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Abstract

The extraordinary performance of large001
language models (LLMs) heightens the002
importance of detecting whether the context003
is generated by an AI system. More004
importantly, while more and more companies005
and institutions release their LLMs, the006
origin can be hard to trace. Since LLMs are007
heading towards the time of AGI, similar to the008
origin tracing in anthropology, it is of great009
importance to trace the origin of LLMs. In this010
paper, we first raise the concern of the origin011
tracing of LLMs and propose an effective012
method to trace and detect AI-generated013
contexts. We introduce a novel algorithm that014
leverages the contrastive features between015
LLMs and extracts model-wise features to016
trace the text origins. Our proposed method017
works under both white-box and black-box018
settings therefore can be widely generalized to019
detect various LLMs.(e.g. can be generalized020
to detect GPT-3 models without the GPT-3021
models). We construct extensive experiments022
to examine whether we can trace the origins of023
given texts. We provide valuable observations024
based on the experimental results, such as the025
difficulty level of AI origin tracing, and the AI026
origin similarities, and call for ethical concerns027
of LLM providers. We are releasing all codes028
and data as a toolkit and benchmark for future029
AI origin tracing and detecting studies. 1030

1 Introduction031

Using LLMs such as ChatGPT and GPT4 (OpenAI,032

2023) for various daily routines and copilot033

in work is becoming a new trend that draws034

worldwide attention not only in the machine035

learning community. Starting from GPT (Radford036

et al., 2018) and BERT (Devlin et al., 2018),037

pre-trained models have developed for several038

years, and trustworthy and security concerns have039

been constantly discussed (Bai et al., 2022). The040

1We are releasing all available resource at https://
github.com//.

performances of LLMs are sensational, therefore, 041

the usage of LLMs should be strictly supervised 042

by users as well as service providers. One 043

trend in ensuring the safety of LLMs is to build 044

detection tools that can discriminate whether an 045

AI system generates a certain text (Jawahar et al., 046

2020). AI-generated context detection is useful 047

in releasing texts that require strict censoring or 048

originality such as official documents, consultation, 049

and student submissions (Mitchell et al., 2023) 050

to avoid abuse of AI systems. Further, a more 051

critical and applicable field is to trace the origin 052

of LLMs. While more and more companies and 053

institutions are releasing their original LLMs, it 054

is of great importance to trace whether an LLM 055

is trained from a previous model, or is copied 056

or distilled from another LLM. Since LLMs can 057

produce massive generated data, future LLMs 058

might be trained from these generated data, the 059

human-written texts might be contaminated with 060

different LLMs. Therefore, tracing the origin 061

of the text is a major challenge in future LLM 062

industries. 063

In this work, we first introduce the concept of 064

origin tracing. Then we provide an effective tool 065

named Sniffer and its evaluation benchmark to 066

study the origin tracing problem. Origin tracing 067

is to further categorize the origin of a given text. 068

Specifically, we categorize the origins by the LLM 069

abilities and by LLM service providers. We first 070

trace the origin of GPT2 level LLMs such as GPT2 071

(Radford et al., 2019) from OpenAI, GPT-Neo/J 072

(Black et al., 2021; Wang, 2021) from EleutherAI, 073

we can also trace the GPT3 level LLMs such as 074

text-davinci-003, ChatGPT (GPT3.5 turbo) (Brown 075

et al., 2020), LLaMA (Touvron et al., 2023). 076

Figure 1: A knowledge
flow of LLMs; with
origin tracing, we can
trace Alpaca back to
ChatGPT and LLaMA.

With origin tracing, we 077

can avoid AI abuse or 078

potential model theft 079

since the texts can be 080

traced to a specific service 081
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provider. While more082

