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Abstract

The recent emergence of diffusion models has significantly advanced the precision
of learnable priors, presenting innovative avenues for addressing inverse problems.
Previous works have endeavored to integrate diffusion priors into the maximum a
posteriori estimation (MAP) framework and design optimization methods to solve
the inverse problem. However, prevailing optimization-based rithms primarily
exploit the prior information within the diffusion models while neglecting their
denoising capability. To bridge this gap, this work leverages the diffusion process
to reframe noisy inverse problems as a two-variable constrained optimization
task by introducing an auxiliary optimization variable that represents a ’noisy’
sample at an equivalent denoising step. The projection gradient descent method is
efficiently utilized to solve the corresponding optimization problem by truncating
the gradient through the µ-predictor. The proposed algorithm, termed ProjDiff,
effectively harnesses the prior information and the denoising capability of a pre-
trained diffusion model within the optimization framework. Extensive experiments
on the image restoration tasks and source separation and partial generation tasks
demonstrate that ProjDiff exhibits superior performance across various linear and
nonlinear inverse problems, highlighting its potential for practical applications.
Code is available at https://github.com/weigerzan/ProjDiff/.

1 Introduction

Denoising diffusion models have achieved tremendous success in the field of generative modeling
[1–5]. Their remarkable ability to capture data priors provides promising avenues for solving inverse
problems [6], which are widely exploited in image restoration [7–12], medical image processing
[13, 14], 3D vision [15], audio processing [16, 17] and beyond.

Numerous endeavors have sought to harness diffusion models to address inverse problems [18–
27]. Since the sampling process of diffusion models is a reverse Markov chain, most approaches
attempt to integrate the guidance provided by the observation equation into the sampling chain. For
instance, DDRM [20] achieves favorable results for linear inverse problems with low complexity
by introducing a new variational distribution. DDNM [21] capitalizes on the concept of null-
range decomposition, effectively rectifying the range-space component of the intermediate steps by
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Figure 1: Framework of ProjDiff. We introduce an auxiliary variable xta and transform the inverse
problem into a two-variable constrained optimization problem which can be solved using the projec-
tion gradient method.

leveraging the observation information. DPS [23] guides the generation process using the gradients
of intermediate steps with respect to the observation error. Moreover, methods based on Monte Carlo
Particle Filtering [25–27] are employed to approximate the true posterior.

Since inverse problems are often modeled as maximum a posteriori (MAP) estimations, recent
efforts have been made to explicitly integrate diffusion models as the prior term in the optimization
framework [28, 24]. [28] proposed to employ the Evidence Lower Bound (ELBO) to approximate
the prior, facilitating the application of diffusion models in inverse problems in a plug-and-play
manner. [24] achieved analogous results from a variational perspective. In these optimization-
based methods, due to the presence of the observation noise, a common practice is to adopt a
Gaussian likelihood. However, it’s worth noting that, since diffusion models are inherently effective
at denoising, considering the observation noise in the likelihood term fails to fully leverage diffusion
models’ denoising capability.

To fully utilize both the prior information and the denoising capability inherent in diffusion models
within the optimization framework, we introduce an auxiliary optimization variable to accommodate
the influence of the observation noise. We derive a novel two-variable objective based on the
properties of the diffusion process and transform the inverse problem into a constrained optimization
task. Through gradient truncation, we obtain a more practical approximation of the stochastic gradient
of the objective which sidesteps significant computational overhead. The proposed algorithm, termed
ProjDiff, tackles the inverse problem by employing the concept of projection gradient descent to
solve the corresponding optimization task. We also discuss the noise-free version of ProjDiff as a
special case, which, compared to other optimization-based methods, ensures superior consistency
between the generated results and observations. ProjDiff’s applicability also extends beyond linear
observations to encompass nonlinear functions, which enhances its competitiveness and versatility.

We demonstrate the outstanding performance of ProjDiff through comprehensive experiments on
various benchmarks. In both linear and nonlinear image restoration tasks, ProjDiff exhibites superior
performance among existing state-of-the-art (SOTA) algorithms. In the music separation task, ProjDiff
shows for the first time, to the best of our knowledge, that a diffusion-based separation algorithm can
surpass previous SOTA, which further demonstrates the powerful potential of diffusion models and
provides insights to better harness their capabilities in inverse problems for future research.

2 Backgrounds

2.1 Denoising diffusion models

Denoising diffusion models [1–3] are a class of latent variable generative models tailored to capture a
targeted data distribution q(x). Diffusion models typically predefine a forward process characterized
as a Markov chain, wherein the transition probability is stipulated as Gaussian distribution:
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q(x0:T ) = q(x0)

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt; atxt−1, btI), (1)

where at and bt represent the scale and variance parameters, respectively. The sampling process of
diffusion models aims to invert the forward chain via a parameterized reverse process, which is also
modeled as a Markov chain with learnable parameter θ:

pθ(x0:T ) = pθ(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1; fθ(xt, t), σ
2
t I), (2)

where fθ denotes the mean function and the variance σ2
t is predefined. In this work, we primarily focus

on the Variance Preservation (VP) diffusion [19]1, characterized by parameters at =
√
αt, bt = 1−αt

with α0 ≈ 1 and
∏T

t=0 αt ≈ 0. With these parameters, we have q(xt|x0) = N (xt;
√
αtx0, (1 −

αt)I), where αt =
∏t

i=0 αt. The initial distribution of the reverse process is set to match the forward
process, i.e., pθ(xT ) = N (0, I), while the mean function is chosen as

fθ(xt, t) =
√
αt−1µθ(xt, t) +

√
1− αt−1 − σ2

t

xt −
√
αtµθ(xt, t)√
1− αt

. (3)

Here µθ serves as an estimation of x0 at time t, typically implemented through a parameterized
neural network referred to as a “µ-predictor”2. The variance σ2

t ∈ [0, 1 − αt−1] can take various

values. When σt =
√

1−αt−1

1−αt

√
1− αt

αt−1
, the reverse process aligns with DDPM [2]; while when

retaining σt = σ̃t as an adjustable parameter, one obtains DDIM [3]. We refer to [19, 29–31] for
more theoretical guarantees of diffusion models.

2.2 Diffusion models as data prior

As stated in [32, 28], for a well-trained diffusion model, the Evidence Lower Bound (ELBO) can
effectively approximate the log-likelihood of the samples, i.e.

log q(x0) ≈ C −
T∑

t=1

λ(t)Eq(xt|x0)||x0 − µθ(xt, t)||2, (4)

where λ(t) represents the coefficient within the ELBO and C is a constant. Utilizing the ELBO as
the log-prior term enables diffusion models to serve as a plug-and-play prior for general inverse
problems. [28] handled the ELBO via stochastic gradient descent and the reparameterization method.
By sampling t ∼ U {1, 2, . . . , T} and ϵ ∼ N (0, I), a stochastic gradient of the ELBO can be derived
as

dt,x0
=
(
Dx0

µθ

(√
αtx0 +

√
1− αtϵ, t

)
− I
) (

x0 − µθ(
√
αtx0 +

√
1− αtϵ, t)

)
, (5)

where Dx0µθ(·) denotes the Jocabian of the µ-predictor. [24] derived a similar proxy objective from
the perspective of variational inference, and proposed a more computationally efficient approximation
of the stochastic gradient by reweighting the objective. Notably, when the variational distribution is
a delta function, variational inference aligns with the MAP estimation. In this work, we introduce
a novel two-variable ELBO by constructing an auxiliary variable that accounts for the observation
noise, thereby utilizing both the prior information and the denoising capability in diffusion models
simultaneously.

2.3 Equivalent noisy samples

As stated in [26], the noisy observation of a sample can be regarded as a noise-free observation of
an equivalent noisy sample at certain steps in the diffusion process. For linear observations y =
Ax0+σn, where x0 ∈ Rmx , y ∈ Rmy , and n ∈ N (0, Imy), a common practice [20, 21, 26] involves
the Singular Value Decomposition (SVD) to attain a decoupled form. Without loss of generality,
assume A has full row rank. Utilizing the SVD A = USVT yields UTy = S(VTx0) + σn, thus

1This work is also effective for Variance Exploding (VE) diffusion. We defer the discussion to Appendix B.
2The case of ϵ-predictor is similar, with the conversion given by µθ(xt) =

(
xt −

√
1− αtϵθ(xt)

)
/
√
αt.
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transforming the observation equation to y = Sx0 + σn, where y = UTy and x0 = VTx0, which
can be further written element-wise as

yi

si
= x0,i +

σ

si
ni, 1 ≤ i ≤ my, (6)

where x0,i and yi represent the ith component of x0 and y, respectively, and si denotes the ith singular
value of A. Assuming there exist ti ∈ {1, 2, . . . , T} , 1 ≤ i ≤ my such that αti = 1/(1 + (σ/si)

2),
let y′

i =
√
αtiyi/si and then the observation function can be rewritten as

y′
i =

√
αtix0,i +

√
1− αtini. (7)

√
αtix0,i +

√
1− αtini can be interpreted as the ith component of a sample at time step ti, namely

xti,i. Thus [26] proposed to employ Monte Carlo Particle Filtering to restore the samples up to the
equivalent noise level, and then apply the backward transition to map these noisy samples back to the
clean samples. In this work, we introduce this equivalent noisy sample as an auxiliary variable, thus
better handling the observation noise in the optimization framework.

3 Method

In this section, we introduce the ProjDiff algorithm. The main idea behind ProjDiff lies in constructing
an auxiliary variable to align the noisy observations to specific steps of the diffusion process, thereby
forming a two-variable constrained optimization task, which can be tackled by approximating the
stochastic gradients and employing the projection gradient descent method. We begin by deriving the
ProjDiff algorithm for noisy linear observations and then discuss its noise-free version as a special
case and the extension of ProjDiff to accommodate nonlinear observations.

3.1 ProjDiff

Consider the Gaussian observation equation y = Ax0 + σn. The goal of the inverse problem is to
recover the original data x0 given y, A, and σ. The decoupled observation equation in (7) indicates
that one can apply SVD to reduce a linear observation into the simple form with A = [Imy ,0]
in the spectral domain, which implies the observation y represents the first my components of x.
Consequently, we can focus on this simplest observation function to declare our algorithm. Under this
condition, assuming there exists some ta ∈ [0, 1, . . . , T ]3 such that αta = 1/

(
1 + σ2

)
, we rewrite

the observation function as

y′ =
[
Imy ,0

] (√
αtax0 +

√
1− αtan

′
)
, (8)

where y′ = y/
√
1 + σ2 and n′ ∼ N (0, Imx). The noisy observation y′ can be interpreted as a

noise-free observation of
√
αtax0 +

√
1− αtan

′, which in turn can be viewed as a sample in the
manifold of q(xta). Thus, we introduce an auxiliary variable xta which denotes a noisy sample at
time step ta, and propose to optimize the log-posterior term of the two variables as

max
x0,xta

log q(x0,xta |y) = max
x0,xta

log q(y|x0,xta) + log q(x0,xta)− log q(y) (9)

≈ max
x0,xta

log q(y|x0,xta) + log pθ(x0,xta)− log q(y), (10)

where in (10) we use pθ to approximate the true prior q. By the construction of the auxiliary variable
xta , the likelihood term embodies a stringent consistency between this auxiliary variable and the
noisy observation, which serves as a constraint. Note that log q(y) is independent of the optimization
variables, thus (10) is transformed into the following constrained optimization task:

max
x0,xta

log pθ(x0,xta) s.t. y′ =
[
Imy , 0

]
xta . (11)

Now we seek the ELBO as a proxy of the joint log-prior term of x0 and xta to render it tractable.
Leveraging Jensen’s inequality and the transition probability of the diffusion model, we reach the
following proposition.

