (middle
right in fig. 1(a)).

Neural Radiance Field (NeRF) [23] and a series of its extensions
[2–4, 6, 9, 15, 17, 20, 24, 36, 41, 45, 47–49] have achieved exciting
results in novel view synthesis. It implicitly represents the density
field and color field and performs novel view synthesis via volume
rendering. However, these methods can fail to reconstruct clean
indoor surfaces (top right in fig. 1(a)), as the density used in NeRF
samples the whole space rather than in the vicinity of the surfaces.

In this paper, we propose a dual neural radiance field (Du-NeRF)
to simultaneously achieve high-quality geometry reconstruction
and view rendering (bottom right in fig. 1(a)). Specifically, our frame-
work contains two geometric fields, one is derived from the SDF
field with clear boundary definitions, and the other is a density field
that is more conducive to rendering. They share the same under-
lying input features, which are interpolated from multi-resolution
feature grids and then decoded by different decoders. We enable
the two branches to each play their respective strength, while the
former is used to extract geometric features, the latter is used to
support the task of new view synthesis. In addition, we decouple a
view-independent component from the density field and use it as a
label to supervise the learning process of SDF during the network
optimization process (the top row in fig. 1(b)). In our method, the
two geometric fields share the underlying input geometric features
to facilitate the optimization of the underlying geometric feature
grid. Moreover, we use a view-invariant component decoupled from

the density branch to replace the view-varying ground truth (GT)
images to guide the geometric learning process to reduce shape-
radiance ambiguity and allow geometry and color to benefit from
each other during the learning process. Experimental results show
that this design can effectively construct fine geometries to achieve
smooth scene reconstruction, especially in those areas that do not
obey multi-view color consistency. Our contributions are as follows:

• We have developed a novel neural radiance field termed
Dual Neural Radiance Field (Du-NeRF) for simultaneously
improving 3D reconstruction and new view synthesis of
indoor environments.

• We introduce a novel self-supervised method to extract a
view-independent color component for supervising 3D re-
construction, which significantly enhances the smoothness
of surfaces and fills in missing parts of indoor objects.

• Extensive experiments demonstrate that our method can sig-
nificantly improve the performance of novel view synthesis
and 3D reconstruction for indoor environments.

2 RELATEDWORK
Neural radiance-based novel view synthesis. The introduction
of the neural radiance field (NeRF) marks remarkable progress in
novel view generation. NeRF models a full-space implicit differ-
entiable and continuous radiance field with neural networks and
uses volume rendering to obtain color information. Many variants
have been proposed to improve training, inferencing and render-
ing performances [2–4, 6, 17, 20, 24, 36, 41, 48]. In particular, Di-
rectVoxelGO [36] and InstantNGP [24] combine explicit and implicit
representations and use hybrid grid representations and shallow
neural networks for density and color estimation respectively to
achieve faster rendering and higher rendering quality. Liu et al.
[20] introduce a progressive voxel pruning and growing strategy to
sample the effective region near the scene surface. Chen et al. [4]
use a combination of 2D planes and 1D lines to approximate the
grid to achieve faster reconstruction, improved rendering quality,
and smaller model sizes. To address the ambiguity arising from
pixels represented by a single ray, Barron et al. [2] introduce the
concept of cones instead of points, to increase the receptive field of
a single ray. This approach, known as Mip-nerf, effectively tackles
issues of jaggies and aliasing and enhances rendering quality. To
reduce the blurring effect, Lee et al. [17] design a rigid blurry kernel
module which takes into account both motion blur and defocus
blur during the real acquisition process. Kun et al. [48] further im-
prove the rendering performance by learning a degradation-driven
inter-viewpoint mixer. Additionally, some works attempt to im-
prove the rendering performance by jointly optimizing the poses
of the training images [3, 6, 41]. In contrast, our method adopts
geometry-guided sampling, which benefits from the reconstruction
result and allows for more accurate sampling of points near the
surface, thus improving the performance of view synthesis.

