

000 001 002 003 004 005 LIPNEXT: SCALING UP LIPSCHITZ-BASED CERTIFIED 006 ROBUSTNESS TO BILLION-PARAMETER MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Lipschitz-based certification offers efficient, deterministic robustness guarantees
026 but has struggled to scale in model size, training efficiency, and ImageNet per-
027 formance. We introduce *LipNeXt*, the first *constraint-free* and *convolution-free*
028 1-Lipschitz architecture for certified robustness. LipNeXt is built using two tech-
029 niques: (1) a manifold optimization procedure that updates parameters directly
030 on the orthogonal manifold and (2) a *Spatial Shift Module* to model spatial pat-
031 tern without convolutions. The full network uses orthogonal projections, spatial
032 shifts, a simple 1-Lipschitz β -Abs nonlinearity, and L_2 spatial pooling to maintain
033 tight Lipschitz control while enabling expressive feature mixing. Across CIFAR-
034 10/100 and Tiny-ImageNet, LipNeXt achieves state-of-the-art clean and certified
035 robust accuracy (CRA), and on ImageNet it scales to 1–2B large models, improv-
036 ing CRA over prior Lipschitz models (e.g., up to +8% at $\varepsilon=1$) while retaining
037 efficient, stable low-precision training. These results demonstrate that Lipschitz-
038 based certification can benefit from modern scaling trends without sacrificing de-
039 terminism or efficiency.
040
041

042 1 INTRODUCTION

043 Adversarial robustness represents a fundamental challenge in machine learning (Szegedy et al.,
044 2014). Numerous defense mechanisms have been developed to enhance model robustness against
045 adversarial attacks (Gong et al., 2021; Kundu et al., 2021; Poursaeed et al., 2021; Liu et al., 2021;
046 Pang et al., 2021). However, these approaches are predominantly empirical defenses that cannot pro-
047 vide formal guarantees of robust predictions. Consequently, models deemed robust under current
048 evaluation protocols may remain vulnerable to more sophisticated attack strategies as they emerge.

049 This limitation is particularly concerning for safety-critical applications such as autonomous driv-
050 ing (Huang et al., 2025), medical image processing (Laousy et al., 2023), and malware classifica-
051 tion (Saha et al., 2024), where failures can have severe consequences. To address this challenge,
052 certified robustness has emerged as a promising research direction. Certifying the robustness of a
053 test case requires a mathematical guarantee that the model’s outputs remain unchanged within a pre-
054 defined ℓ_p -norm ball of radius ε around the input. The performance of these certification methods
055 is typically measured by the *certified robust accuracy* (CRA), which quantifies the proportion of
056 correctly predicted inputs that are also provably robust within a specified radius.
057

058 Research on robustness certification largely follows two methodological strands. The first, *ran-*
059 *domized smoothing* (RS) (Cohen et al., 2019b; Yang et al., 2021; Jeong et al., 2021; Carlini et al.,
060 2022), provides *probabilistic* guarantees by averaging a classifier’s predictions under additive noise.
061 The second exploits the Lipschitz properties of neural networks to yield *deterministic* (worst-case)
062 certificates (Huang et al., 2021; Araujo et al., 2023; Hu et al., 2024). In this work, we focus on
063 advancing the latter direction; a detailed comparison between the two appears in Appendix A.
064

065 Despite their theoretical appeal, Lipschitz-based certification methods have struggled to scale in
066 practice. A central critique is the weak performance on large-scale benchmarks: models often underfit
067 even small-sized datasets such as CIFAR-100 and degrade markedly on ImageNet (Hu et al.,
068 2023). Most systems still rely on *small*, VGG-style (Simonyan & Zisserman, 2014) architectures
069 with ≤ 32 M parameters. Although recent work has explored deeper/larger architectures for certified
070 robustness (Hu et al., 2023; Araujo et al., 2023), the gains plateau quickly as model size increases.
071

054 Examining existing work, we find that orthogonal matrices are fundamental to building 1-Lipschitz
 055 networks because they enable tight Lipschitz bounds. However, they are also a major bottleneck
 056 that prevents Lipschitz-based certification from scaling. Existing methods either explicitly
 057 re-parameterize orthogonal matrices or implicitly re-parameterize Lipschitz-bounded operations to
 058 learn near-orthogonal matrices; both introduce substantial computational overhead (see Section 2.1).
 059 To address this issue, we propose directly optimizing orthogonal matrices on the orthogonal mani-
 060 fold. Although orthogonal manifold optimization is a mature technique, to our knowledge it has not
 061 been exploited for certification. We further observe that in the large-model regime, where learning
 062 rates are small, the matrix exponential can be accurately and efficiently approximated. Combining
 063 these ideas, we reduce the additional per-update overhead to at most five matrix multiplications.

064 A natural path to scalability is transformers (Vaswani et al., 2017), which scale to billion-parameter
 065 models and exhibit emergent abilities across a wide range of tasks (Wei et al., 2022). How-
 066 ever, attention lacks straightforward Lipschitz control. Fortunately, ConvNeXt (Liu et al., 2022)
 067 and MetaFormer (Yu et al., 2022b) suggest that Lipschitz-bounded architectures can benefit from
 068 transformer-era design choices. Motivated by the simple token-mixing mechanisms in these modern
 069 architectures (Yu et al., 2022b), we design a convolution-free shifting module paired with positional
 070 encoding that uses simple shift operations to model spatial relations as the building block of our
 071 model. Compared to prior work using heavy FFT-based convolution designs (Trockman & Kolter,
 072 2021; Lai et al., 2025) or power-iteration-based Lipschitz regularization (Leino et al., 2021; Hu et al.,
 073 2023), the shifting module adds minimal computational cost while preserving the capacity to model
 074 spatial patterns.

075 Combining the aforementioned techniques, we propose **LipNeXt**, the first convolution-free and
 076 constraint-free architecture for certified robustness. Benefiting from this design, we scale to billion-
 077 parameter models and observe non-saturating gains with increasing model size. Our experiments
 078 show that LipNeXt outperforms state-of-the-art methods in both clean accuracy and certified robust-
 079 ness across CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet, highlighting the effectiveness
 080 of our approach for scalable, provably robust deep learning.

081 **Contributions.** (i) A constraint-free manifold optimization scheme for learning orthogonal pa-
 082 rameters at scale with efficient exponential approximations and stabilization; (ii) a theoretically mo-
 083 tivated, convolution-free Spatial Shift Module that preserves Lipschitz control while enabling spatial
 084 mixing; and (iii) state-of-the-art CRA and clean accuracy on standard benchmarks, with successful
 085 scaling to billion-parameter models.

087 2 PRELIMINARY AND RELATED WORK

088 2.1 PRELIMINARIES

089 **Lipschitz-based Method for Certified Robustness** Consider a neural network $f : \mathbb{R}^d \rightarrow \mathbb{R}$
 090 and its corresponding binary classifier $F(x) = \text{sign}(f(x))$. We say that classifier F is **ε -locally**
 091 **robust** at point x if for all perturbations x' satisfying $\|x - x'\|_p \leq \varepsilon$, we have $F(x) = F(x')$.
 092 **Certified robustness** represents a stronger condition where the robustness property can not only be
 093 empirically verified but also mathematically guaranteed.

094 Given an upper bound K on the Lipschitz constant of f , we can certify that F is locally robust at
 095 x with a guaranteed robustness radius of $|f(x)|/K$. This certification follows from the Lipschitz
 096 property, which bounds the maximum change in $f(x)$ within the ε -ball around x .

097 For multi-class classification with N classes, we decompose the problem into $N - 1$ binary classi-
 098 fication tasks using a one-vs-rest approach. The certified robustness radius of the N -class classifier
 099 is then defined as the minimum certified radius across all constituent binary classifiers, thereby en-
 100 suring robustness for the prediction.

