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ABSTRACT

Recent benchmarks find In-Context Learning (ICL) outperforms both deep learn-
ing and tree-based algorithms on small tabular datasets. However, on larger
datasets, ICL for tabular learning suffers in both efficiency and effectiveness. In
terms of efficiency, transformers incur linear space and quadratic time complexity
w.r.t. context size. In terms of effectiveness, contexts at inference encounter distri-
bution shift compared to contexts from pretraining. We propose MIXTUREPFN,
which extends Sparse Mixture of Experts to the state-of-the-art ICL for tabular
learning model. Specifically, MIXTUREPFN finetunes a specialized ICL expert
on each cluster of tabular data and routes new test samples to appropriate ex-
perts at inference. MIXTUREPFN supports constant-size contexts by splitting
large training datasets into more manageable clusters. MIXTUREPFN addresses
distribution shift by finetuning an expert on each training dataset cluster via boot-
strapping. Extensive experimental results shows MIXTUREPFN outperforms 19
baselines both in mean rank and as the Condorcet winner across 36 diverse tabular
datasets.

1 INTRODUCTION

Tabular data is a popular data format across various domains, consisting of column-wise features
and row-wise data samples. Each feature can be either continuous, categorical, or ordinal. Thanks
to the prevalence of relational databases, which ensure data integrity, consistency, and low redun-
dancy, tabular data is widely used across various domains such as medicine, finance, and advertising.
Hence, improving learning algorithms on tabular data is of interest to many researchers.

General tabular datasets remain unconquered by most deep learning algorithms (Popov et al., 2019;
Gorishniy et al., 2021; Somepalli et al., 2021; Arik & Pfister, 2021; Yamada et al., 2020; Yoon et al.,
2020; Chen et al., 2022). Instead, gradient-boosted decision trees (GBDTS) (Chen & Guestrin,
2016; Prokhorenkova et al., 2018), achieve better overall performance on tabular benchmarks (McEl-
fresh et al., 2023; Shwartz-Ziv & Armon, 2022) considering a wide range of number of samples,
numbers of features, feature types, and feature distributions. Recently, transformer-based prior-
fitted networks, PFNS (Hollmann et al., 2022), have garnered interest, for their surprisingly strong
and state-of-the-art performance on small tabular datasets with ≤ 3, 000 samples (Hollmann et al.,
2022; McElfresh et al., 2023).

Unlike SGD-based deep learning, which trains a model on each downstream dataset, PFNS learn the
underlying patterns behind how downstream training datasets are generated. Specifically, PFNS are
first pretrained on datasets generated from a handcrafted dataset prior (Müller et al., 2021; Von Os-
wald et al., 2023). Then, during inference, PFNS predicts test samples by modeling the underlying
generative process of the observed training dataset. In this sense, PFNS are a form of In-Context
Learning (ICL) (Brown et al., 2020), where the context consists of downstream training samples.
In practice, PFNS are modeled as a transformer, where each dataset sample is converted into a
token and each dataset is converted into a prompt. By pretraining on multiple datasets generated
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by the handcrafted prior, PFN learns a better inductive bias than both conventional deep learning
algorithms and gradient-boosted decision trees.

One reason PFN performance drops on larger datasets is due to how it handles efficiency bottle-
necks. First, PFN inference is computationally expensive. Because the entire dataset is fed to the
transformer as a “prompt”, the inference time and space complexity for Ntrain training samples are
O(Ntrain) (Dao et al., 2022; Dao, 2023) and O(N2

train) respectively. This is in stark contrast to
GBDTS and traditional deep learning approaches where the inference time and space complexity is
O(1). To keep inference time low, existing works (Hollmann et al., 2022; McElfresh et al., 2023)
randomly sample from the training dataset to form the “prompt.” However, randomly sampling the
training dataset could throw away useful training samples, leading to information loss in the context.

Another reason PFN performance drops could be distribution shift between the inference-time con-
text dataset and the pretraining dataset generating prior. Because the prior is handcrafted, large
real-world datasets could follow a different underlying dataset generating process than the one seen
during pretraining. If this is the case, additional finetuning computation is required to align the pre-
training and inference-time dataset generating priors. We justify such computation by comparing
against baselines that also perform finetuning on downstream data.

In this work, we analyze recent claims (McElfresh et al., 2023) on PFN’s effectiveness, finding PFN
performance does not scale w.r.t. dataset size. We improve PFN’s performance w.r.t. dataset size1

by proposing Sparse “Mixture of In-Context Prompters” (MICP), which creates scalable “prompts”
by routing new test samples to a prompter specialized context relevant to said test sample. We
solve PFN’s distribution shift limitations with “Context-Aware PFN” (CAPFN), which finetunes
PFNS for downstream datasets via bootstrapping. We call our combined model MIXTUREPFN. To
summarize:

• To improve scalability, we are the first to propose Sparse Mixture of In-Context Prompters
(MICP) which routes new test samples to a pool of scalable prompters for In-Context
Learning. MICP efficiently routes informative context to downstream testing points with
O(1) memory and O(log(Ntrain)) time complexity, w.r.t. training dataset size, Ntrain.

• To improve performance, we finetune Context-Aware Prior-Fitted Network (CAPFN),
which aligns pretrained PFNS with inference-time data using a novel bootstrapping pol-
icy.

• MIXTUREPFN scales transformer PFNS to tabular datasets with much larger number of
samples, encountering minimal performance deterioration w.r.t. dataset size.

• MIXTUREPFN both achieves the highest mean rank with statistical significance and is the
Condorcet winner across 36 diverse tabular datasets against 19 strong deep learning and
tree-based baselines. We will release our code on Github.

2 PRELIMINARIES

We consider tabular classification problems, where the inputs are numerical, ordinal, or categorical
columns encoded as a d-dimensional feature vector, x ∈ Rd, the output is the corresponding label,
y ∈ [1, ..., C], and the dataset consists of labelled input output pairs, D = {(x(i), y(i))}Ni=0.2 Given
the training dataset, Dtrain = {(x(i)train, y

(i)
train)}

Ntrain
i=0 , and test samples, Xtest = [x

(i)
test]

Ntest
i=0 , our

goal is to correctly predict the corresponding test labels, Ytest = [y
(i)
test]

Ntest
i=0 . MIXTUREPFN is

inspired by Prior Fitted Networks, which we first introduce.

2.1 PRIOR FITTED NETWORKS

Prior Fitted Network (PFN) (Müller et al., 2021) is a parameterized model, qθ, with weights, θ,
that learns to approximate Bayesian inference given the dataset prior, p(D), via In-Context Learn-
ing (ICL) (Brown et al., 2020). Specifically, PFN inference approximates the posterior predictive

1We acknowledge PFN also encounter scalability challenges in terms of feature count and label size, but
we choose to tackle dataset size first, as it is the most apparent scalability bottleneck.

2We provide a table with all math notations in the Appendix.
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distribution (PPD), pθ(y|x,D) =
∫
ϕ
p(y|x, ϕ)p(D|ϕ)p(ϕ)dϕ, where ϕ is the hypothesis mechanism

behind how the tabular data is generated. For example, ϕ can be a structural causal model. Refer to
Bayesian inference transformers (Müller et al., 2021) for further details.

2.1.1 PRETRAINING

To approximate the PPD, PFNS are pretrained to minimize KL-Divergence between the param-
eterized model, qθ(y|x,D), and the PPD, p(y|x,D), over the dataset prior, p(D), which was
proven equivalent to optimizing the prior data negative log likelihood, LPFN. As shown in Equa-
tion 1 (Müller et al., 2021), this loss iteratively samples new datasets from a handcrafted dataset
prior, p(D), via Monte-Carlo.

LPFN = E
x,y,D∼p(D)

[−log(qθ(y|x,D))] (1)

TABPFN (Hollmann et al., 2022) is the state-of-the-art pretrained PFN transformer for tabular data.
It treats the hypotheses, ϕ, as randomly sampled structural causal models (SCM) (Pearl, 2009; Peters
et al., 2017) mixed with the original Bayesian Neural Network prior (Müller et al., 2021). Training
dataset samples are generated by first sampling a SCM graph, ϕ ∼ p(ϕ), followed by sampling the
SCM, x, y,D ∼ p(D|ϕ).
Transformer-based (Vaswani et al., 2017) PFNS tokenize the sampled dataset, (x,D) as input to the
parameterized model, qθ, as shown in Figure 6 and discussed in Section 2.1.2. Note, PFN inputs are
analogous to “prompts” from In-Context Learning (ICL) (Brown et al., 2020; Dong et al., 2022; Xu
et al., 2024), hence they are called “prompts” in this work.

2.1.2 INFERENCE

During inference, transformer-based PFNS tokenize the downstream dataset, (Xtest, Dtrain), into
batched “prompts”, consisting ofNtrain encoder tokens andNbatch decoder tokens, where each data
sample corresponds with one token.3 Because tabular columns are permutation invariant, TABPFN
shuffles feature orderings and scalings, running qθ on each permutation of the “prompt”, then re-
turning an ensembled prediction. We provide illustrations of this process in the Appendix. TABPFN
does not perform finetuning, only inference, on downstream datasets.

2.1.3 EFFICIENCY LIMITS EFFECTIVENESS

Full-prompt TABPFN cannot scale to datasets with large numbers of training samples (McElfresh
et al., 2023). Because the prompt size is directly correlated with the training dataset size, Ntrain,
encoding the entire training dataset into TABPFN’s prompt incurs significant compute costs. Hence,
when the training dataset is too large, existing works randomly sampleB out ofNtrain train sam-
ples to form the context, leading to information loss. We call this prompting approach TABPFN*.
Most existing works (Hollmann et al., 2022; McElfresh et al., 2023) set B = 3000.

TABPFN has an important distinction in its batching protocol. Natively, TABPFN forward pass
is less efficient than Large Language Models (LLMs) because each prompt is duplicated across
Nensemble feature shufflings and scalings to ensure table column invariance. To counteract this,
TABPFN forms more efficient prompts, fitting Nbatch test samples and the context in the same
prompt. In contrast, In-Context Learning (ICL) with LLMs (Liu et al., 2021) assigns a unique
prompt and context to each test sample. Hence, TABPFN balances its Nensemble× slower inference
by storing Nbatch× more efficient prompts. As a consequence, PFN prompting strategies must
support PFN-style batching, where multiple test points share the same context, to perform
efficient inference.

Finally, existing works (Hollmann et al., 2022; McElfresh et al., 2023) utilize TABPFN for zero-
shot inference. While this brings obvious efficiency benefits by removing reliance on downstream
training data, TABPFN assumes minimal distribution shift between pretraining and inference.
Furthermore, because TABPFN is trained on datasets sampled from a dataset prior, not training
samples sampled from a pretraining dataset, finetuning TABPFN is nontrivial.