and more companies083

and institutions are084

releasing their LLMs,085

origin tracing is the086

keystone of anthropology087

of LLMs. Then we088

introduce Sniffer, the089

first origin tracing tool.090

In Sniffer, we use contrastive features across091

open-source LLMs such as GPT2, GPT-Neo/J, and092

LLaMA. Specifically, we design heuristic features093

that capture the model-wise discrepancies which094

can help trace the origin of given texts. Then095

we utilize a simple linear classifier to project the096

extracted features to specific origins including097

known origins that have open-source models and098

unknown origins that are black boxes to users.099

The core motivation of the origin tracing tool100

Sniffer utilizes the discrepancies between LLMs101

as features to help trace the origins. Compared102

with previous methods, Sniffer utilizes model-wise103

features, which is different from supervised104

learning methods such as fine-tuning a RoBERTa105

(Liu et al., 2019) model; Furthermore, Sniffer106

is able to trace text origins and generalize to107

unknown origins, while previous methods that use108

model-wise features cannot.109

With Sniffer, we further introduce a test dataset110

that contains collected texts from different origins111

as a benchmark to study the origin tracing problem.112

We provide plenty of experiments and through the113

experimental results, we have several non-trivial114

observations that help future LLM studies. In115

general, we find that: (1) we are able to trace the116

origins of generated texts when we can possess the117

models; (2) it grows harder to detect and trace118

origins when the LLMs are stronger; (3) LLM119

providers need to be more cautious as the origin120

of generated texts might be known only by the121

providers. (4) We can trace the origins of distilled122

LLMs such such as Alpaca and Dolly.123

To summarize, in this paper, we: (1) raise the124

concern of origin tracing of AI-generated contexts;125

(2) build a tool to trace the origins of various open-126

source models by releasing a diversified benchmark127

for AI-generated contexts detection and origin128

tracing; (3) conduct various experiments to analyze129

the ability of LLMs when they are being traced and130

hope that future works can pay more attentions to131

the origin tracing of LLMs.132

2 Related Work 133

Increasing Concern of LLM Security 134

Pre-trained models (Devlin et al., 2018; Radford 135

et al., 2018, 2019; Raffel et al., 2020; OpenAI, 136

2023) are supposed to be harmless, harmful, and 137

honest to users (Bai et al., 2022), however, there 138

are various aspects that challenge LLM securities 139

such as social bias, stereotypes, privacy leak or 140

adversarial examples (Zhao et al., 2017; Carlini 141

et al., 2020; Li et al., 2020). 142

Detection of AI-generated contexts is also a 143

rapidly growing field that requires attention since 144

the abuse of AI might be a major challenge in 145

LLM applications (Bai et al., 2022). Still, current 146

methods only consider detection as a binary task, 147

that is, whether a given text is generated by an 148

AI without considering tracing the origins of texts. 149

Detection methods can be categorized into two 150

lines: 151

Semantic-wise Detection 152

The most straightforward method to detect 153

AI-generated contexts is to construct a text 154

classification task (Zellers et al., 2019). Therefore, 155

DetectGPT (Mitchell et al., 2023) introduces a 156

strong RoBERTa-trained baseline that uses the 157

dataset released by OpenAI 2 to train a classifier. 158

Model-wise Detection Unlike semantic-wise 159

detection which discriminates the semantic 160

difference between human-written and AI- 161

generated texts, a more direct way is to explore 162

the model-wise features. That is, AI-generated 163

texts show discrepancies compared with humans 164

when fed into AI models. These discrepancies are 165

not easily noticed by humans as they might be 166

a subtle difference that is possessed by a certain 167

origin, therefore, many works focus on utilizing 168

model-wise features such as log-likelyhood of 169

model outputs, neural features, or bag-of-word 170

features (Bakhtin et al., 2019; Solaiman et al., 171

2019; Gehrmann et al., 2019; Jawahar et al., 172

2020; Mitchell et al., 2023) to detect AI-generated 173

contexts. 174

In the era of LLMs, there are similar works 175

that work on using model-wise features of LLMs 176

such as watermarking (Kirchenbauer et al., 2023), 177

and backdoor plantings (Kurita et al., 2020; Li 178

et al., 2021). In the computer vision field, model- 179

wise features are also used in fake image detection 180

(Dolhansky et al., 2020) but are less related to 181

2https://github.com/openai/gpt-2-output-dataset
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Table 1: Different Detection Tools comparisons. Generalization ability represents how well white-box methods can
detect texts generated from unknown models, therefore the supervised learning methods are not applicable in the
generalization ability comparison.

Method Model Access Data Request Generalization Origin Tracing

log p(x) White-Box Zero-Shot Low ✗

DetectGPT White-Box Zero-Shot Low ✗

Supervised-Learning Black-Box Full Data N/A ✗

Sniffer Black & White Box Low-Resource High ✓

LLM origin tracing due to the continuous nature of182

images.183

3 Methods184

We aim to detect whether a context is generated by185

an LLM system and trace the origin of the texts.186

Therefore, we design a simple method Sniffer 3187

that is applicable in both white-box and black-box188

settings and only requires limited supervised data.189

The core idea is to utilize the contrastive features190

between different accessible language models such191

as GPT-2, GPT-Neo, GPT-J, and LLaMA. We first192

obtain the perplexity of a target sample S based193

on different models denoted as θ0, θ1, ..., θN , then194

we craft several heuristic features and construct195

a simple linear classifier to classify the origin196

of the given sample. Through such a feature197

engineering process, we can trace the origin of198

the target sample down to a known model θn, we199

can also generalize the contrastive features to show200

differences between unknown source models or201

human-written texts.202

Compared with previous detection methods, as203

seen in Table 1, our proposed method is the first204

to allow origin tracing. Model-wise detection205

methods such as DetectGPT are designed to detect206

whether a text is generated by a certain model,207

which can not be well generalized to origin tracing.208

3.1 Steps of Sniffer209

The process of Sniffer includes: (1) Obtain and210

align token-level perplexity between different211

models; (2) Extract contrastive features; (3) Train212

features for origin tracing.213

Obtain and Align Single Model Perplexity214

Given target text S and a known model θn, we215

obtain the encoded tokens x = [x0, x1, ..., xi, ...],216

the perplexity of ith token xi in text S given model217

3This name is inspired by the fact the sniffer dogs are able
to trace the scents that cannot be easily noticed by humans.

θn is the log-likelyhood llθn(xi) = logpθn(xi|x<i). 218

Given a list of known models θ0, θ1, ..., θN , we 219

obtain a list of perplexities of the same text 220

S. Since the tokenization process of each LLM 221

might be different, we use a general word-level 222

tokenization of S: w = [w0, w1, ...] and align 223

calculated perplexities of tokens in x to the general 224

words. If the word w is aligned to multiple tokens 225

in x, we use the averaged perplexity; if a token 226

in x is aligned to multiple words, we assign these 227

words with the same value. 4. Further, the aligned 228

perplexity is conditioned on the specific model- 229

training process, therefore, the perplexity should be 230

normalized for comparison between models. We 231

apply normalization strategies including dataset- 232

wise-normalization and L1-normalization for these 233

aligned features. Dataset-wise normalization is 234

to normalize the perplexity with an averaged 235

perplexity on all data. Therefore, as seen in Figure 236

2, we obtain lists of word-level perplexities llθn(w) 237

that are aligned across models. 238

Extract Contrastive Features 239

After obtaining aligned perplexities llθn(w), 240

which is a list of token-wise perplexities, we aim 241

to search features within the list of token-wise 242

perplexities. Instead of introducing assumptions 243

of the difference between human-written texts and 244

machine-generated texts (Mitchell et al., 2023), the 245

core idea of Sniffer is to find different features 246

between models. Therefore, we pose a simple 247

hypothesis: 248

Hypothesis 1 A human written text tends to 249

have a similar perplexity list across models, and 250

a generated text tends to show discrepancy across 251

models. 252

To further generalize the extracted features 253

for tracing unknown models, we pose another 254

hypothesis: 255

Hypothesis 2 The discrepancy of perplexity 256

4The details of the aligning process can be seen in the
Appendix.
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Figure 2: Sniffer process Illustration