Neural implicit 3D reconstruction. Neural implicit functions
take a 3D location as input and output occupancy, density, and
color [22, 23, 26, 27, 29]. Scene Representation Networks employ
MLPs to map 3D coordinates to latent features that encode geome-
try and color information [35]. Yariv et al. [44] and Wang et al. [40]
propose two approaches to converting SDF values into density and
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performing volume rendering to supervise object reconstruction in
the Nerf-based framework. Neuralangelo [19] introduces numerical
gradients and utilizes multiresolution hash grids to reconstruct
detailed scenes. However, while these methods perform well on
scenes with rich texture, they struggle with indoor scenes with
textureless walls and ceilings. To address these issues, Yu et al. [46]
employ predicted depth and normal maps from a pre-trained net-
work to enhance the reconstruction of indoor scenes. Azinović et
al. [1] combine a TSDF representation with the NeRF framework
and use a depth representation from an off-the-shelf RGBD sensor
to improve the accuracy of indoor geometry reconstruction. Subse-
quent studies [18, 39, 42] have further optimized the Neural-RGBD
strategy to speed up training. [39] utilizes voxel representations
instead of 3D coordinates to achieve faster query, while [42] trains
a dynamically adaptive grid that allocates more voxel resources to
more complex objects. [18] pre-trains a feature grid to accelerate
the training process. We propose to decouple the view-independent
colour component for guiding the 3D reconstruction, which effec-
tively enhances the smoothness of surfaces and fills in the missing
parts of depth-based reconstruction.

3 METHOD
3.1 Preliminaries
Neural radiance field. Given a collection of posed images, neural
radiance field can estimate the color and depth of each pixel by
computing the weighted sum of sampling points based on their
color and distance from the center of the camera [21]:

𝐶𝑝 =

𝑁∑︁
𝑖=1

𝑤𝑖𝑐𝑖 , 𝐷𝑝 =

𝑁∑︁
𝑖=1

𝑤𝑖𝑧𝑖 , (1)

where the color and distance from sampling points to the camera
center, are denoted by 𝑐𝑖 and 𝑧𝑖 respectively,𝑤𝑖 are the contribution
weights of each sampling point to the color and depth and is calcu-
lated as𝑤𝑖 =

∑𝑁
𝑖 (∏𝑖−1

𝑗 (1 − 𝛼 𝑗 (𝑝 (𝑥))))𝛼𝑖 (𝑝 (𝑥𝑖 )), where 𝑝 (𝑥) and
𝛼𝑖 are the density and opacity of sampling point 𝑥𝑖 , respectively.
The opacity is then computed using eq. (2).

𝛼𝑖 = 1 − 𝑒𝑥𝑝 (−𝑝 (𝑥𝑖 ) (𝑧𝑖+1 − 𝑧𝑖 )), (2)

the color 𝑐𝑖 and density 𝑝 (𝑥𝑖 ) of a given sampling point are pre-
dicted by the Multi-layer Perceptron (MLP). The process is illus-
trated in eq. (3).

𝑝 (𝑥𝑖 ), 𝑓 = Γ𝜃 (𝑥𝑖 ),
𝑐𝑖 = Γ𝜅 (𝑓 , 𝑑),

(3)

where 𝑥 and 𝑑 represent the location and ray direction, respectively.
𝑓 is the feature vector related to the location. Γ𝜃 and Γ𝜅 are implicit
functions modelled by MLPs.

SDF-based neural implicit reconstruction. The signed dis-
tance function (SDF) refers to the nearest distance between a point
and surfaces and is often used to implicitly represent geometry. One
notable application of SDF is neural implicit reconstruction under
the volume rendering framework, achieved by a method called Neus
[40].

The key to the success of this method is an unbiased transfor-
mation between the SDF values and the density, as demonstrated

in eq. (4). This transformation enables the creation of high-quality
surface geometry with great accuracy and cleanliness.

𝛼𝑖 = max
(
𝜎𝑠 (𝜙 (x𝑖 )) − 𝜎𝑠 (𝜙 (x𝑖+1))

𝜎𝑠 (𝜙 (x𝑖 ))
, 0
)
, (4)

where 𝜙 (𝑥𝑖 ) represents the SDF value of a given sample point,
and 𝜎𝑠 (𝑥) = (1 + 𝑒−𝑠𝑥 )−1, while the smoothness of the surface is
conditioned on a learnable parameter 𝑠 .

Multi-resolution feature grid. To improve the efficiency of
training, a grid representation is used [4, 36, 45]. However, using
only single-resolution grid limits the optimization of density and
color to local information, resulting in disruptions to the smooth-
ness and continuity of the scene texture [39, 46]. A multi-resolution
grid expands the local optimization to nearby continuous fields by
varying the receptive field and gradient backpropagation of sample
points, enabling higher rendering quality and smoother geometry.
The embedding feature is obtained by concatenating the features
of each level, as shown in eq. (5).

𝑓 = Ω(𝑉1 (𝑥),𝑉2 (𝑥), ...,𝑉𝑛 (𝑥)), (5)
whereΩ indicates concatenation, and𝑉𝑖 (𝑥) is trilinear interpolation
in the 𝑖-th grid. The final feature vector of the input network is
denoted as 𝑓 .