101 To compute Lipschitz bounds for deep networks, we leverage the compositional property that the
 102 Lipschitz constant of a composite function satisfies $\text{Lip}(f \circ g) \leq \text{Lip}(f)\text{Lip}(g)$, where $(f \circ g)(x) =$
 103 $f(g(x))$. Consequently, for a feed-forward neural network, an upper bound on the overall Lips-
 104 chitz constant can be efficiently computed as the product of the Lipschitz constants of all constituent
 105 layers. However, this bound can be very loose, leading to an extremely small certified radius. There-

108 fore, designing a network architecture for which a tight Lipschitz bound can be computed is crucial
 109 to achieving satisfactory certified performance.
 110

111 **Orthogonal Manifold Optimization** The orthogonal manifold is defined as the set of all orthogonal
 112 matrices: $\mathcal{M}_d = \{\mathbf{X} \in \mathbb{R}^{d \times d} \mid \mathbf{X}^\top \mathbf{X} = \mathbf{I}_d\}$, where \mathbf{I}_n denotes the $d \times d$ identity matrix.
 113 Optimization problems on the orthogonal manifold can be formulated as:

$$\min_{\mathbf{X} \in \mathcal{M}_d} f(\mathbf{X}). \quad (1)$$

116 A standard Euclidean gradient descent update of the form $\mathbf{X}_{k+1} \leftarrow \mathbf{X}_k - \eta \nabla f(\mathbf{X}_k)$ with step size
 117 $\eta > 0$ will generally cause \mathbf{X}_{k+1} to leave the manifold, since this update does not preserve orthogonality
 118 constraints. Manifold optimization first projects the Euclidean gradient onto the tangent space
 119 of the manifold, thereby removing the component of the gradient that is orthogonal to the manifold.
 120 The Riemannian gradient (projected gradient) is given by:

$$\text{grad } f(\mathbf{X}) = \nabla f(\mathbf{X}) - \mathbf{X} \text{sym}(\mathbf{X}^\top \nabla f(\mathbf{X})), \quad (2)$$

121 where $\text{sym}(\mathbf{A}) = (\mathbf{A} + \mathbf{A}^\top)/2$ denotes the symmetric part of matrix \mathbf{A} . Once the Riemannian
 122 gradient is computed, **Exponential Map** is employed to update \mathbf{X}_{k+1} while preserving orthogonality:
 123

$$\mathbf{X}_{k+1} \leftarrow \mathbf{X}_k \exp \left\{ -\frac{\eta}{2} \text{skew}(\mathbf{X}_k^\top \text{grad } f(\mathbf{X}_k)) \right\}, \quad (3)$$

124 where $\text{skew}(\mathbf{A}) = (\mathbf{A} - \mathbf{A}^\top)/2$, and $\exp(\mathbf{A})$ denotes the matrix exponential. Orthogonality is
 125 preserved since $\exp(\text{skew}(\mathbf{A}))$ is orthogonal for any matrix \mathbf{A} . Bécigneul & Ganea (2018) ex-
 126 tended this optimization to adaptive optimizers like Adam, and algorithm 2 provides an example for
 127 Manifold Adam Optimizer.
 128

130 2.2 RELATED WORK

131 **Re-parameterization for Lipschitz-based Certified Robustness** The Lipschitz upper bound dis-
 132 cussed in Section 2.1 can be tight when all weights in the feed-forward network are orthogonal or
 133 near-orthogonal. Many methods have been proposed to parameterize weights as orthogonal ma-
 134 trices to enhance Lipschitz-based certification performance. Singla & Feizi (2021) employed the
 135 matrix exponential of a skew-symmetric matrix to construct orthogonal (1-Lipschitz) linear layers
 136 and extended this approach to convolutions via Taylor expansion. Trockman & Kolter (2021) intro-
 137 duced the Cayley transform, $\text{Cayley}(\mathbf{A}) = (\mathbf{I} - \mathbf{A})^{-1}(\mathbf{I} + \mathbf{A})$, which yields an orthogonal matrix
 138 when \mathbf{A} is skew-symmetric. To apply this method to convolutions, the weights are transformed
 139 into the frequency domain via FFT before applying the Cayley transform. Xu et al. (2022) pro-
 140 posed LOT-Orth, defined as $(\mathbf{A}\mathbf{A}^\top)^{-1/2}\mathbf{A}$. To mitigate the computational overhead introduced
 141 by the matrix square root in LOT-Orth, Hu et al. (2024) proposed Cholesky decomposition with
 142 Cholesky-Orth(\mathbf{A}) = Cholesky($\mathbf{A}\mathbf{A}^\top$) $^{-1}\mathbf{A}$.
 143

144 Alternative approaches focus on near-orthogonal architectures. Prach & Lampert (2022) intro-
 145 duced the AOL layer: $f(x, \mathbf{A}) = \text{Adiag}(\sum_j |\mathbf{A}^\top \mathbf{A}|_{ij})^{-1}x$. Meunier et al. (2022) proposed the
 146 1-Lipschitz CPL layer defined as $f(x, \mathbf{A}) = x - 2\mathbf{A}^\top \sigma(\mathbf{A}x)/|\mathbf{A}|_2^2$. Araujo et al. (2023) introduced
 147 the SLL layer given by $f(x, \mathbf{A}, q) = x - 2\mathbf{A}\text{diag}(\sum_j |\mathbf{A}^\top \mathbf{A}|_{ij} \cdot q_j/q_i)^{-1}\sigma(\mathbf{A}^\top x)$. While the AOL,
 148 CPL, and SLL layers may not be orthogonal at initialization, experimental evidence shows that these
 149 layers converge to nearly orthogonality at the end of Lipschitz-based training.

150 **Efficient Manifold Optimization for Orthogonality** While the matrix exponential operation en-
 151 sures orthogonality in manifold optimization (Section 2.1), its computation is computationally pro-
 152hibitive. Several methods have proposed efficient pseudo-geodesic retractions as alternatives to ex-
 153 ponential mapping. Projection-based approaches by Absil & Malick (2012); Gawlik & Leok (2018)
 154 map gradients back to the orthogonal manifold but rely on computationally expensive SVD op-
 155 erations. Other methods utilize the closed-form Cayley transform (Jiang & Dai, 2015; Zhu, 2017),
 156 yet require costly matrix inversions. Wen & Yin (2013) reduced the computational cost of the Cay-
 157 ley transform by imposing the restrictive assumption that for matrix dimensions $n \times p$ if $2p \ll n$.
 158 However, this algorithm becomes inefficient when $2p \geq n$, which represents the majority of cases
 159 in deep neural networks. Shustein & Avron (2024) employ randomized sketching methods to handle
 160 large update matrices efficiently. Ablin & Peyré (2022) proposed a landing algorithm that avoids
 161 costly matrix exponential retractions by using an efficient potential energy-based update scheme
 that progressively pulls iterations onto the manifold.

162 **3 METHOD**
 163

164 Our proposed method, LipNeXt, is built upon two core technical innovations designed for scalable
 165 certified robustness: a constraint-free optimization technique for learning orthogonal matrices and a
 166 novel convolution-free spatial mixing operator. In this section, we first detail our manifold optimiza-
 167 tion approach, which enables efficient and stable training of orthogonal parameters directly on the
 168 Stiefel manifold. We then introduce the **Spatial Shift Module**, providing theoretical justification
 169 for its design as the unique norm-preserving operator within the family of depth-wise convolutions.
 170 Finally, we describe the overall LipNeXt architecture, which integrates these components into a
 171 scalable and effective model.

172 **3.1 CONSTRAINT-FREE LEARNING OF ORTHOGONAL MATRICES ON THE MANIFOLD**
 173

174 As discussed in Section 2.2, prior works use re-parameterization to learn orthogonal matrices ex-
 175 plicitly or implicitly. We name these as *constrained* approaches, as the optimization variables do
 176 not reside directly on the orthogonal manifold \mathcal{M}_d . In contrast, we adopt a *constraint-free* man-
 177 ifold optimization perspective, where parameters are updated directly on the manifold, inherently
 178 preserving orthogonality. Section 2.1 introduces the details of orthogonal manifold optimization.

179 A significant bottleneck in manifold optimization is the computational cost of the matrix expo-
 180 nential, $\exp(\cdot)$ in Equation 3. Section 2.2 discussed solutions from prior work to address this issue.
 181

182 However, we observe that there exists a very simple solution in the context of training neural net-
 183 works. As the model size increases, the optimal learning rate for optimizers like Adam needs to
 184 decrease, (e.g., 10^{-3}). Thus the exponential component in Equation 3 often has a smaller Frobenius
 185 norm (because multiplied by the learning rate η). We propose approximating the exponential with a
 186 norm-adaptive Taylor series truncation. For a given skew-symmetric update matrix A , we define:

$$\text{FastExp}(A) = \begin{cases} I + A + \frac{1}{2}A^2, & \text{if } \|A\|_F < 0.05, \\ I + A + \frac{1}{2}A^2 + \frac{1}{6}A^3, & \text{if } 0.05 \leq \|A\|_F < 0.25, \\ I + A + \frac{1}{2}A^2 + \frac{1}{6}A^3 + \frac{1}{24}A^4, & \text{if } 0.25 \leq \|A\|_F < 1, \\ \exp(A), & \text{if } \|A\|_F \geq 1. \end{cases} \quad (4)$$

191 One issue of $\text{FastExp}(\cdot)$ is the truncation introduces small errors that violate exact orthogonality,
 192 which can accumulate and destabilize training over time. To address this issue, we introduce two
 193 stabilization techniques and mark them in Algorithm 1.

194 First, to control the accumulation of numerical errors from the truncated series, we perform a **pe-
 195 riodic polar retraction**. At the end of each epoch, we project the matrix X back to the mani-
 196 fold. This is achieved by computing the Singular Value Decomposition $X = U\Sigma V^\top$ and resetting
 197 $X \leftarrow UV^\top$, which finds the closest orthogonal matrix to X in the Frobenius norm. Although SVD
 198 is also expensive, we only need to perform it once per epoch. This step is detailed in lines 20–22
 199 (red text) of Algorithm 1.

