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ABSTRACT

Lipschitz-based certification offers efficient, deterministic robustness guarantees
but has struggled to scale in model size, training efficiency, and ImageNet per-
formance. We introduce LipNeXt, the first constraint-free and convolution-free
1-Lipschitz architecture for certified robustness. LipNeXt is built using two tech-
niques: (1) a manifold optimization procedure that updates parameters directly
on the orthogonal manifold and (2) a Spatial Shift Module to model spatial pat-
tern without convolutions. The full network uses orthogonal projections, spatial
shifts, a simple 1-Lipschitz β-Abs nonlinearity, and L2 spatial pooling to maintain
tight Lipschitz control while enabling expressive feature mixing. Across CIFAR-
10/100 and Tiny-ImageNet, LipNeXt achieves state-of-the-art clean and certified
robust accuracy (CRA), and on ImageNet it scales to 1–2B large models, improv-
ing CRA over prior Lipschitz models (e.g., up to +8% at ε=1) while retaining
efficient, stable low-precision training. These results demonstrate that Lipschitz-
based certification can benefit from modern scaling trends without sacrificing de-
terminism or efficiency.

1 INTRODUCTION

Adversarial robustness represents a fundamental challenge in machine learning (Szegedy et al.,
2014). Numerous defense mechanisms have been developed to enhance model robustness against
adversarial attacks (Gong et al., 2021; Kundu et al., 2021; Poursaeed et al., 2021; Liu et al., 2021;
Pang et al., 2021). However, these approaches are predominantly empirical defenses that cannot pro-
vide formal guarantees of robust predictions. Consequently, models deemed robust under current
evaluation protocols may remain vulnerable to more sophisticated attack strategies as they emerge.

This limitation is particularly concerning for safety-critical applications such as autonomous driv-
ing (Huang et al., 2025), medical image processing (Laousy et al., 2023), and malware classifica-
tion (Saha et al., 2024), where failures can have severe consequences. To address this challenge,
certified robustness has emerged as a promising research direction. Certifying the robustness of a
test case requires a mathematical guarantee that the model’s outputs remain unchanged within a pre-
defined ℓp-norm ball of radius ε around the input. The performance of these certification methods
is typically measured by the certified robust accuracy (CRA), which quantifies the proportion of
correctly predicted inputs that are also provably robust within a specified radius.

Research on robustness certification largely follows two methodological strands. The first, ran-
domized smoothing (RS) (Cohen et al., 2019b; Yang et al., 2021; Jeong et al., 2021; Carlini et al.,
2022), provides probabilistic guarantees by averaging a classifier’s predictions under additive noise.
The second exploits the Lipschitz properties of neural networks to yield deterministic (worst-case)
certificates (Huang et al., 2021; Araujo et al., 2023; Hu et al., 2024). In this work, we focus on
advancing the latter direction; a detailed comparison between the two appears in Appendix A.

Despite their theoretical appeal, Lipschitz-based certification methods have struggled to scale in
practice. A central critique is the weak performance on large-scale benchmarks: models often un-
derfit even small-sized datasets such as CIFAR-100 and degrade markedly on ImageNet (Hu et al.,
2023). Most systems still rely on small, VGG-style (Simonyan & Zisserman, 2014) architectures
with ≤32M parameters. Although recent work has explored deeper/larger architectures for certified
robustness (Hu et al., 2023; Araujo et al., 2023), the gains plateau quickly as model size increases.
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Examining existing work, we find that orthogonal matrices are fundamental to building 1-Lipschitz
networks because they enable tight Lipschitz bounds. However, they are also a major bottle-
neck that prevents Lipschitz-based certification from scaling. Existing methods either explicitly
re-parameterize orthogonal matrices or implicitly re-parameterize Lipschitz-bounded operations to
learn near-orthogonal matrices; both introduce substantial computational overhead (see Section 2.1).
To address this issue, we propose directly optimizing orthogonal matrices on the orthogonal mani-
fold. Although orthogonal manifold optimization is a mature technique, to our knowledge it has not
been exploited for certification. We further observe that in the large-model regime, where learning
rates are small, the matrix exponential can be accurately and efficiently approximated. Combining
these ideas, we reduce the additional per-update overhead to at most five matrix multiplications.

A natural path to scalability is transformers (Vaswani et al., 2017), which scale to billion-parameter
models and exhibit emergent abilities across a wide range of tasks (Wei et al., 2022). How-
ever, attention lacks straightforward Lipschitz control. Fortunately, ConvNeXt (Liu et al., 2022)
and MetaFormer (Yu et al., 2022b) suggest that Lipschitz-bounded architectures can benefit from
transformer-era design choices. Motivated by the simple token-mixing mechanisms in these modern
architectures (Yu et al., 2022b), we design a convolution-free shifting module paired with positional
encoding that uses simple shift operations to model spatial relations as the building block of our
model. Compared to prior work using heavy FFT-based convolution designs (Trockman & Kolter,
2021; Lai et al., 2025) or power-iteration-based Lipschitz regularization (Leino et al., 2021; Hu et al.,
2023), the shifting module adds minimal computational cost while preserving the capacity to model
spatial patterns.

Combining the aforementioned techniques, we propose LipNeXt, the first convolution-free and
constraint-free architecture for certified robustness. Benefiting from this design, we scale to billion-
parameter models and observe non-saturating gains with increasing model size. Our experiments
show that LipNeXt outperforms state-of-the-art methods in both clean accuracy and certified robust-
ness across CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet, highlighting the effectiveness
of our approach for scalable, provably robust deep learning.

Contributions. (i) A constraint-free manifold optimization scheme for learning orthogonal pa-
rameters at scale with efficient exponential approximations and stabilization; (ii) a theoretically mo-
tivated, convolution-free Spatial Shift Module that preserves Lipschitz control while enabling spatial
mixing; and (iii) state-of-the-art CRA and clean accuracy on standard benchmarks, with successful
scaling to billion-parameter models.

2 PRELIMINARY AND RELATED WORK

2.1 PRELIMINARIES

Lipschitz-based Method for Certified Robustness Consider a neural network f : Rd → R
and its corresponding binary classifier F (x) = sign(f(x)). We say that classifier F is ε-locally
robust at point x if for all perturbations x′ satisfying ∥x − x′∥p ≤ ε, we have F (x) = F (x′).
Certified robustness represents a stronger condition where the robustness property can not only be
empirically verified but also mathematically guaranteed.