To achieve a higher resolution, hash-based feature grid is em-
ployed in [24]. It represents resolutions as:

𝑅𝑙 :=
⌊
𝑅min𝑏

𝑙
⌋
, 𝑏 := exp( ln𝑅max − ln𝑅min

𝐿 − 1
), (6)

where𝑅min,𝑅max are the coarsest and finest resolution, respectively.
𝑅𝑙 represents 𝑙−th level resolution and 𝐿 is the total levels. Similarly,
we extract the interpolated features at each level and concatenate
them together as in eq. (5).

3.2 Dual Neural Radiance Field
Scene representation. To achieve high-fidelity indoor scene re-
construction and rendering simultaneously, we introduce the dual
neural radiance field (Du-NeRF ). The key idea that enables the dual
neural radiance field to achieve high-fidelity reconstruction and
rendering is to separately represent the geometry field and the color
field. Taking into account the fact that the reconstruction task and
the rendering task have different complexities, the geometry field
and the color field are represented by multi-resolution grids with
different levels to speed up training and inference.

As shown in fig. 2, we use a four-level grid to represent the scene
geometry where the grid sizes at each level are respectively 3cm,
6cm, 24cm, and 96cm. At each level, the dimension of the geometry
feature is set to 4, and the dimension of the geometry feature 𝑓𝑔𝑖
is therefore 16. For the color field, the hash-based multi-resolution
grid is utilized. The coarsest resolution𝑅min of the hash-basedmulti-
resolution grid is set to 16. The level of grid resolution is 𝐿 = 16,
and the feature vector at each level is 2-dimensional, we therefore
obtain a hash color feature vector 𝑓𝑐𝑖 with a total of 32 dimensions.
The geometry feature 𝑓𝑔𝑖 and color feature 𝑓𝑐𝑖 are obtained using
tri-linear interpolation.

Dual neural radiance networks. The key idea is to use two
different geometric decoders to extract SDF and density, which are
respectively used for 3D reconstruction and image rendering. The
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Figure 2: Dual Neural Radiance Field (Du-NeRF). In (a) Scene Representation, we use a four-layer multi-resolution grid to store
geometric features 𝑓𝑔𝑖 , and a hash-based multi-resolution grid for the color features 𝑓𝑐𝑖 . 𝑓𝑔𝑖 is decoded to SDF 𝜙 and density 𝜎

by different MLPs in (b) SDF branch and (c) the Density branch. We provide depth constraints for 𝜙 and introduce additional
regularization terms to ensure the stability of its training. We design a depth alignment loss for 𝜎 to align the two geometry
fields. In (d), for color calculation, 𝜙 and 𝜎 from (b) and (c) are integrated with decoupled view-independent colors to compute
the self-supervised loss. The final rendering color sums the view-dependent and view-independent colors to be integrated with
the 𝜎 weights.

SDF and density are estimated implicitly from the same interpolated
features 𝑓𝑔𝑖 :

Γ𝜙 (𝑓𝑔𝑖 ) = 𝜙𝑖 , Γ𝜎 (𝑓𝑔𝑖 ) = 𝜎𝑖 , (7)

where both of the Γ𝜙 and Γ𝜎 are MLPs, and used to decode 𝑓𝑔𝑖 into
SDF 𝜙𝑖 and density 𝜎𝑖 , respectively. 𝜙𝑖 and 𝜎𝑖 are both converted to
occupancy through eq. (4) and eq. (2), respectively. The resulting
occupancy of the two is calculated via eq. (1) to obtain the pixel
depth and color. The whole process is supervised with the image
reconstruction loss and depth loss.

Sampling points near object surface have a higher contribution
to the rendered color of the ray [23, 40]. To obtain higher rendering
quality, we employ the hierarchical sampling strategy as in [23, 40],
which contains coarse sampling and fine sampling near the surface.
Specifically, we first uniformly sample 96 points along the ray in
the coarse stage and then iteratively add 12 sampling points three
times according to the cumulative distribution function(CDF) of
previous coarse points weights in the fine stage as in [39]. Finally,
we got 132 sampling points for depth and color rendering. Note
that we use the weight distribution calculated from the SDF branch
for sampling as it provides more accurate surface information. For
the volume rendering process, the two branches share the sampling
points.