200 Second, we adapt the Lookahead optimizer wrapper (Zhang et al., 2019) to the manifold setting.
 201 In a nutshell, Lookahead optimizer wrapper updates the optimized parameters with an interpolation
 202 between the correct weight and the weight K steps earlier every K steps:

$$\text{If } (t+1) \bmod K = 0, \quad X_t \leftarrow 0.5X_t + 0.5X_{t-K}$$

205 However direct interpolation of orthogonal matrices breaks orthogonality. Applying the polar re-
 206 traction after interpolation is also expensive if applied every K steps.
 207

208 We instead interpolate the *skew-symmetric updates* in the tangent space. Suppose the learning rate
 209 is small, and the exponential component of update (Δ_j) at every step is small:

$$X_t = X_{t-1} \exp(\Delta_t) = X_{t-K} \prod_{j=t-K+1}^t \exp(\Delta_j) \approx X_{t-K} \exp\left(\sum_{j=t-K+1}^t \Delta_j\right). \quad (5)$$

213 Thus we can approximate $0.5X_t + 0.5X_{t-K}$ as $X_{t-K} \exp\left(\frac{1}{2} \sum_{j=t-K+1}^t \Delta_j\right)$. To understand this,
 214 starting at x_{t-K} , we update the parameters K steps and collect the update trajectories $\{\Delta_j\}_{t-K+1}^t$,
 215

216 then we go back to X_{t-K} , and update X_{t-K} using the half of all K trajectories. Lines 12–28 (blue
217 text) of Algorithm 1 reflect this method.
218

Algorithm 1 Stabilized Manifold Adam Optimizer with FastExp

```

220 1: Input: learning rate  $\eta$  (on the order of  $10^{-3}$ ), momentum coefficients  $\beta_1 = 0.1$  and  $\beta_2 = 0.001$ .  

221 Number of steps to perform a Lookahead update  $K$ , and number of steps in one epoch  $N$ .  

222 2: Goal: Minimize  $f(X)$  on the orthogonal manifold beginning at orthonormal weight  $X \in \mathcal{M}_d$ .  

223 3: Set the fast weight  $X_0 \leftarrow X$  and slow weight  $X_{\text{slow}} \leftarrow X$   

224 4: Set the Lookahead updating buffer  $B_0 \leftarrow \mathbf{0}^{d \times d}$ .  

225 5: Set the first and second moment  $m_0 = \mathbf{0}^{d \times d}, v_0 = \mathbf{1}^{d \times d}/d$ .  

226 6: for step  $t$  in  $1 \dots, T$  do  

227 7:   Compute the Euclidean gradient  $\nabla f(X_{t-1})$ .  

228 8:   Compute the projected gradient  $\text{grad } f(X_{t-1})$  using  $\nabla f(X_{t-1})$  and  $X_{t-1}$  by Equation 2.  

229 9:   Update the first order moment:  $m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \text{grad } f((X_{t-1})$ .  

230 10:   Update the second order moment:  $v_t \leftarrow \beta_2 v_t + (1 - \beta_2) \text{grad } f(X_{t-1}) * \text{grad } f(X_{t-1})$ .  

231 11:   Compute the exponential component  $\Delta_t \leftarrow -\eta \cdot m_t/v_t$ .  

232 12:   Update the Lookahead updating buffer  $B_t \leftarrow B_t + \Delta_t$ .  

233 13:   if  $(t + 1) \bmod K \neq 0$  then  

234 14:     Update the fast weight:  $X_t \leftarrow X_{t-1}$  FastExp( $\Delta_t$ ).  

235 15:   else  

236 16:     Update the slow weight:  $X_{\text{slow}} \leftarrow X_{\text{slow}}$  FastExp( $B_t/2$ ).  

237 17:     Update the fast weight with the slow weight:  $X_t \leftarrow X_{\text{slow}}$ .  

238 18:     Unset the updating buffer  $B_t \leftarrow \mathbf{0}^{n \times n}$ .  

239 19:   end if  

240 20:   if  $(t + 1) \bmod N = 0$  then  

241 21:     Perform SVD on the fast weight:  $X_t = U \Sigma V^\top$ .  

242 22:     Force orthogonalization:  $X_t \leftarrow U V^\top, X_{\text{slow}} \leftarrow X_t$ .  

243 23:   end if  

244 24: end for  

25: Output:  $X_{\text{slow}}$ .

```

246 **Relation to skew re-parameterization** Skew re-parameterization constructs orthogonal matrices
247 via the matrix exponential of a skew-symmetric argument, i.e., $\exp(S)$ with $S = X - X^\top$. Building
248 on this idea, Singla & Feizi (2021) applies a truncated Taylor expansion of the matrix exponential to
249 implement orthogonal convolutions. In contrast, our manifold optimization exploits the regime of
250 *small* per-step updates, allowing the exponential map to be accurately approximated with lightweight
251 computations. As a result, we retain orthogonality with significantly lower cost. By comparison,
252 skew re-parameterization cannot leverage small-update structure in the same way, and SOC typi-
253 cally requires a larger truncation order to reliably preserve orthogonality, increasing computational
254 overhead and potential numerical error.

255 3.2 SPATIAL SHIFT MODULE: A CONVOLUTION-FREE DESIGN

256 Depthwise separable convolutions have demonstrated that effective spatial pattern learning requires
257 neither extensive parameterization nor computational overhead (Howard et al., 2017; Tan & Le,
258 2019; Liu et al., 2022). MetaFormer (Yu et al., 2022b) further showed that parameter-free operations
259 can replace depthwise convolutions while maintaining performance. Building on this trajectory
260 toward parameter efficiency, we introduce a convolution-free **Spatial Shift Module** tailored for
261 certified robustness.

262 **1D formulation.** For input sequence $X = [x_1, \dots, x_n] \in \mathbb{R}^{d \times n}$ of length n with feature dimen-
263 sion d , we partition each token’s features into three parts: $a_i \in \mathbb{R}^{\alpha d}$, $b_i \in \mathbb{R}^{\alpha d}$, and $c_i \in \mathbb{R}^{(1-2\alpha)d}$.
264 The spatial shift operation $\mathcal{S}(X)$ applies circular shifts to the first two partitions:

$$265 X = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \\ c_1 & c_2 & \cdots & c_n \end{bmatrix}, \quad \mathcal{S}(X) = \begin{bmatrix} a_n & a_1 & \cdots & a_{n-2} & a_{n-1} \\ b_2 & b_3 & \cdots & b_n & b_1 \\ c_1 & c_2 & \cdots & c_{n-1} & c_n \end{bmatrix} \quad (6)$$

270 This shifts the first partition right by one position and the second partition left by one position,
 271 mixing adjacent token information without parameters. For 2D data, we extend to five partitions
 272 enabling shifts along horizontal and vertical axes. Empirically, shift ratios $\alpha \in \{1/8, 1/16\}$ yield
 273 optimal results.

275 **Theoretical justification.** Our design is motivated by norm-preservation requirements in certi-
 276 fied robustness. The following theorem establishes fundamental constraints on Lipschitz-preserving
 277 convolutions:

279 **Theorem 1** *Let $X \in \mathbb{R}^{H \times W}$ be a single-channel tensor and f_K be spatial convolution with kernel
 280 $K \in \mathbb{R}^{k \times k}$, unit stride, and circular padding. The operator f_K is norm-preserving (tight 1-Lipschitz
 281 isometric):*

$$282 \|f_K(X) - f_K(Y)\|_F = \|X - Y\|_F, \quad \forall X, Y \in \mathbb{R}^{H \times W}$$

283 if and only if kernel K contains exactly one non-zero element with value ± 1 .

285 Theorem 1 reveals that norm-preserving depthwise convolutions reduce to spatial shifts. Our module
 286 directly implements this principle. Proof of Theorem 1 is in Appendix B.3.

288 **Circular padding and positional encoding.** The strict norm preservation guaranteed by Theo-
 289 rem 1 necessitates the use of circular padding. Nevertheless, in related applications such as FFT-
 290 based convolution, zero-padding is a common alternative (Xu et al., 2022; Lai et al., 2025). The
 291 rationale for this deviation is to avoid the artificial mixing of boundary features (e.g., a_n with b_2)
 292 that can occur with circular padding.

$$294 \mathcal{S}_{\text{zero-pad}}(X) = \begin{bmatrix} \mathbf{0} & a_1 & \cdots & a_{n-2} & a_{n-1} \\ b_2 & b_3 & \cdots & b_n & \mathbf{0} \\ c_1 & c_2 & \cdots & c_{n-1} & c_n \end{bmatrix} \quad (7)$$

297 We also observe $\mathcal{S}_{\text{zero-pad}}$ outperforms \mathcal{S} in our convolutional-free architecture. However, we
 298 would explain this with another hypothesis that zero-padding introduces position information to
 299 the model (Islam et al., 2024). Under this hypothesis, we can address the issue by add explicit po-
 300 sitional encoding to the input and keep the circular padding. Our experiments in Section 4 verifies
 301 that this hypothesis is correct: by using circular padding \mathcal{S} and explicit positional embedding, the
 302 model achieving superior performance because of norm preservation guarantees.