3Our dataset is split into train/dev/test sets. During hyperparameter tuning, decoder tokens are taken from
the dev set instead.
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Figure 1: Illustration of MIXTUREPFN. MICP (Left): New test samples are passed to a router that
picks 1 out ofK prompters to form a scalable “prompt” withB training samples for the downstream
PFN model. CAPFN (Right): TABPFN is frozen, fitted with adapters, then finetuned using data
prior negative loss likelihood, Equation 1, on our bootstrapped data prior, p(D|Dtrain). This prior
simulates the MICP inference mechanism. The finetuned model is called CAPFN.

3 METHOD

To improve both the efficiency and effectiveness of TABPFN (Hollmann et al., 2022), we propose
a method to combine Sparse Mixture of Experts (Shazeer et al., 2017; Lewis et al., 2021) with
Prior-Fitted Networks (Müller et al., 2021): MIXTUREPFN.

MIXTUREPFN is composed of 2 parts: Mixture of In-Context Prompts (MICP), which define
how to seperate large training datasets into manageable clusters, and Context-Aware Finetuning
(CAPFN), which finetunes an expert PFN model on each specialized cluster. In terms of efficiency,
MICP is an efficient inference-time prompting technique. Thus, MICP, in isolation, performs zero-
shot inference like TABPFN (Hollmann et al., 2022).

Under MICP, we hypothesize distribution shift exists between pretraining and inference. To address
said distribution shift, we use bootstrapping to finetune each MICP cluster’s transformer model. We
find this additional finetuning cost is necessary to close the gap between TABPFN (Hollmann et al.,
2022) and other finetuning algorithms, like XGBOOST (Chen & Guestrin, 2016).

3.1 MIXTURE OF IN-CONTEXT PROMPTERS (MICP)

The goal of MICP is to construct “prompts” that retains more information than TABPFN*’s random
sampling policy. Inspired by Sparse Mixture of Experts (Shazeer et al., 2017; Lewis et al., 2021),
where each test sample is routed to an specialized expert trained on a subset of the training dataset,
Sparse Mixture of In-Context Prompters, MICP, routes each test sample to one of K “In-Context
Prompters” (ICP), {Tk}Kk=0, specializing on a cluster of the training dataset, using a routing module,
R : Rd → {0, ...,K − 1}. Each ICP then constructs a relevant “prompt’ for incoming test samples,
which are sent to the downstream PFN model in batch. Specifically, ICP concatenates incoming
test samples, {x(i)test : R(x

(i)
test = k)}, with its training cluster context, Dprompt(k) ⊂ Dtrain, to

form the scalable “prompt”: Tk({x(i)test : R(x
(i)
test = k)}) = ({x(i)test : R(x

(i)
test = k)}, Dprompt(k)).

Because larger clusters improve PFN performance (Hollmann et al., 2022; McElfresh et al., 2023)
at the cost of efficiency (as we show in Section 5.3), existing works (McElfresh et al., 2023) adopt
a fixed prompt size at B = 3000. For fair comparison, we also follow this setting, where each
prompter’s context collects a training cluster context of fixed size, |Dprompt(k)| = B.

Compared to TABPFN*, which construct random global context for each test point,
MICPconstructs prompts with relevant local context for each test point. Hence, MICP retains
more useful information than TABPFN*. To construct local clusters, we run K-Means on the
training dataset: {D(k)

cluster}Kk=0, {x
(k)
center}Kk=0 = KMEANS(Dtrain). To construct contexts of a
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Method Condorcet Statistics All Algo. Top-10 Algo.
#Votes↑ #Wins↑ #Ties #Losses↓ Mean ± Std Rank↓

MixturePFN 524 19 0 0 2.350 ± 1.824 2.273 ± 1.7106
XGBoost 500 18 0 1 5.500 ± 4.621 4.000 ± 2.663
CatBoost 474 17 0 2 4.900 ± 4.158 3.955 ± 2.688
SAINT 408 16 0 3 8.300 ± 5.367 4.045 ± 1.965
TabPFN* 381 13 1 5 4.550 ± 2.747 4.040 ± 1.311
LightGBM 373 14 1 4 9.150 ± 4.351 6.409 ± 2.839
DANet 312 14 0 5 9.050 ± 3.369 7.045 ± 1.988
FTTransformer 294 12 0 7 8.600 ± 3.541 6.773 ± 2.235
ResNet 286 11 0 8 8.400 ± 3.262 6.864 ± 1.961
SVM 285 9 0 10 11.300 ± 4.766 7.500 ± 2.482
STG 284 10 0 9 11.900 ± 4.549 -
RandomForest 247 7 0 12 11.600 ± 4.443 -
NODE 243 7 0 12 13.350 ± 3.410 -
MLP-rtdl 227 5 0 14 10.800 ± 5.046 -
TabNet 210 5 0 14 13.550 ± 5.296 -
LinearModel 202 3 1 15 12.400 ± 4.652 -
MLP 191 5 1 13 13.700 ± 3.621 -
VIME 134 2 0 17 15.350 ± 3.851 -
DecisionTree 114 1 0 18 16.800 ± 3.881 -
KNN 74 0 0 19 18.450 ± 1.936 -

Table 1: MIXTUREPFN is the Condorcet winner across 36 datasets against 19 baseline algorithms.
MIXTUREPFN achieves the top mean rank across 20 datasets where all algorithms successfully
run and across 22 datasets where all Top-10 algorithms successfully run. To break ties, we rank
algorithms based on their mean log-likelihoods following TABZILLA (McElfresh et al., 2023). We
report the Condorcet matrix, dataset breakdowns, and accuracy-metric results in the Appendix.

desired size, we expand K-Means clusters with less than B samples, KNN(x
(k)
center|Dtrain, B),

and subsample K-Means clusters with more than B samples, SAMPLE(D
(k)
cluster, B) to form the

context, Dprompt(k). Our router assigns test points to the nearest cluster center: R(x) =

NNS(x|{x(k)center}Kk=0). MICP supports PFN-style batching by grouping test points that be-
long to the same ICP cluster: R(x

(i)
batch) = R(x

(j)
batch)∀i, j into a batched test “prompts”:

(Xbatch, D
(k)
prompt), where multiple test points, Xbatch ⊆ Xtest, share the same context.

In total, router and prompter initialization takes O(tNtrainK+(Ntrain+KB)logNtrain) time and
O(Ntrain +KB) space complexity and is done once before inference. Routing takes O(log(K))
time and O(1) space complexity, using efficient nearest neighbor search with ball-tree for each test
sample. PFN transformer inference takes O(B2 + BNbatch) time and space complexity, as MICP
prompts contain at most B training samples and Nbatch = |Xbatch| testing samples. We provide
time and space complexity details in the Appendix. We illustrate MICP in Figure 1.

3.1.1 EFFICIENCY AND EFFECTIVENESS TRADE-OFF

The effectiveness of MICP prompts depend on the number of ICPS used, K. As the complex-
ity and size of data increase, more ICPS are needed to capture the entropy of the labels. This is
natural as each router’s support set, Dprompt(R(x

(i)
test)), should be representative of test samples

routed to that cluster, KNN(x
(i)
test|Dtrain, B), which we call the support set. If the true support set

becomes more granular as the dataset size increases, more ICPS are required to maximize overlap:
|Dprompt(R(x

(i)
test)) ∩ KNN(x

(i)
test|Dtrain, B)|.

We theoretically characterize this relationship between K, B, and overlap by analyz-
ing conditions required for nonzero overlap on the training data: |Dprompt(R(x

(i)
train)) ∩

KNN(x
(i)
train|Dtrain, B)| ≥ 1 ∀i ∈ [0, ..., Ntrain − 1]. Specifically, we encourage nonzero overlap
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(a) Ntrain w.r.t. TABPFN* (b) Ntrain w.r.t. baselines (c) Kurtosis and #Feat

Figure 2: (a): We plot the difference in Log Likelihood between MIXTUREPFN and TABPFN* for
each dataset of size Ntrain. MIXTUREPFN substantially improves the performance and TABPFN*
and runs on datasets with > 3, 000 samples. (b): We plot the Log Likelihood of the top deep
learning (DL) PFN, and tree baselines across all 36 datasets and the best-fit line between rank and
dataset size, compared to the top baseline. Unlike TABPFN, MIXTUREPFN maintains its good
performance as the size of the dataset increases. (c) : We plot the best among the top DL, PFN, and
tree baselines on all 36 datasets across different dataset properties. MIXTUREPFN performs well
across different dataset irregularities. We provide further breakdowns in the Appendix.

by scaling the number of “prompts”, K, linearly with the size of each “prompt”, B, and training
dataset size, |Ntrain|, as stated in Theorem 3.1.1: K ≥ ⌈Ntrain/B⌉.

[Nonzero Overlap] If every K-Means cluster contains at most B samples, |D(k)
cluster| ≤ B ∀k ∈

[0, ...,K−1] and training points route to their assigned K-Means cluster R∗(x
(i)
train) = k : x

(i)
train ∈

D
(k)
cluster

4, then nonzero overlap on the training data is guaranteed, |Dprompt(R∗(x
(i)
train)) ∩

KNN(x
(i)
train|Dtrain, B)| ≥ 1 ∀i ∈ [0, ..., Ntrain − 1] ∀Dtrain.

This insight allows MIXTUREPFN to trade-off efficiency and effectiveness with a single hyper-
parameter, γ, which controls the number of ICPS as a ratio of training and support set sizes:
K = ⌈γNtrain/B⌉. Intuitively, larger γ improves effectiveness at the cost of efficiency. Assum-
ing fixed γ, Nbatch, and B, MIXTUREPFN routing takes O(log(Ntrain)) time and O(1) space
complexity, and PFN inference takes O(1) time and space complexity.

3.2 CONTEXT-AWARE FINETUNING (CAPFN)

The goal of CAPFN is to counteract distribution shift by specializing each prompter on its assigned
context via parameter efficient finetuning. PFNS are pretrained on the ICL task over a synthetic
dataset prior, p(D) = p(D|ϕ)p(ϕ) (Müller et al., 2021; Hollmann et al., 2022). Inspired by recent
works which aligns Large Language Models on ICL “prompts” via finetuning (Thoppilan et al.,
2022; Wei et al., 2021; Gu et al., 2023), we argue the pretraining data prior, p(D) = p(D|ϕ)p(ϕ),
is different than the true data generating mechanism during inference, p(Dprompt|Dtrain), which
was described in Section 3.1. This leads to distribution shift. To better align the parameterized
model, qθ, with the inference-time dataset,Dprompt, CAPFN uses bootstrapping on the downstream
dataset, Dtrain, to simulate ICL “prompts”: (Xsubtest, Ysubtest, Dsubtrain) ∼ p(D|Dtrain), where
Xsubtest ⊂ Xtrain, Ysubtest ⊂ Ytrain, and Dsubtrain ⊂ Dtrain. Bootstrapped samples are used
to tune adapters (Houlsby et al., 2019) via prior data negative log likelihood loss, as shown in
Equation 1, except the dataset prior is now the bootstrap mechanism: p(D) = p(D|Dtrain).