Self-supervised color decomposition. We disentangle the
color into view-independent color and view-dependent color. We
use the decoupled view-independent color 𝑐𝑑𝑖 to guide geometry

learning in a multi-view consistent self-supervised manner by con-
straining the weight values. This separation allows the color branch
to leverage complete color information for rendering, while the ge-
ometry branch benefits from view-consistent supervision. Previous
work has shown that decoupling color helps find geometry surfaces
in NeRF-based methods [37, 49]. For instance, [37] accomplishes
the color decomposition via a simple regularization term, which
assumes that the view-dependent color is close to zero. In contrast,
we utilize the view-independent color decoupled from the two
branches to constrain each other in a self-supervised manner. This
design effectively extracts view-independent color to support accu-
rate geometry reconstruction but also boosts the image rendering
results via the mutually beneficial learning process.

To achieve it, as shown in fig. 2, we utilize two color decoders
consisting of MLPs to implicitly estimate the view-independent
color and view-dependent color. The view-independent decoder
takes the interpolated color feature 𝑓𝑐𝑖 as input and outputs the
view-independent color 𝑐𝑑𝑖 and an intermediate feature 𝑓𝑖𝑛𝑖 . The
specular (view-dependent) decoder takes the intermediate feature
𝑓𝑖𝑛𝑖 and the encoded view-direction vectors as input to obtain the
specular color 𝑐𝑠𝑖 . The overall color at a sampling point is calculated
by adding the two color components 𝑐𝑖 = 𝑐𝑑𝑖 + 𝑐𝑠𝑖 . The final color
𝐶 is generated by summing the weighted color of each sampling
point with eq. (1). In our framework, we integrate 𝜔𝜎𝑖 with the full
color 𝑐𝑖 as in NeRF, however, we only weight the view-independent
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color 𝑐𝑑𝑖 with 𝜔𝜙𝑖
to obtain the view-independent color of the

corresponding ray. The calculation of color in eq. (1) becomes:

𝐶𝑑𝜙 =

𝑁∑︁
𝑖=1

𝜔𝜙𝑖𝑐𝑑𝑖 , (8)

where𝐶𝑑𝜙 is the view-independent color computed by𝜔𝜙𝑖 . We can
obtain the view-independent color 𝐶𝑑𝜎 computed by 𝑐𝑑𝑖 and 𝜔𝜎𝑖 ,
which will be used as the ground truth to constrain the learning
process of 𝐶𝑑𝜙 :

L𝑑 =

𝑁∑︁
𝑖

𝜆𝑑
𝐶𝑑𝜙 −𝐶𝑑𝜎

 . (9)

3.3 Pose Refinement
Noisy poses lead to undesirable mesh protrusions of 3D reconstruc-
tion and artifact in novel view synthesis. Thus, we adopt a pose
optimization strategy in the training process, which treats the poses
as learnable parameters as in [1]. Specifically, we convert the trans-
formation matrix to Euler angles and translation vectors (R3+3) and
initialize them with results of the Bundlefusion[8]. We optimize
them along with the dual fields and are supervised by depth loss
and photometric loss.

After pose optimization, poses of training images are trans-
formed into a new coordinate space. A calibration process is re-
quired for testing images to transform them into the same coor-
dinate space as the training images. To achieve it, we introduce
the proximity frame alignment (PFA) strategy, which uses the pose
change of the adjacent training images to help correct the noisy
poses of the testing images. Specially, given a sequence of consecu-
tive images

{
𝐼𝑖 ∈ R𝐻×𝑊 ×3 | 𝑖 ∈ {1, ...𝑁 }

}
, and their corresponding

poses
{
𝑃𝑖 ∈ R4×4 | 𝑖 ∈ {1, ...𝑁 }

}
,we suppose that the 𝑘−th image is

testing image and the 𝑘 +1-th is the training image. 𝑃𝑘 and 𝑃𝑘+1 are
noisy poses, and 𝑃 ′

𝑘+1 is the optimised pose of the training image,
respectively. 𝑃 ′

𝑘
is the correct pose of the testing image, which can

be calculated by eq. (10).

𝑃 ′
𝑘
= 𝔄 × 𝑃𝑘 , (10)

where𝔄 is the transformation matrix of the adjacent training image
𝑘 + 1, obtained by:

𝔄 = 𝑃 ′
𝑘+1 × 𝑃−1

𝑘+1 . (11)

In this way, we can calibrate the testing images into the coordinate
system of the training images.

3.4 Network training
To optimize the dual neural radiance field, we randomly sample
𝑀 rays during training. Our loss is divided into two components
including a L𝜙 loss, and a L𝜎 loss in eq. (12).