3In practice, ta may not always be an integer, while the derivation remains similar. We concentrate on the
scenario where ta assumes an integer in the main text. More discussions are deferred to the Appendix.
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Proposition 1. Considering the DDIM reference distribution qσ, we have the variational lower
bound of the log-prior term as

log pθ(x0,xta) ≥ C −
ta∑
t=1

Eqσ(xt|x0,xta )

(
g(t)||x0 − µθ(xt, t)||2

)
︸ ︷︷ ︸

(1) denoising matching term

−
T∑

t=ta+1

Eqσ(xt|xta ),ϵ
′∼N (0,I)

(
g(t)

∣∣∣∣∣∣xta−
(√

αtaµθ(xt, t)+
√
1−αtaϵ

′
)∣∣∣∣∣∣2+w(t)⟨µθ(xt, t),ν⟩

)
︸ ︷︷ ︸

(2) noisy prior term

,

(12)
where C is a constant independent of x0 and xta , the weight g(t), w(t) are functions of αt and the

DDIM variance σ̃t, and ν =
(
xt −

√
αt

αta
xta

)
/
√
1− αt

αta
.

The complete derivation of the lower bound is provided in Appendix A. Note that the summation on
the right-hand side of (12) is partitioned into two parts. The first part, the denoising matching term,
pertains to the approximation of log pθ(x0|xta), signifying the consistency between the noise-free
variable x0 and the auxiliary variable xta . The second part, the noisy prior term, corresponds to the
approximation of the log-prior of the noisy auxiliary variable xta . Conceptually, the workflow of
utilizing this ELBO for inverse problems can be delineated as follows: the noisy prior term, coupled
with the constraint on the auxiliary variable, exploits the prior information of the diffusion model
and the observation information to recover a noisy sample xta that satisfies the observation equation,
while the denoising matching term leverages the denoising capability of the diffusion model to restore
the clean sample x0 from the noisy sample xta .

Now, we address the ELBO outlined in Proposition 1 utilizing the principle of the stochastic gradient
method. The constant C is independent of the optimization variables and can therefore be disregarded.
The following proposition is obtained through reparameterization.
Proposition 2. Randomly sampling t ∼ U {1, 2, . . . , T} , ϵ, ϵ′ ∼ N (0, I), the stochastic gradients
of the proxy objective (for minimization) with respect to x0 and xta are, respectively,

dx0,t =

{
∇x0
||x0 − µθ (ht, t)||2 t ≤ ta;

0 t > ta,
(13)

dxta ,t
=

{
∇xta

||x0 − µθ (ht, t)||2 t≤ ta;

∇xta
||xta−(

√
αtaµθ (ht, t)+

√
1−αtaϵ

′)||2+w(t)/g(t)∇xta
⟨µθ (ht, t) , ϵ⟩ t>ta,

(14)
where

ht =

{√
αtx0 + γt(xta −

√
αtax0)/

√
1− αta + ζtϵ t ≤ ta;√

αt/αtaxta +
√
1− αt/αtaϵ t > ta,

(15)

and γt, ζt are determined by αt and the DDIM variance σ̃t.

The coefficients are omitted as they can be scaled into the step sizes. Note that in such stochastic
gradients, the Jacobian of µθ(·) is involved, which necessitates backpropagation through the neural
network and incurs significant computational and storage overhead. Therefore, we use an approximate
yet effective and practical method by truncating the gradients in µθ(·), i.e. Dx0

µθ(·) ≈ 0 and
Dxta

µθ(·) ≈ 0. Intuitively, the µ-predictor of the diffusion model should be resilient to small
perturbations in the input. For instance, when we feed a noisy image into a pre-trained diffusion
model and introduce minor perturbations to the original image, we anticipate the predicted image to
maintain consistency with the original one. Thus the approximation for x0 is acceptable, and similarly
for xta if the noise level of xta is not too large. By such gradient truncation, the approximation of the
stochastic gradients for x0 and xta are, respectively,

d̃x0,t =

{
x0 − µθ (ht, t) t ≤ ta;

0 t > ta,
(16)

d̃xta ,t
=

{
0 t ≤ ta;

xta −
√
αtaµθ(ht, t)−

√
1− αtaϵ

′ t > ta.
(17)
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Note that x0 is not subject to the constraint and can be updated directly by stochastic gradient
descent. xta is involved in the equality constraint, so we apply the projection gradient descent method.
Considering the projection operator of the observation in (11), an iteration step of the proposed
algorithm is outlined as follows

x0 ← x0 − η1d̃x0,t, (18)

xta ←
[
Imy ,0my×(mx−my)

]T
y′ + diag

(
0my×my , Imx−my

) (
xta − η2d̃xta ,t

)
, (19)

where η1 and η2 are selected step sizes and diag(·) denotes the operation of arranging entries into a
diagonal matrix. We term this algorithm ProjDiff.

Algorithm 1 ProjDiff for VP diffusion (noisy observation).

Require: Observation y′, pre-trained diffusion model µθ, step sizes η1, η2, total steps T , noise
schedule α1 . . . αT , equivalent noise level αta .

1: Sample ϵT , ϵ
′
T ∼ N (0, I);

2: Initialize xta ←
√
αtaµθ(ϵT , T ) +

√
1− αtaϵ

′
T ;

3: for t = T to ta + 1 do
4: Sample ϵ, ϵ′ ∼ N (0, I);
5: Calculate the approximate stochastic gradient d̃xta ,t

as (17);
6: Update xta as (19);
7: end for
8: Initialize x0 ← µθ(xta , ta);
9: for t = ta to 1 do

10: Sample ϵ ∼ N (0, I);
11: Calculate the approximate stochastic gradient d̃x0,t as (16);
12: Update x0 as (18);
13: end for
14: return x0

3.2 Noise-free observations: a special case

In the noise-free scenario, the observation equation becomes y = Ax0 and the auxiliary variable xta
degrades to ta = 0, thus the constraint is directly applied on x0. The corresponding optimization
problem can be expressed as

min
x0

T∑
t=1

λ(t)Eq(xt|x0)||x0 − µθ(xt, t)||2 s.t. y = Ax0. (20)

Utilizing reparameterization and gradient truncation, the approximate stochastic gradient of the
objective is

d̃t,x0
= x0 − µθ

(√
αtx0 +

√
1− αtϵ, t

)
. (21)

Then the iteration of ProjDiff in the noise-free scenario is given by:

x0 ← A†y +
(
I−A†A

)
(x0 − ηd̃t,x0

), (22)

where A† is the Moore-Penrose pseudo-inverse of matrix A and η is the selected step size. The
principle of the ProjDiff algorithm in noise-free scenarios resides in treating the observation as a
constraint. In contrast to [24] where the authors used Gaussian likelihood for noise-free observations,
ProjDiff guarantees better consistency between the generated results and the observations.

3.3 Extension to nonlinear observation

Nonlinear inverse problems are inherently more ill-posed than linear ones. For instance, in our
experiments, we consider the phase retrieval task, which aims to recover the original image given
only the Fourier magnitude spectrum. The observation equation is:

y = |DFT(Px0)| , (23)
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where P is the zero-padding matrix. Effectively addressing nonlinear inverse problems can signifi-
cantly enhance the algorithm’s versatility. Here, we discuss about the ProjDiff algorithm for nonlinear
observations concerning noise-free and noisy scenarios.

For noise-free nonlinear observation functions, the key point of ProjDiff lies in identifying an
appropriate projection operator for the nonlinear constraint y = A(x0). For some nonlinear functions
A(·), such a projection operator is analytic or can be approximated. For more intricate functions, we
can resort to gradient descent or sub-gradient methods to minimize ||y −A(x)||2 starting from the
initial point x0 to approximate the projection operator. Thus ProjDiff is applicable to such class of
nonlinear observations.

For noisy inverse problems, ProjDiff necessitates mapping the noise applied on the observation to
the noise applied on the original data x0. Such a mapping is strict in the linear case. For nonlinear
observations, the exact equivalent noise might not be accessible but may be estimated through some
appropriate approach. In cases where the observation function is overly complex, one may leave
the determination of the equivalent noise variance as a hyperparameter to be manually tuned. This
renders ProjDiff applicable to noisy nonlinear observations.

3.4 Time steps, initialization, and Restricted Encoding

Here we elaborate on crucial details and address the weak observation problem.

Time steps. In practice, we observe that selecting time steps in a decreasing manner from T to 1
yields the optimal performance and provides more stable results with reduced oscillations, which
aligns with the findings reported in [28, 24]. Therefore, we adopt this time step schedule as the
default setting in this work. Furthermore, we note that in certain scenarios, repeating the same time
step multiple times (say N times) leads to enhanced performance, which bears a resemblance to the
correction step proposed in [19] and the time-travel technique in [21].

Initialization. We propose to use random initialization in the ProjDiff algorithm. The core concept
entails initializing x0 and xta to be close to the manifold of q(x0) and q(xta), respectively, which is
achievable via the µ-predictor (or the Tweedie’s formula [33]) and the forward process. Randomly
sampling a Gaussian noise ϵT ∼ N (0, I), we initialize the optimization variables by x0 ← µθ(ϵT , T )
and xta ←

√
αtax0 +

√
1− αtaϵ

′
T for some ϵ′T ∼ N (0, I). Nonetheless, given the time step

schedule and the form of the stochastic gradients discussed above, we note that the x0 remains
unaltered until xta is fully optimized. Therefore, for noisy observations, it would be more efficient to
re-initialize x0 as µθ(xta , ta) once xta has been optimized.

Weak observation problem. In most image restoration tasks, the constraints imposed by observations
are typically strong enough to lead to a unique original data point, rendering ProjDiff effective in
yielding satisfactory results. However, in scenarios where observations are weak, particularly in
situations with significant degrees of freedom in the inverse problem, the performance of ProjDiff
tends to decline. We term these scenarios the weak observation problem. Drawing inspiration from
[34], where the authors found that including a larger variance when remapping x0 to xt leads to
noisy results, we attempt to adjust the noise schedule to diminish the variance of the sampled xt. We
propose Restricted Encoding to tackle the weak observation problem, which entails fixing an initial
noise ϵ0 ∼ N (0, I) and reparameterizing the sampling of xt as

xt =
√
αtx0 + ξϵ0 +

√
1− αt − ξ2ϵ, (24)

where ϵ ∼ N (0, I), and ξ ∈ [0,
√
1− αt] regulates the level of randomness.

The complete implementation of ProjDiff for noisy observations is outlined in Algorithm 1. More
variations of ProjDiff used in our experiments can be found in Appendix H.

4 Experiments.

We present the comparison of the proposed ProjDiff algorithm with several SOTA algorithms in two
primary scenarios: (1) image restoration, and (2) source (music) separation and partial generation.
All experiments are performed on a single NVIDIA 3090ti GPU.
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Table 1: Noisy restoration on ImageNet with σ = 0.05. The LPIPS metrics are multiplied by 100.

Super-Resolution Inpainting Gaussian Deblurring
NFEs Method

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
- A†y 21.85 / 0.45 / 65.34 / 183.32 14.21 / 0.24 / 67.42 / 176.52 17.78 / 0.29 / 60.25 / 100.05

1000 DPS 24.44 / 0.67 / 31.81 / 36.17 30.15 / 0.86 / 17.76 / 22.03 24.26 / 0.64 / 37.03 / 50.17

100 DDRM 25.66 / 0.72 / 34.88 / 55.71 29.99 / 0.87 / 17.11 / 19.88 27.82 / 0.79 / 28.62 / 45.96

100 DDNM+ 25.61 / 0.72 / 34.45 / 54.10 30.00 / 0.87 / 17.09 / 20.08 27.90 / 0.79 / 28.63 / 46.54

100 RED-diff 22.74 / 0.49 / 53.24 / 96.26 9.85 / 0.17 / 83.92 / 281.65 23.74 / 0.50 / 48.12 / 68.23

100 ProjDiff 25.73 / 0.73 / 34.12 / 55.03 31.09 / 0.89 / 13.65 / 13.69 27.91 / 0.79 / 25.11 / 32.27

Table 2: Phase retrieval results. The LPIPS metrics are multiplied by 100.