4Thse conditions can be satisfied via constrained K-Means (Bradley et al., 2000), which ensures each cluster
has at most B entries, and a router that sends train points to their assigned clusters. In practice, we find
the relationship with the tunable parameter γ also holds for MIXTUREPFN’s regular K-Means and Nearest-
Neighbor Search router.
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Figure 3: Wilcoxon-Signed Rank Test shows MIXTUREPFN significantly outperforms the Top-
10 baselines on the 22 shared datasets. To break ties, we rank algorithms based on their mean
log-likelihoods following TABZILLA (McElfresh et al., 2023). We compute the rank across all 10
cross-validation splits. We report additional critical difference diagrams in the Appendix.

3.2.1 BOOTSTRAPPING LARGE MICP DATASETS

The bootstrap procedure mimics MICP on large Ntrain > 3000 datasets: p(D|Dtrain) =
p(Dsupport|x)p(x|Dtrain). Specifically, we sample a random training point from the training
dataset, x ∼ p(x|Dtrain), then run K-Nearest Neighbors from the sampled point, p(Dsupport|x) =
KNN(x|Dtrain, B), as defined in Section 2.1.3, to obtain a bootstrap dataset, Dbootstrap. We ran-
domly split the bootstrapped dataset Dbootstrap ∼ p(D|Dtrain) into train/test splits to obtain the
“labelled prompt”, (Xsubtest, Ysubtest, Dsubtrain).

3.2.2 BOOTSTRAPPING SMALL DATASETS

MICP does not run on smaller Ntrain ≤ 3000 datasets. However, bootstrapping can still be used
to finetune the model on said datasets to match the downstream dataset distribution. In this case, we
sample from p(D|Dtrain) by randomly sampling 90% of training samples without replacement to
obtain Dsubtrain and treating the remaining 10% of sample as Xsubtest, Ysubtest.

3.2.3 FINETUNING WITH ADAPTERS

To prevent overfitting and reduce parameter count for each new expert, we only train a small set of
new adapter (Houlsby et al., 2019; Bapna et al., 2019; Hu et al., 2021; Liu et al., 2022) parameters,
ψ, on p(D|Dtrain), without modifying in the pretrained transformer’s parameters, θ.5 Specifi-
cally, we freeze a pretrained TABPFN transformer, qθ(y|x,D). Next, for each downstream dataset,
Dtrain, we add linear adapter layers (Houlsby et al., 2019), A(Dtrain)

ψ , with parameters ψ, to form

q
(Dtrain)
θ,ψ (y|x,D, qθ,A(Dtrain)

ψ ). During finetuning, only ψ is optimized. Intuitively, qθ encodes the

handcrafted prior, p(D|ϕ)p(ϕ), and A(Dtrain)
ψ encodes the bootstrapped prior, p(D|Dtrain). We

illustrate CAPFN in Figure 1.

4 EXPERIMENT SETUP

We evaluate MIXTUREPFN on the recently proposed TABZILLA benchmark (McElfresh et al.,
2023). TABZILLA is the largest tabular benchmark, with 36 hardest datasets out of 176 tabular
classification datasets and 19 baseline algorithms, covering both deep learning and GBDTS. The
benchmark covers a diverse range of dataset properties, in number of samples, number of features,
and feature distributions. We choose this benchmark as it considers a larger range of dataset prop-
erties than other existing benchmarks (Grinsztajn et al., 2022; Kadra et al., 2021; Gorishniy et al.,
2022). MIXTUREPFN’s goal is to (1) improve TABPFN* (McElfresh et al., 2023), which randomly
samples B training pairs so that TABPFN (Hollmann et al., 2022) runs on larger datasets, and (2)
outperform both GBDTS (Chen & Guestrin, 2016; Prokhorenkova et al., 2018; Ke et al., 2017)
which were found state-of-the-art by TABZILLA, and recent deep learning models (Popov et al.,
2019; Gorishniy et al., 2021; Arik & Pfister, 2021; Hollmann et al., 2022; Yamada et al., 2020; Yoon
et al., 2020; Somepalli et al., 2021; Chen et al., 2022).

5Adapters are also efficient because only a small number of parameters are updated, p(ϕ) is not needed
during finetuning, and different downstream datasets share a common pretrained model.
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Method Mean ± Std Median Min Max
Rank↓ Rank↓ Rank↓ Rank↓

MIXTUREPFN 2.75 ± 1.94 2 1 9
MIXTUREPFN (KNNv2) 4.00 ±1.56 4 2 7
CatBoost 4.70 ±3.16 6 1 9
MIXTUREPFN (CaPFN w. Full FT) 4.85 ±2.03 4.5 2 9
XGBoost 4.95 ±3.17 6 1 10
MIXTUREPFN (-CaPFN) 5.10 ±1.12 5 3 8
MIXTUREPFN (-CaPFN-MICP) = TABPFN* 5.30 ±1.59 5 2 9
MIXTUREPFN (KNNv1) 7.25 ±3.70 9 1 10
MLP-rtdl 7.25 ±2.79 8 1 10
MLP 8.85 ±0.99 9 7 10

Table 2: Ablation table results. MIXTUREPFN (KNNv1) and MIXTUREPFN (KNNv2) replace
MICP with a scalable variant of KNN-Prompting. MIXTUREPFN (CaPFN w. Full FT) uses full
finetuning instead of adapters. MIXTUREPFN (-CaPFN) and MIXTUREPFN (-CaPFN-MICP) re-
move each component iteratively, where MICP is replaced by random sampling.

4.0.1 EVALUATION PROTOCOL

Since TABZILLA restricts the total runtime to 10 hours, not all algorithms run on the same datasets.
To ensure a fair comparison6, we evaluate MIXTUREPFN and baselines using (1) Mean Rank,
TABZILLA’s original metric, (2) Wilcoxon-Signed Rank Test to check for statistical significance,
and (3) Condorcet voting (Gehrlein & Valognes, 2001; Wang et al., 2012), which aggregates pair-
wise comparisons between each algorithm on each dataset.

We introduce the Condorcet voting to deal with cases where not all algorithms run on all datasets.
TABZILLA ’s Mean Rank metric is not ideal, because it considers either a subset of datasets or
subset of algorithms. This throws away valuable information, since the relative ranking between
algorithms on the excluded datasets are ignored. Incomplete ranked-choice voting is well-studied
problem in political science (Gehrlein & Valognes, 2001), where voters (datasets) rank candidates
(algorithms) relative to each other. Condorcet voting ensures both that every voter’s (dataset’s) rank-
ings are accounted for and that no candidate (algorithm) or voter (dataset) are artificially excluded,
by decomposing full rankings into pair-wise rankings. An algorithm is the Condorcet winner if it
wins all pairwise comparisons averaged across all datasets.

5 RESULTS

5.1 MIXTUREPFN: STATE-OF-THE-ART PERFORMANCE

As shown in Table 1, MIXTUREPFN achieves state-of-the-art performance on TABZILLA across 36
datasets and 19 baseline algorithms both using TabZilla’s original metric, Mean Rank, and as
the Condorcet winner, beating all other baselines in pairwise comparisons. MIXTUREPFN is
followed by GBDTS (Chen & Guestrin, 2016; Prokhorenkova et al., 2018), then TABPFN* (McEl-
fresh et al., 2023), then deep learning algorithms (Chen et al., 2022; Gorishniy et al., 2021; Somepalli
et al., 2021). These results corroborate recent findings (McElfresh et al., 2023; Grinsztajn et al.,
2022) that most deep learning algorithms fail on general tabular datasets. MIXTUREPFN achieves
its state-of-the-art results by scaling TABPFN*’s impressive performance to larger datasets. We
provide additional metrics in the Appendix. To understand what dataset regimes each algorithm
performs best at, we evaluate MIXTUREPFN’s rankings w.r.t. dataset properties.

MIXTUREPFN substantially improves the scalability of TABPFN and TABPFN*. As show in
Figure 2a, unlike TABPFN which encounters memory bottlenecks on datasets with > 3000 sam-
ples, MIXTUREPFN successfully runs on all said datasets. As show in Figure 2a, MIXTUREPFN
substantially improves the performance of TABPFN* by improving how samples are chosen for the
“prompt” and training on the downstream dataset.

6We cannot follow the same experimental settings as the October revision of TABZILLA because they are
unfair, as mentioned in a recent Github issue (git, 2024a). Further details are in the Appendix.
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(a) Runtime Costs for Inference

(b) Memory Costs for Inference

Figure 4: Computation Costs for attention compute with different hardware optimizations.

MIXTUREPFN encounters no performance deterioration w.r.t. dataset size. As shown in
Figure 2b, unlike TABPFN*, whose performance deteriorates w.r.t dataset size, MIXTUREPFN’s
performance compared to the next best baseline is not correlated with dataset size. Hence, MIX-
TUREPFN is necessary to scale TABPFN*’s impressive performance on to larger datasets.

MIXTUREPFN is robust to irregular datasets. We measure the irregularity of datasets using the
standard deviation of the kurtosis of all features. Deep learning algorithms are especially susceptible
to irregular datasets with uninformative or heavy-tail features (Grinsztajn et al., 2022). As shown
in Figure 2c, MIXTUREPFN is the Top-1 algorithms on datasets with both high and low kurtosis
standard deviation. Because it is finetuned on downstream datasets, MIXTUREPFN is robust to
dataset irregularity.

MIXTUREPFN works better with fewer features. As shown in Figure 2c, MIXTUREPFN loses
against baselines on datasets with a large number of features. PFN transformers are known to face
scalability challenges with number of features (Hollmann et al., 2022), due to their handling of
column order invariance. We believe better tokenization practices and feature selection can improve
feature size scalability, and leave such exploration to future work.

MIXTUREPFN’s state-of-the-art performance is statistically significant. Specifically, we run the
Wilcoxon Signed-Rank test with p < 0.05 comparing the Top-10 Condorcet algorithms from Table 1
across their 22 shared datasets and 10 cross-validation splits. As shown in Figure 3, MIXTUREPFN’s
state-of-the-art performance is statistically significant.