L(P) = L𝜙 + L𝜎 . (12)

The L𝜙 contains the three components as shown in eq. (13):
view-independent color loss, depth loss and SDF regularization loss,
as the following:

L𝜙 = 𝜆𝑑L𝑑 + 𝜆depthLdepth + LSDF . (13)

The view-independent loss is calculated as the distance between
𝐶𝑑𝜙 and 𝐶𝑑𝜎 as shown in eq. (9), and the depth loss is the 𝐿1 loss:

Ldepth =

𝑁∑︁
𝑖

��𝐷𝜙 − 𝐷gt
�� . (14)

In order to improve the robustness of the learning process of the
SDF 𝜙 , we imposed a series of SDF losses LSDF to regularize the 𝜙
value as [39]:

LSDF = 𝜆eik Leik + 𝜆fsLfs + 𝜆sdf Lsdf + 𝜆smooth Lsmooth . (15)

The regularization term Leik (𝑥) encourages valid SDF predic-
tions in the unsupervised regions, while Lsmooth (𝑥) is an explicit
smoothness term to realize smooth surfaces.

Leik (𝑥) = (1 − ∥∇𝜙 (𝑥)∥)2, (16)

Lsmooth (𝑥) = ∥∇𝜙 (𝑥) − ∇𝜙 (𝑥 + 𝜖)∥2 . (17)
Lsdf (𝑥) and Lfs (𝑥) are used to constrain the truncation distance
𝑏 (𝑥).

Lsdf (𝑥) = |𝜙 (𝑥) − 𝑏 (𝑥) |, (18)

Lfs (𝑥) = max
(
0, 𝑒−𝛼𝜙 (𝑥 ) − 1, 𝜙 (𝑥) − 𝑏 (𝑥)

)
. (19)

A detailed explanation of these regularity constraints can be found
in [39].

The L𝜎 loss contains two parts as shown in eq. (20):

L𝜎 = 𝜆rgb

𝑁∑︁
𝑖

𝐶𝜎 −𝐶gt
 + 𝜆align

𝑁∑︁
𝑖

��𝐷𝜎 − 𝐷gt
�� , (20)

where𝐶𝜎 is the final rendering color and 𝐷𝜎 is the depth calculated
from the color branch. 𝜆align is used to align two geometric fields.
We experimentally found that Lalign is important for decoupling
consistent view-independent color. For each of the geometry co-
efficients, we follow the practice of [39] and set them as follows:
𝜆𝑑 = 5, 𝜆depth = 1, 𝜆eik = 1.0, 𝜆fs = 1.0, 𝜆sdf = 10.0, 𝜆smooth = 1.0.
For color coefficients we experimentally set them as 𝜆rgb = 50 and
𝜆align = 1.

4 EXPERIMENT
4.1 Setup
Datasets.We utilize the NeuralRGBD (10 scenes), Replica (8 scenes),
and Scannet (5 scenes) datasets to evaluate the proposed method.
The NeuralRGBD dataset and Replica dataset are synthetic datasets,
and images are of high quality. The Scannet dataset is real world
dataset, captured with a handheld device such as an iPad and suffers
from severe motion blur. Each scene in the three datasets includes
RGB images, depth images, and corresponding poses. The poses
are obtained via the BundleFusion algorithm. For each scene, about
10 percent of images are used as validation sets, and the rest of the
images are used as training sets. Specifically, starting with the 10-th
image, we choose one image in every ten consecutive images as
the validation set.

Implementation details. The SDF decoder Γ𝜙 , density decoder
Γ𝜎 , color decoder Γ𝑑 and specular decoder Γ𝑠 all use two-layers
MLPs with the hidden dimension of 32. We sample𝑀 = 6144 rays
for each iteration, and each ray contains𝑁𝑐 = 96 coarse samples and
𝑁𝑓 = 36 fine samples. Our method is implemented in Pytorch and
trained with the ADAM optimizer with a learning rate of 1 × 10−3,



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

and 1 × 10−2 for MLP decoders, multi-resolution grids features,
respectively. We run 20K iterations in all scenes with the learning
rate decay at iteration 10000 and 15000, and the decay rate is 1/3.

Baselines. To validate the effectiveness of the proposed method,
we compare it with approaches for indoor 3D reconstruction and
view rendering, respectively. For indoor 3D reconstruction, we com-
pare with registration-based method including BundleFusion [8],
Colmap [30–32],Convolutional OccupancyNetworks [29], SIREN [33],
and recent volumetric rendering-based geometry reconstruction
methods such as Neus [40], VolSDF [44], Neuralangelo [19], Neural
RGBD [1], and Go-Surf [39]. We run marching cubes at the reso-
lution of 1cm to extract meshes. We cull the points and faces in
the areas that are not observed in any camera views as in [1, 39].
For view rendering, we compare some representative approaches
based on the neural radiance field, including DVGO [36], and In-
stantNGP [24]. Their performance on 3D reconstruction is also
compared.