3.3 THE LIPNEXT ARCHITECTURE

306 We now define the LipNeXt architecture, which integrates our manifold optimizer and Spatial Shift
 307 Module. The core of the architecture is the LipNeXt block.

308 Let $X \in \mathbb{R}^{H \times W \times C}$ be the input tensor. First, we add a **learnable positional embedding** $p \in$
 309 $\mathbb{R}^{H \times W \times 1}$, which is broadcast across the channel dimension: $X' = X + p$. Next, we apply the
 310 core mixing operation. We use an orthogonal matrix $R \in \mathcal{M}_C$ to project the channel-wise features,
 311 apply the 2D Spatial Shift Module \mathcal{S} , and then project back using R^\top :

$$312 Y = R^\top \mathcal{S}(RX') \in \mathbb{R}^{H \times W \times C}. \quad (8)$$

314 The projections R and R^\top ensure that the shift operation is not always applied to the same fixed sub-
 315 set of channels, enabling comprehensive feature mixing across all channels over successive blocks.
 316 Without \mathcal{S} , this operation reduces to an identity mapping $Y = R^\top RX' = X'$. To learn more
 317 complex transformations, we apply another orthogonal matrix $M \in \mathcal{M}_C$ and an activation σ :

$$319 Z = \sigma(MY + b) = \sigma(MR^\top \mathcal{S}(RX') + b). \quad (9)$$

320 For the activation, we propose **β -Abs**, a flexible and GPU-friendly 1-Lipschitz function. For an
 321 input vector $\mathbf{x} \in \mathbb{R}^d$, it is defined channel-wise as:

$$323 [\beta\text{-Abs}(\mathbf{x})]_i = \begin{cases} |x_i|, & \text{if } i \leq \beta d \\ x_i, & \text{otherwise.} \end{cases} \quad (10)$$

324
 325 Table 1: Clean and Certified robust accuracy (CRA) of prior works and our LipNeXt models on
 326 CIFAR-10/100 and TinyImageNet. The best results are marked in bold.

328 Datasets	329 Models	330 #Param.	331 Clean 332 Acc. (%)	333 CRA. (%) at (ϵ)		
				334 36/255	335 72/255	336 108/255
337 CIFAR-10	Cayley Large (Trockman & Kolter, 2021)	21M	74.6	61.4	46.4	32.1
	SOC-20 (Singla & Feizi, 2021)	27M	76.3	62.6	48.7	36.0
	LOT-20 (Xu et al., 2022)	18M	77.1	64.3	49.5	36.3
	CPL XL (Meunier et al., 2022)	236M	78.5	64.4	48.0	33.0
	AOL Large (Prach & Lampert, 2022)	136M	71.6	64.0	56.4	49.0
	SLL X-Large (Araujo et al., 2023)	236M	73.3	64.8	55.7	47.1
	LiResNet (Hu et al., 2024)	83M	81.0	69.8	56.3	42.9
	BRONet (Lai et al., 2025)	68M	81.6	70.6	57.2	42.5
	LipNeXt L32W1024	64M	81.5	71.2	59.2	45.9
	LipNeXt L32W2048	256M	85.0	73.2	58.8	43.3
339 CIFAR-100	Cayley Large (Trockman & Kolter, 2021)	21M	43.3	29.2	18.8	11.0
	SOC-20 (Singla & Feizi, 2021)	27M	47.8	34.8	23.7	15.8
	LOT-20 (Xu et al., 2022)	18M	48.8	35.2	24.3	16.2
	CPL XL (Meunier et al., 2022)	236M	47.8	33.4	20.9	12.6
	AOL Large (Prach & Lampert, 2022)	136M	43.7	33.7	26.3	20.7
	SLL X-Large (Araujo et al., 2023)	236M	47.8	36.7	28.3	22.2
	Sandwich (Wang & Manchester, 2023)	26M	46.3	35.3	26.3	20.3
	LiResNet (Hu et al., 2024)	83M	53.0	40.2	28.3	19.2
	BRONet (Lai et al., 2025)	68M	54.3	40.2	29.1	20.3
	LipNeXt L32W1024	64M	53.3	41.3	30.5	21.8
349 Tiny-ImageNet	LipNeXt L32W2048	256M	57.4	44.1	31.9	22.2
	SLL X-Large (Araujo et al., 2023)	1.1B	32.1	23.2	16.8	12.0
	Sandwich (Wang & Manchester, 2023)	39M	33.4	24.7	18.1	13.4
	LiResNet [†] (Hu et al., 2024)	83M	40.9	26.2	15.7	8.9
	BRONet (Lai et al., 2025)	75M	41.2	29.0	19.0	12.1
	LipNeXt L32W1024	64M	42.5	32.0	21.8	15.2
	LipNeXt L32W2048	256M	45.5	35.0	25.9	18.0

355 β -Abs is a simple yet powerful non-linearity. We can show that the commonly used MinMax activation
 356 can be expressed by β -Abs if $\beta = 0.5$:

$$357 \quad \exists R \in \mathcal{M}_{2d}, \forall x \in \mathcal{R}^{2d} \quad \text{MinMax}(x) = R^\top \beta\text{-Abs}(Rx). \quad (11)$$

359 The hyperparameter $\beta \in [0, 1]$ controls the degree of non-linearity. We defer further discussion to
 360 the Appendix B.1. A PyTorch-like code of the LipNeXt block is given at Appendix B.2.

361 The overall LipNeXt architecture adapts the macro-structure of LiResNet (Hu et al., 2023). We
 362 replace the original LiResNet blocks with our LipNeXt blocks and substitute the Neck module
 363 with a simple pooling layer, as our manifold optimizer is designed for square matrices. Following
 364 the philosophy of Vision Transformers (Dosovitskiy et al., 2020), we rely on the scalability of the
 365 backbone to learn effective features. To ensure the entire network is 1-Lipschitz, we use an **L2**
 366 **Spatial Pool**, which computes the L2 norm over the spatial dimensions for each channel. For an
 367 input $X \in \mathbb{R}^{H \times W \times C}$, the output is a vector in \mathbb{R}^C where the c -th component is:

$$368 \quad [L2SpatialPool(X)]_c = \sqrt{\sum_{h=1}^H \sum_{w=1}^W X_{h,w,c}^2}. \quad (12)$$

371 This operation is 1-Lipschitz and serves as the final global pooling before classification.

374 4 EXPERIMENTS

375 In this section, we present the empirical evaluation of our approach. We first compare our method
 376 with the SOTA certified robustness methods on the widely used CIFAR10, CIFAR100 and Tiny-
 377 ImageNet benchmark. Next we conduct scaling experiments to show the scalability of our model in

378
 379 Table 2: Comparison of clean and certified accuracy using extra diffusion generated data from.
 380 Results of other methods are reported by Lai et al. (2025). The best results are marked in bold.

Lipschitz Backbone	#Param.	CIFAR-10				CIFAR-100			
		Clean	36/255	72/255	108/255	Clean	36/255	72/255	108/255
LOT	59M	85.7	76.4	65.1	52.2	59.4	47.6	36.6	26.3
Cayley	68M	86.7	77.7	66.9	54.3	61.1	48.7	37.8	27.5
Cholesky	68M	85.4	76.6	65.7	53.3	59.4	47.4	36.8	26.9
SLL	83M	85.6	76.8	66.0	53.3	59.4	47.6	36.6	27.0
SOC	83M	86.6	78.2	67.0	54.1	60.9	48.9	37.6	27.8
Lip-reg	83M	86.7	78.1	67.0	54.2	61.1	48.9	37.5	27.6
BRO	68M	87.2	78.3	67.4	54.5	61.6	49.1	37.7	27.2
Ours L32W2048	256M	88.2	79.2	68.0	54.9	62.1	51.2	38.5	27.5
Ours L32W2896	512M	92.7	81.7	68.6	55.8	63.6	55.2	39.2	28.3

393
 394 terms of network depth, network width and dataset size. We use the EMMA loss (Hu et al., 2023)
 395 for our training and follow the same training receipts in LiResNet++ (Hu et al., 2024). See Code for
 396 implementation details. By default, we do not use diffusion-generated synthetic data.
 397

398 **Main Results** We compare LipNeXt against SOTA baselines. Table 1 reports clean accuracy, cer-
 399 tified robust accuracy (CRA), and parameter counts. For LiResNet (Hu et al., 2023), we follow the
 400 setting without diffusion-generated synthetic data, using the numbers reported by Lai et al. (2025).
 401 Results that leverage diffusion-generated data are presented separately in the next table. LipNeXt
 402 achieves the strongest performance on nearly all metrics; the only exception is CRA at $\varepsilon = 108/255$
 403 on CIFAR-10, where AOL (Prach & Lampert, 2022) is higher. However, AOL attains this point by
 404 incurring a substantial drop in clean accuracy and in CRA at the other radii. Even under the similar
 405 parameter budgets, our smaller configuration L32W1024 outperforms prior work by clear margins.
 406