NFEs Method
Phase Retrieval σ = 0 Phase Retrieval σ = 0.1

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
- ER 11.15 / 0.19 / 84.48 / 409.91 11.16 / 0.19 / 84.43 / 412.59

- HIO 11.97 / 0.25 / 82.06 / 342.52 11.87 / 0.24 / 82.18 / 339.13

- OSS 12.57 / 0.35 / 81.08 / 360.98 12.55 / 0.25 / 81.20 / 364.52

1000 DPS 13.19 / 0.20 / 67.14 / 172.56 12.58 / 0.18 / 67.56 / 134.64

1000 RED-diff 14.19 / 0.28 / 63.42 / 173.52 12.36 / 0.14 / 75.98 / 221.11

1000 ProjDiff 33.39 / 0.74 / 20.42 / 35.91 23.84 / 0.60 / 38.55 / 76.20

4.1 Image restoration

Linear tasks. We demonstrate the performance of ProjDiff across three linear image restoration
tasks on ImageNet [35]: 4× super-resolution (with average pooling), 50% random inpainting, and
Gaussian deblurring. Comparisons are conducted against prominent diffusion-based image restoration
algorithms in recent years, including DDRM [20], DDNM+ [21], DPS [23], and RED-diff [24]. The
performance of the least square solution (x̂0 = A†y) is reported as a baseline. For a fair comparison,
DDRM, DDNM, RED-diff, and ProjDiff utilize 100 function evaluations, while DPS uses 1000
function evaluations as its performance significantly declines with 100 steps. The pre-trained model
on ImageNet is sourced from [36], specifically the 256 × 256 model without classifier guidance.
Testing is conducted on a 1k sub-testset of ImageNet consistent with [21]. Metrics include PSNR,
SSIM [37], LPIPS [38], and FID [39], with all LPIPS values multiplied by 100 for clarity.

Table 1 presents the restoration metrics for noisy observations with standard deviation σ = 0.05
(doubled when pixels are rescaled to [−1, 1]) on ImageNet. ProjDiff demonstrated highly competitive
performance compared to other algorithms. Some visualization results are shown in Figure 2. More
experiments on ImageNet and CelebA [40] alongside ablation studies are shown in Appendix C.

Nonlinear tasks. We evaluate the effectiveness of ProjDiff for nonlinear observations through the
challenging phase retrieval task on the FFHQ dataset [41]. We compare ProjDiff against DPS [23]
and RED-diff [24] as they are applicable to nonlinear observations. Traditional baseline algorithms
are also reported, including the Error Reduction (ER) algorithm [42], Hybrid Input-Output (HIO)
[43], and Oversampling Smoothness (OSS) [44]. Table 2 presents the results for both noise-free
and noisy scenarios. One sample is generated per image from each algorithm. Given the inherently
ill-posedness of phase retrieval, ProjDiff requires more steps to achieve superior results. We set the
number of function evaluations to 1000 for all three algorithms. The results demonstrate that ProjDiff
excels in addressing nonlinear inverse problems, regardless of whether the observation is noise-free
or noisy. Some visualization results are shown in Figure 3. Further experiments on the high dynamic
range (HDR) task can be found in Appendix C.
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Figure 2: Linear restoration on CelebA (σ = 0.05). Baseline means x̂0 = A†y.

Figure 3: Nonlinear restoration on FFHQ (noise-free).

4.2 Source separation and partial generation

We evaluate ProjDiff on source separation and partial generation tasks following [45, 46]. The
SLACK2100 dataset [47] is employed and the pre-trained diffusion models are sourced from [45].

The objective of the source separation task is to separate the audio tracks of four instruments (piano,
bass, guitar, and drums) from a mixed audio sequence. We compare ProjDiff against the methods
reported in [45], along with RED-diff [24] due to its relevance to this work. Performance is assessed
using the scale-invariant SDR improvement (SI-SDRi) [48] for each instrument as well as their
average. Tabel 3 presents the performance on the ISDM model [45] of different algorithms. ProjDiff
demonstrates significant performance improvements compared to other diffusion-based algorithms.
The particularly noteworthy result is that ProjDiff surpasses the Demucs method [49], marking the
first instance, to the best of our knowledge, where a diffusion-based separation algorithm significantly
outperforms previous SOTA, not to mention that the diffusion model is not specifically designed or
trained for the separation task.

The partial generation task aims to generate tracks of other instruments given partial of the instruments
tracks while ensuring harmony. We employ the sub-FAD metrics [50, 45] for different partial
generation tasks. Note that partial generation poses a weak observation problem as discussed in
Section 3.4, thus the proposed Restricted Encoding method is applied for ProjDiff. The results are
shown in Table 4. ProjDiff outperforms other algorithms across different partial generation tasks.
Additional results and in-depth analysis including ablation studies can be found in Appendix D.

5 Conclusion

In this work, we introduce ProjDiff, a versatile inverse problem solver that harnesses the power of
diffusion models to capture intricate data prior and denoise simultaneously. By deriving a novel
two-variable ELBO as a proxy for the log-prior, we reframe the inverse problems as constrained
optimization tasks and address them via the projection gradient method. We meticulously explore
the implementation details of ProjDiff and propose refined initialization methods and optional noise
schedules to enhance its performance. Through extensive experiments across image restoration tasks
and source separation and partial generation tasks, we demonstrate the competitive performance and
versatility of ProjDiff in linear, nonlinear, noise-free, and noisy problems. ProjDiff provides insights
into better leveraging diffusion priors for inverse problems for future work.
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Table 3: SI-SDRi for source separation task (higher is better).

Method Bass Drums Guitar Piano Average
Demucs+Gibbs* 17.16 19.61 17.82 16.32 17.73
ISDM-Gaussian 14.27 19.10 12.74 12.20 14.58

ISDM-Dirac 19.36 20.90 14.70 14.13 17.27
RED-diff 17.96 21.60 15.99 15.33 17.72
ProjDiff 20.09 22.91 17.29 16.62 19.23

* Previous SOTA.

Table 4: The sub-FAD metrics on different partial generation tasks (lower is better). The capital
letters in the table header represent the initial letters of the generated instruments. For example, BD
represents the task of generating bass and drums given piano and guitar.

Method B D G P BD BG BP DG DP GP BDG BDP BGP DGP
MSDM 0.43 1.30 0.12 0.73 1.79 0.79 1.60 1.59 2.00 1.47 2.19 2.63 3.02 3.02

RED-diff 0.44 2.26 0.18 0.71 3.66 1.14 2.56 3.10 3.26 1.74 5.65 7.73 6.14 4.87
ProjDiff 0.42 1.15 0.31 0.60 1.37 0.69 1.06 1.41 1.60 1.17 1.66 1.79 1.85 2.25

Limitations and future work. One of the possible limitations of ProjDiff is the potential challenge of
effectively handling noisy observations with highly intricate functions. Also, its reliance on Gaussian
observation noise may limit its applicability to other noise types like Poisson or multiplicative
noise. Additionally, ProjDiff needs manual tuning for the step size. Future research could focus
on extending ProjDiff to tackle intricate noisy nonlinear observations more effectively, as well as
developing adaptive step size strategies to further enhance the performance while reducing the need
for manual intervention.
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Appendix
In the appendix, we provide further details and additional experimental results omitted in the main text.
First, we present the complete derivations of the propositions for the ProjDiff algorithm (Appendix
A), and then provide the derivations for ProjDiff in the variance exploding setting (Appendix B). Next,
we present additional numerical results. For the image restoration tasks, we report the results of noise-
free scenarios on the ImageNet dataset, both noise-free and noisy scenarios on the CelebA dataset,
the nonlinear HDR task on the FFHQ dataset, and the ablation studies (Appendix C). For source
separation and partial generation tasks, results on the MSDM model, and ablation experiments with
waveform visualizations are shown in Appendix D. Then we provide the details of the experiments,
including the mathematical form of the inverse problems, and the details for calculating metrics
(Appendix E). The implementation details of ProjDiff for various inverse problems are discussed in
Appendix F, especially the details for the phase retrieval task and high dynamic range task. Discussion
about the performance gap between ProjDiff and the MAP framework is presented in Appendix G.
Algorithm blocks for all kinds of ProjDiff used in this work are outlined in Appendix H. Finally, we
include more visualizations of the restoration results to present the performance of ProjDiff intuitively
in Appendix I.

A Derivation for ProjDiff in VP diffusion

A.1 Preliminaries and lemmas

Assume y = Ax0 +n = [Imy ,0]x0 +n. For general linear observations, SVD can be used to reach
this decoupled form in the spectral domain. We rewrite the observation equation as

y′ =
[
Imy ,0

] (√
αtax0 +

√
1− αtan

′
)
, (25)

where αta = 1/
(
1 + σ2

)
for some ta ∈ [0, 1, . . . , T ], y′ =

√
αtay and n′ ∼ N (0, Imx). This

makes the y′ a noise-free observation for a sample at time step ta, namely the auxiliary variable xta .

We consider the DDIM reference distribution as

qσ(x1:T |x0) = qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt,x0), (26)

where the transition probability follows

qσ(xT |x0) = N (0, I),

qσ(xt−1|xt,x0) = N
(
xt−1;

√
αt−1x0 +

√
1− αt−1 − σ̃2

t

xt −
√
αtx0√

1− αt
, σ̃2

t I

)
,

(27)

where σ̃t is the variance hyperparameter in DDIM. We further choose σ̃t = σt =√
1−αt−1

1−αt

√
1− αt

αt−1
for t > ta, which makes the stochastic process between ta and T Markov. For

t ≤ ta, we leave σ̃t a hyperparameter. Thus the reference distribution can be rewritten as

qσ(x1:T |x0) = qσ(xT |xta)qσ(xta |x0)

ta∏
t=2

qσ(xt−1|xt,x0)

T∏
t=ta+2

qσ(xt−1|xta ,xt). (28)

Thus

qσ(x1:T\ta |xta ,x0) = qσ(xT |xta)

ta∏
t=2

qσ(xt−1|xt,x0)

T∏
t=ta+2

qσ(xt−1|xta ,xt). (29)

The following Lemma regarding transition probabilities can be proved by induction.
Lemma 1. The conditional distribution of xt conditioning on xta and x0 is

qσ(xt|xta ,x0) =

{
N
(
xt;
√

αt/αtaxta , (1− αt/αta) I
)

t > ta;

N
(
xt;
√
αtx0 + γt (xta −

√
αtax0) /

√
1− αta , ζ

2
t I
)

t ≤ ta,
(30)
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where

γt =
√
1− αta − σ̃2

ta

ta−1∏
k=t

√
1− αk − σ̃2

k+1
√
1− αk+1

, ζt =

√√√√ta−1∑
k=t

σ̃2
k+1. (31)

Proof. When t > ta, (30) holds as the chain between ta and T Markov.

When t < ta, (30) and (31) holds when t = ta as it is equal to the DDIM reference distribution. We
assume (30) and (31) holds when t = t0 ∈ {1, 2, . . . , ta}, then when t = t0 − 1, we have

qσ(xt0−1|xta ,x0) =

∫
dxt0qσ(xt0−1,xt0 |xta ,x0)

=

∫
dxt0qσ(xt0−1|xt0 ,x0)qσ(xt0 |xta ,x0). (32)

qσ(xt0−1|xt0 ,x0) is a Gaussian distribution according to the DDIM refernece distribution, and
qσ(xt0 |xta ,x0) is a Gaussian distribution due to the inductive hypothesis. Then by the convolution
law of two Gaussian distributions, (30) and (31) hold when t = t0 − 1. By induction, Lemma 1
concludes.

