SensorLLM: Human-Intuitive Alignment of Multivariate Sensor Data with LLMs for Activity Recognition

Anonymous ACL submission

Abstract

We introduce SENSORLLM, a two-stage framework that enables Large Language Models (LLMs) to perform human activity recognition (HAR) from wearable sensor data. While LLMs excel at reasoning and generalization, they struggle with time-series inputs due to limited semantic context, numerical complexity, and sequence variability. To address these challenges, we construct SENSORQA, a questionanswering dataset of human-intuitive sensortext pairs spanning diverse HAR scenarios. It supervises the Sensor-Language Alignment stage, where the model aligns sensor inputs with trend descriptions. Special tokens are introduced to mark channel boundaries. This alignment enables LLMs to interpret numerical patterns, channel-specific signals, and variablelength inputs-without requiring human annotation. In the subsequent Task-Aware Tuning stage, we adapt the model for multivariate HAR classification, achieving performance that matches or exceeds state-of-the-art methods. Our results show that, guided by humanintuitive alignment, SENSORLLM becomes an effective sensor learner, reasoner, and classifier-generalizing across varied HAR settings and paving the way for foundation model research in time-series analysis. Our codes are available at https://anonymous.4open. science/r/sensorllm code-E0FC.

1 Introduction

005

007

011

017

034

042

Human Activity Recognition (HAR) is a timeseries (TS) classification task that maps sensor signals, such as accelerometer and gyroscope data, to human activities. Traditional models like LSTM (Guan and Plötz, 2017; Hammerla et al., 2016) and DeepConvLSTM (Ordóñez and Roggen, 2016) learn high-level features but are task-specific and struggle to generalize across different sensor configurations and activity sets. In contrast, Large Language Models (LLMs) (Han et al., 2021) have

Figure 1: SENSORLLM can analyze and summarize trends in captured sensor data, facilitating human activity recognition tasks.

shown remarkable success in integrating diverse data types (Liu et al., 2023a; Wu et al., 2023b; Yin et al., 2023), including text and images.

045

047

051

054

056

057

060

061

062

063

065

Enabling LLMs to process wearable sensor data (Jin et al., 2023) requires either (1) pretraining or fine-tuning on TS data (Zhou et al., 2023a), which demands substantial computational resources and is hindered by limited and imbalanced labeled data, or (2) leveraging zero-shot and few-shot prompting by converting sensor data into text (Kim et al., 2024; Ji et al., 2024). The latter approach avoids retraining but introduces key challenges: (i) *Numerical encoding issues*—language model tokenizers, designed for text, struggle with numerical values, treating consecutive numbers as independent tokens (Nate Gruver and Wilson, 2023) and failing to preserve temporal dependencies (Spathis and Kawsar, 2024). (ii) Sequence *length constraints*—complex numerical sequence often exceeds LLMs' maximum context length, leading to truncation, information loss, and increased computational costs. (iii) Multivariate complexity-LLMs process univariate inputs, mak-

066

0

0

076

08

0

0

090 091

09

09

095

09

09

09

100

102

103 104

105

107

108

ing it difficult to encode multivariate sensor data
in a way that retains inter-channel dependencies.
(iv) *Prompt engineering challenges*—designing
effective prompts that enable LLMs to interpret numerical sensor readings, detect trends and classify
activities remains a challenge (Liu et al., 2023b).

To address these challenges, we introduce SEN-SORLLM, a human-intuition inspired framework that aligns numerical sensor data with natural language. Unlike image-text pairs, sensor data consists of multivariate signals with complex and varied patterns, making annotation particularly difficult. To tackle this, we release SENSORQA, a question–answer (QA) dataset of aligned sensor-text pairs spanning diverse HAR tasks. SENSORLLM is trained on this dataset to learn intuitive mappings between sensor readings and descriptive language, enabling LLMs to interpret sensor data through natural interactions—without any modification to the LLM architecture (see Figure 1).