curves across models can reveal features of both257

known and unknown models.258

With these hypotheses, we can utilize the259

contrastive features between known models260

θ0, θ1, ... to trace the origin of various models261

denoted as ϕ0, ϕ1, ... that includes known and262

unknown models. Specifically, given a pair-wise263

known model comparison between modelθi264

and θj , we have llθi(w) and llθj (w) with265

aligned perplexities of L words in total. We266

first design a percent-of-low-perplexity score267

that calculates the percentage of the lower word268

perplexities of the perplexity of θi compared with269

θj : pctij =
(∑N

k 1
(
llθi(wk) < llθj (wk)

))
/L.270

Here, 1(·) is the indicator function that assigns 1271

when the term is satisfied.272

Given N known models, we have C2
N pairs and273

we can obtain C2
N pctij scores. We collect all274

these scores as heuristic features that can be used275

to trace the text origins. Plus, we also include276

the sentence-level perplexities and the Pearson and277

Spearman correlation coefficient between llθi(w)278

and llθj (w) to construct a feature vector as the279

final representation for origin tracing. For instance,280

given 4 known LLMs (N = 4), we have 4 sentence-281

level perplexity features, C2
4 = 6 pct-scores, and282

6 ∗ 2 = 12 correlation coefficient score, therefore283

the final representation vector is a 22-dim vector.284

Train Features for Origin Tracing285

After extracting the contrastive features from286

different known models, we can train a simple287

linear classifier F (·) to project the extracted288

features to different model origins. To train the289

classifier F (·), we collect a small amount of290

human-written texts that cover various aspects and291

use different known models to generate texts as292

similar or parallel data compared to human-written293

texts to train the linear classifier.294

The trained classifier has several unique features: 295

(1) Low-resource required: Unlike semantic- 296

wise classification tasks that require a large amount 297

of data and a strong natural language encoder, 298

after feature extraction, the final representation is a 299

low-dimension vector, which requires only a small 300

amount of data since the feature contains abundant 301

model-wise heuristic knowledge for origin tracing; 302

(2) Generalization ability to unknown models 303

and stronger LLMs: In the classifier studying 304

process, we can collect unknown-model-generated 305

texts to obtain their features based on known 306

models and these features can reveal different 307

traces compared with known models and human- 308

written texts. Different from supervised-learning 309

methods that rely on semantic-level features 310

to detect text origins, model-wise features are 311

NOT influenced as the quality of generated texts 312

improves. That is, in the supervised learning 313

methods, stronger LLMs are harder to detect since 314

the generated texts are human-like, but model-wise 315

features cannot be easily optimized. 316

(3) Extend Ability: In our proposed method, 317

the linear classifier can be easily modified to trace 318

various model origins. Given a new open-source 319

model, we can easily use the feature extraction 320

strategy above to re-train the classification model; 321

given a new unknown model, we can easily collect 322

a few generated texts and extract the features based 323

on known models, and train a new classifier with 324

the unknown model origin features to trace the new 325

unknown origin. With such extended ability, our 326

proposed method can be used in both black-box 327

and white-box settings. 328
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4 Experiments329