Given an upper bound K on the Lipschitz constant of f , we can certify that F is locally robust at
x with a guaranteed robustness radius of |f(x)|/K. This certification follows from the Lipschitz
property, which bounds the maximum change in f(x) within the ε-ball around x.

For multi-class classification with N classes, we decompose the problem into N − 1 binary classi-
fication tasks using a one-vs-rest approach. The certified robustness radius of the N -class classifier
is then defined as the minimum certified radius across all constituent binary classifiers, thereby en-
suring robustness for the prediction.

To compute Lipschitz bounds for deep networks, we leverage the compositional property that the
Lipschitz constant of a composite function satisfies Lip(f ◦ g) ≤ Lip(f)Lip(g), where (f ◦ g)(x) =
f(g(x)). Consequently, for a feed-forward neural network, an upper bound on the overall Lips-
chitz constant can be efficiently computed as the product of the Lipschitz constants of all constituent
layers. However, this bound can be very loose, leading to an extremely small certified radius. There-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

fore, designing a network architecture for which a tight Lipschitz bound can be computed is crucial
to achieving satisfactory certified performance.

Orthogonal Manifold Optimization The orthogonal manifold is defined as the set of all orthog-
onal matrices: Md = {X ∈ Rd×d | X⊤X = Id}, where In denotes the d × d identity matrix.
Optimization problems on the orthogonal manifold can be formulated as:

min
X∈Md

f(X). (1)

A standard Euclidean gradient descent update of the form Xk+1 ← Xk − η∇f(Xk) with step size
η > 0 will generally cause Xk+1 to leave the manifold, since this update does not preserve orthogo-
nality constraints. Manifold optimization first projects the Euclidean gradient onto the tangent space
of the manifold, thereby removing the component of the gradient that is orthogonal to the manifold.
The Riemannian gradient (projected gradient) is given by:

grad f(X) = ∇f(X)−X sym(X⊤∇f(X)), (2)
where sym(A) = (A+A⊤)/2 denotes the symmetric part of matrix A. Once the Riemannian gra-
dient is computed, Exponential Map is employed to update Xk+1 while preserving orthogonality:

Xk+1 ← Xk exp
{
−η

2
skew(X⊤

k grad f(Xk))
}
, (3)

where skew(A) = (A − A⊤)/2, and exp(A) denotes the matrix exponential. Orthogonality is
preserved since exp(skew(A)) is orthogonal for any matrix A. Bécigneul & Ganea (2018) ex-
tended this optimization to adaptive optimizers like Adam, and algorithm 2 provides an example for
Manifold Adam Optimizer.

2.2 RELATED WORK

Re-parameterization for Lipschitz-based Certified Robustness The Lipschitz upper bound dis-
cussed in Section 2.1 can be tight when all weights in the feed-forward network are orthogonal or
near-orthogonal. Many methods have been proposed to parameterize weights as orthogonal ma-
trices to enhance Lipschitz-based certification performance. Singla & Feizi (2021) employed the
matrix exponential of a skew-symmetric matrix to construct orthogonal (1-Lipschitz) linear layers
and extended this approach to convolutions via Taylor expansion. Trockman & Kolter (2021) intro-
duced the Cayley transform, Cayley(A) = (I −A)−1(I +A), which yields an orthogonal matrix
when A is skew-symmetric. To apply this method to convolutions, the weights are transformed
into the frequency domain via FFT before applying the Cayley transform. Xu et al. (2022) pro-
posed LOT-Orth, defined as (AA⊤)−1/2A. To mitigate the computational overhead introduced
by the matrix square root in LOT-Orth, Hu et al. (2024) proposed Cholesky decomposition with
Cholesky-Orth(A) = Cholesky(AA⊤)−1A.

Alternative approaches focus on near-orthogonal architectures. Prach & Lampert (2022) intro-
duced the AOL layer: f(x,A) = Adiag(

∑
j |A⊤A|ij)−1x. Meunier et al. (2022) proposed the

1-Lipschitz CPL layer defined as f(x,A) = x− 2A⊤σ(Ax)/|A|22. Araujo et al. (2023) introduced
the SLL layer given by f(x,A, q) = x−2Adiag(

∑
j |A⊤A|ij ·qj/qi)−1σ(A⊤x). While the AOL,

CPL, and SLL layers may not be orthogonal at initialization, experimental evidence shows that these
layers converge to nearly orthogonality at the end of Lipschitz-based training.

Efficient Manifold Optimization for Orthogonality While the matrix exponential operation en-
sures orthogonality in manifold optimization (Section 2.1), its computation is computationally pro-
hibitive. Several methods have proposed efficient pseudo-geodesic retractions as alternatives to ex-
ponential mapping. Projection-based approaches by Absil & Malick (2012); Gawlik & Leok (2018)
map gradients back to the orthogonal manifold but rely on computationally expensive SVD oper-
ations. Other methods utilize the closed-form Cayley transform (Jiang & Dai, 2015; Zhu, 2017),
yet require costly matrix inversions. Wen & Yin (2013) reduced the computational cost of the Cay-
ley transform by imposing the restrictive assumption that for matrix dimensions n × p if 2p ≪ n.
However, this algorithm becomes inefficient when 2p ≥ n, which represents the majority of cases
in deep neural networks. Shustin & Avron (2024) employ randomized sketching methods to handle
large update matrices efficiently. Ablin & Peyré (2022) proposed a landing algorithm that avoids
costly matrix exponential retractions by using an efficient potential energy-based update scheme
that progressively pulls iterations onto the manifold.
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3 METHOD

Our proposed method, LipNeXt, is built upon two core technical innovations designed for scalable
certified robustness: a constraint-free optimization technique for learning orthogonal matrices and a
novel convolution-free spatial mixing operator. In this section, we first detail our manifold optimiza-
tion approach, which enables efficient and stable training of orthogonal parameters directly on the
Stiefel manifold. We then introduce the Spatial Shift Module, providing theoretical justification
for its design as the unique norm-preserving operator within the family of depth-wise convolutions.
Finally, we describe the overall LipNeXt architecture, which integrates these components into a
scalable and effective model.

3.1 CONSTRAINT-FREE LEARNING OF ORTHOGONAL MATRICES ON THE MANIFOLD

As discussed in Section 2.2, prior works use re-parameterization to learn orthogonal matrices ex-
plicitly or implicitly. We name these as constrained approaches, as the optimization variables do
not reside directly on the orthogonal manifold Md. In contrast, we adopt a constraint-free man-
ifold optimization perspective, where parameters are updated directly on the manifold, inherently
preserving orthogonality. Section 2.1 introduces the details of orthogonal manifold optimization.