5.2 ABLATION STUDY

Both MICP and CAPFN contribute to MIXTUREPFN state-of-the-art results. We perform
ablation studies for MICP and CAPFN against common GBDTS and deep learning models across
10 shared datasets. As shown in Table 2, each component of the model, MICP and CAPFN, con-
tributes to achieving state-of-the-art results. MICP helps by efficiently choosing an effective con-
text for the “prompt”. CAPFN helps by aligning the dataset prior through finetuning the PFN on
MICP’s prompting policy. Because overfitting is a well-known issue for deep learning models tack-
ling tabular data (Kadra et al., 2021; Grinsztajn et al., 2022), adapters are a key component to ensure
CAPFN aligns the pretrained TABPFN transformer with the downstream data, without destroying
its pretraining prior, p(D|ϕ)p(ϕ).
Under the same GPU resources, KNN-Prompting is much less effective than MICP on tabular
datasets. As described in Section 2.1.3, KNN-Prompting does not support TABPFN-style batching.
To empirically verify that MICP improves KNN-Prompting, we replace MICP in MIXTUREPFN
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with 2 KNN-Prompting variants: MIXTUREPFN (KNNv1): Because each prompt contains at most
B +Nbatch tokens, we batch KNN-Prompts by considering B/Nbatch nearest neighbors instead of
B-nearest neighbors; MIXTUREPFN (KNNv2): Because LLM-batching fails due to TABPFN’s
ensembling overhead, we remove the ensembling procedure and run KNN-Prompting following
LLM-batching (Liu et al., 2021), as described in Section 2.1.3. As shown in Table 2, both KNN-
Prompting variants perform substantially worse than MIXTUREPFN because they compromise an
essential component of PFN, either prompt size or ensembling, for performing efficient inference.
The relative rankings suggest prompt size matters more than ensembling.

5.3 RUNTIME

Figure 5: Train time costs for MIXTUREPFN.

Given the efficiency effectiveness
tradeoffs listed in Section 2.1.3, we
provide real runtime analysis be-
tween TABPFN, TABPFN*, and
MIXTUREPFN. Specifically, we set
batch size to 32, ensemble size to 32,
feature count to 100, and time the
transformer forward pass combined
along with any preprocessing costs,
namely MIXTUREPFN routing. We
report median runtime and memory consumption across 8 runs to remove outliers. Note, recent
hardware-level optimizations, specifically FlashAttention (Dao, 2023) and torch compile, greatly
improve real runtimes of transformer models. For fair comparison, we improve TABPFN with
FlashAttention (Dao, 2023) and torch compile. MIXTUREPFN is more runtime and memory
efficient than full-context TABPFN independent of hardware optimizations by only attend-
ing to training samples in the local neighborhood of grouped test samples. As seen in Figure 4,
MIXTUREPFN incurs the same memory costs as TABPFN* and nearly the same runtime costs as
TABPFN* due to highly optimized nearest-neighbor search algorithms (Douze et al., 2024).

We quantify the efficiency effectiveness tradeoff of CAPFN finetuning by computing the runtime
of training. Note, Section 5.2 shows that finetuning costs do substantially boost performance. We
compare MIXTUREPFN ’s training times to XGBOOST, CatBoost, Saint, LightGBM, and FTTrans-
former. We report training runtime for one hyperparameter setup of one cross-validation fold over
datasets of 3 varying sizes, and report the median runtime/memory consumption across 3 runs to
remove outliers. As shown in Figure 5, MIXTUREPFN takes roughly the same amount of train-
ing time per expert as other deep learning algorithms, like FTTransformer. While decision tree
algorithms still run faster than deep learning algorithms, MIXTUREPFN substantially improves the
trade-offs between tree-based and deep learning algorithms through its impressive performance.

6 LIMITATIONS

As shown in Section 5.1, MIXTUREPFN successfully improves TABPFN’s scalability w.r.t. dataset
size to achieve state-of-the-art results on the TABZILLA benchmark. However, we notice that
TABPFN* does not scale well with feature and label count, relying on ensembling to capture feature
and label order invariance. Scaling TABPFN* to datasets with large number of features and labels
can further push ICL performance for tabular learning. While this work covers a large number of
diverse datasets, we do not cover huge datasets with billions of samples (Zhu et al., 2023; Yang
et al., 2023). We leave such investigation to future work.

7 CONCLUSION

In this work, we provide a scalable framework for In-Context Learning (ICL) on tabular datasets.
To efficiently construct effective ICL “prompts”, we propose routing test samples through a Sparse
Mixture of In-Context Prompters, MICP. To align the PFN with the inference-time datasets, we
propose a novel finetuning policy using bootstrapping, CAPFN. Our framework, MIXTUREPFN,
achieves state-of-the-art performance against 19 deep learning and tree-based baselines across 36
general tabular datasets.
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8 ETHICS STATEMENT

This paper presents work whose goal is to advance the field of tabular and in-context learning. Our
work reaches state-of-the-art tabular classification accuracy, which has broad positive impact for
many industries using relational databases and tabular datasets. We hope our impressive results in-
spire further research into PFNS and ICL for tabular learning. Our work is built on large transformer
models, which are known to hallucinate in the natural language domain. While we observe no such
behavior on our tabular datasets, we will open source our code, such that practitioners can plug in
their own safe transformer models. We feel there are not any other noteworthy negative societal
impacts.
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efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Chris Ding and Hanchuan Peng. Minimum redundancy feature selection from microarray gene
expression data. Journal of bioinformatics and computational biology, 3(02):185–205, 2005.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
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A RELATED WORK

A.1 TABULAR LEARNING ALGORITHMS

Early tabular learning algorithms are based off decision trees, utilizing boosting, feature encoding,
and ensembling (Shwartz-Ziv & Armon, 2022; Borisov et al., 2022; Chen & Guestrin, 2016). Early
deep learning algorithms are inspired by decision trees, making them end-to-end learnable (Popov
et al., 2019; Katzir et al., 2020; Hazimeh et al., 2020; Somepalli et al., 2021; Arik & Pfister, 2021);
however, more thorough benchmarks find decison trees produce more reliable results. Hyperparam-
eter tuning (Kadra et al., 2021) and inductive bias (Grinsztajn et al., 2022) were identified as key
weaknesses in deep learning algorithms. Recent works focus on optimizing transformer models for
specialized datasets (Huang et al., 2020; Gorishniy et al., 2021; 2022), and improving decision tree
optimization (Joseph & Raj, 2022), or Bayesian learning (Hollmann et al., 2022; Schäfl et al., 2022;
Feuer et al., 2023) for small datasets. With the rise of LLMs, pretrained tabular learning models also
achieve impressive performance at the cost of billions of training points (Yang et al., 2023; Zhu et al.,
2023). Of these methods, Prior-Fitted Networks (Feuer et al., 2023) were identified as a promising
direction in recent benchmarks among deep learning approaches for general tabular learning prob-
lems (McElfresh et al., 2023). Most recently, TuneTables (Feuer et al., 2024) appeared on arxiv
using sketching to also scale TABPFN at inference; however, purely inference-time techniques will
always have some performance gap due to distribution shift, which our work addresses.

A.2 GRADIENT-BOOSTED DECISION TREES

Gradient-boosted decision trees (GBDTS) remain the preferred algorithm of tabular learning prac-
titioners (Chen & Guestrin, 2016; Prokhorenkova et al., 2018). Deep learning algorithms (Popov
et al., 2019; Gorishniy et al., 2021; Somepalli et al., 2021; Arik & Pfister, 2021; Yamada et al.,
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2020; Yoon et al., 2020) fail on larger benchmarks considering different numbers of samples, num-
bers of features, feature types, feature distributions, and numbers of labels (McElfresh et al., 2023;
Shwartz-Ziv & Armon, 2022). Because GBDTS utilize boosted gradients and are not rotationally
invariant before training, GBDT learning algorithms have a better inductive bias than Stochas-
tic Gradient Descent-based (SGD-based) deep learning algorithms Grinsztajn et al. (2022). Thus,
GBDTS achieve state-of-the-art performance on medium to large datasets with 3,000 to 1,000,000
samples and competitive performance on smaller datasets McElfresh et al. (2023); Grinsztajn et al.
(2022).

A.3 PRIOR FITTED NETWORKS

Prior Fitted Networks (PFN) (Müller et al., 2021) approximates Bayesian inference using a data
prior, where a parameterized model is trained to minimize the KL-Divergence between it and the
posterior predictive distribution. The proof for PFNS is derived from meta-learning (Gordon et al.,
2018). PFNS fall under In-Context Learning (Brown et al., 2020), as the entire training dataset
is fed to the model during inference. Hence, PFNS effectively learn the learning algorithm. This
approach is particularly effective on tabular data (McElfresh et al., 2023), where the data prior
effectively regularizes model predictions. TABPFN (Hollmann et al., 2022) is a PFN model specific
to tabular data that achieves state-of-the-art performance on small datasets. Unlike preliminary
works on scaling TABPFN (Feuer et al., 2023), that benchmark KMeans and Coreset “promting”,
we propose a sparse mixture of KNN prompters, capable of forming scalable batched “prompts”
and a novel finetuning protocol for the mixture of prompters. Furthermore, our approach not only
improves TABPFN results on large datasets, but achieves state-of-the-art performance across tabular
benchmarks (McElfresh et al., 2023).

A.4 MIXTURE OF EXPERTS

Sparsely gated MoE (Shazeer et al., 2017; Lewis et al., 2021) shows a significant improvement in
model capacity, training time, and accuracy with a gating mechanism. An expert is a sub-network,
which better learns to predict similar data points. A gating mechanism, learnable or non-learnable
method, decides to route each data point to the most suited experts (Shazeer et al., 2017). Switch
transformers (Fedus et al., 2022) is a learning to route approach, where it assigns one data point
to only one expert, instead of top-k, which reduces computation, while preserving accuracy. How-
ever, learnable routing methods require auxiliary load balancing loss function, and further tuning.
In (Roller et al., 2021), a non-learnable routing method is proposed, which uses a hashing method to
assign similar data points to similar experts. They show that this procedure can be better or be com-
petitive with learnable routing MoE methods. However, a hashing method is not necessarily flexible
in assigning data points to suitable experts, as it can cause data skewness and choice of hashing
function is sensitive to the downstream task. Inspired by these works, we proposed a non-learnable
routing mechanism which assigns one data point to one expert, and our routing method finds the
most suitable expert based on similarity of data points with a K-Means clustering method. Also,
we used experts with shared weights as opposed to general MoE in most of the previous works, as
the prompts, not the model, contains training examples for In-Context Learning. We highlight tack-
ling MoE in the context of prompting is a newly emerging research interest (Anonymous, 2024), of
which we are among the first.