Existing methods (Jin et al., 2024a; Sun et al., 2024a) have explored condensed text prototypes for alignment, but these approaches often lack interpretability and require extensive tuning to select suitable prototypes. In contrast, we propose an automatic text generation approach that aligns with human intuition by deriving descriptive trendbased text directly from TS data using statistical analyses and predefined templates. This method is precise, scalable, and interpretable, eliminating the need for manual annotations while preserving essential sensor characteristics. SENSORLLM follows a two-stage framework:

Sensor-Language Alignment Stage. Our SEN-SORQA pairs each sensor window with QA pairs to align sensor features with natural language in a structured format. A pretrained TS encoder extracts temporal features from the sensor data, which are then projected into a space interpretable by the LLM, mitigating text-specific tokenization issues. We also introduce *special tokens* for each sensor channel, enabling LLMs to effectively capture multivariate (multi-channel) dependencies.

Task-Aware Tuning Stage. The aligned embed-109 dings are used for HAR, leveraging the LLM's 110 reasoning capabilities while keeping its parame-111 112 ters frozen. Importantly, our framework naturally supports sensor inputs of varying sequence lengths 113 and arbitrary numbers of channels (i.e., multivari-114 ate TS data), a flexibility that prior approaches have 115 struggled to accommodate. 116

To the best of our knowledge, this is the first approach to integrate sensor data into LLMs for sensor-based analysis and activity recognition. The key contributions of this work are:

117

118

119

120

121

122

123

124

125

126

127

128

130

131

132

133

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

- We release SENSORQA, a novel humanintuitive dataset of aligned sensor-text QA pairs covering diverse HAR scenarios. We evaluate SENSORLLM through text similarity metrics, human judgments, and LLM-based assessments, confirming its ability to capture temporal patterns for robust multimodal understanding. SENSORQA and SENSORLLM support sensor inputs with varying sequence lengths and channel configurations, allowing broad and realistic HAR evaluation.
- SENSORLLM achieves competitive results across five HAR datasets, matching or surpassing state-of-the-art models. Experiments further validate that *modality alignment* and *task-specific prompts* significantly enhance the LLM's ability to interpret and classify sensor data.
- We show that SENSORLLM maintains strong performance in the Task-Aware Tuning Stage, even when applied to datasets distinct from those used during alignment, highlighting its robustness and generalizability in HAR tasks.

2 Related Work

In this section, we discuss recent developments in leveraging LLMs for time-series data, specifically focusing on two categories: (1) LLMs for time series as text and (2) Multimodal Large Language Models (MLLMs) for sensor data. A broader overview of other related works, including deep learning approaches to HAR and additional LLMbased forecasting methods, is provided in Appendix A.1.

LLMs for Time Series as Text. While LLMs excel in processing natural language, applying them directly to time-series data poses unique challenges (Spathis and Kawsar, 2024). Certain methods address this by treating time-series signals as raw text, using the same tokenization as natural language. Notable examples include PromptCast (Xue and Salim, 2023), which transforms numeric inputs into textual prompts for zero-shot forecasting, and LLMTime (Gruver et al., 2024), which encodes

time-series as numerical strings for GPT-like mod-164 els. However, due to the lack of specialized tok-165 enizers for numeric sequences, LLMs may fail to 166 capture crucial temporal dependencies and repeti-167 tive patterns (Spathis and Kawsar, 2024). To miti-168 gate these issues, several works employ time-series 169 encoders before mapping the resulting embeddings 170 to language model spaces (Liu et al., 2024a; Zhou 171 et al., 2023c; Xia et al., 2024), thus aligning sensor embeddings with textual embeddings in a con-173 trastive or supervised manner. 174

175 MLLMs for Sensor Data. Extending LLMs to non-textual domains has gained traction, particularly through MLLMs that accept inputs beyond text, such as images or speech. For sensor data, the challenge lies in representing continuous signals effectively. Yoon et al. (2024) propose to ground MLLMs with sensor data via visual prompting. Sensor signals are first visualized as images, guiding the MLLM to analyze the visualized sensor traces alongside task descriptions, which also lower token costs compared to raw-text baselines. Similarly, Moon et al. (2023) introduce IMU2CLIP, which aligns inertial measurement unit streams with text and video in a joint representation space. This approach enables wearable AI applications 189 like motion-based media search and LM-based multimodal reasoning, showcasing how sensor data can be integrated into broader multimodal frameworks.

Methods 3

176

177

178

179

180

181

183

187

191

192

193

195 196

197

198

199

204

205

210

211

212

213

In this work, we propose SENSORLLM, a twostage framework that aligns wearable sensor data with descriptive text by a high-precision corpus of question-answering pairs created without any human annotations and tailored for wearable sensor reasoning. Our aim is to build a multimodal model capable of interpreting and reasoning over time-series (TS) signals. As shown in Figure 2, SENSORLLM consists of three core components: (1) a pretrained LLM, (2) a pretrained TS embedder, and (3) a lightweight MLP alignment module.