4.1 Dataset Construction330

In the origin tracing of LLMs, one major challenge331

is that LLMs are almost omniscient to world332

knowledge since they are trained with various and333

huge amounts of data. We collect a wide range of334

texts from different origins for the proposed origin335

tracing tool Sniffer to serve as a general detector.336

We collect texts from domains including337

News articles, social media posts, web texts,338

scientific articles or academic papers, and339

technical documentation. We use public datasets340

including XSum dataset (Narayan et al., 2018)341

that contains news articles; IMDB dataset that342

contains social media reviews of movies; web343

texts (Radford et al., 2019) that contains texts344

from common-crawled online pages; PubMed345

and Arxiv dataset (Cohan et al., 2018) that346

contains academic topics; Wikipedia corpus used347

in SQuAD dataset (Rajpurkar et al., 2016) that348

contains general world knowledge. For each349

dataset, we randomly collect 1,000 documents350

and shuffle them into a human-written text dataset351

containing 6k documents. Then we generate352

AI-generated contexts from the texts we collected353

as parallel data to study origin tracing.354

When generating texts from language models355

such as GPT-2, we use the first 10 words as the356

prompt to generate a document. When generating357

texts from instruction-tuned models such as358

GPT-3.5(text-davinci-003) and ChatGPT (turbo),359

we give several instructions including re-write360

instruction and story generation instruction to361

obtain a similar AI-generated text. (We show362

instruction details in the Appendix.) With these363

simple instructions, we collect AI-generated364

texts from instruction-tuned LLMs. For known365

origin models, we collect AI-generated texts from366

GPT2 (powered by OpenAI), GPT-J and GPT-Neo367

(powered by EleutherAI ), LLaMA (powered by368

Meta AI). For unknown origin models, we collect369

AI-generated texts from GPT3.5-text-davinci-003,370

which is an instruction-tuned model with 175B371

parameters. Therefore, we collect 6k human372

written texts, and every 6k texts from GPT2,373

GPT-Neo, GPT-J, and 12k texts from GPT3374

models, which is 36k texts in total. We divide the375

36k texts into a train/test split with a 90%/10%376

partition.377

We name the collected dataset SnifferBench,378

which can be further used in origin tracing and379

AI-generated contexts detection tasks. Further, 380

the dataset collection process can be extended to 381

different LLMs in the future with more different 382

scenarios and prompts/instructions which further 383

challenges the origin tracing ability. 384

4.2 Implementations of Sniffer 385

In Sniffer, we select several open-source (L)LMs 386

as known models: we use GPT2-xl(1.5B), GPT- 387

Neo(2.7B), GPT-J(6B) and LLaMA(7B) as known 388

models. In the SnifferBench, we collect texts 389

from origins including GPT2(OpenAI), GPT-Neo 390

and GPT-J(EleutherAI), LLaMA (MetaAI), 391

ChatGPT(GPT3.5-turbo from OpenAI), and 392

human-written texts, therefore, the unknown origin 393

is the ChatGPT(GPT3.5-turbo) model since they 394

are not open-source models. The goal of origin 395

tracing in Sniffer is to trace both known and 396

unknown origins. We construct an inference server 397

for each known model based on NVIDIA4090 398

GPUs and set the max sequence length given the 399

maximum GPU allowance. We align all texts 400

with a white-space tokenizer to obtain uniform 401

tokenizations. 402

We utilize the aforementioned four known 403

models and employ a linear classifier to construct 404

a set of binary and multi-class Sniffers, used 405

respectively for comparison with existing binary 406

models like DetectGPT, and for origin tracing. In 407

addition, we introduce a new variant of Sniffer: 408

Sniffer(+GPT3). As we are able to obtain logits 409

of the generated texts in the GPT-3 API provided 410

by OpenAI, we are able to treat GPT-3 model as a 411

white-box model. Therefore, we collect a subset 412

in the SnifferBench to test the origin tracing with 413

GPT-3 models as white boxes. Therefore, in our 414

implementation of Sniffer, we have 5 models in 415

total which result in a 35-dimension vector in 416

obtaining the sniffer feature. Here, we align the 417

tokens with the tokenizer provided by OpenAI. 418

4.3 Metrics of Origin Tracing 419

In the SnifferBench, we collect texts from different 420

origins, therefore, we calculate the precision and 421

recall of each text origin tracing prediction. We can 422

only calculate the known model and the human- 423

written texts’ precision and recall in baseline 424

methods since these methods cannot be used in 425

the origin tracing task. 426
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Figure 3: The discrepancy between different text origins in different baseline methods. In each figure, different bars
show different text origins and each figure is to use a certain model of a certain detect method to test given texts.

Different Text Origins
GPT-2 GPT-Neo

Method AI Human Overall AI Human Overall

log p(x) 80.9/89.3 87.9/78.7 84.0 71.7/78.9 76.3/68.5 73.6
DetectGPT 88.9/88.9 89.9/90.2 89.5 74.4/79.3 80.0/75.5 77.2
Sniffer 99.1/99.3 99.3/99.2 99.2 99.7/99.0 99.5/99.8 99.4

Table 2: Precision/Recall Results of binary detection, we use macro-F1 as the overall metric. Since logp(x) and
DetectGPT methods are unable to trace different text origins, only the corresponding model-generated text and
human-written text detection results are listed.

4.4 Results of Binary Detection427

As we compare Sniffer with previous detection428

methods in the form of the methods, we construct429

experiments to explore how previous methods fail430

to run origin tracing.431

We first implement logp(x) method which is432

also used in the original GPTZero 5; then we433

implement DetectGPT method which introduces434

a discrepancy score to discriminate AI-generated435

texts by adding multiple perturbations (we try436

40 perturbations for each sample). We collect437

the sentence-level perplexity and the DetectGPT438

discrepancy score of the collected dataset based on439

a certain known model θn and draw a histogram440

showing the score distributions of different origin441

texts.442

In Figure 3, we plot the histogram of the443

discrepancy between different texts’ origins in444

logp(x) and DetectGPT. In logp(x), we plot the445

perplexity score of different text origins using446

a specific model such as GPT-2 or GPT-Neo,447

and in the DetectGPT method, we use the z-448

score proposed in DetectGPT. As seen in Figure449

3, though there are multiple peaks showing that450

there are differences between different text origins,451

the overlap is too large to successfully separate452

different text origins. we can conclude that it is453

extremely difficult to discriminate text origins from454

5https://gptzero.me/

logp(x) features or z-score features. Therefore, it 455

is important to introduce strong features to trace 456

the texts’ origins. 457

Since logp(x) and DetectGPT methods are 458

unable to trace different text origins, we only 459

conduct the corresponding model-generated text 460

and human-written text detection. Specifically, we 461

select a threshold manually as the discrimination 462

boundary in logp(x) and DetectGPT. As listed in 463

Table 2, even in the binary classification detection 464

tasks they excel at, their performance still falls 465

short of Sniffer. This further confirms that whether 466

in origin tracing capability or binary classification 467

detection ability, Sniffer is an exceptional method. 468

4.5 Results of Sniffer Origin Tracing 469

In Table 3, we can observe that Sniffer can obtain 470

impressive results in tracing the text origins in 471

the known models including GPT-2, GPT-J/Neo; 472

further, when Sniffer does not use the GPT-3 473

models as white boxes, Sniffer can generalize 474

to trace GPT-3 model origins and can properly 475

discriminate them from human-written lines. Such 476

an ability cannot be easily obtained as the GPT- 477

3 models are stronger and similar to humans, 478

meanwhile remaining unknown to the public. 479

Plus, we can observe that recently released 480

LLaMA models are more difficult to trace, though 481

it is a white box in Sniffer, indicating that stronger 482

LLMs are harder to detect. When LLMs are being 483

6
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Method Different Text Origins