The following lemma can be proved using Bayes’s formula.
Lemma 2. The conditional distribution of xt−1 conditioned on xta and xt for t ≥ ta + 2 is

qσ(xt−1|xt,xta)=N

(
xt−1;

√
αt−1/αtaxta +

√
1− αt−1/αta − σ̂2

t

xt −
√
αt/αtaxta√

1− αt/αta

, σ̂2
t I

)
,

(33)
where

σ̂2
t = (1− αt/αt−1) (1− αt−1/αta) / (1− αt/αta) . (34)

Proof. By Bayes’s formula,

qσ(xt−1|xt,xta) =
qσ(xt|xt−1,xta)qσ(xt−1|xta)

qσ(xt|xta)
=

qσ(xt|xt−1)qσ(xt−1|xta)

qσ(xt|xta)
. (35)

Substituting the transition probability for t ≥ ta, we obtain the conclusion of Lemma 2.

The transition probability of pθ follows qσ as pθ(xt−1|xt) = qσ(xt−1|µθ(xt, t),xt) for t ≥ 2, and
pθ(x0|x1) = N (x0;µθ(x1, 1), σ̃

2
1I).

A.2 Proof of Proposition 1

Proof. Based on the above preliminaries, we derive the ELBO of log pθ(x0,xta) as follows:

log pθ(x0,xta) = log

∫
dx1:t\ta log pθ(x0:T )

qσ(x1:T\ta |x0,xta)

qσ(x1:T\ta |x0,xta)

≥
∫

dx1:t\ta log

(
pθ(xT )

T∏
t=1

pθ(xt−1|xt)
qσ(x1:T\ta |x0,xta)

qσ(xT |xta)
∏ta

t=2 qσ(xt−1|xt,x0)
∏T

t=ta+2 qσ(xt−1|xta ,xt)

)

=Eqσ(x1|x0,xta )
log pθ(x0|x1)−

ta∑
t=2

Eqσ(xt|xta ,x0)DKL (qσ(xt−1|xt,x0)||pθ(xt−1|xt))︸ ︷︷ ︸
(1)

+ Eqσ(xta+1|xta )
log pθ(xta |xta+1)−

T∑
t=ta+2

DKL(qσ(xt−1|xt,xta)||pθ(xt−1|xt))︸ ︷︷ ︸
(2)

−DKL(qσ(xT |xta)||pθ(xT )).
(36)
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The KL divergence between qσ(xT |xta) and pθ(xT ) is zero as they are both N (0, I) by the setting
of diffusion models. Now we handle (1) and (2) respectively.

(1) pθ(x0|x1) is Gaussian and thus we have

Eqσ(x1|x0,xta )
log pθ(x0|x1) = c1 −

1

2σ̃2
1

Eqσ(x1|x0,xta )
||x0 − µθ(x1, 1)||2 , (37)

where by writing ci we denote the term independent of x0 and xta . qσ(xt−1|xt,x0) and pθ(xt−1|xt)
are also Gaussian, so by the KL divergence of the Gaussian distributions, we have (for t ≤ ta)

Eqσ(xt|x0,xta )
DKL(qσ(xt−1|xt,xta)||pθ(xt−1|xt))

=c2 +
1

2σ̃2
t

Eqσ(xt|x0,xta )

∣∣∣∣∣
∣∣∣∣∣√αt−1x0 +

√
1− αt−1 − σ̃2

t

xt −
√
αtx0√

1− αt
−
√

αt−1µθ(xt, t)

−
√
1− αt−1 − σ̃2

t

xt −
√
αtµθ(xt, t)√
1− αt

∣∣∣∣∣
∣∣∣∣∣
2

=c2 +
1

2σ̃2
t

(√
αt−1 −

√
1− αt−1 − σ̃2

t√
1− αt

√
αt

)2

Eqσ(xt|x0,xta )
||x0 − µθ(xt, t)||2.

(38)

(2) Similarly,

Eqσ(xta+1|xta )
log pθ(xta |xta+1)

=c3 −
1

2σ2
ta+1

Eqσ(xta+1|xta )

∣∣∣∣∣
∣∣∣∣∣xta −

√
αtaµθ(xta+1, ta + 1)

−
√
1− αta − σ2

ta+1

xta+1 −
√
αta+1µθ(xta+1, ta + 1)√

1− αta+1

∣∣∣∣∣
∣∣∣∣∣
2

,

(39)

and for t ≥ ta + 2

Eqσ(xt|xta )
DKL (qσ(xt−1|xt,xta)||pθ(xt−1|xt))

=c4 +
1

2σ2
t

Eqσ(xt|xta )

∣∣∣∣∣
∣∣∣∣∣√αt−1/αtaxta +

√
1− αt−1/αta − σ̂2

t

xt −
√
αt/αtaxta√

1− αt/αta

−
√
αt−1µθ(xt, t)−

√
1− αt−1 − σ2

t

xt −
√
αtµθ(xt, t)√
1− αt

∣∣∣∣∣
∣∣∣∣∣
2

.

(40)

Here we apply the reparameterization trick in advance. We write

xt = xt(ϵ) =
√

αt/αtaxta +
√
1− αt/αtaϵ, (41)

where ϵ ∼ N (0, I), since qσ(xt|xta) = N (xt;
√

αt/αtaxta , (1 − αt/αta)I) for t ≥ ta + 1.
Substitute this into (39) and we have
Eqσ(xta+1|xta )

log pθ(xta |xta+1)

=c3 + Eϵ∼N (0,I)
1

2σ2
ta+1

∣∣∣∣∣
∣∣∣∣∣
1−

√
αta+1

αta

√
1− αta − σ2

ta+1
√
1− αta+1

(xta −
√
αtaµθ(xta+1(ϵ), ta + 1)

)

−

√
1− αta − σ2

ta+1
√
1− αta+1

√
1− αta+1

αta

ϵ

∣∣∣∣∣
∣∣∣∣∣
2

=c′3 + Eqσ(xta+1|xta ),ϵ
′∼N (0,I)g(ta + 1)||xta −

(√
αtaµθ(xta+1, ta + 1) +

√
1− αtaϵ

′
)
||2

+ Eqσ(xta+1|xta )
w(ta + 1)

〈
µθ(xta+1, ta + 1),

xta+1 −
√
αta+1/αtaxta√

1− αta+1/αta

〉
,

(42)
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where

g(ta + 1) =
1

2σ2
ta+1

1−

√
αta+1

αta

√
1− αta − σ2

ta+1

1− αta+1

2

, (43)

w(ta + 1) =
1

σ2
ta+1

1−

√
αta+1

αta

√
1− αta − σ2

ta+1

1− αta+1

√1− αta − σ2
ta+1

1− αta+1

√
1− αta+1

αta

. (44)

And also (40) is (for t ≥ ta + 2)
Eqσ(xt|xta )

DKL(q(xt−1|xt,xta)||pθ(xt−1|xt))

=c′4 + g(t)Eqσ(xt|xta ),ϵ
′∼N (0,I)||xta −

(√
αtaµθ(xt, t) +

√
1− αtaϵ

′
)
||2

+ w(t)Eqσ(xt|xta )

〈
µθ(xt, t),

xt −
√
αt/αtaxta√

1− αt/αta

〉
,

(45)

with

g(t) =
1

2σ2
t

√αt−1

αta

−

√
1− αt−1 − σ2

t

1− αt

√
αt

αta

2

, (46)

w(t)=
1

σ2
t

√αt−1 −

√
1− αt−1 − σ2

t

1− αt

√
αt

√1− αt−1 − σ2
t

1− αt

√
1− αt

αta

−

√
1− αt−1

αta

−σ̂2
t

 .

(47)

Thus by integrate (37), (38), (42), and (45), we obtain the Variantional Lower bound of pθ(x0,xta)
as follows:

log pθ(x0,xta)

≥C −
ta∑
t=1

Eqσ(xt|x0,xta )

(
g(t)||x0 − µθ(xt, t)||2

)
−

T∑
t=ta+1

Eqσ(xt|xta ),ϵ
′∼N (0,I)

(
g(t)

∣∣∣∣∣∣xta −
(√

αtaµθ(xt, t) +
√

1− αtaϵ
′
)∣∣∣∣∣∣2

+ w(t)

〈
µθ(xt, t),

xt −
√
αt/αtaxta√

1− αt/αta

〉)
.

(48)

Here we reach the result of Proposition 1., with the coefficient g(t) is given by

g(t) =



1
2σ̃2

1
t = 1;

1
2σ̃2

t

(√
αt−1 −

√
1− αt−1 − σ̃2

t

√
αt√

1−αt

)2
2 ≤ t ≤ ta;

1
2σ2

ta+1

(
1−

√
αta+1

αta

√
1−αta−σ2

ta+1

1−αta+1

)2

t = ta + 1;

1
2σ2

t

(√
αt−1

αta
−
√

1−αt−1−σ2
t

1−αt

√
αt

αta

)2

ta + 2 ≤ t ≤ T,

(49)

and w(t) is give by

w(t)=


1

σ2
ta+1

(
1−

√
αta+1

αta

√
1−αta−σ2

ta+1

1−αta+1

)√
1−αta−σ2

ta+1

1−αta+1

√
1− αta+1

αta
t= ta+1;

1
σ2
t

(
√
αt−1−

√
1−αta−σ2

t

1−αt

√
αt

)(√
1−αt−1−σ2

t

1−αt

√
1− αt

αta
−
√

1− αt−1

αta
−σ̂2

t

)
t≥ ta+2.

(50)
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A.3 Proof of Proposition 2

Proof. We continue the derivation by using the reparameterization trick. The reparameterization of
(42) and (45) has been given above, we focus on (37) and (38) now. Applying Lemma 1, we can
reparameterize them as

Eqσ(xt|x0,xta )
||x0 − µθ(xt, t)||2

= Eϵ∼N (0,I)

∣∣∣∣∣∣x0 − µθ

(√
αtx0 + γt

(
xta −

√
αtax0

)
/
√
1− αta + ζtϵ, t

)∣∣∣∣∣∣2 . (51)

We further disregard all the constants. The proxy objective for minimization can be rewritten as
follows

L(x0,xta) =

ta∑
t=1

Eϵ∼N (0,I)g(t)

∣∣∣∣∣∣∣∣x0 − µθ

(√
αtx0 + γt

xta −
√
αtax0√

1− αta

+ ζtϵ, t

)∣∣∣∣∣∣∣∣2

+

T∑
t=ta+1

Eϵ,ϵ′∼N (0,I)g(t)

(∣∣∣∣∣
∣∣∣∣∣xb −

(√
αtaµθ

(√
αt

αta

xta +

√
1− αt

αta

ϵ, t

)
+
√
1− αtaϵ

′

)∣∣∣∣∣
∣∣∣∣∣
2

+
w(t)

g(t)

〈
µθ

(√
αt/αtaxta +

√
1− αt/αtaϵ, t

)
, ϵ
〉)

.

(52)

Now we seek for stochastic gradients of L. Sampling t ∼ U {1, 2, . . . , T} and ϵ, ϵ′ ∈ N (0, I), the
stochastic gradient with respect to x0 and xta are, respectively,

dx0,t =

{
∇x0

∣∣∣∣x0 − µθ

(√
αtx0 + γt(xta −

√
αtax0)/

√
1− αta + ζtϵ, t

)∣∣∣∣2 t ≤ ta;

0 t > ta,
(53)

and

dxb,t =


∇xta

∣∣∣∣x0 − µθ

(√
αtx0 + γt(xta −

√
αtax0)/

√
1− αta + ζtϵ, t

)∣∣∣∣2 t ≤ ta;

∇xta
||xta −

(√
αtaµθ

(√
αt/αtaxta +

√
1− αt/αtaϵ, t

)
+
√
1− αtaϵ

′
)
||2

+w(t)/g(t)∇xta

〈
µθ

(√
αt/αtaxta +

√
1− αt/αtaϵ, t

)
, ϵ
〉

t > ta,

(54)
where the coefficient g(t) is omitted as it can be scaled into the step size. Here we reach the result of
Proposition 2 in the main text.