In the Sensor-Language Alignment stage, a generative model aligns sensor readings with text, and in the Task-Aware Tuning stage, a lightweight classifier is added on top of the LLM to perform HAR. Crucially, only the alignment MLP and this classifier are trainable-both the backbone LLM and the TS embedder remain frozen-resulting in just 5.67% (535.9 M) of parameters being fine-tuned in the first stage and 0.12% (10.5 M) in the second,

making training extremely efficient.

3.1 SENSORQA Dataset

Aligning TS data with natural language is challenging due to the lack of rich semantic annotations beyond class labels, making manual labeling costly and impractical (Deldari et al., 2024; Haresamudram et al., 2024). While prior works often rely on fixed text prototypes (Sun et al., 2024b; Jin et al., 2024a), we introduce SENSORQA —a scalable and human-intuitive dataset designed to bridge sensor data and language through structured QA pairs.

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

SENSORQA is built on the idea that TS signals naturally exhibit semantic patterns-such as trends and statistical behaviors-that can be described in natural language. Using predefined templates (Appendix A.2), descriptive QA pairs are automatically generated for each sensor window without any human annotations. Each pair includes information such as sensor type, time range, and observed trends. Templates are randomly combined to enhance diversity. For example:

- (1) The time-series data represents readings taken from a $\langle S \rangle$ sensor between $\langle t_s \rangle$ and $\langle t_e \rangle$ seconds.
- (2) To sum up, the data exhibited a <T> trend for a cumulative period of $\langle t_t \rangle$ seconds.

where T and S denote specific trends and sensor types, and t corresponds to numerical values.

3.2 Sensor-Language Alignment

As shown in Figure 2 (a), the Sensor–Language Alignment stage uses a generative model to create multimodal sentences by combining single-channel sensor readings with text from our SENSORQA dataset. The sensor data is represented as a matrix $\mathbf{X} \in \mathbb{R}^{C \times T}$, where C is the number of channels and T is the sequence length. Each channel's data, denoted as \mathbf{X}^{c} , is processed independently to retain channel-specific characteristics. The data is segmented into non-overlapping segments \mathbf{X}_{S}^{c} , where S is the total number of segments. Each segment x_s is assigned a random length l within a predefined range, encouraging the model to learn from both short-term fluctuations and long-term trends.

We use Chronos (Ansari et al., 2024) as the TS encoder to generate segment embeddings $\hat{x}_s \in$ $\mathbb{R}^{(l+1) \times dts}$, where d_{ts} is the embedding dimension and (l+1) accounts for the [EOS] token added during Chronos tokenization (Appendix A.3). Before

Figure 2: Our proposed SENSORLLM framework: (a) Sensor-Language Alignment Stage, where a generative model aligns sensor readings with automatically generated text; (b) Task-Aware Tuning Stage, where a classification model leverages the aligned modalities to perform HAR.

feeding segments into Chronos, we apply instance normalization: $\tilde{x}_s = \frac{x_s - \text{mean}(x_s)}{\text{std}(x_s)}$. For the language backbone, we use LLaMA3-8B (Touvron et al., 2023).

262

263

265

268

269

270

271

272

273

274

275

276

279

Alignment Module. To transform TS embeddings \hat{x}_s into text-aligned embeddings $\hat{a}_s \in \mathbb{R}^{(l+1)\times D}$ for downstream tasks, we introduce an alignment projection module. This module, implemented as a multi-layer perceptron (MLP), first maps sensor embeddings to an intermediate space of dimension d_m and then projects them to the target dimension D. Formally,

$$\hat{a}_s = \mathbf{W}_2 \cdot \sigma(\mathbf{W}_1 \hat{x}_s + \mathbf{b}_1) + \mathbf{b}_2, \qquad (1)$$

where $\mathbf{W}_1 \in \mathbb{R}^{d_m \times d_{ts}}$ and $\mathbf{W}_2 \in \mathbb{R}^{D \times d_m}$ are learnable weights, \mathbf{b}_1 and \mathbf{b}_2 are biases, and σ is the GELU activation function (Hendrycks and Gimpel, 2016). This projection ensures that the transformed embeddings \hat{a}_s are semantically aligned with the text embedding space, making them suitable for tasks such as text generation and classification.