407 **Performance with extra data** As we further scale up LipNeXt, we continue to observe improve-
 408 ment in clean accuracy, but a decrease in CRA. This is a known issue called robust overfitting (Rice
 409 et al., 2020; Yu et al., 2022a) due to the small dataset size. Following prior work (Hu et al., 2024;
 410 Lai et al., 2025), we add diffusion-generated synthetic data to the training set to solve this issue,
 411 and use the generated data provided by Hu et al. (2024). Table 2 shows LipNeXt can effectively
 412 leverages these synthetic datasets to enhance performance.
 413

414 **Performance on ImageNet** The main criticism of Lipschitz-based certification is the poor per-
 415 formance on large-scale datasets like ImageNet. We show that LipNeXt is feasible to scale up and
 416 achieve non-vanishing performance as model size increases. We consider two certification radius
 417 $\varepsilon = 36/255$, widely used for Lipschitz based method and $\varepsilon = 1$, widely used for randomized smooth-
 418 ing based method. Since the difference between the two radii is large, we train two models with
 419 different hyper-parameters. Specifically, the maximum training radius is set as 1.5 times of the test
 420 radius. Table 3 shows the comparison with prior work. By scaling to billion-level large models,
 421 LipNeXt outperforms prior work by 8% for $\varepsilon = 1$ and 3% for $\varepsilon = 36/255$.
 422

423 **Training stability and efficiency.** The wall-clock training time in Table 3 is measured using a
 424 single $8 \times$ H100 machine. The L32W5792 configuration is trained with two such machines, and we
 425 normalize the reported speed to an equivalent single-node throughput. LipNeXt adopts a constraint-
 426 free optimization whose forward and backward passes involve only orthogonal matrix multiplica-
 427 tions and spatial shift operations, and we train it using `bfloat16`. By contrast, LiResNet em-
 428 ploys power iteration to estimate per-block Lipschitz constants and regularizes the backbone Lips-
 429 chitz (the product across blocks) in the loss. On ImageNet we observe numerical instability when
 430 training LiResNet with `bfloat16` (numeric overflow occurs occasionally), so we can only use
 431 `float32` for LiResNet instead. BRONet builds 1-Lipschitz convolutional networks via FFT-based
 432 frequency convolutions, which require complex arithmetic in both forward and backward passes.
 433 Because mainstream training frameworks currently support only `complex32`, this effectively in-
 434 curs `float64`-like memory and compute overheads and prevents BRONet from fully leveraging
 435

432
 433 Table 3: Comparison of clean accuracy and CRA on ImageNet. ‘‘Use EMD’’ indicates training with
 434 additional diffusion-generated data, and training speed is reported in minutes per epoch.

Lipschitz Model	#Param.	Training Speed	Use EMD	$\varepsilon = 1$		$\varepsilon = 36/255$	
LiResNet	51M	5.3	✗	18.8	14.2	45.6	35.0
LiResNet++	83M	–	✓	–	–	49.0	38.3
BRONet	86M	10.5	✗	–	–	49.3	37.6
BRONet	86M	–	✓	–	–	52.3	40.7
Ours L32W4096	1B	8.9	✗	40.2	21.1	55.9	40.3
Ours L32W5792	2B	17.8	✗	41.0	22.4	57.0	41.2

Table (a): Fix depth as 32			Table (b): Fix width as 2048			Table (c): Fix #Param as 1B		
width	Acc.	CRA.	depth	Acc.	CRA.	depth, width	Acc.	CRA.
1024	40.5	22.9	8	30.7	22.4	(8, 8192)	49.5	28.6
1456	43.5	24.5	16	43.5	24.7	(16, 5792)	50.4	29.2
2048	45.8	26.2	32	45.8	26.2	(32, 4096)	51.7	30.0
2896	48.5	28.2	64	47.0	26.9	(64, 2896)	51.2	29.6
4096	51.7	30.0	128	47.5	26.8	(128, 2048)	50.1	28.9

452 Table 4: Clean accuracy and CRA at $\varepsilon = 1$ on ImageNet (400 classes). Each sub-table fixes one
 453 factor (depth, width, or parameters) to study different configurations.

454
 455 low-precision accelerators. As a result, LipNeXt can continuously benefit from hardware advances
 456 due to its more stable architecture and optimization. Despite scaling to substantially larger models
 457 than LiResNet and BRONet, LipNeXt achieves training throughput on par with prior work, enabling
 458 further scaling. We leave training LipNeXt on large-scale image-text pair datasets as a future work.
 459

460 **Scaling experiments** We demonstrate clear scaling trends for LipNeXt across both backbone
 461 depth and width dimensions. Due to computational constraints, we conduct experiments on a ran-
 462 domly sampled subset of 400 ImageNet classes, reporting clean accuracy and CRA at $\varepsilon = 1$ in
 463 Table 4. We systematically evaluate three scaling scenarios: (a) fixing backbone depth at 32 layers
 464 while varying width, (b) fixing backbone width at $W = 2048$ while varying depth, and (c) constrain-
 465 ing the total parameter count to 1B while exploring different depth-width configurations. Our results
 466 reveal that LipNeXt exhibits favorable scaling properties with respect to both architectural dim-
 467 ensions, with performance improvements observed when increasing either depth or width. Notably,
 468 under fixed parameter budgets, a depth of 32 layers yields optimal performance.

469 **Ablation Studies** Due to space constraints, extended ablations are provided in Appendix C. Ta-
 470 ble 5 evaluates the two stabilization techniques for FastExp; Table 6 isolates the contribution of
 471 the spatial shift module; Table 7 compares padding and positional embedding choices; and Table 4
 472 ablates activation functions.

474 5 CONCLUSION

477 We presented *LipNeXt*, a scalable 1-Lipschitz architecture that is both constraint-free and
 478 convolution-free. On the optimization side, we update orthogonal parameters directly on the man-
 479 ifold using a stabilized scheme, eliminating power-iteration penalties and avoiding the numerical
 480 fragility that inhibits low-precision training in prior work. On the architectural side, we replace
 481 depthwise convolutions with a theoretically grounded Spatial Shift Module. Together, these choices
 482 enable LipNeXt to scale cleanly in depth and width and to realize consistent gains in both clean ac-
 483 curacy and CRA. Empirically, LipNeXt establishes new state of the art across CIFAR-10/100, Tiny-
 484 ImageNet, and ImageNet with billion-parameter models, while maintaining competitive throughput
 485 and stable bfloat16 training. These results indicate that deterministic, Lipschitz-based certification
 can track modern scaling trends and further scale up.

486

6 REPRODUCIBILITY STATEMENT

487
488 We have made every effort to ensure that the results presented in this paper are reproducible. All
489 code have been made available in the Supplementary Materials. We provide Proof of Theorem 1 in
490 Appendix B.3.
491492

7 LLM USAGE

493
494 Large Language Models (LLMs) were utilized to assist in the writing and refinement of this
495 manuscript. Specifically, we employed an LLM to enhance the clarity, readability, and overall co-
496herence of various sections. The model contributed to tasks such as sentence rephrasing, grammar
497 correction, and improving the flow of the text.
498499 The authors take full responsibility for the entirety of the manuscript, including any text generated
500 or refined with the assistance of the LLM. We have ensured that all LLM-generated content adheres
501 to ethical standards and does not contribute to plagiarism or scientific misconduct.
502503

REFERENCES

504
505 Pierre Ablin and Gabriel Peyré. Fast and accurate optimization on the orthogonal manifold without
506 retraction. In *International Conference on Artificial Intelligence and Statistics*, pp. 5636–5657.
507 PMLR, 2022.508 P-A Absil and Jérôme Malick. Projection-like retractions on matrix manifolds. *SIAM Journal on*
509 *Optimization*, 22(1):135–158, 2012.510 Alexandre Araujo, Aaron J Havens, Blaise Delattre, Alexandre Allauzen, and Bin Hu. A uni-
511fied algebraic perspective on lipschitz neural networks. In *The Eleventh International Confer-
512ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=k71IGLC8cfc>.
513514
515 Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. *arXiv
516 preprint arXiv:1810.00760*, 2018.517 Nicholas Carlini, Florian Tramer, J Zico Kolter, et al. (certified!!) adversarial robustness for free!
518 *arXiv preprint arXiv:2206.10550*, 2022.519
520 Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
521 smoothing. In *International Conference on Machine Learning (ICML)*, 2019a.522
523 Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
524 smoothing. In *international conference on machine learning*, pp. 1310–1320. PMLR, 2019b.525
526 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
527 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
528 image is worth 16x16 words: Transformers for image recognition at scale. *ICLR 2021*, 2020.529
530 Evan S Gawlik and Melvin Leok. High-order retractions on matrix manifolds using projected poly-
531 nomials. *SIAM Journal on Matrix Analysis and Applications*, 39(2):801–828, 2018.531
532 Chengyue Gong, Tongzheng Ren, Mao Ye, and Qiang Liu. Maxup: Lightweight adversarial train-
533 ing with data augmentation improves neural network training. In *Proceedings of the IEEE/CVF
534 Conference on computer vision and pattern recognition*, pp. 2474–2483, 2021.535
536 Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
537 Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
538 mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.539
540 Kai Hu, Andy Zou, Zifan Wang, Klas Leino, and Matt Fredrikson. Scaling in depth: Unlocking
robustness certification on imagenet. *arXiv preprint arXiv:2301.12549*, 2023.