A.5 EFFICIENT TRANSFORMERS

Long sequence inputs have long been studied by the efficient transformer community. Several linear
time and space complexity transformers have been proposed (Katharopoulos et al., 2020; Wang et al.,
2020; Choromanski et al., 2020; Qin et al., 2022), primarily be SVD decomposing the attention
computation. While efficient transformers can help scale the base PFN model, linear complexity
is too expensive for the scale of tabular data in industry. Furthermore, many approaches require
finetuning on downstream data (Katharopoulos et al., 2020; Wang et al., 2020) which is nontrivial
for PFN models. Constant time transformers (Zaheer et al., 2020; Bulatov et al., 2023; Chowdhery
et al., 2023) exploit the sequential nature of text data. These methods also do not apply to PFNS
for tabular data, as tabular training data is not inherently sequential. Hence, technologies outside of
efficient transformers are needed to effectively scale PFNS for tabular learning.
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A.6 IN-CONTEXT LEARNING

In-Context Learning (ICL) prompts transformers with training examples prepended to the desired
query (Brown et al., 2020). Several works attempt to prompt engineer scalable in-context examples
for better downstream performance (Hao et al., 2022), among which K-Nearest Neighbors emerge
as a reliable choice (Liu et al., 2021; Xu et al., 2023). However, ICL for LLMs consider queries
one-at-a-time instead of in batch fashion, prompts are encoded as natural language, and in-context
examples can come from a large corpus of natural lanaguage data (Brown et al., 2020). These
properties are not afforded to PFN-style ICL, where inference is directly run on training set tokens.
In addition to scaling “prompts”, LLMs can also be finetuned on ICL examples to reach better
performance (Thoppilan et al., 2022; Wei et al., 2021). However, this is due to LLM pretraining
objectives misaligning with the ICL task. Such misalignment is not as obvious in the PFN case,
where the transformer is directly trained on the ICL task (Müller et al., 2021). Hence, we propose
Sparse Mixture of In-Context Prompters to support batching and our novel bootstrapping algorithm
to finetune PFN models. In the spirit of multi-modal models (Radford et al., 2021; Xu et al., 2022),
TABPFN (Hollmann et al., 2022) extends ICL techniques from natural language LLMs to tabular
data.

B MATH NOTATIONS

We summarize our math notations below:

• B: Number of training samples in prompt

• K: Number of experts

• D: A generic dataset

• Dtrain: The training dataset

• Xtest: The test samples

• Xbatch: A batch of testing data

• C: Number of classes

• qθ: PFN Model

• ADtrain

ψ : PFN Model Adapters trained on Dtrain

• θ: PFN Model Parameters

• ψ: PFN Model Adapter Parameters

• ϕ: PFN hypothesis mechanism

• R: Router mapping input test points to 1 of K Prompters

• Tk: The k-th Prompter

• D(k)
cluster: The k-th K-Means cluster of training samples

• D(k)
prompt: The k-th Prompter’s training samples context

• (Xbatch, D
(k)
prompt): The k-th Prompter’s “prompt”

• NNS(·|·): Nearest Neighbor Search Algorithm

• KNN(·|·, ·): K-Nearest Neighbors Algorithm

• KMeans(·): K-Means Algorithm

• Sample(·): Random Sampling

• Ntrain: Full training dataset size

• Ntest: Full testing dataset size

• Nbatch: Batch size

• γ: Single hyperparameter trading off performance and efficiency.
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C NONZERO OVERLAP PROOF

We prove Theorem 3.1.1 here.

First we prove |D(k)
cluster| ≤ B =⇒ D

(k)
cluster ⊆ KNN(x

(k)
center|Dtrain, B):

By KMeans definition,
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By KNN definition,
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Next, we prove Theorem 3.1.1:

Given |D(k)
cluster| ≤ B ∀k ∈ [0, ...,K − 1] and R∗(x

(i)
train) = p : x

(i)
train ∈ D

(k)
cluster ,

=⇒ G(k) = 1
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train))

=⇒ x
(i)
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(i)
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=⇒ |Dprompt(R∗(x
(i)
train)) ∩ KNN(x

(i)
test|Dtrain, B)| ≥ |{x(i)train}| = 1 ∀i ∈ [0, ..., Ntrain − 1]

∀Dtrain.

D SIMILARITY AND DIFFERENCES COMPARED TO LARGE LANGUAGE
MODELS

We illustrate the difference between ICL on PFNS and LLMs in Figure 6.

E SUPPORT SET AND KNN PROMPTING.

In Figure 15, we point out one key difference between KNN-Prompting with TABPFN (Hollmann
et al., 2022) and with ICL on LLMs (Liu et al., 2021): LLMs support batching multiple test pairs
across multiple “prompts” where each “prompt” contains the nearest neighbors to 1 test point. In
contrast, TABPFN requires multiple test cases in 1 “prompt”, which necessitates techniques like
MICP to route a batch of test points to the same “prompt”. As shown in Section 5.2, TABPFN’s
more efficient prompts achieve better performance under same GPU constraints as ICL for LLM
batched prompts. We leave application of MICP to ICL and LLMs as future work.
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Figure 6: We highlight the differences between In-Context Learning (ICL) on Prior Fitted Networks
(ex. TABPFN), left, and Large Language Models (LLMs), right. TABPFN treats training data as
tokens (where each token is a concatenation of feature and label), whereas LLMs use templates to
convert training data into natural language prompts. TABPFN uses an attention pattern (blue and
red arrows) supporting batch inference, whereas LLMs use generic encoder-decoder or decoder-only
setups. TABPFN are pretrained on Equation 1, whereas LLMs are pretrained separately.

F TIME AND SPACE COMPLEXITY DETAILS

Router and prompter initialization takes O(tNtrainK + (Ntrain + KB)logNtrain) time and
O(Ntrain + KB) space complexity and is done once before inference. For initialization, K-
Means with t-iterations takes O(tNtrainK) time and O(K) space. To perform efficient nearest
neighbor queries, we use the ball-tree algorithm over the training dataset and cluster centers , which
takes O(Ntrainlog(Ntrain)) time and O(Ntrain) space. Using ball-tree KNN queries, constructing
each ICP support set takes O(Blog(Ntrain)) time and O(B) space.

Routing takes O(log(K)) time and O(1) space complexity, using efficient nearest neighbor
search with ball-tree for each test sample. Router overhead is practically overcome via highly-
optimized NNS implementations (Douze et al., 2024), which scale K to the billions.

PFN transformer inference takes O(B2 + BNbatch) time and space complexity, as MICP
prompts contain at most B training samples and Nbatch = |Xbatch| testing samples. Note,
unlike purely KNN-based prompting, MICP supports batched computation to further amortize PFN
inference cost.

G CHOOSING BASELINE DATASETS AND ALGORITHMS

We chose our datasets from the TABZILLA benchmark, which curates 36 of the hardest 176 consid-
ered datasets across 19 algorithms. As noted in Section 4.0.1, not all algorithms run on all datasets.
We note which datasets are shared by all algorithms, Top-10 algorithms, and Top-5 algorithms in
Table 3. We provide the number of datasets each algorithm successfully runs on in Table 11. We
provide dataset names and statistics in Table 19.

The 2 datasets MIXTUREPFN and TABPFN* fails on contain ¿10 classes, which is not currently
supported by the pretrained TABPFN. However, as seen in Figure 16 and described in Section G.1,
we highlight that the 34 datasets MIXTUREPFN and TABPFN* successfully run on cover the full
range of dataset properties: number of features, number of samples, and dataset irregularity.
Specifically, our 34 datasets include the ones with the least and most number of samples, the least
and most number of features, and the least and most irregularities. Because the focus of this work is
to scale TABPFN to datasets with more number of samples, we leave extending TABPFN to more
number of classes as future work.

G.1 BASELINE DATASETS

We provide dataset statistics in Table 19. As shown, our considered datasets cover a wide range of
dataset properties in number of features, number of samples, and std. kurtosis. As shown, MIX-
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Subset Considered Algorithms Considered Datasets

ALL MixturePFN, CatBoost, ada-agnostic, australian, balance-scale,
TabPFN*, XGBoost, colic, credit-approval, elevators, heart-h,
ResNet, FTTransformer, jasmine, kc1, lymph, mfeat-fourier, mfeat-zernike,
LightGBM, SAINT, monks-problems-2, phoneme, profb,
NODE, MLP-rtdl, qsar-biodeg, socmob, speeddating, splice, vehicle
RandomForest, TabNet,
MLP, DecisionTree,
LinearModel, STG,
VIME, KNN, DANet,
SVM

Top-10 MixturePFN, CatBoost, ada-agnostic, artificial-characters, australian,
TabPFN*, XGBoost, balance-scale, colic, credit-approval, elevators,
ResNet, LightGBM, gesturephasesegmentationprocessed, heart-h, jasmine,
SAINT, DANet, kc1, lymph, mfeat-fourier, mfeat-zernike,
FTTransformer, SVM, monks-problems-2, phoneme, profb, qsar-biodeg,

socmob, speeddating, splice, vehicle

Top-5 MixturePFN, CatBoost, ada-agnostic, artificial-characters, australian,
TabPFN*, XGBoost, balance-scale, colic, credit-approval, electricity, elevators,
SAINT albert, gesturephasesegmentationprocessed, heart-h, higgs,

jasmine, jungle-chess-2pcs-raw-endgame-complete, kc1,
lymph, mfeat-fourier, mfeat-zernike, monks-problems-2,
phoneme, profb, qsar-biodeg, socmob, speeddating,
splice, vehicle

Table 3: Datasets and algorithms considered in each Top-K subset. For fair evaluation (git, 2024a),
we only consider the shared set of datasets all algorithms run on in the Top-K subsets. By consider-
ing different subsets, we evaluate MIXTUREPFN against more or less algorithms and datasets. 20
datasets are shared by all 20 algorithms. 22 datasets are shared by Top-10 algorithms. 25 datasets
are shared by Top-5 algorithms. MIXTUREPFN achieves the best mean rank among all Top-K sub-
sets.
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Method Condorcet Statistics
#Votes↑ #Wins↑ #Ties #Losses↓

MixturePFN 464 19 0 0
CatBoost 462 18 0 1
XGBoost 448 16 1 2
SAINT 402 15 0 4
ResNet 367 14 2 3
LightGBM 360 12 0 7
FTTransformer 345 13 1 5
TabPFN* 330 11 0 8
NODE 304 11 0 8
DANet 300 10 1 8
RandomForest 299 12 1 6
MLP-rtdl 256 8 0 11
SVM 236 6 0 13
TabNet 231 4 0 15
MLP 229 7 0 12
STG 188 5 0 14
DecisionTree 155 2 0 17
LinearModel 144 3 0 16
KNN 112 0 0 19
VIME 93 1 0 18

Table 4: MIXTUREPFN is the Condorcet winner across 36 datasets against 19 baseline algorithms.
We rank algorithms based on their accuracies.