GPT-2 GPT-J/Neo LLama ChatGPT Human Overall
(OpenAI) (EleutherAI) (Meta) (OpenAI)

Random 16.6/16.1 16.6/16.1 16.6/16.1 16.6/16.1 16.6/16.1 16.3
Sniffer 98.7/96.9 96.6/98.0 85.0/84.3 77.7/82.3 68.1/60.3 84.8
Sniffer (10%) 97.3/96.3 96.7/96.1 80.9/77.2 73.9/77.3 58.9/67.7 82.2
Sniffer (5%) 97.3/97.5 96.6/95.1 76.1/74.0 71.4/76.7 58.8/53.4 79.7
Sniffer (1%) 97.9/94.4 91.0/95.2 65.8/60.2 67.4/76.3 60.0/46.4 75.4
Sniffer (L1-norm) 97.8/98.3 96.7/95.9 75.2/74.4 74.7/82.4 75.7/62.4 83.3
Sniffer (logp(x) only) 98.9/97.7 94.1/94.8 60.4/49.3 64.6/78.8 63.0/47.6 74.9
Sniffer (pct-score only) 98.3/96.6 94.0/94.8 59.5/53.2 60.0/79.9 58.3/26.8 72.1
Sniffer (logp(x) + pct-score) 98.6/97.2 96.5/96.2 69.6/65.0 71.0/82.5 66.3/51.1 79.4

Table 3: Precision/Recall Results of Origin Tracing, we use macro-F1 as the overall metric. % in Sniffer is to train
Sniffer with limited training data; logp(x) and pct-score -only are the variants that only use the corresponding
features for the linear projection.

Method Different Text Origins

GPT-2 GPT-J/Neo LLama GPT-3 Human Overall
(OpenAI) (EleutherAI) (Meta) (OpenAI)

Sniffer(1%) 93.8/90.0 89.6/88.0 59.1/47.4 57.6/59.6 35.3/42.9 66.3
Sniffer(+GPT3)(1%) 92.0/91.8 90.0/92.4 81.6/72.6 70.0/65.6 42.1/50.0 74.8

Table 4: Results of Sniffer(+GPT3): We use GPT-3.5(text-davinci-003) to replace ChatGPT(turbo) since
ChatGPT(turbo) does not provide logits.

studied by a wide range of researchers, it is also484

important to be alert that stronger models may be485

harder to detect, and harder to control which can486

cause potential harm to society.487

4.6 Different Sniffers488

Sniffer+GPT3489

In Table 4, we list the results of using490

Sniffer(+GPT3) to trace the origins of texts491

generated by GPT3 models while we treat GPT3492

models as white boxes. We use the OpenAI service493

that returns token logits therefore we use the494

text-davinci-003 model and test on a 1% dataset495

compared with the full dataset. Here, we replace496

texts generated from ChatGPT with davinci-003497

outputs therefore the testset is different from the498

one used in tracing ChatGPT texts.499

As seen, when the Sniffer feature can use500

GPT-3 logits, the results grow significantly501

higher compared with generalizing features from502

GPT2/J/Neo and LLaMA models to trace GPT-3.503

Therefore, we can conclude that although Sniffer504

is able to generalize its features to trace unknown505

origins, it is better to possess the LLMs, indicating506

that the actual LLM providers must be more507

cautious when releasing LLMs since they are508

more capable to avoid abuse or malicious usage of509

LLMs.510

Limited Data Experiments511

As we illustrated, in methods using model-wise 512

features, we can use limited data to construct a 513

powerful detector. Therefore, we use different 514

numbers of training data to train Sniffer. As seen, 515

when we use limited data to train the Sniffer model, 516

the performances are not significantly harmed, 517

indicating that the model-wise features are high- 518

quality features that reveal obvious traces of texts 519

for the origin tracing classification. 520

Feature Ablations 521

In the extracted features, we observe that using 522

L1-norm can help obtain a higher performance in 523

tracing human texts, but is rather weak in tracing 524

different model origins, especially when tracing 525

LLaMA. Therefore, we use datase-wise norm for 526

the rest experiments. 527

To further analyze how the extracted features 528

help trace the text origins, we run a simple ablation 529

test that uses different features proposed in Sniffer. 530

As seen in Table 3, the perplexity score logp(x) is 531

one key metric but can be significantly improved 532

by the percent-of-perplexity score (pct-score), 533

showing that we can trace text origins by analyzing 534

the discrepancies between models when testing 535

same texts as Sniffer did. 536

4.7 Difficulty of Tracing Different Types of 537

Generated Texts 538

Generation Genre Influence 539
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Figure 4: Tracing different types of generated texts: (a) plots the ChatGPT tracing results that use different
instructions; (b) plots the tracing results that separate GPT-J and GPT-Neo origins and calculate the f1-score of
corresponding origins; (c) plots the tracing results that test Alpaca and Dolly models that use ChatGPT instructions
to supervise fine-tuning the LLaMA/GPT-J models to build an instructed LLM.