A significant bottleneck in manifold optimization is the computational cost of the matrix exponen-
tial, exp(·) in Equation 3. Section 2.2 discussed solutions from prior work to address this issue.

However, we observe that there exists a very simple solution in the context of training neural net-
works. As the model size increases, the optimal learning rate for optimizers like Adam needs to
decrease, (e.g., 10−3). Thus the exponential component in Equation 3 often has a smaller Frobenius
norm (because multiped by the learning rate η). We propose approximating the exponential with a
norm-adaptive Taylor series truncation. For a given skew-symmetric update matrix A, we define:

FastExp(A) =


I +A+ 1

2A
2, if ∥A∥F < 0.05,

I +A+ 1
2A

2 + 1
6A

3, if 0.05 ≤ ∥A∥F < 0.25,

I +A+ 1
2A

2 + 1
6A

3 + 1
24A

4, if 0.25 ≤ ∥A∥F < 1,

exp(A), if ∥A∥F ≥ 1.

(4)

One issue of FastExp(·) is the truncation introduces small errors that violate exact orthogonality,
which can accumulate and destabilize training over time. To address this issue, we introduce two
stabilization techniques and mark them in Algorithm 1.

First, to control the accumulation of numerical errors from the truncated series, we perform a pe-
riodic polar retraction. At the end of each epoch, we project the matrix X back to the mani-
fold. This is achieved by computing the Singular Value Decomposition X = UΣV ⊤ and resetting
X ← UV ⊤, which finds the closest orthogonal matrix to X in the Frobenius norm. Although SVD
is also expensive, we only need to perform it once per epoch. This step is detailed in lines 20–22
(red text) of Algorithm 1.

Second, we adapt the Lookahead optimizer wrapper (Zhang et al., 2019) to the manifold setting.
In a nutshell, Lookahead optimizer wrapper updates the optimized parameters with an interpolation
between the correct weight and the weight K steps earlier every K steps:

If (t+ 1) mod K = 0, Xt ← 0.5Xt + 0.5Xt−K

However direct interpolation of orthogonal matrices breaks orthogonality. Applying the polar re-
traction after interpolation is also expensive if applied every K steps.

We instead interpolate the skew-symmetric updates in the tangent space. Suppose the learning rate
is small, and the exponential component of update (∆j) at every step is small:

Xt = Xt−1 exp(∆t) = Xt−K

t∏
j=t−K+1

exp(∆j) ≈ Xt−K exp(

t∑
j=t−k+1

∆j). (5)

Thus we can approximate 0.5Xt + 0.5Xt−K as Xt−K exp(
1

2

t∑
j=t−k+1

∆j). To understand this,

starting at xt−K , we update the parameters K steps and collect the update trajectories {∆j}tt−K+1,

4
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then we go back to Xt−K , and update Xt−K using the half of all K trajectories. Lines 12–28 (blue
text) of Algorithm 1 reflect this method.

Algorithm 1 Stabilized Manifold Adam Optimizer with FastExp
1: Input: learning rate η (on the order of 10−3), momentum coefficients β1 = 0.1 and β2 = 0.001.

Number of steps to perform a Lookahead update K, and number of steps in one epoch N .
2: Goal: Minimize f(X) on the orthogonal manifold beginning at orthonormal weight X ∈Md.
3: Set the fast weight X0 ← X and slow weight Xslow ← X
4: Set the Lookahead updating buffer B0 ← 0d×d.
5: Set the first and second moment m0 = 0d×d, v0 = 1d×d/d.
6: for step t in 1 · · · , T do
7: Compute the Euclidean gradient ∇f(Xt−1).
8: Compute the projected gradient grad f(Xt−1) using ∇f(Xt−1) and Xt−1 by Equation 2.
9: Update the first order moment: mt ← β1mt−1 + (1− β1)grad f((Xt−1).

10: Update the second order moment: vt ← β2vt + (1− β2)grad f(Xt−1) ∗ grad f(Xt−1).
11: Compute the exponential component ∆t ← −η ·mt/vt.
12: Update the Lookahead updating buffer Bt ← Bt +∆t.
13: if (t+ 1) mod K ̸= 0 then
14: Update the fast weight: Xt ← Xt−1 FastExp(∆t).
15: else
16: Update the slow weight: Xslow ← Xslow FastExp(Bt/2).
17: Update the fast weight with the slow weight: Xt ← Xslow.
18: Unset the updating buffer Bt ← 0n×n.
19: end if
20: if (t+ 1) mod N = 0 then
21: Perform SVD on the fast weight: Xt = UΣV ⊤.
22: Force orthogonalization: Xt ← UV ⊤, Xslow ← Xt.
23: end if
24: end for
25: Output: Xslow.

Relation to skew re-parameterization Skew re-parameterization constructs orthogonal matrices
via the matrix exponential of a skew-symmetric argument, i.e., exp(S) with S = X−X⊤. Building
on this idea, Singla & Feizi (2021) applies a truncated Taylor expansion of the matrix exponential to
implement orthogonal convolutions. In contrast, our manifold optimization exploits the regime of
small per-step updates, allowing the exponential map to be accurately approximated with lightweight
computations. As a result, we retain orthogonality with significantly lower cost. By comparison,
skew re-parameterization cannot leverage small-update structure in the same way, and SOC typi-
cally requires a larger truncation order to reliably preserve orthogonality, increasing computational
overhead and potential numerical error.

3.2 SPATIAL SHIFT MODULE: A CONVOLUTION-FREE DESIGN

Depthwise separable convolutions have demonstrated that effective spatial pattern learning requires
neither extensive parameterization nor computational overhead (Howard et al., 2017; Tan & Le,
2019; Liu et al., 2022). MetaFormer (Yu et al., 2022b) further showed that parameter-free operations
can replace depthwise convolutions while maintaining performance. Building on this trajectory
toward parameter efficiency, we introduce a convolution-free Spatial Shift Module tailored for
certified robustness.