540 Kai Hu, Klas Leino, Zifan Wang, and Matt Fredrikson. A recipe for improved certifiable robustness.
 541 In *The Twelfth International Conference on Learning Representations*, 2024.
 542

543 Yujia Huang, Huan Zhang, Yuanyuan Shi, J. Zico Kolter, and Anima Anandkumar. Training certifi-
 544 ably robust neural networks with efficient local lipschitz bounds. In *NIPS*, 2021.

545 Zijian Huang, Wenda Chu, Linyi Li, Chejian Xu, and Bo Li. Commit: Certifying robustness of
 546 multi-sensor fusion systems against semantic attacks. In *Proceedings of the AAAI Conference on*
 547 *Artificial Intelligence*, volume 39, pp. 17528–17536, 2025.

548

549 Md Amirul Islam, Matthew Kowal, Sen Jia, Konstantinos G Derpanis, and Neil DB Bruce. Position,
 550 padding and predictions: A deeper look at position information in cnns. *International Journal of*
 551 *Computer Vision*, 132(9):3889–3910, 2024.

552

553 Jongheon Jeong, Sejun Park, Minkyu Kim, Heung-Chang Lee, Do-Guk Kim, and Jinwoo Shin.
 554 Smoothmix: Training confidence-calibrated smoothed classifiers for certified robustness. *Ad-*
 555 *vances in Neural Information Processing Systems*, 34:30153–30168, 2021.

556

557 Bo Jiang and Yu-Hong Dai. A framework of constraint preserving update schemes for optimization
 558 on stiefel manifold. *Mathematical Programming*, 153(2):535–575, 2015.

559

560 Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent robustness
 561 of energy-efficient deep spiking neural networks by training with crafted input noise. In *Proceed-*
 562 *ings of the IEEE/CVF international conference on computer vision*, pp. 5209–5218, 2021.

563

564 Bo-Han Lai, Pin-Han Huang, Bo-Han Kung, and Shang-Tse Chen. Enhancing certified robustness
 565 via block reflector orthogonal layers and logit annealing loss. In *International Conference on*
 566 *Machine Learning (ICML)*, 2025. Spotlight.

567

568 Othmane Laousy, Alexandre Araujo, Guillaume Chassagnon, Nikos Paragios, Marie-Pierre Revel,
 569 and Maria Vakalopoulou. Certification of deep learning models for medical image segmentation.
 570 In *International Conference on Medical Image Computing and Computer-Assisted Intervention*,
 571 pp. 611–621. Springer, 2023.

572

573 Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust neural networks. In *International*
 574 *Conference on Machine Learning*, pp. 6212–6222. PMLR, 2021.

575

576 Aishan Liu, Xianglong Liu, Hang Yu, Chongzhi Zhang, Qiang Liu, and Dacheng Tao. Training
 577 robust deep neural networks via adversarial noise propagation. *IEEE Transactions on Image*
 578 *Processing*, 30:5769–5781, 2021.

579

580 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 581 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and*
 582 *pattern recognition*, pp. 11976–11986, 2022.

583

584 Laurent Meunier, Blaise J Delattre, Alexandre Araujo, and Alexandre Allauzen. A dynamical system
 585 perspective for lipschitz neural networks. In *International Conference on Machine Learning*, pp.
 586 15484–15500. PMLR, 2022.

587

588 Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of tricks for adversarial
 589 training. In *International Conference on Learning Representations*, 2021.

590

591 Omid Poursaeed, Tianxing Jiang, Harry Yang, Serge Belongie, and Ser-Nam Lim. Robustness and
 592 generalization via generative adversarial training. In *Proceedings of the IEEE/CVF International*
 593 *Conference on Computer Vision*, pp. 15711–15720, 2021.

594

595 Bernd Prach and Christoph H Lampert. Almost-orthogonal layers for efficient general-purpose
 596 lipschitz networks. In *European Conference on Computer Vision*, pp. 350–365. Springer, 2022.

597

598 Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
 599 *International conference on machine learning*, pp. 8093–8104. PMLR, 2020.

594 Shoumik Saha, Wenxiao Wang, Yigitcan Kaya, Soheil Feizi, and Tudor Dumitras. DRSM: De-
 595 randomized smoothing on malware classifier providing certified robustness. In *The Twelfth In-*
 596 *ternational Conference on Learning Representations*, 2024. URL [https://openreview.](https://openreview.net/forum?id=m7aPLHwsLr)
 597 [net/forum?id=m7aPLHwsLr](https://openreview.net/forum?id=m7aPLHwsLr).

598 Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
 599 Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. *Ad-*
 600 *vances in Neural Information Processing Systems*, 32, 2019.

602 Hadi Salman, Mingjie Sun, Greg Yang, Ashish Kapoor, and J Zico Kolter. Denoised smoothing: A
 603 provable defense for pretrained classifiers. *Advances in Neural Information Processing Systems*,
 604 33:21945–21957, 2020.

605 Boris Shustin and Haim Avron. Faster randomized methods for orthogonality constrained problems.
 606 *Journal of Machine Learning Research*, 25(257):1–59, 2024.

608 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 609 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

610 Sahil Singla and Soheil Feizi. Skew orthogonal convolutions. In Marina Meila and Tong Zhang
 611 (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of
 612 *Proceedings of Machine Learning Research*, pp. 9756–9766. PMLR, 18–24 Jul 2021.

614 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
 615 low, and Rob Fergus. Intriguing properties of neural networks. In *International Conference on*
 616 *Learning Representations (ICLR)*, 2014.

617 Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
 618 works. In *International conference on machine learning*, pp. 6105–6114. PMLR, 2019.

620 Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley transform.
 621 In *International Conference on Learning Representations (ICLR)*, 2021.

622 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 623 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 624 *tion processing systems*, 30, 2017.

626 Ruigang Wang and Ian Manchester. Direct parameterization of lipschitz-bounded deep networks. In
 627 *International Conference on Machine Learning*, pp. 36093–36110. PMLR, 2023.

628 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
 629 gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
 630 models. *arXiv preprint arXiv:2206.07682*, 2022.

632 Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogonality constraints.
 633 *Mathematical Programming*, 142(1):397–434, 2013.

634 Chaowei Xiao, Zhongzhu Chen, Kun Jin, Jiongxiao Wang, Weili Nie, Mingyan Liu, Anima Anand-
 635 kumar, Bo Li, and Dawn Song. Densepure: Understanding diffusion models towards adversarial
 636 robustness. *arXiv preprint arXiv:2211.00322*, 2022.

637 Xiaojun Xu, Linyi Li, and Bo Li. Lot: Layer-wise orthogonal training on improving l2 certified
 638 robustness. *arXiv preprint arXiv:2210.11620*, 2022.

640 Zhuolin Yang, Linyi Li, Xiaojun Xu, Bhavya Kailkhura, Tao Xie, and Bo Li. On the certified
 641 robustness for ensemble models and beyond. *arXiv preprint arXiv:2107.10873*, 2021.

642 Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, and Tongliang Liu. Under-
 643 standing robust overfitting of adversarial training and beyond. In *International Conference on*
 644 *Machine Learning*, pp. 25595–25610. PMLR, 2022a.

646 Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
 647 Shuicheng Yan. Metaformer is actually what you need for vision. In *Proceedings of the IEEE/CVF*
 conference on computer vision and pattern recognition, pp. 10819–10829, 2022b.

648 Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
649 forward, 1 step back. *Advances in neural information processing systems*, 32, 2019.
650

651 Xiaojing Zhu. A riemannian conjugate gradient method for optimization on the stiefel manifold.
652 *Computational optimization and Applications*, 67(1):73–110, 2017.
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A ADDITIONAL RELATED WORK**
703

704 In contrast to the deterministic robustness guarantees emphasized in this work, *Randomized Smoothing*
705 (RS) (Cohen et al., 2019a) provides probabilistic guarantees and has been extensively studied
706 at ImageNet scale (Salman et al., 2019; Jeong et al., 2021; Salman et al., 2020). Diffusion meth-
707 ods (Carlini et al., 2022; Xiao et al., 2022) are introduced to denoise the addictive noise and further
708 improve the performance.

709 Despite these successes, RS methods face two fundamental limitations that constrain their practical
710 applicability. First, their inherently probabilistic nature introduces the possibility of false positives,
711 where adversarial examples may be incorrectly certified as robust. While existing RS approaches
712 typically maintain false positive rates below 0.1%, even this level of uncertainty renders them uns-
713 itable for security-critical applications where certification guarantees must be absolute. Although
714 one can reduce the false positive rates by improve the confidence level α , it will then require sig-
715 nificant greater number of noised images, which leads to the second limitation: the computational
716 overhead of RS-based certification is prohibitive, necessitating thousands to tens of thousands of
717 forward passes per image due to reliance on concentration inequalities with tight tail bounds. This
718 computational burden has confined most empirical evaluations to small test subsets of at most 1,000
719 images, limiting the scope of practical validation.