Method
All Algorithms (Log Likelihood)
Mean ± Std Median Min Max
Rank↓ Rank↓ Rank↓ Rank↓

MixturePFN 2.350 ± 1.824 1.0 1.0 6.0
TabPFN* 4.550 ± 2.747 4.5 2.0 13.0
CatBoost 4.900 ± 4.158 3.0 1.0 14.0
XGBoost 5.500 ± 4.621 4.0 1.0 16.0
SAINT 8.300 ± 5.367 7.0 1.0 19.0
ResNet 8.400 ± 3.262 8.5 3.0 15.0
FTTransformer 8.600 ± 3.541 8.5 3.0 15.0
DANet 9.050 ± 3.369 8.5 3.0 17.0
LightGBM 9.150 ± 4.351 10.5 2.0 16.0
MLP-rtdl 10.800 ± 5.046 10.5 2.0 20.0
SVM 11.300 ± 4.766 11.0 2.0 19.0
RandomForest 11.600 ± 4.443 12.5 4.0 18.0
STG 11.900 ± 4.549 12.5 4.0 19.0
LinearModel 12.400 ± 4.652 12.5 5.0 20.0
NODE 13.350 ± 3.410 13.5 7.0 18.0
TabNet 13.550 ± 5.296 14.0 2.0 20.0
MLP 13.700 ± 3.621 14.0 4.0 19.0
VIME 15.350 ± 3.851 17.0 6.0 19.0
DecisionTree 16.800 ± 3.881 18.5 7.0 20.0
KNN 18.450 ± 1.936 19.0 14.0 20.0

Table 5: MIXTUREPFN achieves the top mean rank w.r.t. Log Likelihood across 20 datasets where
all algorithms successfully run.
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Method
All Algorithms (Accuracy)
Mean ± Std Median Min Max
Rank↓ Rank↓ Rank↓ Rank↓

MixturePFN 3.950 ± 3.570 3.0 1.0 13.0
TabPFN* 5.500 ± 4.056 5.5 1.0 15.0
CatBoost 6.350 ± 5.313 4.0 1.0 17.0
XGBoost 7.100 ± 5.234 5.5 1.0 18.0
ResNet 7.600 ± 4.017 6.5 1.0 16.0
FTTransformer 7.900 ± 4.158 7.5 1.0 17.0
SAINT 7.950 ± 5.723 5.5 1.0 20.0
LightGBM 8.750 ± 4.918 8.5 1.0 17.0
NODE 8.850 ± 3.395 9.0 3.0 15.0
MLP-rtdl 9.150 ± 5.033 9.0 1.0 18.0
RandomForest 9.350 ± 4.757 8.5 4.0 19.0
DANet 10.000 ± 4.405 11.0 3.0 19.0
SVM 12.250 ± 5.476 14.5 1.0 19.0
TabNet 13.050 ± 4.780 13.5 2.0 20.0
MLP 13.100 ± 4.253 14.5 5.0 18.0
LinearModel 14.100 ± 3.846 14.0 8.0 20.0
DecisionTree 14.250 ± 4.426 15.0 3.0 20.0
STG 14.800 ± 4.423 16.0 4.0 20.0
VIME 16.950 ± 2.854 18.0 10.0 20.0
KNN 17.400 ± 3.470 19.0 7.0 20.0

Table 6: MIXTUREPFN achieves the top mean rank w.r.t. Accuracy across 20 datasets where all
algorithms successfully run.

Method
Top-10 Algorithms (Log-Likelihood)
Mean ± Std Median Min Max
Rank↓ Rank↓ Rank↓ Rank↓

MixturePFN 2.273 ± 1.710 1.0 1.0 6.0
CatBoost 3.955 ± 2.688 3.0 1.0 10.0
XGBoost 4.000 ± 2.663 3.0 1.0 10.0
TabPFN* 4.045 ± 1.965 4.0 2.0 9.0
SAINT 6.136 ± 2.473 6.5 1.0 10.0
LightGBM 6.409 ± 2.839 7.5 2.0 10.0
FTTransformer 6.773 ± 2.235 7.0 3.0 10.0
ResNet 6.864 ± 1.961 7.0 3.0 9.0
DANet 7.045 ± 1.988 7.0 3.0 10.0
SVM 7.500 ± 2.482 8.0 2.0 10.0

Table 7: MIXTUREPFN achieves the top mean rank w.r.t. Log Likelihood across 22 datasets where
all Top-10 algorithms successfully run.
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Method
Top-10 Algorithms (Accuracy)
Mean ± Std Median Min Max
Rank↓ Rank↓ Rank↓ Rank↓

MixturePFN 3.000 ± 2.256 2.0 1.0 9.0
TabPFN* 4.318 ± 2.703 4.5 1.0 9.0
CatBoost 4.591 ± 2.964 4.0 1.0 10.0
XGBoost 4.773 ± 2.859 4.0 1.0 10.0
ResNet 5.591 ± 2.103 5.5 1.0 9.0
LightGBM 5.727 ± 2.847 6.5 1.0 10.0
SAINT 5.727 ± 2.847 5.0 1.0 10.0
FTTransformer 5.864 ± 2.282 6.0 1.0 9.0
DANet 6.955 ± 2.184 7.5 3.0 10.0
SVM 7.773 ± 2.907 9.0 1.0 10.0

Table 8: MIXTUREPFN achieves the top mean rank w.r.t. Accuracy across 22 datasets where all
Top-10 algorithms successfully run.

Method
Top-5 Algorithms (Log Likelihood)
Mean ± Std Median Min Max
Rank↓ Rank↓ Rank↓ Rank↓

MixturePFN 2.000 ± 1.166 1.0 1.0 4.0
XGBoost 2.760 ± 1.394 3.0 1.0 5.0
CatBoost 2.880 ± 1.243 3.0 1.0 5.0
TabPFN* 3.320 ± 1.085 3.0 2.0 5.0
SAINT 4.040 ± 1.311 5.0 1.0 5.0

Table 9: MIXTUREPFN achieves the top mean rank w.r.t. Log Likelihood across 25 datasets where
all Top-5 algorithms successfully run.

Method
Top-5 Algorithms (Accuracy)
Mean ± Std Median Min Max
Rank↓ Rank↓ Rank↓ Rank↓

MixturePFN 2.360 ± 1.292 2.0 1.0 5.0
XGBoost 2.880 ± 1.395 3.0 1.0 5.0
CatBoost 2.920 ± 1.354 3.0 1.0 5.0
TabPFN* 3.000 ± 1.386 3.0 1.0 5.0
SAINT 3.680 ± 1.406 4.0 1.0 5.0

Table 10: MIXTUREPFN achieves the top mean rank w.r.t. Accuracy across 25 datasets where all
Top-5 algorithms successfully run.
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Figure 7: Pairwise comparison matrix for Condorcet voting over the log likelihood metric. Note,
MIXTUREPFN is the Condorcet winner.

Figure 8: Pairwise comparison matrix for Condorcet voting over the accuracy metric. Note, MIX-
TUREPFN is the Condorcet winner. Please refer to Section H for more discussion.
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(a) Ntrain w.r.t. TABPFN* (b) Ntrain w.r.t. baselines (c) Kurtosis and #Feat

Figure 9: We perform the same sensitivity analysis as Figure 2 in the main text on the accuracy
metric.

(a) Ntrain w.r.t. baselines (b) Kurtosis w.r.t. baselines (c) #Feat w.r.t. baselines (d) #Class w.r.t. baselines

Figure 10: We perform the same sensitivity analysis as Figure 2 in the main text but across all dataset
properties.

(a) Ntrain w.r.t. baselines (b) Kurtosis w.r.t. baselines (c) #Feat w.r.t. baselines (d) #Class w.r.t. baselines

Figure 11: We perform the same sensitivity analysis as Figure 2 in the main text but across all dataset
properties and on the accuracy metric.

Figure 12: Wilcoxon-Signed Rank Test shows MIXTUREPFN significantly outperforms the Top-10
baselines on the 22 shared datasets, under the accuracy metric. We compute the rank across all 10
cross-validation splits.
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Figure 13: Wilcoxon-Signed Rank Test shows MIXTUREPFN significantly outperforms the all base-
lines on the 20 shared datasets, under the log likelihood metric. We compute the rank across all 10
cross-validation splits.

Figure 14: Wilcoxon-Signed Rank Test shows MIXTUREPFN significantly outperforms the all base-
lines on the 20 shared datasets, under the accuracy metric. We compute the rank across all 10 cross-
validation splits.

TUREPFN achieves the best average performance across all datasets. Furthermore, we plot the full
range of dataset properties covered, along with the 2 held out datasets from TABZILLA in Figure 16,
showing that the datasets successfully run on are representative of the benchmark as a whole. Refer
to Section G for more details.

We followed the same experimental setup as TabZilla (McElfresh et al., 2023), which includes:
imputing NaN features to its non-NaN mean and all other preprocessing is handled by each re-
spective baseline. MIXTUREPFN and TABPFN* follow TabZilla’s PFN preprocessing (McElfresh
et al., 2023): categorical features are encoded as ordinal features, outliers are dropped, features are
normalized, results are ensembled across shuffling the feature ordering, and results are ensembled
across power-law scaled and unscaled features.

G.2 BASELINE ALGORITHMS

G.2.1 PRIOR-FITTED NETWORK MODELS (PFN)

TABPFN* is the only PFN-based baseline, which uses a pretrained 12-layer TABPFN transformer
model, with embeddings size 512, hidden size 1024 in feed-forward layers, and 4-headed attention.
TABPFN is pretrained on a handcrafted dataset prior consisting of randomly generated structural
causal models (Hollmann et al., 2022). During inference features and labels are randomly shuffled
in batch size 32 then ensembled together, following the TABZILLA benchmark (McElfresh et al.,
2023). Recent work extend TabPFN through in-context learning. Most closely related, this MIX-
TUREPFN was developed in parallel to LoCALPFN (Thomas et al., 2025) which also uses finetuning
and retrieval to improve TabPFN’s scalability. Unlike LoCALPFN, our work uses different experts
for each test-time point, whereas LoCALPFN uses the same expert. Recently, TabDPT (Ma et al.,
2024) was proposed to train models to perform TabPFN retrieval. Our work improves TABPFN’s
scalability and efficacy along different dataset properties, particular number of training samples.
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Figure 15: We hypothesize only a subset of the training data, Dsupport(x
(i)
test), is required for effec-

tive in-context learning on test sample, x(i)test, and this subset is the B nearest training samples in
feature space: Dsupport(x

(i)
test) = KNN(x

(i)
test|Dtrain, B).

G.2.2 GRADIENT-BOOSTED DECISION TREE MODELS (GBDT)

CatBoost (Prokhorenkova et al., 2018), XGBoost (Chen & Guestrin, 2016), and LightGBM (Ke
et al., 2017) are GBDT models. These models utilize boosting to construct an ensemble of small
trees for evaluation. GBDTS are robust to uninformative or heavy tail features and achieve com-
petitive performance over baselines across different dataset properties. Our work argues in-context
learning is a potential competitor against GBDTS, as PFN transformers can potentially learn a better
dataset prior than GBDTS.