1D formulation. For input sequence X = [x1, . . . , xn] ∈ Rd×n of length n with feature dimen-
sion d, we partition each token’s features into three parts: ai ∈ Rαd, bi ∈ Rαd, and ci ∈ R(1−2α)d.
The spatial shift operation S(X) applies circular shifts to the first two partitions:

X =

[
a1 a2 · · · an
b1 b2 · · · bn
c1 c2 · · · cn

]
, S(X) =

[
an a1 · · · an−2 an−1

b2 b3 · · · bn b1
c1 c2 · · · cn−1 cn

]
(6)

5
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This shifts the first partition right by one position and the second partition left by one position,
mixing adjacent token information without parameters. For 2D data, we extend to five partitions
enabling shifts along horizontal and vertical axes. Empirically, shift ratios α ∈ {1/8, 1/16} yield
optimal results.

Theoretical justification. Our design is motivated by norm-preservation requirements in certi-
fied robustness. The following theorem establishes fundamental constraints on Lipschitz-preserving
convolutions:

Theorem 1 Let X ∈ RH×W be a single-channel tensor and fK be spatial convolution with kernel
K ∈ Rk×k, unit stride, and circular padding. The operator fK is norm-preserving (tight 1-Lipschitz
isometric):

∥fK(X)− fK(Y )∥F = ∥X − Y ∥F , ∀X,Y ∈ RH×W

if and only if kernel K contains exactly one non-zero element with value ±1.

Theorem 1 reveals that norm-preserving depthwise convolutions reduce to spatial shifts. Our module
directly implements this principle. Proof of Theorem 1 is in Appendix B.3.

Circular padding and positional encoding. The strict norm preservation guaranteed by Theo-
rem 1 necessitates the use of circular padding. Nevertheless, in related applications such as FFT-
based convolution, zero-padding is a common alternative (Xu et al., 2022; Lai et al., 2025). The
rationale for this deviation is to avoid the artificial mixing of boundary features (e.g., an with b2)
that can occur with circular padding.

Szero-pad(X) =

[
0 a1 · · · an−2 an−1

b2 b3 · · · bn 0
c1 c2 · · · cn−1 cn

]
(7)

We also observe Szero-pad outperforms S in our convolutional-free architecture. However, we
would explain this with another hypothesis that zero-padding introduces position information to
the model (Islam et al., 2024). Under this hypothesis, we can address the issue by add explicit po-
sitional encoding to the input and keep the circular padding. Our experiments in Section 4 verifies
that this hypothesis is correct: by using circular padding S and explicit positional embedding, the
model achieving superior performance because of norm preservation guarantees.

3.3 THE LIPNEXT ARCHITECTURE

We now define the LipNeXt architecture, which integrates our manifold optimizer and Spatial Shift
Module. The core of the architecture is the LipNeXt block.

Let X ∈ RH×W×C be the input tensor. First, we add a learnable positional embedding p ∈
RH×W×1, which is broadcast across the channel dimension: X ′ = X + p. Next, we apply the
core mixing operation. We use an orthogonal matrix R ∈MC to project the channel-wise features,
apply the 2D Spatial Shift Module S, and then project back using R⊤:

Y = R⊤S(RX ′) ∈ RH×W×C . (8)

The projections R and R⊤ ensure that the shift operation is not always applied to the same fixed sub-
set of channels, enabling comprehensive feature mixing across all channels over successive blocks.
Without S, this operation reduces to an identity mapping Y = R⊤RX ′ = X ′. To learn more
complex transformations, we apply another orthogonal matrix M ∈MC and an activation σ:

Z = σ(MY + b) = σ(MR⊤S (R(X + p)) + b). (9)

For the activation, we propose β-Abs, a flexible and GPU-friendly 1-Lipschitz function. For an
input vector x ∈ Rd, it is defined channel-wise as:

[β-Abs(x)]i =
{
|xi|, if i ≤ βd

xi, otherwise.
(10)

6
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Table 1: Clean and Certified robust accuracy (CRA) of prior works and our LipNeXt models on
CIFAR-10/100 and TinyImageNet. The best results are marked in bold.

Datasets Models #Param. Clean
Acc.(%)

CRA. (%) at (ε)
36/255 72/255 108/255

CIFAR-10

Cayley Large (Trockman & Kolter, 2021) 21M 74.6 61.4 46.4 32.1
SOC-20 (Singla & Feizi, 2021) 27M 76.3 62.6 48.7 36.0
LOT-20 (Xu et al., 2022) 18M 77.1 64.3 49.5 36.3
CPL XL (Meunier et al., 2022) 236M 78.5 64.4 48.0 33.0
AOL Large (Prach & Lampert, 2022) 136M 71.6 64.0 56.4 49.0
SLL X-Large (Araujo et al., 2023) 236M 73.3 64.8 55.7 47.1
LiResNet (Hu et al., 2024) 83M 81.0 69.8 56.3 42.9
BRONet (Lai et al., 2025) 68M 81.6 70.6 57.2 42.5

LipNeXt L32W1024 64M 81.5 71.2 59.2 45.9
LipNeXt L32W2048 256M 85.0 73.2 58.8 43.3

CIFAR-100

Cayley Large (Trockman & Kolter, 2021) 21M 43.3 29.2 18.8 11.0
SOC-20 (Singla & Feizi, 2021) 27M 47.8 34.8 23.7 15.8
LOT-20 (Xu et al., 2022) 18M 48.8 35.2 24.3 16.2
CPL XL (Meunier et al., 2022) 236M 47.8 33.4 20.9 12.6
AOL Large (Prach & Lampert, 2022) 136M 43.7 33.7 26.3 20.7
SLL X-Large (Araujo et al., 2023) 236M 47.8 36.7 28.3 22.2
Sandwich (Wang & Manchester, 2023) 26M 46.3 35.3 26.3 20.3
LiResNet (Hu et al., 2024) 83M 53.0 40.2 28.3 19.2
BRONet(Lai et al., 2025) 68M 54.3 40.2 29.1 20.3

LipNeXt L32W1024 64M 53.3 41.3 30.5 21.8
LipNeXt L32W2048 256M 57.4 44.1 31.9 22.2

Tiny-ImageNet

SLL X-Large (Araujo et al., 2023) 1.1B 32.1 23.2 16.8 12.0
Sandwich (Wang & Manchester, 2023) 39M 33.4 24.7 18.1 13.4
LiResNet† (Hu et al., 2024) 83M 40.9 26.2 15.7 8.9
BRONet (Lai et al., 2025) 75M 41.2 29.0 19.0 12.1

LipNeXt L32W1024 64M 42.5 32.0 21.8 15.2
LipNeXt L32W2048 256M 45.5 35.0 25.9 18.0

β-Abs is a simple yet powerful non-linearity. We can show that the commonly used MinMax acti-
vation can be expressed by β-Abs if β = 0.5:

∃R ∈M2d, ∀x ∈ R2d MinMax(x) = R⊤β-Abs(Rx). (11)

The hyperparameter β ∈ [0, 1] controls the degree of non-linearity. We defer further discussion to
the Appendix B.1. A PyTorch-like code of the LipNeXt block is given at Appendix B.2.