720 **B ADDITIONAL METHOD EXPLANATION**
721

722 Algorithm 2 shows the naive Adam Optimization. The major issue of this optimization is the high
723 computational cost of matrix exponential.

724 **Algorithm 2** Manifold Adam Optimizer

725
726 1: **Input:** learning rate η , momentum coefficients β_1 and β_2 , optimization objective $f(X)$.
727 2: Initialize X as an orthonormal matrix, and the first and second moment $m = v = 0$
728 3: **for** step t in $1 \dots, T$ **do**
729 4: Compute the Euclidean gradient $\nabla f(X)$;
730 5: Compute the projected gradient $\text{grad } f(\mathbf{X})$ using $\nabla f(X)$ and X by Equation 2;
731 6: Update the first order moment: $m \leftarrow \beta_1 m + (1 - \beta_1) \text{grad } f(\mathbf{X})$;
732 7: Update the second order moment: $v \leftarrow \beta_2 v + (1 - \beta_2) \text{grad } f(\mathbf{X}) * \text{grad } f(\mathbf{X})$;
733 8: Rescale $\hat{m} \leftarrow m / (1 - \beta_1^t)$ $\hat{v} \leftarrow v / (1 - \beta_2^t)$;
734 9: Update the weights: $X \leftarrow X \exp(-\eta \cdot \hat{m} / (\sqrt{\hat{v}} + \epsilon))$
735 10: **end for**

736
737 **B.1 FURTHER DISCUSSION ABOUT β -ABS ACTIVATION**

738 We show that the commonly used MinMax activation can be expressed by β -Abs if $\beta = 0.5$.

739 **Theorem 2** Consider 2d-dimensional input $x = (x_1, x_2)^\top$ where $x_1, x_2 \in \mathbb{R}^d$. Define

740
$$R = \frac{1}{\sqrt{2}} \begin{bmatrix} I_d & I_d \\ -I_d & I_d \end{bmatrix},$$

741 we have

742
$$\text{MinMax}(x) = R^\top \beta\text{-Abs}(Rx)$$

743 **Proof:** First

744
$$\beta\text{-Abs}(Rx) = \beta\text{-Abs}\left(\frac{1}{\sqrt{2}} \begin{bmatrix} x_1 + x_2 \\ -x_1 + x_2 \end{bmatrix}\right) = \frac{1}{\sqrt{2}} \begin{bmatrix} |x_1 + x_2| \\ -x_1 + x_2 \end{bmatrix}$$

745 Then

746
$$R^\top \beta\text{-Abs}(Rx) = \frac{1}{2} \begin{bmatrix} |x_1 + x_2| + x_1 - x_2 \\ |x_1 + x_2| - x_1 + x_2 \end{bmatrix} = \begin{bmatrix} \max(x_1, x_2) \\ \min(x_1, x_2) \end{bmatrix}.$$

747 Here \max and \min are element wise operations for vectors. Theorem 2 shows that **MinMax** and
748 β -Abs should have the same expressive ability. Increasing β introduces more non-linearity and
749 decreasing β introduces more linearity. However, **MinMax** only has the flexibility to introduces
750 more linearity.

756 B.2 PYTORCH-LIKE CODE FOR THE LIPNEXT BLOCK
757

758 Bellow is a PyTorch-like Code for the LipNeXt block for a better understanding.

```

759
760 1 def shift_fn(x, alpha=1/16):
761 2     c = x.shape[3]
762 3     d = int(c * alpha)
763 4     a0, a1, a2, a3, a4 = torch.split(
764 5         x, [c - d * 4, d, d, d, d], dim=3)
765 6
766 7     a1 = torch.roll(a1, dims=1, shifts=1)
767 8     a2 = torch.roll(a2, dims=1, shifts=-1)
768 9     a3 = torch.roll(a3, dims=2, shifts=1)
769 10    a4 = torch.roll(a4, dims=2, shifts=-1)
770 11
771 12    x = torch.cat([a0, a1, a2, a3, a4], dim=3)
772 13    return x
773 14
774 15 def beta_abs(x, beta=0.75):
775 16     d = int(x.shape[1] * beta)
776 17     x = torch.cat([x[..., :d].abs(), x[..., d:]], dim=1)
777 18    return x
778 19
779 20 def lipnext_block(x, R, M, b, pos):
780 21     # shape of x: (B, H, W, C)
781 22     # shape of R and M: (C, C)
782 23     # shape of b: (C)
783 24     # shape of pos: (H, W, 1)
784 25     x = x + pos
785 26     x = F.linear(x, r)
786 27     x = shift_fn(x)
787 28     x = F.linear(x, w @ r.T, b)
788 29     x = beta_abs(x)
789 30    return x

```

785

786 B.3 PROOF OF THEOREM 1
787788 Part 1: (\Leftarrow) Sufficiency789 Assume the kernel K contains exactly one non-zero element with value $c = \pm 1$. Let this element
790 be at position (i_0, j_0) , so $K_{i_0, j_0} = c$ and all other elements of K are zero.
791792 The convolution f_K is a linear operator. Therefore, we can write:

793
$$\|f_K(X) - f_K(Y)\|_F = \|f_K(X - Y)\|_F$$

794

795 Let $Z = X - Y$. We need to show that $\|f_K(Z)\|_F = \|Z\|_F$.796 The result of the convolution, let's call it $W = f_K(Z)$, is given by:

797
$$W_{i,j} = \sum_{m=0}^{k-1} \sum_{n=0}^{k-1} K_{m,n} Z_{i-m, j-n}$$

798
799
800

801 where the indices for Z are taken modulo H and W due to circular padding. Since only K_{i_0, j_0} is
802 non-zero, this sum simplifies to a single term:

803
$$W_{i,j} = K_{i_0, j_0} Z_{i-i_0, j-j_0} = c \cdot Z_{i-i_0, j-j_0}$$

804

805 This means the output tensor W is a circularly shifted version of the input tensor Z , with each
806 element multiplied by c .807 Now, let's compute the squared Frobenius norm of W :

808
$$\|W\|_F^2 = \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} |W_{i,j}|^2 = \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} |c \cdot Z_{i-i_0, j-j_0}|^2$$

809

810 Since $c = \pm 1$, we have $c^2 = 1$.
 811

$$812 \|W\|_F^2 = \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} Z_{i-i_0, j-j_0}^2$$

815 The mapping $(i, j) \mapsto (i - i_0 \pmod{H}, j - j_0 \pmod{W})$ is a bijection on the set of indices.
 816 Therefore, the sum on the right is simply a reordering of the sum of the squared elements of Z .
 817

$$818 \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} Z_{i-i_0, j-j_0}^2 = \sum_{i'=0}^{H-1} \sum_{j'=0}^{W-1} Z_{i', j'}^2 = \|Z\|_F^2$$

821 Thus, we have shown that $\|f_K(Z)\|_F^2 = \|Z\|_F^2$, which implies $\|f_K(Z)\|_F = \|Z\|_F$. This completes
 822 the first part of the proof.
 823

Part 2: (\Rightarrow) Necessity

824 Assume that f_K is norm-preserving, i.e., $\|f_K(X) - f_K(Y)\|_F = \|X - Y\|_F$ for all $X, Y \in \mathbb{R}^{H \times W}$.
 825 As before, let $Z = X - Y$. The condition is equivalent to stating that f_K is a linear isometry with
 826 respect to the Frobenius norm:
 827

$$828 \|f_K(Z)\|_F = \|Z\|_F, \quad \forall Z \in \mathbb{R}^{H \times W}$$

829 We analyze this condition in the frequency domain. Let \mathcal{F} denote the 2D Discrete Fourier Transform
 830 (DFT), and let $\hat{A} = \mathcal{F}(A)$. The convolution theorem for circular convolution states:
 831

$$832 \mathcal{F}(f_K(Z)) = \hat{K}' \odot \hat{Z}$$

833 where K' is the kernel K zero-padded to size $H \times W$, and \odot denotes element-wise (Hadamard)
 834 product.
 835

836 Parseval's theorem relates the Frobenius norm of a tensor to the Frobenius norm of its DFT:
 837

$$838 \|A\|_F^2 = \frac{1}{HW} \|\hat{A}\|_F^2$$

840 Applying Parseval's theorem to our isometry condition $\|f_K(Z)\|_F^2 = \|Z\|_F^2$:

$$841 \frac{1}{HW} \|\mathcal{F}(f_K(Z))\|_F^2 = \frac{1}{HW} \|\hat{Z}\|_F^2$$

$$843 \|\hat{K}' \odot \hat{Z}\|_F^2 = \|\hat{Z}\|_F^2$$

844 Expanding the norms in terms of their elements:
 845

$$846 \sum_{u=0}^{H-1} \sum_{v=0}^{W-1} |\hat{K}'_{u,v} \cdot \hat{Z}_{u,v}|^2 = \sum_{u=0}^{H-1} \sum_{v=0}^{W-1} |\hat{Z}_{u,v}|^2$$

$$849 \sum_{u=0}^{H-1} \sum_{v=0}^{W-1} |\hat{K}'_{u,v}|^2 |\hat{Z}_{u,v}|^2 = \sum_{u=0}^{H-1} \sum_{v=0}^{W-1} |\hat{Z}_{u,v}|^2$$

852 This can be rewritten as:
 853

$$854 \sum_{u=0}^{H-1} \sum_{v=0}^{W-1} \left(|\hat{K}'_{u,v}|^2 - 1 \right) |\hat{Z}_{u,v}|^2 = 0$$

856 Since this equality must hold for any tensor Z , it must hold for any possible DFT \hat{Z} . Let us choose
 857 a \hat{Z} that has only one non-zero element, say $\hat{Z}_{u_0, v_0} = 1$ and all other elements are zero. For this
 858 choice, the equation simplifies to:
 859

$$860 \left(|\hat{K}'_{u_0, v_0}|^2 - 1 \right) \cdot 1^2 = 0 \implies |\hat{K}'_{u_0, v_0}|^2 = 1$$

862 As we can make this choice for any frequency pair (u_0, v_0) , it must be that $|\hat{K}'_{u, v}| = 1$ for all u, v .
 863

Now we use this property to derive constraints on the spatial domain kernel K .