As illustrated, we use several different540

instructions to instruct GPT3.5 (turbo) models541

and GPT3.5-text-davinci-003 models, we further542

discuss the tracing difficulty when the texts are543

generated by different instructions.544

As seen in Figure 4(a), we find that when the545

texts are generated by rephrasing instructions, the546

texts are rather easy to trace while texts generated547

from a summary are harder to trace. Such an548

observation indicates that the difficulty of tracing549

texts generated by strong LLMs is also different550

when the instructions are different. The rephrased551

texts are more similar to human-written texts,552

therefore, are more difficult to detect.553

Mixing Origin Tracing554

In our origin tracing experiment setup, we555

divide GPT-J/Neo generated texts into the same556

origin since these models are provided by the557

same facility. That is, LLM origins can have558

different levels of classifications. As LLMs can559

be trained with distill texts from strong LLMs such560

as ChatGPT, it is harder to trace the origin if the561

model is trained based on a base model such as562

GPT-J or LLaMA but is instructed by ChatGPT-563

generated outputs. It is hard to tell whether the base564

model or the instruct model has a larger impact on565

the mixed-origin model. Therefore, we construct566

experiments to first separate GPT-J/Neo origins567

using the proposed datasets. Further, we test mixed-568

origin models such as Alpaca (Taori et al., 2023)569

(ChatGPT instructions tuned based on LLaMA)570

and Dolly 6 (ChatGPT instructions tuned based on571

GPT-J) by instructing these models to generate 400572

samples and testing them with Sniffer.573

In Figure 4(b), we show the f1-score of origin574

6https://huggingface.co/databricks/
dolly-v2-12b

tracing that separates GPT-J and GPT-Neo models 575

using the full data of SnifferBench. As seen, Sniffer 576

is able to successfully divide GPT-J and GPT-Neo, 577

indicating that the text origin divide can be of 578

different levels. We can trace the text origins of a 579

specific model or a certain party. 580

In Figure 4(c), we list the averaged probability 581

of the Sniffer inference results of Alpaca and 582

Dolly. As seen, texts from both Alpaca and 583

Dolly tend to be categorized as ChatGPT-generated 584

texts, indicating that the align process has a more 585

significant impact on the generated texts compared 586

with the base model. Therefore, Sniffer can be 587

used as a detector for testing whether a model 588

is trained from ChatGPT-generated instructions, 589

helping protect the originality of LLMs. 590

5 Conclusion and Future Work 591

In this paper, we first introduce the concept of 592

origin tracing, an important direction in the era 593

of LLMs. Then we discuss two lines of AI- 594

generated context detection and origin tracing 595

methods and point out the necessity of studying 596

model-wise features for origin tracing. We further 597

design a simple Sniffer method as well as a 598

benchmark to test the origin tracing challenge. 599

Through extensive experiments, we find that the 600

current origin tracing field is full of challenges 601

including tracing texts from models with mixed 602

origins; combining semantic features and model- 603

wise features; and tracing texts from LLMs that 604

are given various instructions. Therefore, we can 605

hope for a continuous line of work that studies the 606

origin tracing of LLMs and hopes to improve the 607

trustworthy and safe usage of LLMs. 608
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Limitations609

Despite Sniffer having achieved substantial origin610

tracing results and unearthing many valuable611

insights, there are still some limitations:612

(1) This study exclusively employs a simple613

linear classifier for origin tracing, without the614

utilization of more intricate models. This approach615

is adopted as we pioneer the application of model-616

wise perplexity features for origin tracing and617

AI-generated text detection, and it has proven618

sufficiently effective even on a linear classifier.619

Future research will explore the use of more620

complex models to enhance performance further.621

(2) With more complicated model-generated622

texts, classifiers based on semantics can achieve623

better results. In the future, we plan to integrate624

Sniffer with semantic-wise models to experiment625

with more robust models.626

As mentioned, we align tokens with different627

tokenization methods with a uniform tokenization628

strategy to compare the perplexity at the same629

level. As shown in Figure 6 in the Appendix,630

when the texts are tokenized by different tokenizers,631

we project different tokens to the byte level, and632

from the byte-level projections, we align different633

tokenized texts to a list of tokens with the same634

tokenizations.635
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Table 5: Precision/Recall results of Chinese Dataset Performances of Origin Tracing.

Method Different Text Origins

Wenzhong Damo Skytext ChatGLM ChatGPT MOSS Human Overall
Fengshenbang Damo SkyWork THUDM OpenAI FudanNLP

Sniffer 85.5/89.0 89.4/89.8 95.2/95.5 81.5/85.7 75.9/82.0 69.7/50.4 60.1/56.4 79.0

Table 6: Details of instructions used in Generating texts from ChatGPT, GPT3.5(text-davinci-003), Alpaca and
Dolly models. In the story-generation, we use two instructs to obtain the generated document.

Instruction Type Models Instructions

Re-write ChatGPT You are an assistant that can rephrase the provided content.
rephrase the following content: [document]

Story-Gen ChatGPT

Instruct 1: You are an assistant that can summarize the provided content.
summarize the following content: [document]
Instruct 2: You are an assistant that can write a natural and fluent document
based on the provided content, do not use fixed or academic writing style
write a natural and fluent document like human
based on the following content: [summary]

Re-write GPT3.5 Rephrase the following content: [document]

Re-write
Alpaca
&
Dolly

Below is an instruction that describes a task, paired with an input that
provides further context. Write a response that appropriately completes
the request.