The overall LipNeXt architecture adapts the macro-structure of LiResNet (Hu et al., 2023). We
replace the original LiResNet blocks with our LipNeXt blocks and substitute the Neck module
with a simple pooling layer, as our manifold optimizer is designed for square matrices. Following
the philosophy of Vision Transformers (Dosovitskiy et al., 2020), we rely on the scalability of the
backbone to learn effective features. To ensure the entire network is 1-Lipschitz, we use an L2
Spatial Pool, which computes the L2 norm over the spatial dimensions for each channel. For an
input X ∈ RH×W×C , the output is a vector in RC where the c-th component is:

[L2SpatialPool(X)]c =

√√√√ H∑
h=1

W∑
w=1

X2
h,w,c. (12)

This operation is 1-Lipschitz and serves as the final global pooling before classification.

4 EXPERIMENTS

In this section, we present the empirical evaluation of our approach. We first compare our method
with the SOTA certified robustness methods on the widely used CIFAR10, CIFAFR100 and Tiny-
ImageNet benchmark. Next we conduct scaling experiments to show the scalability of our model in
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Table 2: Comparison of clean and certified accuracy using extra diffusion generated data from.
Results of other methods are reported by Lai et al. (2025). The best results are marked in bold.

Lpschitz
Backbone #Param. CIFAR-10 CIFAR-100

Clean 36/255 72/255 108/255 Clean 36
255

72/255 108/255

LOT 59M 85.7 76.4 65.1 52.2 59.4 47.6 36.6 26.3
Cayley 68M 86.7 77.7 66.9 54.3 61.1 48.7 37.8 27.5
Cholesky 68M 85.4 76.6 65.7 53.3 59.4 47.4 36.8 26.9
SLL 83M 85.6 76.8 66.0 53.3 59.4 47.6 36.6 27.0
SOC 83M 86.6 78.2 67.0 54.1 60.9 48.9 37.6 27.8
Lip-reg 83M 86.7 78.1 67.0 54.2 61.1 48.9 37.5 27.6
BRO 68M 87.2 78.3 67.4 54.5 61.6 49.1 37.7 27.2

Ours L32W2048 256M 88.2 79.2 68.0 54.9 62.1 51.2 38.5 27.5
Ours L32W2896 512M 92.7 81.7 68.6 55.8 63.6 55.2 39.2 28.3

terms of network depth, network with and dataset size. We use the EMMA loss (Hu et al., 2023)
for our training and follow the same training receipts in LiResNet++ (Hu et al., 2024). See Code for
implementation details. By default, we do not use diffusion-generated synthetic data.

Main Results We compare LipNeXt against SOTA baselines. Table 1 reports clean accuracy, cer-
tified robust accuracy (CRA), and parameter counts. For LiResNet (Hu et al., 2023), we follow the
setting without diffusion-generated synthetic data, using the numbers reported by Lai et al. (2025).
Results that leverage diffusion-generated data are presented separately in the next table. LipNeXt
achieves the strongest performance on nearly all metrics; the only exception is CRA at ε = 108/255
on CIFAR-10, where AOL (Prach & Lampert, 2022) is higher. However, AOL attains this point by
incurring a substantial drop in clean accuracy and in CRA at the other radii. Even under the similar
parameter budgets, our smaller configuration L32W1024 outperforms prior work by clear margins.

Performance with extra data As we further scale up LipNeXt, we continue to observe improve-
ment in clean accuracy, but a decrease in CRA. This is a known issue called robust overfitting (Rice
et al., 2020; Yu et al., 2022a) due to the small dataset size. Following prior work (Hu et al., 2024;
Lai et al., 2025), we add diffusion-generated synthetic data to the training set to solve this issue,
and use the generated data provided by Hu et al. (2024). Table 2 shows LipNeXt can effectively
leverages these synthetic datasets to enhance performance.

Performance on ImageNet The main criticism of Lipschitz-based certification is the poor per-
formance on large-scale datasets like ImageNet. We show that LipNeXt is feasible to scale up and
achieve non-vanishing performance as model size increases. We consider two certification radius
ε = 36/255, widely used for Lipschitz based method and ε = 1, widely used for randomized smooth-
ing based method. Since the difference between the two radii is large, we train two models with
different hyper-parameters. Specifically, the maximum training radius is set as 1.5 times of the test
radius. Table 3 shows the comparison with prior work. By scaling to billon-level large models,
LipNeXt outperforms prior work by 8% for ε = 1 and 3% for ε = 36/255.

Training stability and efficiency. The wall-clock training time in Table 3 is measured using a
single 8×H100 machine. The L32W5792 configuration is trained with two such machines, and we
normalize the reported speed to an equivalent single-node throughput. LipNeXt adopts a constraint-
free optimization whose forward and backward passes involve only orthogonal matrix multiplica-
tions and spatial shift operations, and we train it using bfloat16. By contrast, LiResNet em-
ploys power iteration to estimate per-block Lipschitz constants and regularizes the backbone Lips-
chitz (the product across blocks) in the loss. On ImageNet we observe numerical instability when
training LiResNet with bfloat16 (numeric overflow occurs occasionally), so we can only use
float32 for LiResNet instead. BRONet builds 1-Lipschitz convolutional networks via FFT-based
frequency convolutions, which require complex arithmetic in both forward and backward passes.
Because mainstream training frameworks currently support only complex32, this effectively in-
curs float64-like memory and compute overheads and prevents BRONet from fully leveraging

8
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Table 3: Comparison of clean accuracy and CRA on ImageNet. “Use EMD” indicates training with
additional diffusion-generated data, and training speed is reported in minutes per epoch.