4.2 Comparison
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Figure 3: The qualitative reconstruction results on Neural-
RGBD datasets. The proposed method can fill in the missing
part (highlighted in yellow boxes) and produce smoother
planes and clear edges (highlighted in green boxes)

Evaluation onNeuralRGBDDataset.Weevaluated ourmethod
on 10 synthesis data used in Neural RGB-D and Go-Surf. Qualitative
and quantitative results are shown in figs. 3 and 4 and table 1. It
can be seen from the table 1 that our method achieves the best
performance on both view rendering and 3D reconstruction. De-
tailed rendering and reconstruction results can be found in the
Supplementary.

For the 3D reconstruction task, the proposed method shows
superior results on all metrics except the NeuralRGBD approach in
terms of accuracy (table 1). fig. 3 shows that our method generate
smoother geometry ( green boxes), and can fill in the missing stripes
of the indoor objects (yellow boxes). For the view synthesis task,
our method shows an improvement of 3 − 10 db over the previous
representative approaches (table 1), and the rendered images have
richer textures (fig. 3), e.g. the subtitles on the TV and the magazine
on the table.

Evaluation on Replica dataset. As shown in table 2, our
method also demonstrates the superiority on the Replica dataset.

(a) InstantNGP (b) DVGO (c) Ours (d) GT

Figure 4: Qualitative comparison of novel view synthesis
results of NeuralRGBDdataset. It can be seen from the results
that our method has better visual rendering effects, whether
they are striped structures or text on books.

Table 1: Reconstruction and view synthesis results of Neu-
ralRGBD dataset. The best performances are highlighted in
bold.

Method Acc ↓ Com ↓ C-𝑙1 ↓ NC ↑ F-score ↑ PSNR ↑ SSIM ↑ LPIPS ↓
BundleFusion 0.0178 0.4577 0.2378 0.851 0.680 - - -
COLMAP 0.0271 0.0364 0.0293 0.888 0.874 - - -
ConvOccNets 0.0498 0.0524 0.0511 0.861 0.682 - - -
SIREN 0.0229 0.0412 0.0320 0.905 0.852 - - -
Neus 0.3174 0.6911 0.5043 0.628 0.103 27.465 0.849 0.192
VolSDF 0.1627 0.4815 0.3222 0.681 0.262 28.717 0.882 0.174
Neuralangelo 0.3212 0.6938 0.5075 0.531 0.101 29.786 0.892 0.121
Neural RGB-D 0.0145 0.0508 0.0327 0.920 0.936 31.994 0.901 0.183
Go-Surf 0.0164 0.0213 0.0189 0.932 0.949 29.586 0.889 0.183
DVGO 0.2389 0.5558 0.3973 0.564 0.317 33.633 0.940 0.125
Instant-NGP 0.2641 0.7318 0.4976 0.555 0.208 27.976 0.799 0.255
Ours 0.0156 0.0197 0.0177 0.933 0.960 36.503 0.966 0.048

Specifically, in terms of rendering metrics, our method achieves
a 5 dB higher rendering quality than methods like Instant-NGP
and DVGO. Compared to the volume rendering-based reconstruc-
tion methods, our method achieves better view rendering per-
formance. Furthermore, our method outperforms reconstruction-
focused methods in these metrics. These further show the robust-
ness of the proposed method on synthetic datasets. The qualitative
results can be found in the Supplementary.

Evaluation on Scannet Dataset.We present the quantitative
results (table 3) and the qualitative results (fig. 5 and fig. 6) evaluated
on five real-world scenes. It can be seen from table 3 that ourmethod
achieves the best metrics of PSNR and Chamfer-𝑙1.

For the 3D reconstruction task, our approach yields smoother
surface and more complete objects, e.g. whiteboard and TV (fig. 6).
Remarkably, for the view synthesis task, our method successfully
generates clear floor stripes and poster text, which appear blurred
in other results (fig. 5).
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Table 2: Reconstruction and view synthesis results of Replica
dataset. The best performances are highlighted in bold.