Input Embedding. To integrate sensor data into the LLM, we introduce two special tokens per sensor channel (e.g., $<x_acc_start>$ and $<x_acc_end>$ for the x-axis accelerometer), extending the LLM's embedding matrix from $\mathbf{E} \in \mathbb{R}^{V \times D}$ to $\mathbf{E} \in \mathbb{R}^{V' \times D}$, where V' = V + 2c, with V as the vocabulary size and c as the number of channels. These special token embeddings are concatenated with the aligned sensor embeddings. The final combined sensor representation $\hat{o}_s \in \mathbb{R}^{(l+3) \times D}$ is then concatenated with instruction and question embeddings to form the full input sequence $\hat{z} \in \mathbb{R}^{k \times D}$, where k is the total number of tokens.

293

294

295

296

297

298

299

301

302

304

305

306

307

308

310

311

312

313

314

315

316

317

318

319

322

Loss Function. SENSORLLM processes an input sequence $\mathbf{Z}_s = \{z_s^i\}_{i=1}^K$ consisting of sensor and text embeddings and generates an output sequence $\mathbf{Z}_t = \{z_t^i\}_{i=1}^N$, where $z_s^i, z_t^i \in V'$, and K and N represent the number of input and output tokens, respectively. The model is trained using a causal language modeling objective, predicting the next token based on previous ones. The optimization minimizes the negative log-likelihood:

$$\mathcal{L}_{gen} = -\sum_{i=0}^{N-1} \log P(z_t^i | Z_t^{< i}, z_s).$$
 (2)

Loss is computed only on generated tokens, ensuring SENSORLLM effectively integrates sensor and text embeddings to produce coherent, contextually appropriate responses.

3.3 Task-Aware Tuning

As shown in Figure 2 (b), the Task-Aware Tuning stage refines the multimodal sensor-text embeddings for HAR. This stage integrates multi-channel sensor readings with activity labels, aligning temporal patterns with human activities. The input sensor data **X** is segmented into overlapping windows of size *L* with a 50% overlap (Li et al., 2018), forming segments $\mathbf{X}_S \in \mathbb{R}^{S \times C \times L}$, where *S* is the number of segments and *C* is the number of channels. The pretrained alignment module from the first stage maps sensor data to activity labels, preserving inter-channel dependencies while learning

	USC-H	IAD	UCI-H	IAR	PAM	AP2	MHe	alth	CAPTU	RE-24
Metric	GPT-40	Ours								
BLEU-1	41.43	57.68	37.97	56.78	46.35	60.20	49.97	61.38	46.58	57.10
ROUGE-1	54.92	68.32	51.24	67.63	58.08	69.92	61.11	71.20	58.21	68.11
ROUGE-L	49.00	64.17	44.88	63.05	50.30	66.25	51.99	67.83	48.88	60.90
METEOR	30.51	45.95	26.93	45.81	37.17	52.21	38.50	51.73	31.16	40.51
SBERT	77.22	86.09	76.05	85.01	82.71	87.31	83.15	86.66	83.11	84.83
SimCSE	86.96	93.09	90.23	92.51	89.64	93.82	92.10	93.38	90.10	92.20
GPT-40	1.67	3.11	1.61	3.20	1.90	3.77	1.69	3.69	1.70	2.32
Human	2.10	4.16	1.94	4.04	2.38	4.70	1.74	4.56	2.30	3.10

Table 1: Evaluation of Sensor Data Understanding tasks. The column *GPT-40* denotes trend descriptions generated by GPT-40, while the row *GPT-40* indicates evaluations conducted by GPT-40 on the model outputs.

activity-related patterns.

323

324

325

326

327

329

330

331

332

333

334

337

340

341

343

347

Input Embedding. For each sensor channel c, we retrieve its aligned embeddings \hat{o}_s^c from the pretrained alignment module. These are concatenated across all channels, along with statistical features (mean and variance) from our SENSORQA dataset, to form the final input embedding:

$$\hat{z} = \hat{o}_s^1 \oplus \hat{o}_s^2 \oplus \dots \oplus \hat{o}_s^C \oplus \hat{z}_{\text{stat}}, \qquad (3)$$

where \hat{z}_{stat} represents the statistical information. This ensures the model integrates both temporal and statistical characteristics for HAR.