Lipschitz Model #Param. Training Use ε = 1 ε = 36/255
Speed EDM Clean Acc. CRA Clean Acc. CRA

LiResNet 51M 5.3 ✗ 18.8 14.2 45.6 35.0
LiResNet++ 83M - ✓ - - 49.0 38.3

BRONet 86M 10.5 ✗ - - 49.3 37.6
BRONet 86M - ✓ - - 52.3 40.7

Ours L32W4096 1B 8.9 ✗ 40.2 21.1 55.9 40.3
Ours L32W5792 2B 17.8 ✗ 41.0 22.4 57.0 41.2

Table (a): Fix depth as 32
width Acc. CRA.

1024 40.5 22.9
1456 43.5 24.5
2048 45.8 26.2
2896 48.5 28.2
4096 51.7 30.0

Table (b): Fix width as 2048
depth Acc. CRA.

8 30.7 22.4
16 43.5 24.7
32 45.8 26.2
64 47.0 26.9
128 47.5 26.8

Table (c): Fix #Param as 1B
depth, width Acc. CRA.

(8, 8192) 49.5 28.6
(16, 5792) 50.4 29.2
(32, 4096) 51.7 30.0
(64, 2896) 51.2 29.6
(128, 2048) 50.1 28.9

Table 4: Clean accuracy and CRA at ε = 1 on ImageNet (400 classes). Each sub-table fixes one
factor (depth, width, or parameters) to study different configurations.

low-precision accelerators. As a result, LipNeXt can continuously benefit from hardware advances
due to its more stable architecture and optimization. Despite scaling to substantially larger models
than LiResNet and BRONet, LipNeXt achieves training throughput on par with prior work, enabling
further scaling. We leave training LipNeXt on large-scale image-text pair datasets as a future work.

Scaling experiments We demonstrate clear scaling trends for LipNeXt across both backbone
depth and width dimensions. Due to computational constraints, we conduct experiments on a ran-
domly sampled subset of 400 ImageNet classes, reporting clean accuracy and CRA at ε = 1 in
Table 4. We systematically evaluate three scaling scenarios: (a) fixing backbone depth at 32 layers
while varying width, (b) fixing backbone width at W = 2048 while varying depth, and (c) constrain-
ing the total parameter count to 1B while exploring different depth-width configurations. Our results
reveal that LipNeXt exhibits favorable scaling properties with respect to both architectural dimen-
sions, with performance improvements observed when increasing either depth or width. Notably,
under fixed parameter budgets, a depth of 32 layers yields optimal performance.

Ablation Studies Due to space constraints, extended ablations are provided in Appendix C. Ta-
ble 5 evaluates the two stabilization techniques for FastExp; Table 6 isolates the contribution of
the spatial shift module; Table 7 compares padding and positional embedding choices; and Table 4
ablates activation functions.

5 CONCLUSION

We presented LipNeXt, a scalable 1-Lipschitz architecture that is both constraint-free and
convolution-free. On the optimization side, we update orthogonal parameters directly on the man-
ifold using a stabilized scheme, eliminating power-iteration penalties and avoiding the numerical
fragility that inhibits low-precision training in prior work. On the architectural side, we replace
depthwise convolutions with a theoretically grounded Spatial Shift Module. Together, these choices
enable LipNeXt to scale cleanly in depth and width and to realize consistent gains in both clean ac-
curacy and CRA. Empirically, LipNeXt establishes new state of the art across CIFAR-10/100, Tiny-
ImageNet, and ImageNet with billion-parameter models, while maintaining competitive throughput
and stable bfloat16 training. These results indicate that deterministic, Lipschitz-based certification
can track modern scaling trends and further scale up.

9
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6 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code have been made available in the Supplementary Materials. We provide Proof of Theorem 1 in
Appendix B.3.

7 LLM USAGE

Large Language Models (LLMs) were utilized to assist in the writing and refinement of this
manuscript. Specifically, we employed an LLM to enhance the clarity, readability, and overall co-
herence of various sections. The model contributed to tasks such as sentence rephrasing, grammar
correction, and improving the flow of the text.

The authors take full responsibility for the entirety of the manuscript, including any text generated
or refined with the assistance of the LLM. We have ensured that all LLM-generated content adheres
to ethical standards and does not contribute to plagiarism or scientific misconduct.
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A ADDITIONAL RELATED WORK

In contrast to the deterministic robustness guarantees emphasized in this work, Randomized Smooth-
ing (RS) (Cohen et al., 2019a) provides probabilistic guarantees and has been extensively studied
at ImageNet scale (Salman et al., 2019; Jeong et al., 2021; Salman et al., 2020). Diffusion meth-
ods (Carlini et al., 2022; Xiao et al., 2022) are introduced to denoise the addictive noise and further
improve the performance.

Despite these successes, RS methods face two fundamental limitations that constrain their practical
applicability. First, their inherently probabilistic nature introduces the possibility of false positives,
where adversarial examples may be incorrectly certified as robust. While existing RS approaches
typically maintain false positive rates below 0.1%, even this level of uncertainty renders them un-
suitable for security-critical applications where certification guarantees must be absolute. Although
one can reduce the false positive rates by improve the confidence level α, it will then require sig-
nificant greater number of noised images, which leads to the second limitation: the computational
overhead of RS-based certification is prohibitive, necessitating thousands to tens of thousands of
forward passes per image due to reliance on concentration inequalities with tight tail bounds. This
computational burden has confined most empirical evaluations to small test subsets of at most 1,000
images, limiting the scope of practical validation.

B ADDITIONAL METHOD EXPLANATION

Algorithm 2 shows the naive Adam Optimization. The major issue of this optimization is the high
computational cost of matrix exponential.

Algorithm 2 Manifold Adam Optimizer
1: Input: learning rate η, momentum coefficients β1 and β2, optimization objective f(X).
2: Initialize X as an orthonormal matrix, and the first and second moment m = v = 0
3: for step t in 1 · · · , T do
4: Compute the Euclidean gradient ∇f(X);
5: Compute the projected gradient grad f(X) using ∇f(X) and X by Equation 2;
6: Update the first order moment: m← β1m+ (1− β1)grad f(X);
7: Update the second order moment: v ← β2v + (1− β2)grad f(X) ∗ grad f(X);
8: Rescale m̂← m/(1− βt

1) v̂ ← v/(1− βt
2);

9: Update the weights: X ← X exp(−η · m̂/(
√
v̂ + ϵ)

10: end for

B.1 FURTHER DISCUSSION ABOUT β-ABS ACTIVATION

We show that the commonly used MinMax activation can be expressed by β-Abs if β = 0.5.