864 1. **Sum of Squares of Elements:** Apply Parseval's theorem to the padded kernel K' itself:
 865

$$866 \|K\|_F^2 = \|K'\|_F^2 = \frac{1}{HW} \|\hat{K}'\|_F^2 = \frac{1}{HW} \sum_{u=0}^{H-1} \sum_{v=0}^{W-1} |\hat{K}'_{u,v}|^2
 867$$

868 Since we found that $|\hat{K}'_{u,v}|^2 = 1$ for all (u, v) , the sum becomes $\sum_{u,v} 1 = HW$.
 869

$$870 \|K\|_F^2 = \frac{1}{HW} (HW) = 1 \implies \sum_{i,j} K_{i,j}^2 = 1
 871$$

872 2. **Sum of Elements:** Consider the DC component of the DFT, i.e., $(u, v) = (0, 0)$:
 873

$$874 \hat{K}'_{0,0} = \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} K'_{i,j} e^{-0} = \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} K_{i,j}
 875$$

876 Since $|\hat{K}'_{0,0}| = 1$, we must have:
 877

$$878 \left| \sum_{i,j} K_{i,j} \right| = 1
 879$$

881 Let $\{k_1, k_2, \dots, k_N\}$ be the set of N non-zero elements in the kernel K . From our derivations, we
 882 have two conditions on these elements:
 883

- 884 1. $\sum_{i=1}^N k_i^2 = 1$
- 885 2. $\left(\sum_{i=1}^N k_i \right)^2 = 1$

887 We can expand the second condition:
 888

$$889 \left(\sum_{i=1}^N k_i \right)^2 = \sum_{i=1}^N k_i^2 + 2 \sum_{1 \leq i < j \leq N} k_i k_j = 1
 890$$

892 Substituting the first condition into this expansion:
 893

$$894 1 + 2 \sum_{1 \leq i < j \leq N} k_i k_j = 1 \implies \sum_{1 \leq i < j \leq N} k_i k_j = 0$$

895 We now have $\sum k_i^2 = 1$ and $\sum k_i^2 = (\sum k_i)^2$. Let's consider the Cauchy-Schwarz inequality on
 896 the vectors $\mathbf{a} = (1, 1, \dots, 1) \in \mathbb{R}^N$ and $\mathbf{b} = (k_1, k_2, \dots, k_N) \in \mathbb{R}^N$:
 897

$$898 (\mathbf{a} \cdot \mathbf{b})^2 \leq \|\mathbf{a}\|_2^2 \|\mathbf{b}\|_2^2
 899 \left(\sum_{i=1}^N k_i \right)^2 \leq \left(\sum_{i=1}^N 1^2 \right) \left(\sum_{i=1}^N k_i^2 \right)$$

900 Plugging in our conditions:
 901

$$902 1 \leq N \cdot 1$$

903 Equality holds if and only if one vector is a scalar multiple of the other, i.e., $\mathbf{b} = c\mathbf{a}$ for some scalar
 904 c . This means all non-zero elements must be equal: $k_1 = k_2 = \dots = k_N = c$.
 905

906 Let's impose this equality on our conditions:
 907

- 908 1. $\sum_{i=1}^N c^2 = Nc^2 = 1$
- 909 2. $\left(\sum_{i=1}^N c \right)^2 = (Nc)^2 = N^2 c^2 = 1$

910 Substituting $c^2 = 1/N$ from the first equation into the second gives:
 911

$$912 N^2 \left(\frac{1}{N} \right) = N = 1$$

913 This shows that there must be exactly one non-zero element ($N = 1$).
 914

915 Let this single non-zero element be k_1 . From condition 1, $k_1^2 = 1$, which implies $k_1 = \pm 1$.
 916 Therefore, for f_K to be norm-preserving, the kernel K must contain exactly one non-zero element
 917 with a value of $+1$ or -1 . This completes the second part of the proof.
 918

918 C ADDITIONAL RESULTS
919
920921 Table 5: Ablation study on the effectiveness of the two stabilization techniques for FastExp.
922

923 LipNeXt 924 L32W2048	925 CIFAR-10				926 CIFAR-100			
	927 Clean	928 36/255	929 72/255	930 108/255	931 Clean	932 36/255	933 72/255	934 108/255
Algorithm 1	85.0	73.2	58.8	43.3	57.4	44.1	31.9	22.2
No Periodic polar retraction	84.8	72.3	57.2	42.0	57.2	43.3	31.4	21.3
No Lookahead	84.4	72.4	57.8	42.7	57.4	43.5	31.4	21.7

929 Table 5 shows the effectiveness of the two stabilization techniques for FastExp. Removing either
930 would lead to constant performance drop.
931

932 Table 6: Ablation study on the effectiveness of the spatial shift module
933

934 LipNeXt 935 L32W2048	936 CIFAR-10				937 CIFAR-100			
	938 Clean	939 36/255	940 72/255	941 108/255	942 Clean	943 36/255	944 72/255	945 108/255
$\alpha = 1/16$ (baseline)	85.0	73.2	58.8	43.3	57.4	44.1	31.9	22.2
$\alpha = 0$ (no shift)	62.2	53.6	43.7	32.2	40.8	32.0	22.3	14.3
$\alpha = 1/4$ (shift all channels)	79.0	67.4	51.4	38.3	52.5	39.1	26.4	18.2

939 Table 6 shows the effectiveness of the spatial shift module. Setting $\alpha = 1/16$ shifts one quarter of the
940 channels (distributed across four directions). We examine two extremes: $\alpha = 0$, which applies no
941 spatial shift, and $\alpha = 1/4$, which shifts all channels. As expected, $\alpha = 0$ performs poorly because
942 the model cannot capture spatial interactions. Interestingly, $\alpha = 1/4$ also degrades performance; we
943 hypothesize that shifting every channel removes absolute positional cues, preventing the model from
944 retaining information about the original locations.
945

946 Table 7: Ablation study on the design choices of the padding and positional embedding
947

948 Padding 949 Type	950 Positional 951 Encoding	952 CIFAR10 953 clean Acc.	954 CIFAR10 955 CRA	956 CIFAR100 957 clean Acc.	958 CIFAR100 959 CRA
Circular	✓	85.0	73.2	57.4	44.1
Circular	✗	84.3	72.1	56.2	43.2
Zero	✗	84.5	72.4	56.5	43.5
Zero	✓	84.6	72.6	56.8	43.7

954 Table 7 presents an ablation of padding and positional encoding choices. As discussed in Section 3,
955 without positional encoding, zero padding outperforms circular padding because it implicitly intro-
956 duces positional information. With positional encoding enabled, the trend reverses: circular padding
957 is preferable since it guarantees a Lipschitz-tight transformation.
958

959 Table 8: Ablation study on the choice of activations
960

961 LipNeXt 962 L32W2048	963 CIFAR-10				964 CIFAR-100			
	965 Clean	966 36/255	967 72/255	968 108/255	969 Clean	970 36/255	971 72/255	972 108/255
MinMax	84.4	72.7	58.0	42.6	56.9	43.5	31.2	21.4
$\beta = 0.5$	84.6	72.9	58.3	42.9	57.1	43.8	31.5	21.7
$\beta = 0.75$ (default)	85.0	73.2	58.8	43.3	57.4	44.1	31.9	22.2
$\beta = 1.0$	84.3	72.5	58.1	42.3	56.5	43.2	31.0	20.8

968 Table 8 ablates the activations. As we shown in Appendix B.1, β -Abs and MinMax should have
969 the same expressive ability when $\beta = 0.5$. Experiments show that MinMax is slightly worse than
970 $\beta = 0.5$. We can adjust β to control the non-linearity, and $\beta = 1$ degrades to the absolute function
971 is not optimal because it breaks identical mapping.
972