Loss Function. The input token sequence is processed by the LLM, yielding a latent representation $\mathbf{H} \in \mathbb{R}^{K \times D}$, where K is the number of tokens and D is the embedding dimension. Due to causal masking, we extract the final hidden state, $\mathbf{h} = \mathbf{H}_K$, which encodes all preceding token information. This pooled vector is passed through a fully connected layer to produce a prediction vector of size M, where M is the number of activity classes. The final class probabilities \hat{y}_i are obtained via the softmax function, and the model is optimized using cross-entropy loss:

$$\mathcal{L}_{cls} = -\sum_{i=0}^{M-1} y_i \log \hat{y}_i, \tag{4}$$

where y_i is the ground truth label.

4 Experiments

349In this section, we evaluate SENSORLLM in en-
abling LLMs to interpret, reason about, and clas-
sify sensor data for HAR tasks. All experiments
are conducted on NVIDIA A100-80G GPUs. To

assess the LLM's ability to learn and generalize from raw sensor inputs, we ensure that the same training and testing subjects are used in both the Sensor-Language Alignment and Task-Aware Tuning stages. This guarantees that test data in the second stage remains unseen during alignment, ensuring a fair evaluation of generalization. We select Chronos as the TS embedder since it has not been pre-trained on HAR-specific data, allowing us to evaluate the robustness of our approach in adapting to raw, domain-agnostic sensor signals. 353

354

355

356

357

358

359

360

361

362

363

365

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

387

388

4.1 Datasets

To evaluate the effectiveness and generalizability of SENSORLLM, we conduct experiments on five publicly available HAR datasets: USC-HAD (Zhang and Sawchuk, 2012), UCI-HAR (Anguita et al., 2013), PAMAP2 (Reiss and Stricker, 2012), MHealth (Baños et al., 2014), and CAPTURE-24 (Chan et al., 2024). These datasets vary widely in subject counts, sensor placement, sampling rates, channel configurations, and activity types, covering both controlled laboratory conditions and free-living environments. SENSORQA (see Appendix A.7) is built on these five benchmarks and supports both alignment and activity classification. All datasets are publicly available, containing no personally identifiable information, thus posing minimal ethical or privacy concerns.

We use subject-independent splits for all datasets except UCI-HAR, which comes with a fixed split. In all other datasets, training and test sets come from different subjects, ensuring the model is evaluated on unseen users. Full dataset details, including subject count, sensor configurations, data splits, activity classes, preprocessing steps, and windowing strategies, are provided in Appendix A.6.