Theorem 2 Consider 2d-dimensional input x = (x1, x2)
⊤ where x1, x2 ∈ Rd. Define

R =
1√
2

[
Id Id
−Id Id

]
,

we have
MinMax(x) = R⊤β-Abs(Rx)

Proof: First

β-Abs(Rx) = β-Abs(
1√
2

[
x1 + x2

−x1 + x2

]
) =

1√
2

[
|x1 + x2|
−x1 + x2

]
Then

R⊤β-Abs(Rx) =
1

2

[
|x1 + x2|+ x1 − x2

|x1 + x2| − x1 + x2

]
) =

[
max(x1, x2)
min(x1, x2)

]
.

Here max and min are element wise operations for vectors. Theorem 2 shows that MinMax and
β-Abs should have the same expressive ability. Increasing β introduces more non-linearity and
decreasing β introduces more linearity. However, MinMax only has the flexibility to introduces
more linearity.
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B.2 PYTORCH-LIKE CODE FOR THE LIPNEXT BLOCK

Bellow is a PyTorch-like Code for the LipNeXt block for a better understanding.

1 def shift_fn(x, alpha=1/16):
2 c = x.shape[3]
3 d = int(c * alpha)
4 a0, a1, a2, a3, a4 = torch.split(
5 x, [c - d * 4, d, d, d, d], dim=3)
6

7 a1 = torch.roll(a1, dims=1, shifts=1)
8 a2 = torch.roll(a2, dims=1, shifts=-1)
9 a3 = torch.roll(a3, dims=2, shifts=1)

10 a4 = torch.roll(a4, dims=2, shifts=-1)
11

12 x = torch.cat([a0, a1, a2, a3, a4], dim=3)
13 return x
14

15 def beta_abs(x, beta=0.75):
16 d = int(x.shape[1] * beta)
17 x = torch.cat([x[..., :d].abs(), x[..., d:]], dim=1)
18 return x
19

20 def lipnext_block(x, R, M, b, pos)
21 # shape of x: (B, H, W, C)
22 # shape of R and M: (C, C)
23 # shape of b: (C)
24 # shape of pos: (H, W, 1)
25 x = x + pos
26 x = F.linear(x, r)
27 x = shift_fn(x)
28 x = F.linear(x, w @ r.T, b)
29 x = beta_abs(x)
30 return x

B.3 PROOF OF THEOREM 1

Part 1: (⇐) Sufficiency

Assume the kernel K contains exactly one non-zero element with value c = ±1. Let this element
be at position (i0, j0), so Ki0,j0 = c and all other elements of K are zero.

The convolution fK is a linear operator. Therefore, we can write:

∥fK(X)− fK(Y )∥F = ∥fK(X − Y )∥F
Let Z = X − Y . We need to show that ∥fK(Z)∥F = ∥Z∥F .

The result of the convolution, let’s call it W = fK(Z), is given by:

Wi,j =

k−1∑
m=0

k−1∑
n=0

Km,nZi−m,j−n

where the indices for Z are taken modulo H and W due to circular padding. Since only Ki0,j0 is
non-zero, this sum simplifies to a single term:

Wi,j = Ki0,j0Zi−i0,j−j0 = c · Zi−i0,j−j0

This means the output tensor W is a circularly shifted version of the input tensor Z, with each
element multiplied by c.

Now, let’s compute the squared Frobenius norm of W :

∥W∥2F =

H−1∑
i=0

W−1∑
j=0

|Wi,j |2 =

H−1∑
i=0

W−1∑
j=0

|c · Zi−i0,j−j0 |2
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Since c = ±1, we have c2 = 1.

∥W∥2F =

H−1∑
i=0

W−1∑
j=0

Z2
i−i0,j−j0

The mapping (i, j) 7→ (i − i0 (mod H), j − j0 (mod W )) is a bijection on the set of indices.
Therefore, the sum on the right is simply a reordering of the sum of the squared elements of Z.

H−1∑
i=0

W−1∑
j=0

Z2
i−i0,j−j0 =

H−1∑
i′=0

W−1∑
j′=0

Z2
i′,j′ = ∥Z∥2F

Thus, we have shown that ∥fK(Z)∥2F = ∥Z∥2F , which implies ∥fK(Z)∥F = ∥Z∥F . This completes
the first part of the proof.

Part 2: (⇒) Necessity

Assume that fK is norm-preserving, i.e., ∥fK(X)−fK(Y )∥F = ∥X−Y ∥F for all X,Y ∈ RH×W .
As before, let Z = X − Y . The condition is equivalent to stating that fK is a linear isometry with
respect to the Frobenius norm:

∥fK(Z)∥F = ∥Z∥F , ∀Z ∈ RH×W

We analyze this condition in the frequency domain. LetF denote the 2D Discrete Fourier Transform
(DFT), and let Â = F(A). The convolution theorem for circular convolution states:

F(fK(Z)) = K̂ ′ ⊙ Ẑ

where K ′ is the kernel K zero-padded to size H ×W , and ⊙ denotes element-wise (Hadamard)
product.

Parseval’s theorem relates the Frobenius norm of a tensor to the Frobenius norm of its DFT:

∥A∥2F =
1

HW
∥Â∥2F

Applying Parseval’s theorem to our isometry condition ∥fK(Z)∥2F = ∥Z∥2F :

1

HW
∥F(fK(Z))∥2F =

1

HW
∥Ẑ∥2F

∥K̂ ′ ⊙ Ẑ∥2F = ∥Ẑ∥2F
Expanding the norms in terms of their elements:

H−1∑
u=0

W−1∑
v=0

|K̂ ′
u,v · Ẑu,v|2 =

H−1∑
u=0

W−1∑
v=0

|Ẑu,v|2

H−1∑
u=0

W−1∑
v=0

|K̂ ′
u,v|2|Ẑu,v|2 =

H−1∑
u=0

W−1∑
v=0

|Ẑu,v|2

This can be rewritten as:
H−1∑
u=0

W−1∑
v=0

(
|K̂ ′

u,v|2 − 1
)
|Ẑu,v|2 = 0

Since this equality must hold for any tensor Z, it must hold for any possible DFT Ẑ. Let us choose
a Ẑ that has only one non-zero element, say Ẑu0,v0 = 1 and all other elements are zero. For this
choice, the equation simplifies to:(

|K̂ ′
u0,v0 |2 − 1

)
· 12 = 0 =⇒ |K̂ ′

u0,v0 |2 = 1

As we can make this choice for any frequency pair (u0, v0), it must be that |K̂ ′
u,v| = 1 for all u, v.