G.2.3 DEEP LEARNING ALGORITHMS

ResNet (Gorishniy et al., 2021), MLP-rtdl, TabNet (Arik & Pfister, 2021), MLP, STG (Yamada et al.,
2020), VIME (Yoon et al., 2020), NODE (Popov et al., 2019), FTTransformer (Gorishniy et al.,
2021), SVM (Cortes & Vapnik, 1995), DANet (Chen et al., 2022) and SAINT (Somepalli et al.,
2021) are deep learning-based algorithms. In particular, ResNet is a Convolutional Neural Network
designed for tabular learning. MLP-rtdl and MLP are 2 implementations of multilayer-perceptrons.
SVM is a support vector machine. TabNet and STG is a neural network architecture that aims
to learn GBDT-like operations in a fully differentiable manner. VIME is a gated neural network
that is first traing with self supervision. MIXTUREPFN outperforms deep learning algorithms by
learning a prior that better regularizes the learning procedure. NODE is a neural network architecture
that aims to imitate GBDTS while being fully differentiable and end2end. DANet is a specialized
deep learning architecture for tabular data. FTTransformer is a feature encoding transformer model
designed for tabular data. SAINT is a self-supervised transformer designed for tabular data.

G.2.4 SIMPLE ALGORITHMS

RandomForest, DecisionTree, LinearModel, and KNN are all standard machine learning algorithms.
We highlight, although MIXTUREPFN is based on evaluating prompts only on KNN neighborhoods,
it drastically outperforms KNN. This suggests that In-Context Learning-based models trained on a
local neighborhood can outperform both complicated models trained on the entire dataset and simple
models that return the average of local neighborhoods. Indeed combining KNN and Large Language
Models have been highly successful (Xu et al., 2023; Liu et al., 2021; Guu et al., 2020).

H ADDITIONAL RESULTS

H.1 ACCURACY RESULTS AND STANDARD DEVIATIONS

We provide the same Condorcet experiments as the main paper but with the accuracy metric in
Table 4. We provide the Condorcet matrix in Figures 7 and 8. These results support the same
conclusions found in the main paper.
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Method Number of Datasets Completed On

CatBoost (Prokhorenkova et al., 2018) 35
XGBoost (Chen & Guestrin, 2016) 36
MLP-rtdl (Goodfellow et al., 2016; Gorishniy et al., 2021) 36
MLP (Goodfellow et al., 2016; McElfresh et al., 2023) 36
ResNet (Gorishniy et al., 2021) 35
RandomForest (Liaw et al., 2002) 35
DecisionTree (Quinlan, 1986) 35
MixturePFN 34
TabPFN* (Hollmann et al., 2022; McElfresh et al., 2023) 34
LinearModel (Cox, 1958) 34
TabNet (Arik & Pfister, 2021) 33
KNN (Cover & Hart, 1967) 33
LightGBM (Ke et al., 2017) 32
VIME (Yoon et al., 2020) 32
STG (Yamada et al., 2020) 31
NODE (Popov et al., 2019) 30
FTTransformer (Gorishniy et al., 2021) 29
SVM (Cortes & Vapnik, 1995) 29
SAINT (Somepalli et al., 2021) 27
DANet (Chen et al., 2022) 27

Table 11: The number of datasets each algorithm completed on across the entire 36 dataset
TABZILLA benchmark. Note, the 2 datasets that MIXTUREPFN and TABPFN* (McElfresh et al.,
2023) does not run on has too many labels, being unsupported by the pretrained TABPFN (Holl-
mann et al., 2022). However these 2 datasets are not outliers compared to the 34 datasets that are
supported. Note, TABPFN achieves the same results as TABPFN*, except only running on the 17
datasets with ¡3,000 features, hence we compare against the more powerful TABPFN* baseline in-
stead.
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Condorcet Wins Mean Rank Median Rank Min Rank Max Rank

MIXTUREPFN 522 2.833 2 1 9
TABPFN* 501 4.333 4.5 2 7
TabR 324 17.333 18.5 8 22
FTTransformer 310 6.667 6.5 3 12
MLP-PLR 223 12.417 14 2 19

Table 12: Comparison to additional recent deep learning algorithms.

We provide the detailed statistics of the ranking experiments with both log-likelihood and accuracy
across all, Top-10, and Top-5 subsets in Tables 5, 6, 7, 8, 9, 10. These results support the same
conclusions found in the main paper.

We provide the Wilcoxon-Signed Rank Test with both the log-likelihood and accuracy metric across
the all and Top-10 subsets in Figures 12, 13, and 14. These results support the same conclusions
found in the main paper.

We provide experiments with even lighter hyperparameter tuning, as discussed in Section J, we
call this model, MIXTUREPFN-lite. MIXTUREPFN is tuned over ¿80% less configurations than
baselines. MIXTUREPFN-lite is tuned only on 2 hyparparameter settings. We provide the main
paper results and Condorcet matrices as presented in Table 18 and Figure 17.

MIXTUREPFN is the Condorcet winner and achieves the top mean rank across all experimental
settings, with statistical significance among all and Top-10 subsets. MIXTUREPFN’s Log-likelihood
results are slightly better, because many algorithms are tied in accuracy across the benchmark. When
this occurs, MIXTUREPFN is more confident than baselines when it is correct.

H.2 ADDITIONAL BASELINES

We implemented and evaluated TabR (Gorishniy et al., 2023) and MLP-PLR (Gorishniy et al., 2022)
across 5 hyperparameter settings on the TabZilla benchmark. We show the Condorcet wins and rank
evaluated across all algorithms and datasets (now including TabR and MLP-PLR) as reported in
Table 1. MIXTUREPFN outperforms recently proposed algorithms under the same hyperparameter
tuning budgets. Note, both baselines require heavy hyperparameter tuning in their respective papers.
We provide results in Table 12

Compared to LoCALPFN (Thomas et al., 2025), which finetunes a single TabPFN model for re-
trieval, MIXTUREPFN finetunes a specialized expert on each subset of the training/context data,
improving effectiveness. Hence, LoCALPFN is a specific instance of MIXTUREPFN: when γ = ∞
and there is only one expert. As seen in Table 13, MIXTUREPFN outperforms both TabPFN and
LoCALPFN by training a specialized expert on each subset of the training dataset. The more experts
that are trained, the better the performance.

we use different types of categorical encodings (target and one-hot encoding), filtering each cate-
gorical feature to have at most K dimensions using MRMR, and using different numbers of clusters
(where number of experts is proportional to γ) in Table 14. These additional ablations show per-
formance is more sensitive to the number of experts than choice in categorical encoding algorithms.
Hence, it is MIXTUREPFN ’s MICP and CaPFN are the core reasons for its superior performance.

We find 3 very large tabular datasets to test our approach. We limit MixturePFN clusters to at most
64 and adopt only target encoding for categorical features. As seen in Table 7, even under these
handicaps, MixturePFN consistently improves TabPFN*’s accuracy (dataset size in brackets).

H.3 NORMALIZED ACCURACY

We evaluate the normalized accuracy across XGBOOST over shared datasets in addition to provided
metrics in Table 16, where we find MIXTUREPFN is still the best performing model.
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Max Experts γ Electricity Acc Phoneme Acc. Airplane Acc.

TABPFN* no Finetune no KNN 81.2% 88.3% 60.0%
LoCALPFN† 1 ∞ 85.4% 88.7% 64.0%
MIXTUREPFN † 1 5 85.6% 88.5% 64.3%
MIXTUREPFN † 8 5 88.0% 89.1% 64.9%
MIXTUREPFN 1024 5 89.7% 90.2% 85.7%

Table 13: Comparison to recent retrieval models.

Encoding-K γ Electricity Acc Phoneme Acc.

TABPFN* target-1 no KNN 81.2% 88.3%
MIXTUREPFN † target-1 5 89.7% 90.2%
MIXTUREPFN † target-1 1 87.4% 87.4%
MIXTUREPFN † onehot-1 1 86.7% 86.7%
MIXTUREPFN † target-5 1 87.4% 87.8%
MIXTUREPFN † onehot-5 1 86.3% 87.9%

Table 14: Comparison with different categorical encodings.

Poker(1MM) HiggsBig(940K) BNG(1MM)

MIXTUREPFN 52.5% 66.7% 87.4%
TABPFN* 60.0% 69.0% 89.0%

Table 15: Comparison on additional very large datasets.

Algorithm Normalized Accuracy

XGBOOST +0.0%
CATBOOST -0.704%
TABPFN* -3.381%
MIXTUREPFN +0.561%

Table 16: Normalized Accuracy Results
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Method Accuracy K Time
Prompt

Mean Mean Mean

TABPFN* 83.42% 1.00 1.24s
T*+MICP (γ = 1.0) 83.96% 2.25 0.90s
T*+MICP (γ = 3.0) 84.23% 5.25 1.02s
T*+MICP (γ = 5.0) 84.23% 8.54 0.83s

Table 17: Trade-off of γ. T∗+MICP is short for TABPFN* +MICP. Note as γ increases, the accu-
racy and number of prompters increases, while TABPFN inference time remains constant. Routing
costs are negligible with optimized nearest neighbor search (Douze et al., 2024).

Figure 16: Dataset properties of chosen algorithms from the TABZILLA benchmark. We plot 3
dimensions of the dataset properties of all 36 dataset from TABZILLA. The 2 bold points represent
the held-out datasets. As shown, the 34 chosen datasets covers a wide-variety of dataset properties.

H.4 SENSITIVITY RESULTS ON MORE DATA

We provide the same sensitivity analysis conducted in the main paper but with the accuracy metric
in Figure 9. These figures support the same conclusions found in the main paper.

We provide the same sensitivity analysis conducted in the main paper but across the number of
features, number of labels, and feature irregularity in Figures 10 and 11. These figures support the
same conclusions found in the main paper.

H.5 EFFICIENCY EFFECTIVENESS TRADE-OFF

γ effectively trade-offs efficiency and effectiveness. As mentioned in Section 3.1.1, MIX-
TUREPFN uses a single hyperparameter, γ, to control the efficiency effectiveness tradeoff. we
plot the average accuracy of TABPFN +MICP across γ = [1.0, 3.0, 5.0], across the entire dataset.
As shown in Table 17, as the hyperparameter γ increases, MICP’s effectiveness is reliably trade-off
for efficiency.