	USC-	HAD	UCI-	HAR	PAM	AP2	MHe	ealth	CAPTU	JRE-24
Method	F1-macro	Accuracy	F1-macro	Accuracy	F1-macro	Accuracy	F1-macro	Accuracy	F1-macro	Accuracy
PatchTST	45.2 _{±1.48}	$45.6_{\pm 2.19}$	$86.8_{\pm 0.84}$	$86.0_{\pm 0.71}$	$82.0_{\pm 0.71}$	$81.2_{\pm 0.84}$	$80.0_{\pm 1.58}$	$79.4_{\pm 1.34}$	$35.6_{\pm 0.89}$	$66.2_{\pm 1.10}$
Ns-Transformer	$52.6_{\pm 2.30}$	$51.8_{\pm 2.86}$	$88.0_{\pm 0.71}$	$87.4_{\pm 0.55}$	$78.8_{\pm0.84}$	$78.8_{\pm 0.84}$	$77.2_{\pm 1.48}$	$75.8_{\pm 1.48}$	$34.8_{\pm 1.10}$	$65.4_{\pm 0.55}$
Informer	$51.2_{\pm 1.30}$	$51.6_{\pm 1.52}$	$86.6_{\pm 1.14}$	$86.4_{\pm 0.89}$	$78.0_{\pm 1.58}$	$78.6_{\pm 1.34}$	$74.0_{\pm 0.71}$	$72.8_{\pm 0.84}$	$35.6_{\pm 0.55}$	$66.8_{\pm 0.84}$
Transformer	$49.6_{\pm 1.67}$	$50.6_{\pm 0.55}$	$85.4_{\pm 0.89}$	$85.2_{\pm 1.10}$	$77.0_{\pm 0.71}$	$77.6_{\pm 0.89}$	$75.2_{\pm 1.30}$	$74.6_{\pm 1.34}$	$32.8_{\pm 0.84}$	$65.4_{\pm 0.89}$
iTransformer	$48.4_{\pm 1.82}$	$49.6_{\pm 1.67}$	$81.8_{\pm 0.84}$	$81.8_{\pm 0.84}$	$76.6_{\pm 0.55}$	$75.8_{\pm 0.45}$	$80.4_{\pm 1.14}$	$80.0_{\pm 1.22}$	$19.8_{\pm 0.84}$	$62.4_{\pm 0.89}$
TimesNet	$52.2_{\pm 2.39}$	$52.6_{+2.07}$	$87.4_{\pm 1.14}$	$86.6_{\pm 1.14}$	$76.2_{\pm 1.92}$	$77.4_{\pm 1.14}$	$78.4_{\pm 1.52}$	$77.2_{\pm 1.48}$	$34.8_{\pm0.84}$	$65.8_{\pm 1.79}$
GPT4TS	$54.2_{\pm 2.05}$	$56.0_{\pm 1.58}$	$88.2_{\pm 0.84}$	$87.6_{\pm 0.55}$	$80.4_{\pm 0.89}$	$79.8_{\pm 0.45}$	$76.4_{\pm 1.14}$	$75.4_{\pm 1.14}$	$32.8_{\pm 1.10}$	$62.2_{\pm 1.92}$
Chronos+MLP	$44.2_{\pm 1.30}$	$44.0_{\pm 0.71}$	$82.2_{\pm 0.84}$	$81.2_{\pm 0.84}$	$79.8_{\pm 0.45}$	$79.8_{\pm 0.45}$	$83.0_{\pm 0.71}$	$82.0_{\pm 0.71}$	$38.0_{\pm 0.71}$	$68.2_{\pm 0.84}$
DeepConvLSTM	$48.8_{\pm 2.39}$	$50.6_{\pm 2.41}$	$89.2_{\pm 0.84}$	$89.2_{\pm 0.84}$	$78.4_{\pm 1.52}$	$78.2_{\pm 1.10}$	$75.0_{\pm 1.87}$	$76.0_{\pm 1.00}$	$40.4_{\pm 0.89}$	$69.4_{\pm 1.14}$
DeepConvLSTMAtt	$54.0_{\pm 2.12}$	$54.4_{\pm 3.21}$	$89.6_{\pm 1.14}$	$89.4_{\pm 1.14}$	$79.2_{\pm 1.30}$	$79.6_{\pm 1.14}$	$77.4_{\pm 2.19}$	$76.8_{\pm 1.48}$	$41.4_{\pm 0.55}$	$70.4_{\pm 0.55}$
Attend	$60.2_{\pm 2.17}$	$60.8_{\pm 1.92}$	$93.2_{\pm 0.84}$	92.8 $_{\pm 0.45}$	$84.6_{\pm 1.14}$	$\underline{85.0}_{\pm 0.71}$	$\underline{83.4}_{\pm 1.14}$	$82.6_{\pm 1.14}$	$43.6_{\pm 0.55}$	$71.0_{\pm 0.71}$
SENSORLLM	61.2 _{±3.56}	$\textbf{62.6}_{\pm 3.36}$	$\underline{91.2}_{\pm 1.48}$	$\underline{90.8}_{\pm 1.30}$	$\textbf{86.2}_{\pm 1.48}$	$\textbf{87.2}_{\pm 0.84}$	$\textbf{89.4}_{\pm 3.85}$	$\textbf{89.0}_{\pm 3.54}$	$\textbf{48.6}_{\pm 1.14}$	$\textbf{72.0}_{\pm 0.71}$

Table 2: F1-macro and accuracy scores (%) for the Human Activity Recognition tasks, presented as the mean and standard deviation over 5 random repetitions. **Bold** for the best and <u>underline</u> for the second-best.

4.2 Sensor Data Understanding

Setup. All datasets are trained using the same parameters in the Sensor-Language Alignment Stage: a learning rate of 2e-3, 8 epochs, batch size of 4, gradient accumulation steps of 8, and a maximum sequence length of 8192 for CAPTURE-24 and 4096 for others.