A.4 Gradient truncation and remarks

In practice, we truncate the gradient through µθ, i.e., we let

Dx0
µθ(·) = Dxta

µθ(·) = 0. (55)

Thus the approximate stochastic gradients are, respectively,

d̃x0,t =

{
x0 − µθ

(√
αtx0 + γt(xta −

√
αtax0)/

√
1− αta + ζtϵ, t

)
t ≤ ta;

0 t > ta,
(56)

and

d̃xta ,t
=

{
0 t ≤ ta;

xta − (
√
αtaµθ(

√
αt/αtaxta +

√
1− αt/αtaϵ, t) +

√
1− αtaϵ

′) t > ta.
(57)

At this point, we obtain the approximate stochastic gradients of the objective function with respect to
the two variables x0 and xta . We can perform gradient descent on x0 and the projection gradient
method on xta to solve the problem.

Remark:

1. The idea of introducing a new noise ϵ′ is to ensure that the update direction of xta remains as much
as possible within the manifold at time step ta. The expression− (xta −

√
αtaµθ(·)−

√
1− αtaϵ

′))
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can be viewed as a vector pointing from xta to
√
αtaµθ(·) +

√
1− αtaϵ

′. As µθ(·) is close to the
manifold of x0, the introduction of ϵ′ allows the endpoint of the gradient vector to be close to the
manifold at time ta.

2. For a general linear observation equation, the derivation remains similar when transforming the
observations into the spectral domain using SVD. Due to potentially differing noise levels for each
component, the objective function will take on an element-wise form. This is based on the fact that in
the diffusion model, we assume that the elements of xt−1 are independent when conditioning on xt.

3. In practice, we find that setting the DDIM variance σ̃t = 0 for t ≤ ta yields the best results, which
results in γt =

√
1− αt and ζt = 0. But this poses a problem as it leads to g(t)→∞. In this work,

we still scale all the coefficients g(t) into the step sizes as it works well in the experiments. We leave
this issue for future research.

4. Note that one may find ta is not an integer in practice, as αta may not be in the discrete series
α0:T . This won’t affect our algorithm, as it can be derived similarly that the approximate stochastic
gradients in (56) and (57) still hold. The only difference lies in the initialization of x0 which will be
discussed in Appendix F.

5. We use the µ-predictor in the derivation. The case of ϵ-predictor is similar, with the conversion
given by µθ(xt) =

(
xt −

√
1− αtϵθ(xt)

)
/
√
αt. We refer to [19, 32] for more details about the

relation between the µ-predictor, the ϵ-predictor and the Stein score [51].

B ProjDiff for VE diffusion

In this section, we derive the ProjDiff algorithm for the Variance Exploding (VE) diffusion used in
the source separation and partial generation tasks. The experiments using VE diffusion in this work
are all noise-free, thus we only focus on the noise-free scenarios and leave the noisy scenarios of VE
diffusion for future work.

Consider the forward transition probability q(xt|xt−1) = N (xt;xt−1, (σ
2
t − σ2

t−1)I), with σT >
σT−1 > · · · > σ1 > σ0 → 0. When σT is large enough, q(xT ) ≈ N (0, σ2

T I). The initial
distribution of the reverse process is set to be pθ(xT ) = N (0, σ2

T I) ≈ q(xT ) and the reverse
transition in the DDPM manner is

pθ(xt−1|xt) = N
(
xt−1;µθ(xt, t) +

σ2
t−1

σ2
t

(xt − µθ(xt, t)),
σ2
t−1(σ

2
t − σ2

t−1)

σ2
t

I

)
, (58)

for t ≥ 2, which matches the condition probability

q(xt−1|xt,x0) = N
(
xt−1;x0 +

σ2
t−1

σ2
t

(xt − x0),
σ2
t−1(σ

2
t − σ2

t−1)

σ2
t

I

)
. (59)

And we assume the last sampling step is set to be

pθ(x0|x1) = N (x0;µθ(x1, 1), δ
2
0I), (60)

for some small δ0.

Thus the ELBO is derived as the same in DDPM [2].

log pθ(x0) = log

∫ T

t=1

pθ(x0:T )
q(x1:T |x0)

q(x1:T |x0)
dx1:T

≥c−DKL(q(xT |x0)||pθ(xT )) + Eq(x1|x0) log pθ(x0|x1)

−
T∑

t=2

Eq(xt|x0)DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)).

(61)

DKL(q(xT |x0)||pθ(xT )) ≈ 0, and log pθ(x0|x1) = c1− 1
2δ20
||x0−µθ(x1, 1)||2. The KL divergence

between q(xt−1|xt,x0) and pθ(xt−1|xt) is

DKL(q(xt−1|xt,x0)|pθ(xt−1|xt)) = c2 +
σ2
t − σ2

t−1

2σ2
t−1σ

2
t

||x0 − µθ(xt, t)||2, (62)
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Table 5: Noise-free restoration on ImageNet dataset. LPIPS metrics are multiplied by 100.

NFEs Method
Super-Resolution

PSNR↑ SSIM↑ LPIPS↓ FID↓
Inpainting

PSNR↑ SSIM↑ LPIPS↓ FID↓
Gaussian Deblurring

PSNR↑ SSIM↑ LPIPS↓ FID↓
- A†y 24.22 / 0.70 / 45.14 / 130.30 14.54 / 0.30 / 65.90 / 169.65 37.19 / 0.95 / 12.15 / 14.77

1000 DPS 26.14 / 0.76 / 24.17 / 28.46 32.97 / 0.92 / 9.74 / 14.08 27.21 / 0.75 / 29.59 / 39.93

100 DDRM 27.08 / 0.79 / 24.97 / 38.36 31.33 / 0.91 / 11.23 / 13.03 41.52 / 0.98 / 4.47 / 2.98

100 DDNM 27.07 / 0.79 / 23.87 / 33.45 31.63 / 0.91 / 9.19 / 9.57 43.47 / 0.99 / 2.52 / 1.59

100 RED-diff 27.23 / 0.79 / 26.13 / 42.23 9.81 / 0.17 / 83.58 / 268.93 28.65 / 0.83 / 26.04 / 35.76

100 ProjDiff 27.09 / 0.79 / 23.42 / 32.95 33.19 / 0.94 / 7.16 / 7.60 44.17 / 0.99 / 2.22 / 1.35

for t ≥ 2. Then by reparameterization, we get the Evidence Lower Bound as

ELBOVE = C −
T∑

t=1

s(t)Eϵ∼N (0,I)||x0 − µθ(x0 + σtϵ, t)||2, (63)

with

s(t) =


1

2δ20
t = 1;

σ2
t−σ2

t−1

2σ2
t−1σ

2
t

2 ≤ t ≤ T.
(64)

Sampling t ∼ U {1, 2, . . . , T}, ϵ ∼ N (0, I), and truncating the gradient through µθ as in the VP
setting, a stochastic gradient for −ELBOVE (for minimization) is

d̃x0,t = x0 − µθ(x0 + σtϵ, t). (65)

Then the iteration step of the ProjDiff (noise-free) in the VE setting is

(ProjDiff for VE) x0 ← PA,y

(
x0 − ηd̃x0,t

)
, (66)

where η is the step size.

The RED-diff [24] algorithm in the VE setting can be derived similarly. In the source separation and
partial generation tasks, we use these forms as the implementation of our ProjDiff and RED-diff [24]
algorithms.

Remark: For VE diffusion, the Restricted Encoding method involves fixing the initial noise ϵ0 ∼
N (0, I) and reparameterizing the sampling of xt as xt = x0 + ξϵ0 +

√
σ2
t − ξ2ϵ for ϵ ∼ N (0, I).

Specifically, we set ξ = σt−1 in partial generation tasks.

C Additional experiments for image restoration

C.1 Additional results

Here, we present the omitted experiments for image restoration tasks. The results for noise-free
restoration tasks on ImageNet are shown in Table 5, the results for noise-free and noisy restoration
tasks on CelebA are shown in Table 6 and 7, respectively, and the results for nonlinear high dynamic
range (HDR) task are in Table 8. On the CelebA dataset, we further compare ProjDiff with more
diffusion based rithms, including ΠGDM [22], DMPS [52], Resample [34], and DiffPIR [53].
ProjDiff demonstrates highly competitive performance on all these tasks.

C.2 Ablation study

Metrics balance in the super-resolution task. An interesting observation is the trade-off between
objective metrics and perceptual metrics in the super-resolution task. DPS achieves the best perceptual
metrics but performs poorly on objective metrics, while RED-diff performs well in objective metrics
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Table 6: Noise-free restoration on CelebA dataset. LPIPS metrics are multiplied by 100.

NFEs Method
Super-Resolution

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
Inpainting

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
Gaussian Deblurring

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
- A†y 27.23 / 0.80 / 47.03 / 110.11 13.96 / 0.25 / 75.54 / 230.61 18.85 / 0.63 / 34.51 / 54.77

1000 DPS 30.25 / 0.86 / 16.88 / 35.65 36.02 / 0.95 / 8.79 / 24.73 35.55 / 0.94 / 11.27 / 25.45
100 DDRM 31.38 / 0.88 / 15.48 / 34.12 35.77 / 0.95 / 9.03 / 21.62 42.41 / 0.98 / 5.03 / 7.73
100 DDNM 31.39 / 0.88 / 14.45 / 26.17 36.32 / 0.96 / 6.86 / 12.45 45.36 / 0.99 / 3.01 / 2.08
100 RED-diff 32.44 / 0.90 / 16.58 / 30.49 7.94 / 0.18 / 78.23 / 192.07 33.07 / 0.90 / 17.02 / 20.54
100 ΠGDM 30.47 / 0.87 / 16.01 / 34.27 36.31 / 0.96 / 8.71 / 24.27 40.69 / 0.98 / 5.92 / 17.38
100 DMPS 30.94 / 0.87 / 17.25 / 31.87 32.30 / 0.89 / 18.58 / 31.30 42.84 / 0.98 / 4.27 / 3.86
100 Resample 31.62 / 0.88 / 20.11 / 44.18 35.00 / 0.93 / 13.03 / 30.87 33.60 / 0.91 / 17.45 / 37.70
100 DiffPIR 31.30 / 0.88 / 15.47 / 32.68 35.96 / 0.95 / 7.85 / 14.67 27.87 / 0.73 / 32.33 / 50.18
100 ProjDiff 32.57 / 0.90 / 16.08 / 33.74 36.84 / 0.96 / 6.66 / 12.27 45.57 / 0.99 / 2.99 / 2.05

Table 7: Noisy restoration on CelebA dataset with σ = 0.05. LPIPS metrics are multiplied by 100.