### Instruction:
Rewrite the following paragraph in a different style using your own words.

### Input:
[document]

A Appendix840

Chinese Corpus Experiments841

We also conducted a Chinese version of Sniffer842

as well as a collected testset for studying different843

types of LLMs.844

We sample 1k samples from each open-source845

dataset of various domains including a long-846

document corpus of stories (Guan et al., 2022);847

various web texts from Iflytek classification848

dataset (Xu et al., 2020); Chinese academical849

documents from CSL dataset (Li et al., 2022);850

Chinese Wikipedia corpus from CMRC dataset851

(Cui et al., 2019); review corpus from Xiecheng852

APP 7. We collect these datasets that cover various853

domains with relatively long documents (more854

than 200 Chinese characters per document). The855

dataset construction setup is similar to English856

dataset setups. We also use ChatGPT (GPT turbo)857

model to generate Chinese texts with the Chinese858

instructions as ChatGPT (GPT turbo) is a strong859

multi-lingual model.860

7https://huggingface.co/datasets/
seamew/ChnSentiCorp

As for open-source model selections, we adopt 861

several open-source Chinese LLMs including the 862

Wenzhong model (Zhang et al., 2022), a 2.7B GPT- 863

2 style Chinese LLM; Damo model 8, another 2.7B 864

GPT-2 style Chinese LLM; Skytext model 9, a 3B 865

chatbot, and ChatGLM (Zeng et al., 2023), a 6B 866

ChatGPT-style model trained with instructions. 867

For the generalization test of black-box models, 868

we use ChatGPT (GPT turbo) and MOSS, a 16B 869

Chinese LLM 10 with instructions that ask LLMs 870

to re-write the given document as black-box origin 871

tests. 872

We generate Chinese AI-generated contexts with 873

open-source models and black-box models to build 874

the whole Chinese benchmark for origin tracing 875

tests. 876

As seen in Table 5, the Chinese texts show 877

similar performances with English texts, indicating 878

that the origin tracing strategy can be used in 879

8https://modelscope.cn/models/damo/
nlp_gpt3_text-generation_2.7B/summary

9https://huggingface.co/SkyWork/
SkyTextTiny

10https://github.com/OpenLMLab/MOSS
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Figure 5: Comparison with Supervised Learning Methods that utilize semantic-wise features.

different languages.880

Instruction Details881

In table 6, we list the specific instructions used882

in LLMs. We consider simple instructions since883

we focus on studying the origin tracing of LLMs884

without further analyzing the working mechanisms885

and better usage of instructions, which we leave to886

future works.887

Compare with Supervised Learning Methods888

As discussed, the model-wise features trace the889

text origins by analyzing the model discrepancies,890

and the semantic-wise features are used as a891

fine-tuning task. We compare Sniffer with a892

fine-tuned RoBERTa model and measure the f1-893

score. Further, we combine Sniffer features and894

RoBERTa [CLS] feature to train a linear classifier895

as Sniffer+RoBERTa to test the performances of896

combinations of model-wise and semantic-wise897

features. As seen in Figure 5, the supervised898

learning method fails to solve the problem when899

the data is limited. Still, when the data is abundant,900

the performances are stronger than model-wise901

features (Mitchell et al., 2023; Souradip et al.,902

2023).903

We need to notice that the supervised learning904

method fails to detect GPT-2/GPT-J/Neo generated905

texts, which is different from Sniffer results as GPT-906

2 texts are known to be less fluent compared with907

stronger models such as GPT-3 models. Therefore,908

we can assume that the RoBERTa models may909

capture some specific patterns since the GPT-3910

generated texts only use several static instructions911

and the semantic features are easier to detect. The912

failure of GPT-2 detection indicates that semantic913

features are limited in origin tracing, calling for914

better algorithms to utilize model-wise features.915

In Sniffer+RoBERTa, we obtain promising results916

in tracing all origins, indicating that a proper917

combination of two types of features can help better918

trace text origins.919

Case Studies920

We list several case studies that are randomly921

selected from the testset. We show the texts to be922

detected, percent-of-perplexity scores, correlation 923

scores calculated by Sniffer, and the tracing results. 924

As listed below, we show the list of perplexity 925

scores of the given text and the extracted features, 926

then we show the predicted tracing result. As 927

seen, the perplexity list shows a similar trend 928

between different models, but the perplexity value 929

tends to show differences across models. For 930

instance, in the GPT-2 generated text calculated 931

list of perplexity, the GPT-2 perplexity is relatively 932

lower than other perplexities calculated by other 933

models, revealing the feature that helps trace the 934

GPT-2 texts. On the other hand, for human-written 935

texts, and texts generated by strong LLMs such 936

as ChatGPT, the value does not show obvious 937

differences between different models, for instance, 938

some peaks in the perplexity list can be from 939

the LLaMA models and some can be from some 940

other models, which supports the hypothesis made 941

above. 942
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Text Origin

GPT-2

I thought that Mukhsin has been wonderfully written. Its not a work of fiction, but it certainly
feels like a novel. I agree that there is much to admire about, despite flaws, which will be
evident to many of its readers.
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List of perplexity of different models

GPT-2
GPT-J
GPT-Neo
LLaMA

Extracted Features:
log p(x) (GPT-2): 2.04
log p(x) (GPT-Neo):2.18
log p(x) (GPT-J): 2.18
log p(x) (LLaMA): 2.21

pct-scores / Pearson scores / Spearman scores:

GPT-2 and GPT-Neo 0.59/0.97/0.97
GPT-2 and GPT-J 0.57/0.96/0.95
GPT-2 and LLaMA 0.63/0.92/0.91
GPT-Neo and GPT-J 0.56/0.94/0.94
GPT-Neo and LLaMA 0.52/0.92/0.89
GPT-J and LLaMA 0.55/0.92/0.93

Tracing Results:
GPT-2: 99.8 %
GPT-J/Neo: 0.1 %
LLaMA: 0.0%
ChatGPT: 0.1 %
Human: 0.0 %

GPT-Neo

Ten passengers on board the bus were reported to have either been injured, or have since been
released from hospital. "This is an extremely rare occurrence," said an unnamed source at the
scene. A second group of tourists were on the bus at the time of the incident but were not
injured, according to reports.
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List of perplexity of different models
GPT-2
GPT-J
GPT-Neo
LLaMA

Extracted Features:
log p(x) (GPT-2): 3.43
log p(x) (GPT-Neo):3.21
log p(x) (GPT-J): 3.23
log p(x) (LLaMA): 3.08

pct-scores / Pearson scores / Spearman scores:

GPT-2 and GPT-Neo 0.54/0.96/0.95
GPT-2 and GPT-J 0.40/0.95/0.95
GPT-2 and LLaMA 0.56/0.83/0.87
GPT-Neo and GPT-J 0.42/0.97/0.98
GPT-Neo and LLaMA 0.49/0.86/0.91
GPT-J and LLaMA 0.56/0.89/0.93

Tracing Results:
GPT-2: 0.3%
GPT-J/Neo: 72.6 %
LLaMA: 3.0%
ChatGPT: 18.3 %
Human: 5.8 %

Table 7: Random selected case studies (a).
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Text Origin

GPT-J

He said ministers who disagreed with austerity measures could not go to other countries for
talks as Germany would only make life difficult for them. And he said that he was a “proud
German”.
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List of perplexity of different models
GPT-2
GPT-J
GPT-Neo
LLaMA

Extracted Features:
log p(x) (GPT-2): 3.86
log p(x) (GPT-Neo):2.99
log p(x) (GPT-J): 2.96
log p(x) (LLaMA): 3.07

pct-scores / Pearson scores / Spearman scores:

GPT-2 and GPT-Neo 0.65/0.70/0.90
GPT-2 and GPT-J 0.47/0.70/0.89
GPT-2 and LLaMA 0.44/0.65/0.85
GPT-Neo and GPT-J 0.44/0.96/0.98
GPT-Neo and LLaMA 0.50/0.86/0.90
GPT-J and LLaMA 0.56/0.85/0.89

Tracing Results:
GPT-2: 0.0%
GPT-J/Neo: 100.0 %
LLaMA: 0.0%
ChatGPT: 0.0 %
Human: 0.0 %

LLaMA

This is a very memorable spaghetti western. It has a great storyline about two brothers, one
a sheriff and the other a gunfighter. It is a very good one. I will recommend it to my friends.
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List of perplexity of different models

GPT-2
GPT-J
GPT-Neo
LLaMA

Extracted Features:
log p(x) (GPT-2): 2.48
log p(x) (GPT-Neo):2.46
log p(x) (GPT-J): 2.42
log p(x) (LLaMA): 1.91

pct-scores / Pearson scores / Spearman scores:

GPT-2 and GPT-Neo 0.57/0.99/0.97
GPT-2 and GPT-J 0.56/0.99/0.95
GPT-2 and LLaMA 0.34/0.83/0.85
GPT-Neo and GPT-J 0.47/0.99/0.96
GPT-Neo and LLaMA 0.21/0.85/0.87
GPT-J and LLaMA 0.23/0.86/0.91

Tracing Results:
GPT-2: 0.2 %
GPT-J/Neo: 0.3 %
LLaMA: 59.1 %
ChatGPT: 31.3 %
Human: 9.0 %

Table 8: Random selected case studies (b).
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Text Origin

Chat-GPT

The film in question focuses on the character played by the immensely talented Helena
Bonham Carter, who delivered an impressive performance despite being confined to a
wheelchair throughout the movie.

0 10 20 30 40 50
word index

0

2

4

6

8

List of perplexity of different models
GPT-2
GPT-J
GPT-Neo
LLaMA

Extracted Features:
log p(x) (GPT-2): 2.73
log p(x) (GPT-Neo):2.77
log p(x) (GPT-J): 2.72
log p(x) (LLaMA): 2.19

pct-scores / Pearson scores / Spearman scores:

GPT-2 and GPT-Neo 0.64/0.97/0.98
GPT-2 and GPT-J 0.55/0.98/0.98
GPT-2 and LLaMA 0.47/0.94/0.97
GPT-Neo and GPT-J 0.38/0.99/0.98
GPT-Neo and LLaMA 0.41/0.91/0.95
GPT-J and LLaMA 0.41/0.93/0.97

Tracing Results:
GPT-2: 0.8%
GPT-J/Neo: 0.3 %
LLaMA: 0.6 %
ChatGPT: 97.3 %
Human: 1.0 %

Human

College sports are also popular in southern California. The UCLA Bruins and the USC
Trojans both field teams in NCAA Division I in the Pac-12 Conference, and there is a
longtime rivalry between the schools.
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List of perplexity of different models

GPT-2
GPT-J
GPT-Neo
LLaMA

Extracted Features:
log p(x) (GPT-2): 2.03
log p(x) (GPT-Neo):2.21
log p(x) (GPT-J): 1.95
log p(x) (LLaMA): 1.74

pct-scores / Pearson scores / Spearman scores:

GPT-2 and GPT-Neo 0.59/0.95/0.95
GPT-2 and GPT-J 0.35/0.93/0.92
GPT-2 and LLaMA 0.21/0.85/0.92
GPT-Neo and GPT-J 0.41/0.93/0.95
GPT-Neo and LLaMA 0.22/0.84/0.94
GPT-J and LLaMA 0.26/0.91/0.94

Tracing Results:
GPT-2: 0.0 %
GPT-J/Neo: 0.0 %
LLaMA: 14.1%
ChatGPT: 40.6 %
Human: 45.3 %

Table 9: Random selected case studies (c).
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Tim was a scientist

Tim was   a scientist 

T i m _ w a s _ a _ s c i e n t i s t

Input Text 

Tim    _was     _a       _scientist Tim    _was     _a       _scient     ist Tim  _    was  _  a   _    sci  ent   ist

T i m _ w a s _ a _ s c i e n t i s t T i m _ w a s _ a _ s c i e n t i s t

Different tokenizations

Byte-level Align

Aligned Features

Get Features

Figure 6: Align Strategies
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