Evaluation Metrics. We assess the performance of SENSORLLM in the sensor-language alignment stage by comparing its ability to generate trend descriptions from sensor data with that of the advanced GPT-40⁻¹. GPT-40 generates responses using a predefined prompt (Appendix A.4). We adopt three evaluation methods:

> • NLP Metrics. We use BLEU-1 (Papineni et al., 2002), ROUGE-1, ROUGE-L (Lin, 2004), and METEOR (Banerjee and Lavie, 2005) to measure surface-level similarity and n-gram overlap. For deeper semantic alignment and factual correctness, we adopt SBERT (Reimers and Gurevych, 2019) and SimCSE (Gao et al., 2021).

• **GPT-4o Evaluation.** GPT-4o rates the generated trend descriptions on a scale of 1 to 5 (with 5 being the highest) by comparing each output to ground truth and providing explanatory feedback. As an advanced LLM, its evaluation ensures a semantic assessment of trend comprehension.

• Human Evaluation. Five time-series experts (PhD students, postdocs, and academics) score accuracy and quality using the same criteria as GPT-40, providing a human-centered perspective on the model's outputs.

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

Appendix A.5 details all metrics and scoring criteria. We randomly sample 200 instances per dataset for both SENSORLLM and GPT-40, then average the results for comparison. Because reading and comparing lengthy sequences is difficult for human annotators, we conduct human evaluation on 20 shorter sequences per dataset (each containing at most 50 time steps).

Results. Table 1 compares SENSORLLM and GPT-40 on the Sensor Data Understanding task. SENSORLLM consistently outperforms GPT-40 across all metrics, with outputs that align more closely with ground truth and exhibit stronger trend understanding and coherence. In contrast, GPT-40 often struggles with complex numerical data and trend detection (Yehudai et al., 2024). When serving as an evaluator, GPT-40 also indicates a preference for SENSORLLM. Human evaluation, conducted on shorter sequences, likewise favors SEN-SORLLM. Performance on CAPTURE-24 is comparatively lower, likely due to longer sequences being trained under fixed parameters. Overall, these results validate the effectiveness of our alignment method in enabling LLMs to interpret complex TS data. Qualitative examples are provided in Appendix A.10.

4.3 Human Activity Recognition

Setup. In this section, we evaluate the performance of SENSORLLM on HAR tasks. Each experiment is run for five trials using 8 training epochs, a batch size of 4, gradient accumulation steps of 8, and a maximum sequence length of 4096. We report both F1-macro (Appendix A.9) and accu-

390

402

400

401

- 403 404
- 405
- 406 407

408 409

410

- +1
- 411

412 413

414

415

416 417

418

419

¹gpt-4o-2024-08-06 (OpenAI, 2024)

	Task-	only	SENSORLLM		
Dataset	w/o prompts	w/ prompts	w/o prompts	w/ prompts	
USC-HAD	43.4 _{±2.88}	45.0 _{±1.58}	$49.6_{\pm 1.67}$	$61.2_{\pm 3.56}$	
UCI-HAR	$80.0_{\pm 2.12}$	$82.0_{\pm 1.58}$	$89.2_{\pm 1.10}$	91.2 _{±1.48}	
PAMAP2	$74.2_{\pm 2.28}$	$75.4_{\pm 3.05}$	$83.0_{\pm 0.71}$	86.2 _{±1.48}	
MHealth	$76.6_{\pm 1.34}$	77.4 _{±3.13}	$86.6_{\pm 1.14}$	$89.4_{\pm 3.85}$	
CAPTURE-24	$44.8_{\pm 0.84}$	$46.0_{\pm 0.71}$	$47.2_{\pm 0.84}$	$48.6_{\pm 1.14}$	

Table 3: F1-macro scores for models trained with and without text prompts. Task-only refers to conducting Task-Aware Tuning directly bypassing the alignment stage.

racy to account for class imbalance and overall prediction performance across different activity categories.

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

473

477

481

482

484

486

487

488

489

490

491

492

493

494

Baselines. We benchmark SENSORLLM against 11 baselines across two categories: (i) TS models-Transformer (Vaswani et al., 2017), Informer (Zhou et al., 2021), NS-Transformer (Liu et al., 2022), PatchTST (Nie et al., 2023), TimesNet (Wu et al., 2023a), and iTransformer (Liu et al., 2024c); (ii) HAR models-DeepConvLSTM (Ordóñez and Roggen, 2016), DeepConvLSTMAttn (Murahari and Plötz, 2018), and Attend (Abedin et al., 2021). We also include Chronos+MLP and GPT4TS (Zhou et al., 2023a) for a more comprehensive comparison. Full baseline details are in Appendix A.8.