H.6 DETAILED RESULTS

We provide MIXTUREPFN’s and TABPFN*’s accuracies across the 10-folds on all datasets in Ta-
bles 20 and 21.
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Method Condorcet Statistics
#Votes↑ #Wins↑ #Ties #Losses↓

MixturePFN-lite 503 19 0 0
XGBoost 502 18 0 1
CatBoost 479 17 0 2
SAINT 404 16 0 3
TabPFN* 385 13 1 5
LightGBM 374 14 1 4
DANet 312 14 0 5
FTTransformer 295 12 0 7
ResNet 287 10 0 9
SVM 286 11 0 8
STG 286 9 0 10
RandomForest 248 7 0 12
NODE 244 7 0 12
MLP-rtdl 228 5 0 14
TabNet 210 5 0 14
LinearModel 202 3 1 15
MLP 193 5 1 13
VIME 134 2 0 17
DecisionTree 115 1 0 18
KNN 74 0 0 19

Table 18: MIXTUREPFN is the Condorcet winner across 36 datasets against 19 baseline algorithms.
We rank algorithms based on their log-likelihoods.

I IMPLEMENTATION

We implemented MICP by first preprocessing the train data into separate prompts via KNN, chunk-
ing each prompt into batches, then called TabZilla APIs to run the desired PFN model on each
batch. We implemented CAPFN by bootstrapping our training dataset then running maximum like-
lihood loss on the bootstrapped datasets. MIXTUREPFN’s implementation is built off the official
TABZILLA codebase (git, 2024b) and will be open-sourced on Github.

I.1 OPTIMIZING TABPFN’S IMPLEMENTATION

TABZILLA only obtained TABPFN* results on 7 out of 34 benchmark datasets (McElfresh et al.,
2023), due to memory constraints. We identified an implementation inefficiency where “prompts”
are constructed with the entire test dataset, i.e. (Xtest, Dtrain), causing memory overflow. We
optimized TABPFN*’s implementation by batching test samples, (Xbatch|Dtrain), Xbatch ⊆ Xtest,
with batch size 1024, and report results over all 26 datasets.

J HYPERPARAMETER SETUP

As TABPFN transformers can handle up to 3,000 training samples, we set B = 3, 000. We em-
pirically found the minimum number of iterations and batch-size required for loss convergence on
the artificial-characters dataset to be 128 iterations and Nbatch = 64, which we set for all other
datasets. During inference, we use a larger batch size, Nbatch = 1024, as gradients no longer
need to be stored. We finetuned the model using the Adam optimizer with a learning rate of 0.001.
As TABPFN transformers can handle up to 100 features, for datasets with over 100 features and
TABPFN-based models, we use Maximum Relevance and Minimum Redundancy (mRMR) feature
selection (Ding & Peng, 2005) to reduce the number of features to 100. We follow the TABZILLA
benchmark, setting Nensemble = 16, which shuffles features Nensemble/2 times for both the orig-
inal and applies power-law scaled features. MIXTUREPFN’s router was implemented using the
FAISS (Douze et al., 2024) library.
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Figure 17: Pairwise comparison matrix for Condorcet voting over the log likelihood metric with
lightly tuned MIXTUREPFN. Note, MIXTUREPFN-lite is the Condorcet winner.

Due to the large variability in datasets in the TABZILLA benchmark, we try 4 hyperparameter set-
tings: (1) γ = 5.0, (2) γ = 1.0, (3) γ = 1.0 but MRMR with 50 features instead of 100 features for
feature count scalability, and (4) γ = 1.0 but with Catboost instead of Ordinal encoding for categor-
ical feature scalability (Hollmann et al., 2022). Hyperparameters are chosen by picking the setting
which maximizes performance on the validation set. Models are evaluated on the test set, which is
not seen during hyperparameter tuning. In contrast to all other baselines, which are tuned across 30
hyperparameter settings, MIXTUREPFN performs much less hyperparmeter tuning than baselines.
Baseline hyperparameter settings are the same as the TABZILLA (McElfresh et al., 2023) bench-
mark. Note, even if only the γ parameter tuned (i.e. only settings (1) and (2)), MIXTUREPFN is still
much better than TABPFN, as presented in Table 18 and Figure 17. All results were collected over
10-folds following TABZILLA (McElfresh et al., 2023) and OpenML. We tune the hyperparameters
by splitting the train set of each fold into training and validation following TABZILLA (McElfresh
et al., 2023). Ablation studies were performed modifying hyperparameter setting (1). Dataset pre-
processing details can be found in Appendix G.1.

K HARDWARE

All experiments were conducted on an Nvidia V100 GPU and an AMD EPYC 7402 CPU. Each
experiment is given a budget of 10 hours for a single dataset and algorithm.
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Dataset Dataset Properties Top 2 Algs.
#Samples #Feats #Lab. Std. Kurt. 1st 2nd

lymph 148 18 4 17.04 XGBoost TABPFN*
audiology 226 69 24 None XGBoost -
heart-h 294 13 1 None MLP-rtdl MIXTUREPFN
colic 368 26 1 4.0 XGBoost MIXTUREPFN
monks-prob... 601 6 1 None MIXTUREPFN MLP-rtdl
balance-scale 625 4 3 0.02 MIXTUREPFN TABPFN*
profb 672 9 1 0.95 MIXTUREPFN MLP-rtdl
Australian 690 14 1 2.0 XGBoost TABPFN*
credit-approval 690 15 1 74.77 TABPFN* MIXTUREPFN
vehicle 846 18 4 15.16 MIXTUREPFN TABPFN*
credit-g 1000 20 1 1.92 MIXTUREPFN TABPFN*
qsar-biodeg 1055 41 1 93.24 MIXTUREPFN TABPFN*
cnae-9 1080 856 9 None MLP-rtdl MLP
socmob 1156 5 1 None XGBoost TABPFN*
100plants 1599 64 100 17.66 XGBoost -
mfeat-fourier 2000 76 10 0.64 MIXTUREPFN TABPFN*
mfeat-zernike 2000 47 10 1.42 MIXTUREPFN TABPFN*
kc1 2109 21 1 28.34 MIXTUREPFN TABPFN*
jasmine 2984 144 1 47.6 MIXTUREPFN XGBoost
splice 3190 60 3 None MIXTUREPFN XGBoost
Bioresponse 3751 1776 1 328.77 XGBoost MIXTUREPFN
ada-agnostic 4562 48 1 None XGBoost MIXTUREPFN
phoneme 5404 5 1 1.23 MIXTUREPFN XGBoost
SpeedDating 8378 120 1 36.43 MIXTUREPFN XGBoost
GesturePhase... 9873 32 5 52.18 MIXTUREPFN XGBoost
artificial-char... 10218 7 10 0.63 XGBoost MIXTUREPFN
elevators 16599 18 1 2986.5 MIXTUREPFN TABPFN*
guillermo 20000 4296 1 None XGBoost TABPFN*
nomao 34465 118 1 1100.34 XGBoost MIXTUREPFN
jungle-chess... 44819 6 3 0.08 MIXTUREPFN XGBoost
electricity 45312 8 1 2693.51 XGBoost MIXTUREPFN
higgs 98050 28 1 15.53 XGBoost MLP
MiniBooNE 130064 50 1 1686.9 MIXTUREPFN XGBoost
albert 425240 78 1 12162.65 MIXTUREPFN XGBoost
airlines 539383 7 1 2.01 MIXTUREPFN XGBoost
poker-hand 1025009 10 10 0.08 XGBoost MIXTUREPFN

Table 19: Dataset statistics for valid TABZILLA benchmark datasets. Ranks are computed across
algorithms that run on all datasets MIXTUREPFN runs on: MIXTUREPFN, TABPFN*, XGBOOST,
MLP, and MLP-rtdl. Note this list of datasets was originally curated from 197 datasets, to contain
only those difficult for all models. We list the top 2 performing algorithms based on log likelihood,
following TABZILLA, on each dataset. MIXTUREPFN achieves state-of-the-art performance.
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Dataset Model Mean ± Std Accuracy ↑

australian TabPFN* 0.868±0.036
MixturePFN 0.861±0.023

bioresponse TabPFN* 0.791±0.018
MixturePFN 0.793±0.017

gesturepha... TabPFN* 0.569±0.014
MixturePFN 0.704±0.011

miniboone TabPFN* 0.927±0.003
MixturePFN 0.946±0.003

speeddating TabPFN* 0.856±0.006
MixturePFN 0.887±0.011

ada-agnostic TabPFN* 0.845±0.016
MixturePFN 0.842±0.013

airlines TabPFN* 0.600±0.003
MixturePFN 0.857±0.005

albert TabPFN* 0.638±0.005
MixturePFN 0.903±0.003

artificial... TabPFN* 0.650±0.013
MixturePFN 0.717±0.008

balance-scale TabPFN* 0.989±0.013
MixturePFN 0.997±0.010

cnae-9 TabPFN* 0.896±0.029
MixturePFN 0.899±0.029

colic TabPFN* 0.823±0.044
MixturePFN 0.807±0.067

credit-app... TabPFN* 0.884±0.050
MixturePFN 0.872±0.053

credit-g TabPFN* 0.729±0.028
MixturePFN 0.740±0.021

electricity TabPFN* 0.812±0.005
MixturePFN 0.897±0.003

elevators TabPFN* 0.900±0.006
MixturePFN 0.905±0.005

guillermo TabPFN* 0.791±0.013
MixturePFN 0.799±0.018

heart-h TabPFN* 0.837±0.044
MixturePFN 0.834±0.046

higgs TabPFN* 0.665±0.007
MixturePFN 0.693±0.005

jasmine TabPFN* 0.804±0.016
MixturePFN 0.861±0.008

jungle-che... TabPFN* 0.823±0.006
MixturePFN 0.865±0.004

kc1 TabPFN* 0.862±0.011
MixturePFN 0.866±0.013

lymph TabPFN* 0.810±0.096
MixturePFN 0.810±0.096

mfeat-fourier TabPFN* 0.828±0.025
MixturePFN 0.847±0.025

Table 20: Mean and Std. Accuracy of MIXTUREPFN and TABPFN* on all datasets across 10-folds
(part 1).
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Dataset Model Mean ± Std Accuracy ↑

mfeat-zernike TabPFN* 0.828±0.015
MixturePFN 0.846±0.024

monks-prob... TabPFN* 1.000±0.000
MixturePFN 1.000±0.000

nomao TabPFN* 0.953±0.003
MixturePFN 0.966±0.002

phoneme TabPFN* 0.883±0.014
MixturePFN 0.902±0.015

poker-hand TabPFN* 0.517±0.011
MixturePFN 0.677±0.002

profb TabPFN* 0.691±0.028
MixturePFN 0.685±0.024

qsar-biodeg TabPFN* 0.885±0.033
MixturePFN 0.883±0.038

socmob TabPFN* 0.933±0.016
MixturePFN 0.929±0.017

splice TabPFN* 0.876±0.018
MixturePFN 0.983±0.005

vehicle TabPFN* 0.847±0.023
MixturePFN 0.847±0.024

Table 21: Mean and Std. Accuracy of MIXTUREPFN and TABPFN* on all datasets across 10-folds
(part 2).
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