Now we use this property to derive constraints on the spatial domain kernel K.
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1. Sum of Squares of Elements: Apply Parseval’s theorem to the padded kernel K ′ itself:

∥K∥2F = ∥K ′∥2F =
1

HW
∥K̂ ′∥2F =

1

HW

H−1∑
u=0

W−1∑
v=0

|K̂ ′
u,v|2

Since we found that |K̂ ′
u,v|2 = 1 for all (u, v), the sum becomes

∑
u,v 1 = HW .

∥K∥2F =
1

HW
(HW ) = 1 =⇒

∑
i,j

K2
i,j = 1

2. Sum of Elements: Consider the DC component of the DFT, i.e., (u, v) = (0, 0):

K̂ ′
0,0 =

H−1∑
i=0

W−1∑
j=0

K ′
i,je

−0 =

k−1∑
i=0

k−1∑
j=0

Ki,j

Since |K̂ ′
0,0| = 1, we must have: ∣∣∣∣∣∣

∑
i,j

Ki,j

∣∣∣∣∣∣ = 1

Let {k1, k2, . . . , kN} be the set of N non-zero elements in the kernel K. From our derivations, we
have two conditions on these elements:

1.
∑N

i=1 k
2
i = 1

2.
(∑N

i=1 ki

)2
= 1

We can expand the second condition:(
N∑
i=1

ki

)2

=

N∑
i=1

k2i + 2
∑

1≤i<j≤N

kikj = 1

Substituting the first condition into this expansion:

1 + 2
∑

1≤i<j≤N

kikj = 1 =⇒
∑

1≤i<j≤N

kikj = 0

We now have
∑

k2i = 1 and
∑

k2i = (
∑

ki)
2. Let’s consider the Cauchy-Schwarz inequality on

the vectors a = (1, 1, . . . , 1) ∈ RN and b = (k1, k2, . . . , kN ) ∈ RN :
(a · b)2 ≤ ∥a∥22∥b∥22(

N∑
i=1

ki

)2

≤

(
N∑
i=1

12

)(
N∑
i=1

k2i

)
Plugging in our conditions:

1 ≤ N · 1
Equality holds if and only if one vector is a scalar multiple of the other, i.e., b = ca for some scalar
c. This means all non-zero elements must be equal: k1 = k2 = · · · = kN = c.

Let’s impose this equality on our conditions:

1.
∑N

i=1 c
2 = Nc2 = 1

2.
(∑N

i=1 c
)2

= (Nc)2 = N2c2 = 1

Substituting c2 = 1/N from the first equation into the second gives:

N2

(
1

N

)
= N = 1

This shows that there must be exactly one non-zero element (N = 1).

Let this single non-zero element be k1. From condition 1, k21 = 1, which implies k1 = ±1.
Therefore, for fK to be norm-preserving, the kernel K must contain exactly one non-zero element
with a value of +1 or −1. This completes the second part of the proof.
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C ADDITIONAL RESULTS

Table 5: Ablation study on the effectiveness of the two stabilization techniques for FastExp.
LipNeXt

L32W2048
CIFAR-10 CIFAR-100

Clean 36/255 72/255 108/255 Clean 36
255

72/255 108/255

Algorithm 1 85.0 73.2 58.8 43.3 57.4 44.1 31.9 22.2
No Periodic polar retraction 84.8 72.3 57.2 42.0 57.2 43.3 31.4 21.3
No Lookahead 84.4 72.4 57.8 42.7 57.4 43.5 31.4 21.7

Table 5 shows the effectiveness of the two stabilization techniques for FastExp. Removing either
would lead to constant performance drop.

Table 6: Ablation study on the effectiveness of the spatial shift module
LipNeXt

L32W2048
CIFAR-10 CIFAR-100

Clean 36/255 72/255 108/255 Clean 36
255

72/255 108/255

α = 1/16 (baseline) 85.0 73.2 58.8 43.3 57.4 44.1 31.9 22.2
α = 0 (no shift) 62.2 53.6 43.7 32.2 40.8 32.0 22.3 14.3
α = 1/4 (shift all channels) 79.0 67.4 51.4 38.3 52.5 39.1 26.4 18.2

Table 6 shows the effectiveness of the spatial shift module. Setting α = 1/16 shifts one quarter of the
channels (distributed across four directions). We examine two extremes: α = 0, which applies no
spatial shift, and α = 1/4, which shifts all channels. As expected, α = 0 performs poorly because
the model cannot capture spatial interactions. Interestingly, α = 1/4 also degrades performance; we
hypothesize that shifting every channel removes absolute positional cues, preventing the model from
retaining information about the original locations.

Table 7: Ablation study on the design choices of the padding and positional embedding
Padding

Type
Positional
Encoding

CIFAR10
clean Acc.

CIFAR10
CRA

CIFAR100
clean Acc.

CIFAR100
CRA

Circular ✓ 85.0 73.2 57.4 44.1
Circular ✗ 84.3 72.1 56.2 43.2

Zero ✗ 84.5 72.4 56.5 43.5
Zero ✓ 84.6 72.6 56.8 43.7

Table 7 presents an ablation of padding and positional encoding choices. As discussed in Section 3,
without positional encoding, zero padding outperforms circular padding because it implicitly intro-
duces positional information. With positional encoding enabled, the trend reverses: circular padding
is preferable since it guarantees a Lipschitz-tight transformation.

Table 8: Ablation study on the choice of activations
LipNeXt

L32W2048
CIFAR-10 CIFAR-100

Clean 36/255 72/255 108/255 Clean 36
255

72/255 108/255

MinMax 84.4 72.7 58.0 42.6 56.9 43.5 31.2 21.4
β = 0.5 84.6 72.9 58.3 42.9 57.1 43.8 31.5 21.7
β = 0.75 (default) 85.0 73.2 58.8 43.3 57.4 44.1 31.9 22.2
β = 1.0 84.3 72.5 58.1 42.3 56.5 43.2 31.0 20.8

Table 8 ablates the activations. As we shown in Appendix B.1, β-Abs and MinMax should have
the same expressive ability when β = 0.5. Experiments show that MinMax is slighter worse than
β = 0.5. We can adjust β to control the non-linearity, and β = 1 degrades to the absolution function
is not optimal because it breaks identical mapping.
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