NFEs Method
Super-Resolution

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
Inpainting

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
Gaussian Deblurring

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
- A†y 23.64 / 0.49 / 68.72 / 147.89 13.70 / 0.19 / 76.07 / 226.28 18.06 / 0.33 / 61.51 / 93.90

1000 DPS 27.98 / 0.78 / 23.10 / 39.91 32.80 / 0.90 / 16.32 / 32.80 29.46 / 0.81 / 21.19 / 38.54
100 DDRM 29.20 / 0.82 / 21.92 / 40.14 32.81 / 0.90 / 16.78 / 35.28 30.51 / 0.85 / 19.89 / 38.24
100 DDNM+ 29.19 / 0.82 / 21.89 / 40.20 32.80 / 0.90 / 16.80 / 35.13 30.60 / 0.85 / 19.79 / 38.23
100 RED-diff 24.98 / 0.55 / 50.59 / 73.89 7.96 / 0.18 / 78.27 / 192.32 26.32 / 0.56 / 41.23 / 56.59
100 ΠGDM 28.25 / 0.79 / 22.73 / 38.70 32.68 / 0.90 / 16.02 / 31.54 27.57 / 0.76 / 23.76 / 38.61
100 DMPS 29.01 / 0.81 / 22.87 / 37.80 32.18 / 0.87 / 18.77 / 23.88 30.51 / 0.84 / 20.32 / 33.63
100 Resample 29.58 / 0.83 / 24.18 / 45.51 33.11 / 0.90 / 15.97 / 31.38 30.89 / 0.85 / 21.91 / 38.61
100 DiffPIR 27.87 / 0.73 / 32.33 / 50.18 29.71 / 0.74 / 27.14 / 32.11 26.93 / 0.62 / 38.07 / 53.01
100 ProjDiff 29.49 / 0.83 / 20.86 / 36.87 33.43 / 0.91 / 15.33 / 31.43 31.41 / 0.87 / 18.12 / 34.59

Table 8: HDR results. For noisy observation, the standard deviation is σ = 0.1. The LPIPS metric is
multiplied by 100.

NFEs Method HDR σ = 0
PSNR↑ SSIM↑ LPIPS↓ FID↓

HDR σ = 0.1
PSNR↑ SSIM↑ LPIPS↓ FID↓

1000 DPS 15.69 / 0.43 / 51.22 / 193.15 15.84 / 0.43 / 51.26 / 188.68
1000 RED-diff 26.01 / 0.87 / 23.60 / 34.03 22.64 / 0.66 / 38.48 / 55.31
1000 ProjDiff 28.65 / 0.87 / 16.26 / 18.44 25.71 / 0.84 / 25.91 / 32.87

Table 9: Noise-free restoration with 20 steps on ImageNet. The LPIPS metrics are multiplied by 100.

NFEs Method
Super-Resolution

PSNR↑ SSIM↑ LPIPS↓ FID↓
Inpainting

PSNR↑ SSIM↑ LPIPS↓ FID↓
Gaussian deblur

PSNR↑ SSIM↑ LPIPS↓ FID↓
20 DDRM 26.54 / 0.77 / 25.88 / 40.80 28.63 / 0.86 / 20.85 / 30.34 40.46 / 0.98 / 5.68 / 4.46
20 DDNM 26.49 / 0.77 / 24.27 / 33.99 29.50 / 0.88 / 16.09 / 21.01 42.11 / 0.98 / 3.72 / 2.87
20 ProjDiff 26.83 / 0.78 / 25.19 / 37.59 30.46 / 0.90 / 15.41 / 20.09 42.24 / 0.98 / 3.78 / 2.99

Table 10: Noisy restoration with 20 steps on ImageNet (σ = 0.05). The LPIPS metrics are multiplied
by 100.

NFEs Method
Super-Resolution

PSNR↑ SSIM↑ LPIPS↓ FID↓
Inpainting

PSNR↑ SSIM↑ LPIPS↓ FID↓
Gaussian deblur

PSNR↑ SSIM↑ LPIPS↓ FID↓
20 DDRM 25.20 / 0.69 / 35.59 / 53.45 27.55 / 0.80 / 24.76 / 34.15 27.70 / 0.78 / 29.35 / 45.24
20 DDNM+ 25.23 / 0.70 / 35.06 / 52.12 27.56 / 0.80 / 24.71 / 34.24 27.70 / 0.77 / 30.78 / 50.63
20 ProjDiff 25.76 / 0.72 / 34.88 / 55.71 29.27 / 0.85 / 19.43 / 23.89 27.87 / 0.79 / 24.49 / 30.53
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Figure 4: Noise-free super-resolution results on ImageNet. The red lines show the variation of PSNR
v.s. FID and LPIPS of ProjDiff algorithm.

Table 11: Phase retrieval results. The LPIPS metrics are multiplied by 100.

NFEs Method
Phase Retrieval σ = 0 Phase Retrieval σ = 0.1

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
- ER-4trials 11.36 / 0.20 / 83.95 / 410.75 11.32 / 0.20 / 83.87 / 410.53
- HIO-4trials 12.60 / 0.26 / 79.78 / 336.94 12.62 / 0.26 / 79.88 / 333.90
- OSS-4trials 12.75 / 0.26 / 79.95 / 342.36 12.69 / 0.25 / 80.37 / 344.84

1000 DPS-4trials 19.36 / 0.45 / 48.48 / 104.70 17.25 / 0.38 / 51.83 / 82.10
1000 ProjDiff-4trials 41.58 / 0.94 / 5.49 / 7.19 28.11 / 0.76 / 28.43 / 53.38

for noise-free super-resolution but declines on perceptual metrics. We find that in the noise-free
super-resolution task, the step size of ProjDiff controls the balance between objective and perceptual
metrics. Figure 4 presents ProjDiff’s FID-PSNR curve and LPIPS-PSNR curve in the super-resolution
task on ImageNet, with step sizes ranging from [1.2, 1.9]. Note that lower values of LPIPS and FID
and higher values of PSNR indicate better restoration results, thus the top left corner represents the
ideal performance. The red lines demonstrate the variation in objective and perceptual metrics of
ProjDiff by adjusting the step size. Also note that ProjDiff exhibits superior performance compared
to DDRM, DDNM, DPS and RED-diff.

Fewer steps. DDRM [20] and DDNM [21] can both address image restoration with fewer steps (20
steps). Here we test the performance of the proposed ProjDiff with fewer steps on ImageNet. Table 9
and Table 10 show comparisons of ProjDiff with DDRM and DDNM in three linear restoration tasks
under noise-free and noisy observations, respectively. ProjDiff also demonstrates highly competitive
performance across multiple metrics, indicating its potential to perform image restoration with fewer
steps.

Four trials for the phase retrieval task. It is noted in [23] that in the phase retrieval task, DPS
requires sampling four times for each image and selecting the best result to achieve satisfactory
performance. Therefore, we compare the performance of DPS and ProjDiff with four independent
samplings. We also report the performance of the ER, HIO, and OSS algorithms with four samplings
as baselines. The best image is selected as the sample with the highed PSNR metric. The results
are shown in Table 11. Both DPS and ProjDiff show performance improvements with four trials,
with ProjDiff in particular exhibiting much better performance, reaching a PSNR of 41.58dB in the
noise-free case.

The impact of the gradient truncation method used in ProjDiff. We compared ProjDiff with and
without the gradient truncation method on the CelebA dataset, as shown in Table 12. ProjDiff without
gradient truncation is denoted as ProjDiff-FG. The results indicates that there is some performance
loss when using gradient truncation compared to not using it, while the efficiency increases by nearly
three times. Considering that using gradient truncation has already achieved satisfactory performance,
we accept the trade-off of some performance loss for the gain in efficiency.
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Table 12: Ablation study of the gradient truncation method in ProjDiff on noise-free tasks on CelebA.
Time (s) Method

Super-Resolution
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Inpainting
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Gaussian Deblurring
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

4.42 ProjDiff 32.57 / 0.90 / 16.08 / 33.74 36.84 / 0.96 / 6.66 / 12.27 45.57 / 0.99 / 2.99 / 2.05
11.13 ProjDiff-FG 33.05 / 0.91 / 16.87 / 36.39 37.30 / 0.96 / 7.12 / 11.65 45.98 / 0.99 / 2.72 / 1.94

Table 13: Using gradient descent to approximate the projection operator.

NFEs Method
Phase Retrieval σ = 0 Phase Retrieval σ = 0.1

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
1000 ProjDiff 33.39 / 0.74 / 20.42 / 35.91 23.84 / 0.60 / 38.55 / 76.20
1000 ProjDiff-GD 33.55 / 0.71 / 23.04 / 45.44 23.08 / 0.56 / 44.86 / 97.13

Using gradient descent to approximate the projection operation for nonlinear tasks. We claim
that for general nonlinear tasks, ProjDiff can be applied by using gradient descent to approximate the
projection operation. Here we verify this method in the phase retrieval task (ProjDiff-GD in Table 13).
The results indicate that approximating the projection operator of x0 with respect to the observation
equation by minimizing ||y −A(x)||2 starting from x0 can also achieve satisfactory performance,
which suggests that ProjDiff has generalizability for general nonlinear inverse problems.

Sensitivity tests for the hyperparameters. We conduct the sensitivity tests for the step size η1
and noise level σ0 in ProjDiff on noisy super-resolution task on CelebA, as shown in Table 14.
’×a’ denotes that we perturb the input standard deviation of ProjDiff by multiplying a. The results
indicate that ProjDiff exhibits a certain degree of robustness to the step size and noise level. This
also demonstrates that retaining the equivalent noise level as an adjustable hyperparameter is feasible
when it cannot be directly calculated.

RED-diff with random initialization. The RED-diff algorithm is observed to accidentally fail in
the 50% random inpainting task. Here we demonstrate that by adopting the random initialization
method proposed in this work, RED-diff achieves more reasonable results. We compare RED-
diff’s performance on ImageNet for both noise-free and noisy inpainting tasks when using random
initialization (denoted as ‘RED-diff with random init’) and using degraded images for initialization
as proposed in [24]. The results are shown in Table 15. RED-diff’s performance is significantly
improved when using random initialization.

D Additional results for source separation and partial generation

D.1 Results on MSDM model

Two models were trained in [45]: one is MSDM which models the joint distribution among the four
instruments, and the other is ISDM which models the distribution of each instrument independently.
ISDM performs better than MSDN in the source separation task as reported in [45]. We have
presented ProjDiff’s performance on ISDM in the main text, and here we supplement the experiment
on MSDM. The SI-SDRi metrics of ProjDiff, RED-diff, MSDM-Gaussian, and MSDM-Dirac are
shown in Table 16. ProjDiff also demonstrates the best performance on the MSDM model.

Table 14: Ablation study of the hyperparameters in ProjDiff on noisy super-resolution task on CelebA.
PSNR ↑ LPIPS ↓

η1\σ0 ×0.7 ×0.9 ×1.0 ×1.1 ×1.3 ×0.7 ×0.9 ×1.0 ×1.1 ×1.3
0.1 29.92 30.16 30.19 30.18 30.11 21.96 21.71 22.25 22.70 23.29
0.2 29.69 29.94 29.96 29.94 29.85 22.48 20.92 21.23 21.60 22.12
0.4 29.16 29.47 29.49 29.47 29.37 24.25 21.04 20.86 21.06 21.51
0.8 28.45 28.85 28.89 28.87 28.75 27.67 22.82 21.85 21.63 21.74
1.6 27.69 28.10 28.14 28.09 27.88 32.23 26.62 24.88 24.07 23.69
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Table 15: Comparison of RED-diff with and without random initialization on ImageNet inpainting
task. LPIPS metrics are multiplied by 100.

Inpainting (σ = 0)
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Inpainting (σ = 0.05)
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

RED-diff 9.81 / 0.17 / 83.58 / 268.93 9.85 / 0.17 / 83.92 / 281.65
RED-diff with random init 29.86 / 0.89 / 14.55 / 15.68 25.98 / 0.66 / 29.38 / 28.02

Table 16: SI-SDRi metrics on MSDM (higher is better).