Method Acc ↓ Com ↓ C-𝑙1 ↓ NC ↑ F-score ↑ PSNR ↑ SSIM ↑ LPIPS ↓
BundleFusion 0.0145 0.0453 0.0299 0.961 0.936 - - -
Neus 0.1623 0.2956 0.2288 0.754 0.194 28.939 0.855 0.181
VolSDF 0.1348 0.3009 0.2180 0.747 0.339 30.375 0.866 0.175
Neuralangelo 0.4747 0.6288 0.5519 0.649 0.112 30.213 0.868 0.178
Neural RGB-D 0.0096 0.2447 0.1271 0.934 0.847 32.668 0.893 0.198
Go-Surf 0.0120 0.0122 0.0121 0.9718 0.9896 30.967 0.884 0.217
DVGO 0.2399 0.3511 0.2955 0.6040 0.239 31.962 0.893 0.223
Instant-NGP 0.3332 1.1151 0.7288 0.5470 0.1583 32.352 0.884 0.150
Ours 0.0112 0.0111 0.0112 0.9748 0.9911 37.104 0.955 0.074

Table 3: Performance comparison with other nerf-based
methods on rendering and reconstruction results of the Scan-
net dataset. Best results are highlighted as bold.

Method
scene0000 scene0002 scene0005 scene0024 scene0494 Average

C-𝑙1 ↓ PSNR↑ C-𝑙1 ↓ PSNR↑ C-𝑙1 ↓ PSNR↑ C-𝑙1 ↓ PSNR↑ C-𝑙1 ↓ PSNR↑ C-𝑙1 ↓ PSNR↑

Neus 0.410 24.056 0.364 21.397 0.444 25.985 0.568 21.888 0.543 28.770 0.466 24.419
VolSDF 0.652 24.849 0.606 21.284 0.573 25.456 0.793 22.560 0.541 27.831 0.633 24.396
Neuralangelo 0.457 22.847 0.350 22.227 0.339 28.075 0.462 20.496 0.336 28.865 0.389 24.502
Neural RGB-D 0.068 21.779 0.060 17.330 0.075 23.635 0.185 16.266 0.044 28.274 0.086 21.457
Go-surf 0.030 24.033 0.024 20.246 0.054 24.977 0.106 21.538 0.103 27.572 0.063 23.673

DVGO 0.133 26.315 0.143 21.206 0.153 28.126 0.142 22.689 0.155 29.655 0.145 25.598
Instant-NGP 0.476 23.145 0.249 22.854 0.349 23.988 0.958 15.285 0.305 28.786 0.467 22.812

Ours 0.029 26.712 0.022 23.032 0.053 29.146 0.106 24.240 0.075 31.675 0.058 26.961
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Figure 5: Qualitative results on ScanNet scenes demonstrate
the superior rendering quality of our approach compared to
previous NeRF-based methods, especially for images exhibit-
ing severe motion blur, such as the text on a poster (column
3) and the stripes on the floor (column 4).

4.3 Ablations
We conduct ablation studies to demonstrate the effectiveness of
designing the blocks and choice of scene representation. The quan-
titative result is shown in tables 4 to 7, where we evaluate these
methods in the RGBD synthetic dataset. Other ablation studies can
be found in the Supplementary.
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Figure 6: Qualitative mesh reconstruction on Scannet scenes.
Our method produces visually smoother and cleaner meshes
compared to previous methods, as demonstrated by the
zoomed-in details provided for comparison.

(a) Complete color (b) Vi color (c) Vd color

Figure 7: Color decoupling results of the proposed method
on NeuralRGBD dataset. The Vi color represents the view-
independent color, while Vd color is the view-dependent
color. It can be seen that our method can effectively decouple
the complete color into the view-dependent (specular reflec-
tive surfaces) and view-independent (diffuse surfaces) colors.

Effect of the Du-NeRF architecture. To analyze the network
architecture of our dual-field, we experimented with various archi-
tectural configurations, detailed in table 4. The SDF-only represents
that the method contains only the SDF branch and the Density-
only involves only the density branch. Dual is the proposed method
which has the density branch and SDF branch. The experimen-
tal results show that the two branches achieve optimal rendering
and reconstruction performance. The SDF branch exhibits supe-
rior reconstruction capabilities, while the Density branch excels
in rendering, as evidenced by the fact that the SDF-only branch
outperforms the Density-only branch in terms of F-score, and the
latter achieves higher PSNR values.

Effect of color disentanglement. To explore the impact of
color decoupling on view rendering and 3D reconstruction, we con-
ducted several tests summarized in table 5. FC indicates supervision
with color loss without decoupling, while VdC+ViC involves color
loss from both View-dependent Color (VdC) and View-independent
Color (ViC), calculated separately in VdC and ViC conditions. The
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Table 4: Ablation study of the Du-NeRF architecture.

Method C-𝑙1 ↓ F-score ↑ PSNR ↑ LPIPS ↓
SDF-only 0.0133 0.974 31.741 0.110
Density-only 0.0168 0.934 32.744 0.090
Dual(SDF+Density) 0.0115 0.977 34.775 0.074

results presented in table 5 show that ViC supervision provides
optimal performance for 3D reconstruction and volume rendering
tasks. Furthermore, the comparable performance observed in the
first two rows indicates that color decoupling does not improve
reconstruction or rendering quality. In particular, the use of VdC as
the supervision signal leads to a significant degradation in recon-
struction and rendering performance compared to FC and VdC+ViC.
fig. 7 demonstrates that our method can accurately decompose the
ViC and VdC color. For more experimental results on color disen-
tanglement, please refer to the Supplementary.

Table 5: Ablation study of color disentanglement (C-D), where
ViC (Ours) denotes the view-independent component, VdC
is the view-dependent component, and FC represents the
complete color, respectively.

C-D Supervised C-𝑙1 ↓ F-score ↑ PSNR ↑ LPIPS ↓
w/o FC 0.0182 0.9549 34.494 0.090
w/ VdC+ViC 0.0185 0.9526 34.710 0.080
w/ VdC 0.1658 0.6503 32.780 0.122
w/ ViC 0.0177 0.9597 35.225 0.072

Effect of different grid representation. We examined how
different scene representations affect reconstruction and rendering
using three strategies, detailed in table 6. GM − CM uses four-level
resolution grids for both geometry and color, GH − CH employs
hash-based grids for both, and GM − CH combines a four-level
grid for geometry with a hash-based grid for color. Findings in
table 6 indicate that while hash-based color grids improve rendering
outcomes, hash-based geometry grids reduce reconstruction quality.
The mixed representation of GM−CH yields the best results in both
F-score and PSNR, suggesting that color benefits from a complex
representation, whereas geometry performs better with a simpler
way.

Table 6: Ablation study of different scene representation,
where GM, CM, GH, CH, denote geometric multi-resolution
grid, color multi-resolution grid, geometric hash grid, and
color hash grid, respectively.

Method C-𝑙1 ↓ F-score ↑ PSNR ↑ LPIPS ↓
GM − CM 0.0177 0.9597 35.225 0.072
GH − CH 0.0294 0.8976 36.087 0.108
GM − CH 0.0177 0.9600 36.503 0.048

Effect of pose refinement and PFA evaluation strategy.
To assess the impact of pose optimization on 3D reconstruction,
we tested two scenarios: with and without pose optimization, as
illustrated in fig. 8. Results indicate that lacking pose optimization

leads to defective meshes with unwanted floaters and compromised
geometry.

Further, to ascertain the correct poses for testing images, we
explored three configurations. "W/o Alignment" uses uncorrected
provided poses, "IA" (Interpolated Alignment) derives poses from
averaging those of two adjacent training images, and "PFA" (Prox-
imity Frame Alignment) is our method. Results in table 7 show that
without proper pose alignment, view rendering quality significantly
declines. Notably, our PFA method surpasses the IA strategy, which
relies on simple interpolation, in rendering quality.

(a) Ours (b) W/o pose optimization

Figure 8: The comparison experiments about pose optimiza-
tion. Floating points and artifacts are present in the scene
when pose optimization is turned off.

Table 7: Evaluation of pose alignment strategy, included
W/o Alignment, Interpolation Alignment (IA) and Proximity
Frame Alignment (PFA). It can be seen that our PFA strategy
could achieve the best performance.

Method PSNR ↑ SSIM ↑ LPIPS ↓
W/o Alignment 18.357 0.679 0.398

IA 21.802 0.674 0.342
PFA (ours) 26.712 0.796 0.296

5 CONCLUDING REMARKS
We have presented a dual neural radiance field (Du-NeRF) for high-
fidelity 3D indoor scene reconstruction and rendering simultane-
ously. This method incorporates two branches, one for reconstruc-
tion and another for rendering, allowing mutual enhancement.
Additionally, we developed an effective framework that facilitates
the on-the-fly extraction of view-independent color information
from the model, which can be leveraged for supervising 3D recon-
struction, potentially yielding smoother and more complete mesh
representations.

Besides, the effectiveness of the proposed method remains to be
tested under a few-shot scenario where a small number of RGBD
images are provided. In addition, trying new feature representations
such as replacing hash representation with Gaussian splitting may
improve performances. We will address these in future works.
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