Method Bass Drums Guitar Piano Mean
MSDM-Gaussian 13.93 17.92 14.19 12.11 14.54

MSDM-Dirac 17.12 18.68 15.38 14.73 16.48
RED-diff 16.00 19.98 16.15 13.67 16.45
ProjDiff 17.65 20.76 17.47 15.17 17.76

D.2 Ablation study

Repetition steps. ProjDiff repeats N = 5 times on each time step as we state in Section 3.3 in the
source separation task, while MSDM-Gaussian and MSDM-Dirac [45] only repeat twice using the
correction steps method in [19]. A natural doubt is whether the performance improvement arises
from more function evaluations. We test MSDM-Dirac algorithm with more steps, and the results are
shown in Table 17. When increasing the correction steps from 2 to 5 which matches the function
evaluations of ProjDiff, the performance of MSDM-Dirac declines. This verifies that ProjDiff’s
advantage does not simply arise from more function evaluations. Moreover, we test ProjDiff’s
performance with more repetitions using the MSDM model, namely 10, 25, and 50 times with the
step size adjusting accordingly to stabilize convergence. The step size is set to 0.5/N , where N
is the number of repetitions. The results are shown in Table 18. Further increasing the number of
repetitions leads to even better metrics for ProjDiff.

Table 17: More correction steps for MSDM-Dirac (higher is better).

Bass Drums Guitar Piano Mean
MSDM-Dirac (2 correction steps) 17.12 18.68 15.38 14.73 16.48
MSDM-Dirac (5 correction steps) 15.68 17.49 15.05 14.01 15.56

Momentum mechanism. We use Polyak momentum in the source separation task. Here we conduct
experiments to validate the effectiveness of the momentum mechanism. The results with different
momentum hyperparameter β ranging from 0 to 0.9 are shown in Table 19. Setting β to 0.5 yields
the best performance. We infer that a certain level of momentum can accelerate convergence, while
over large momentum may cause oscillations at small time steps and thus affect the results. This
explains why the performance is relatively poor when β = 0.9 in the source separation task.

Weak observation problem and Restricted Encoding. Here we further explain why the partial
generation task is a weak observation problem. The partial generation task aims to generate the tracks
of other instruments based on some instruments, e.g., generating drums, piano, and guitar based
on bass. The constraint provided by the observations is very weak, which is because in a musical
ensemble, the correlation between different instruments exists but is not significant, and a composer
can freely create the melodies of other instruments based on certain instruments’ melodies. Therefore,
this is more of a generation task than a restoration task, and we refer to this type of problem as the
“weak observation problem” where the constraints provided by the observations are weak.

Now we verify the effectiveness of the proposed Restricted Encoding method in the partial generation
task. While keeping other parameters unchanged, we switch the sampling method of xt in ProjDiff
from Restricted Encoding to sampling directly from the forward process q(xt|x0) (denoted as
‘w/o Restricted Encoding’). The results are shown in Table 20. Without Restricted Encoding, the
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Table 18: More repetition steps for ProjDiff (higher is better).

Bass Drums Guitar Piano Mean
ProjDiff 5 steps 17.65 20.76 17.47 15.17 17.76

ProjDiff 10 steps 17.67 20.78 17.47 15.22 17.79
ProjDiff 25 steps 17.71 20.80 17.55 15.30 17.84
ProjDiff 50 steps 17.74 20.83 17.57 15.32 17.86

Table 19: Different momentum for ProjDiff (higher is better).

Bass Drums Guitar Piano Mean
ProjDiff β = 0 17.56 20.75 17.41 15.06 17.70

ProjDiff β = 0.3 17.47 20.75 17.44 15.10 17.69
ProjDiff β = 0.5 17.65 20.76 17.47 15.17 17.76
ProjDiff β = 0.7 17.64 20.75 17.33 15.03 17.69
ProjDiff β = 0.9 17.82 20.74 17.16 15.00 17.67

performance of ProjDiff significantly declines. This indicates the importance of Restricted Encoding
for the weak observation problem.

Visualization of the waveforms. In the partial generation tasks, an observation is that as the number
of generated instruments decreases, the advantage of ProjDiff becomes smaller. We point out this is
because the sub-FAD metric considers the combination of the generated and given tracks. Therefore,
in cases where more instruments are provided, the combined track is closer to the ground truth, and
the difference among different algorithms would be smaller. This can also explain why ProjDiff
performs slightly worse than MSDM and RED-diff when generating only the tracks of guitar. This
may be because ProjDiff tends to aggressively create new musical segments, thus resulting in a lower
similarity to the ground truth set. We present some waveform samples in Figure 5 to verify this claim.
The samples are randomly selected and the same row shares the same ID. ProjDiff’s results have
larger amplitudes while RED-diff and MSDM’s results tend to remain silent.

Moreover, following the conventions in acoustics researches, we include some audio samples of
ProjDiff in the supplementary materials for subjective evaluation.

E Experimental details

E.1 Inverse problem settings

Source separation. Denote the tracks of piano, drums, guitar, and bass as x1,x2,x3,x4 ∈ Rn,
where n represents the length of the sequences. The observation function for source separation is
y =

(
(1, 1, 1, 1)(x1,x2,x3,x4)

T
)T

= x1 + x2 + x3 + x4.

Partial generation. The observation matrix for partial generation is a diagonal matrix with elements
of either zero or one, i.e., A = diag(a11, a22, a33, a44) with a11, a22, a33, a44 ∈ {0, 1}. 0 represents
that the corresponding instruments are to be generated while 1 represents that the instrument is
provided as the condition. The observation is y =

(
A(x1,x2,x3,x4)

T
)T

.

Super-Resolution. The super-resolution task uses 4× 4 average pooling as the degradation function,
which is quite similar to the source separation task. Consider a 4 × 4 image block, with elements

Table 20: Comparison of ProjDiff with and without Restricted Encoding (lower is better).

B D G P BD BG BP DG DP GP BDG BDP BGP DGP
ProjDiff

with Restricted Encoding 0.42 1.15 0.31 0.60 1.37 0.69 1.06 1.41 1.60 1.17 1.66 1.79 1.85 2.25

ProjDiff
w/o Restricted Encoding 0.44 2.26 0.18 0.70 3.67 1.14 2.55 3.10 3.24 1.74 5.66 7.26 6.13 4.85
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ProjDiff RED-diff MSDM

Figure 5: Samples of the partial generation results. The results from ProjDiff (left) have larger
amplitude, while results from RED-diff (middle) and MSDM (right) have more silent periods.

xi,j ∈ R3, i, j = 1, 2, 3, 4. The dimension of 3 represents the RGB channels. The observation
equation is thus given by y = 1

16

∑4
i,j=1 xi,j . For the entire image, the calculation can be paralleled

for all 4× 4 blocks using matrix operations in PyTorch.

Random inpainting. The observations matrix for random inpainting is a diagonal matrix of zeros and
ones, A = diag{akk} for 1 ≤ k ≤ n where n is the total number of pixels in an image, specifically
256× 256 in this work. The diagonal elements akk have a 50% chance to be 0 and a 50% chance to
be 1.

Gaussian deblurring. We follow the settings from [20, 21] for Gaussian deblurring, with a 1D
Gaussian kernel of size 5 and a standard deviation of 10. The observation equation is in the form of
convolution. Efficient SVD proposed in [20] can be used for calculating the projection operator.

Phase retrieval. Our experimental setup for phase retrieval follows [23]. The observation is the
amplitude spectrum of the original image. However, as the phase retrieval task is highly ill-posed,
it is nearly impossible to recover the image directly from the amplitude spectrum. Therefore, we
follow the standard practices [54, 55, 23] by first padding the image with zeros and then computing
the amplitude spectrum. This increases the spectral resolution and provides more information for
retrieval. Thus the observation equation for phase retrieval is y = |DFT(Px)|, where P represents
the padding operation, which is a linear operator. The original image is 256× 256, and the padding
is done with size 64 in four directions, resulting in a padded image of 384 × 384. Note that one
significant difference between the phase retrieval experiment in this paper and in [23] lies in that [23]
reported the best results from 4 independent runs for each image, while we perform all the algorithms
once for each image.

High dynamic range. The observation for the high dynamic range task can be written element-wise
as

f(xi) =


−1 2xi ≤ −1;
2xi −1 < 2xi < 1;

1 2xi ≥ 1,

(67)

i.e., first multiplying all the pixels by 2 and then clipping them within [−1, 1].
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E.2 Hyperparameters for the compared algorithms

DDRM. DDRM uses the recommended parameters from [20], i.e. η = 0.85 and ηb = 1.0.

DDNM. DDNM uses the recommended parameter η = 0.85 from [21]. For noisy tasks, we report
the performance of the DDNM+ algorithm [21].

DPS. Following the settings in [23], the step size is set to ξt = ξ/ ||y −A(µθ(xt))||2. On ImageNet,
ξ is set to 1 for super-resolution and inpainting tasks, and 0.4 for Gaussian deblurring. Since [23] did
not conduct experiments on CelebA, we conducted task-by-task parameter tuning for the learning rate
in DPS and reported the results, ensuring a fair comparison. For phase retrieval and high dynamic
range tasks, ξ = 0.4.

RED-diff. First, in the image restoration tasks, we follow the settings in [24] using the Adam
optimizer with momentum pairs of (0.9, 0.99). RED-diff requires a balancing parameter λ and a
step size lr. λ is set to 0.25 for all image restoration tasks, and the step size lr is set to 0.25 for the
super-resolution and 0.5 for all other tasks. However, in the source separation and partial generation
tasks, we find that the Adam optimizer yields poor results. Therefore, we run RED-diff with the
same parameters used in ProjDiff and set λ = 1.0 which is tuned to the best. Thus in the source
separation task, the momentum is set to 0.5 and the step size is set to 0.1 with 5 repetitions. In the
partial generation task, the momentum is set to 0.9 and the step size is set to 0.05 with no repetitions.

ΠGDM. We carefully conducted hyperparameter searches for each task using the first eight images
with the average PSNR as the metric. Except for Noisy Gaussian Deblur task, we avoided using other
algorithms to initialize ΠGDM to ensure a fair comparison. Specifically, we first use the forward
transition to map the degraded image to the noise level corresponding to the 500th step, and then
use 100 steps of ΠGDM to solve the inverse problem. We find that this approach is much better
than starting directly from white noise (i.e. 1000th step). For Noisy Gaussian Deblur task, ΠGDM
without initialization from other algorithms struggled to achieve satisfactory results. Therefore, we
use DDNM+ to obtain the sample at the 500th step and then switch to ΠGDM to complete the
solution.

DMPS. The step size hyperparameter λ was searched for each task using the first eight images with
the average PSNR as the metric.

Resample. The weight hyperparameter γ was searched for each task using the first eight images with
the average PSNR as the metric. ReSample was originally designed for Latent Diffusion, thus in our
experiments, we consider the encoder-decoder as identity mappings.

DiffPIR. The weight hyperparameter λ was searched for each task using the first eight images with
the average PSNR as the metric.

MSDM/ISDM-Gaussian/Dirac for source separation. Following [45], the algorithms use the Schurn
mechanism [56], with Schurn = 20 for the MSDM model and 40 for the ISDM model. Correction
steps [19] are set to 2.

MSDM for partial generation. Similarly, Schurn = 10 and no correction steps are used.

E.3 Details for metrics calculation

Here we provide the details of how we calculate the metrics for replication and fair comparison.

For image restoration, we first save the generated results in the png format. When all re-
sults are generated, we read them back in to calculate the metrics. For PSNR and SSIM,
we use peak_signal_noise_ratio and structural_similarity methods from the skimage library4.
When calculating SSIM, the parameter ‘data_range’ is set to ‘data_range=generated_image.max()-
generated_image.min()’. For LPIPS, we use the LPIPS library5. Note that before calculating LPIPS,
pixel values are normalized to [−1, 1]. And for FID, we use the torch-fidelity library6.

4https://github.com/scikit-image/scikit-image
5https://github.com/richzhang/PerceptualSimilarity
6https://github.com/toshas/torch-fidelity
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For the SI-SDRi metric used in source separation, the calculation is as described in [45]:

SI-SDRi = SI-SDR(xn, x̂n)− SI-SDR(xn,y),

SI-SDR(xn, x̂n) = 10 log10
||αxn||2 + ϵ

||αxn − x̂n||2 + ϵ
,

(68)

where xn is the ground truth sequence, y represents the ground truth summation of the four instru-
ments, and x̂n is the estimated track from the algorithm. α =

xT
n x̂n+ϵ

||xn||2+ϵ and ϵ = 10−8 to prevent
numerical errors.

For the sub-FAD metric in the partial generation tasks, we first calculate the summation of the
generated tracks and the corresponding conditional tracks and save the mixtures in the wav format.
Then we use the frechet_audio_distance library7 to compute the FAD metrics between the generated
mixtures and the ground truth mixtures.

F Implemention details of ProjDiff

F.1 Initialization for noisy observation with non-integer ta

In the case of noisy observations, we aim to initialize x0 using the optimized xta as µθ(xta , ta).
However, note that ta may not correspond exactly to any discretized time step in practice. In
such instance, we assume t0 ∈ [1, 2, . . . , T ] such that t0 ≤ ta ≤ t0 + 1, and consequently we
can first perform a forward transition as x̂t0+1 =

√
αt0+1/αtaxta +

√
1− αt0+1/αtaϵ for some

ϵ ∼ N (0, I), and then initialize x0 ← µθ(x̂t0+1, t0 + 1).

F.2 Details for linear observations

The projection operator for source separation is

P(x1,x2,x3,x4) = (x1,x2,x3,x4) +
1

4

(
y − (x1,x2,x3,x4)(1, 1, 1, 1)

T
)
(1, 1, 1, 1). (69)

The projection operator for partial generation is

P(x1,x2,x3,x4) = (x1,x2,x3,x4)(I−A) + yA. (70)

Super-resolution and random inpainting are similar to source separation and partial generation,
respectively. The projection operators of these problems can be obtained without SVD. Regarding
equivalent variance, for 4 × 4 super-resolution, based on the average of independent Gaussian
variables, the equivalent variance is 16σ2 with σ2 being the variance of the noise adding to the
observation. For inpainting, the equivalent noise should enjoy the same variance as the noise on the
observations.

Gaussian deblurring task is a bit more complex. The projection operator is

P(x0) = (I−A†A)x0 +A†y, (71)

where A† is the Moore-Penrose pseudo-inverse of A. The element-wise equivalent noise can be
handled using the SVD.

F.3 Details for nonlinear observations

Phase retrieval. For the phase retrieval task, consider the observation y = |DFT(Px)|. Given input
x0 and observations y, first we calculate z = DFT(Px0), and compute the projection operator of
y = |z| with respect to z, which is z̃ = y ⊙ z/|z| where the division is element-wise and ⊙ denotes
the Hadamard product. Next, we map z̃ back to the original pixel space. As DFT is invertible and
the P is the padding matrix, we define the inverse transformation matrix corresponding to P as P1

that extract the central 256× 256 pixels from a 384× 384 image. Thus the inverse mapping can be
written as x̃ = P1DFT−1(z̃). Finally, as the resulting x̃ is in the complex space, we project it onto

7https://github.com/gudgud96/frechet-audio-distance
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Table 21: Optimal step sizes for ProjDiff.
Dataset ImageNet CelebA FFHQ

Noise-free
Super-Resolution

20/100steps

Inpainting

20/100steps

Gaussian Deblurring

20/100steps

Super-Resolution

100steps

Inpainting

100steps

Gaussian Deblurring

100steps

Phase Retrieval

1000steps

HDR

100steps

η 1.5 / 1.7 1.1 0.9 0.7 1.1 0.8 1.5 2.0

Noisy
Super-Resolution

20/100steps

Inpainting

20/100steps

Gaussian Deblurring

20/100steps

Super-Resolution

100steps

Inpainting

100steps

Gaussian Deblurring

100steps

Phase Retrieval

1000steps

HDR

100steps

η1 0.9 / 0.5 4.0 / 1.0 0.5 / 0.1 0.4 1.1 0.1 1.9 1.0

the real space, namely xproj = real(x̃), where the real(·) operator takes the real part of a complex
tensor.

Regarding equivalent noise, we use the principle of energy equality in the space domain and in
the frequency domain. The energy of observation noise is n21σ

2 where n1 = 384 is the size of the
spectrum image. Assuming the variance of the effective noise is σeff, the noise energy in the space
domain is n2σ2

eff with n = 256. Equating both energy yields σeff = n1σ/n = 1.5σ.

High dynamic range. The regular projection operator of the HDR task can be expressed element-wise
as follows

P(xi,yi) =


yi/2 −1 < yi < 1;

0.5 yi = 1 and xi ≤ 0.5;

−0.5 yi = −1 and xi ≥ −0.5;
xi else.

(72)

This formulation applies to the noise-free case. Nonetheless, we discover an adjusted version of the
projection operator that can further accommodate noisy observations, which is

Pnoisy(xi,yi) =


yi/2 −0.5 < yi < 0.5;

yi/2 yi ≥ 1 and xi ≤ 0.5;

yi/2 yi ≤ −1 and xi ≥ −0.5;
xi else.

(73)

This adjusted form is more adept at handling uncertainty in the observation values within the intervals
[−1,−0.5] and [0.5, 1] induced by the observation noise. We employ this modified projection operator
in the noisy HDR task. The equivalent noise variance can be simply approximated as σ2

eff = (σ/2)2.

F.4 Hyperparameters.

In all experiments, ProjDiff uses SGDM as the optimizer. The momentum is set to 0.5 for the source
separation task and 0.9 for the partial generation task. The step size is set to 0.1 for source separation
with 5 repetition steps and 0.05 for partial generation with no repetition. For all image restoration
tasks, the momentum is set to 0, and η2 for the noisy observations is fixed to 1.0. The DDIM variance

σ̃t is set to 0 for t ≤ ta and to σ̃t = σt =
√

1−αt−1

1−αt

√
1− αt

αt−1
for t > ta. No repetitions are

applied. Other tuned optimal step sizes are shown in Table 21. The time step schedule follows [45]
for the source separation and partial generation tasks, and follows [20, 21] for the image restoration
tasks.

G Discussion about the MAP framework

ProjDiff shares similarities with the Maximum A Posteriori (MAP) estimation method. Theoretically,
in noisy situations, it is only necessary to use a Gaussian likelihood, i.e., p(y|x0) = N (y;x0, σ

2I),
to solve the inverse problems. However, ProjDiff introduces a new auxiliary variable, which leads to
better experimental outcomes than the MAP framework. Here, we present some qualitative discussion
towards this experimental result.

On one hand, if we are given perfectly accurate priors and likelihoods, and have sufficient com-
putational capability, we could obtain the exact posterior and also its gradients. Within the MAP
framework, this should lead to the ideal results. However, in practice, the priors provided by diffusion
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models are not entirely accurate, and the weight coefficients between the priors and the likelihood can-
not always be perfectly set. Moreover, dealing with the priors in diffusion models relies on stochastic
optimization methods. These factors imply that the MAP framework often fails to achieve the desired
solution. In such cases, further exploring the information or capabilities within the diffusion model
can provide substantial assistance in solving inverse problems and enhance performance. This is one
of the reasons why ProjDiff may have a performance advantage over the original MAP framework.

On the other hand, MAP methods utilize gradient descent to leverage the information from the
observation, while ProjDiff transforms this into a projection operation by introducing noisy auxiliary
variables. This approach offers numerous advantages: there is no need to consider the step size of
gradient descent (at least for the likelihood term); there is no need to consider the weight coeffi-
cients between the likelihood and prior terms; and it ensures consistency between noisy samples
and observations (the role of this consistency has also been confirmed in the noise-free scenario).
Moreover, the introduction of this auxiliary variable indicates that ProjDiff can actually be viewed
as simultaneously recovering clean data and the noise added to the observations, which can yield
more accurate results than merely characterizing the noise prior with a Gaussian distribution. These
transformations are all thanks to ProjDiff’s utilization of both the clean prior and noisy prior modeled
by diffusion models (i.e., the prior modeled by the diffusion model and its denoising capability).

H Algorithm blocks

Here, we present additional algorithm blocks for ProjDiff used in the experiments. Algorithm 2 is
used for noise-free restoration tasks. Algorithm 3 and Algorithm 4 are used in the source separation
task and partial generation task, respectively.
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Algorithm 2 ProjDiff for VP diffusion (noise-free).

Require: Observation y, observation function A, pre-trained diffusion model µθ, step size η, total
steps T , noise schedule α1 . . . αT .

1: Sample ϵT ∼ N (0, I);
2: Initialize x0 ← µθ(ϵT , T );
3: for t = T to 1 do
4: Sample ϵt ∼ N (0, I);
5: Calculate the approximate stochastic gradient: d̃x0,t = x0 − µθ(

√
αtx0 +

√
1− αtϵt, t);

6: Update x0: x0 ← PA,y(x0 − ηd̃x0,t);
7: end for
8: return x0

Algorithm 3 ProjDiff for VE diffusion (noise-free).

Require: Observation y, observation function A, pre-trained diffusion model µθ, step size η,
momentum β, total steps T , iterations per step N , noise schedule σ1 . . . σT .

1: Sample ϵT ∼ N (0, I);
2: Initialize x0 ← µθ(σT ϵT , T );
3: v← 0;
4: for t = T to 1 do
5: for k = 0 to N − 1 do
6: Sample ϵt,k ∼ N(0, I);
7: Calculate the approximate stochastic gradient: d̃x0,t = x0 − µθ(x0 + σtϵt,k, t);
8: Update momentum: v← βv + (1− β)d̃x0,t;
9: Update x0: x0 ← PA,y(x0 − ηv);

10: end for
11: end for
12: return x0

Algorithm 4 ProjDiff for VE diffusion with restricted encoding (noise-free).

Require: Observation y, observation function A, pre-trained diffusion model µθ, step size η,
momentum β, total steps T , iterations per step N , noise schedule σ1 . . . σT .

1: Sample ϵT , ϵ0 ∼ N (0, I);
2: Initialize x0 ← µθ(σT ϵT , T );
3: v← 0;
4: for t = T to 1 do
5: for k = 0 to N − 1 do
6: Sample ϵt,k ∼ N (0, I);
7: Calculate the approximate stochastic gradient: d̃x0,t = x0 − µθ(x0 + σt−1ϵ0 +√

σ2
t − σ2

t−1ϵt,k, t);

8: Update momentum: v← βv + (1− β)d̃x0,t;
9: Update x0: x0 ← PA,y(x0 − ηv);

10: end for
11: end for
12: return x0

I Visualization results of image restoration
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Figure 6: Noise-free results on ImageNet. Baseline means x̂0 = A†y.

Figure 7: Noisy results on ImageNet σ = 0.05. Baseline means x̂0 = A†y.
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Figure 8: Noise-free results on CelebA. Baseline means x̂0 = A†y.

Figure 9: Noisy results on CelebA σ = 0.05. Baseline means x̂0 = A†y.
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Figure 10: Noise-free nonlinear restoration on FFHQ (σ = 0).
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Figure 11: Noisy nonlinear restoration on FFHQ (σ = 0.05).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are consistent with this
paper’s main contributions and scope, and have been verified through extensive experiments
and ablation studies.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: See Appendix A and B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code is included in the supplemental materials and the experiment details
are presented. See Appendix E and F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and instructions are included in the supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All of the experiment details and implemention details are presented. See
Appendix E and F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Following the convention of inverse problem research, we report the perfor-
mance comparison of all algorithms with a fixed random seed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All of the experiments are conducted on a single NVIDIA 3090ti GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics in detail and conformed with it in
this paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on designing algorithms for inverse problems, without
underlying social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No datasets or models are proposed and there is no such risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All databases, models, and toolkits used in this paper are cited from the original
papers or URLs.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code provided in the supplementary materials is anonymized and well
documented with the running details.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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