472 **Results.** Table 2 reports F1-macro and accuracy scores (%) averaged over five runs. SENSOR-LLM achieves the best performance on four out 474 of five datasets (USC-HAD, PAMAP2, MHealth, 475 CAPTURE-24), and ranks second on UCI-HAR, 476 slightly behind Attend. It shows notable gains on challenging datasets such as CAPTURE-24 and 478 MHealth, demonstrating strong performance in 479 real-world and long-sequence settings. Compared 480 to Chronos+MLP, which uses the same TS encoder, SENSORLLM significantly improves both F1-macro and accuracy, highlighting the effective-483 ness of our alignment strategy in enabling LLMs to understand and classify sensor data. 485

> Strong results on both F1-macro and accuracy indicate that SENSORLLM performs well in both overall prediction and per-class balance, showing robust generalization across diverse sensor configurations, activity types, and data collection environments.

5 **Ablation Studies**

Removing Alignment Hurts. To assess the role of sensor-language alignment, we include the

Figure 3: Effect of the number of alignment module layers.

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

Chronos+MLP baseline (Section 4.3) to demonstrate that SENSORLLM 's performance is not solely due to the strength of the Chronos encoder. We further compare SENSORLLM with a Taskonly variant that skips the Sensor-Language Alignment stage and directly feeds Chronos embeddings into the LLM for HAR. As shown in Table 3, SEN-SORLLM consistently outperforms the Task-only model across all five datasets, regardless of whether textual prompts are included. Notably, the Taskonly model often performs comparably to or worse than traditional TS baselines, underscoring the critical role of alignment. These results confirm that Chronos embeddings alone are insufficient for optimal HAR performance, and that our alignment stage is essential for enabling the LLM to effectively interpret sensor data.

Textual Prompts Enhance HAR. To assess the role of additional textual information (e.g., statistical features for each sensor channel) in the Task-Aware Tuning Stage, we compared SENSOR-LLM 's performance with and without prompts. As shown in Table 3, incorporating prompts consistently improves F1-macro scores across all datasets, with a more pronounced effect in the full SEN-SORLLM architecture. This demonstrates that the model effectively integrates sensor and textual data, enhancing its ability to capture complex temporal patterns. The results highlight the benefits of multimodal inputs, which enrich sensor data representations and improve HAR accuracy. More broadly, the ability to jointly process sensor data and textual prompts underscores the potential of LLMs for more generalizable and interpretable sensor-driven applications.

MLP Depth Trade-offs. We examine how the depth of the alignment module MLP affects performance on UCI-HAR, PAMAP2, and MHealth. As shown in Figure 3, increasing the number of hidden

Figure 4: Effect of Model Size.

	F1-n	nacro	
Dataset	w/o ST	w/ ST	# Channels
MHealth	$89.6_{\pm 2.70}$	90.2 ±3.11	15
PAMAP2	$84.4_{\pm 1.14}$	$\textbf{85.8}_{\pm 0.84}$	27

Table 4: Effect of special tokens on HAR based on twolayer alignment MLP. *ST* refers to special tokens.

layers from one $(1024 \rightarrow 2048 \rightarrow 4096)$ to two $(1024 \rightarrow 2048 \rightarrow 3072 \rightarrow 4096)$ yields mixed results. F1-macro scores improve on UCI-HAR and MHealth, but slightly decrease on PAMAP2. These findings suggest that deeper MLPs do not always improve performance, and a single hidden layer offers a good balance between accuracy and efficiency.

535

537

541

543

545

546

547

548

551

552

555

557

Smaller SENSORLLM Still Compete. To address computational feasibility for deployment in resource-constrained environments, we evaluate SENSORLLM-3b-a lighter variant built with Chronos-base and LLaMA3.2-3b. Experiments were conducted on USC-HAD, UCI-HAR, and MHealth. As shown in Figure 4, SENSORLLM-3b achieves slightly lower performance than SENSOR-LLM-8b, reflecting the trade-off between model size and accuracy. Nevertheless, it remains competitive-outperforming Attend on USC-HAD and MHealth, and closely trailing it on UCI-HAR. These results suggest that SENSORLLM-3b provides a strong balance between efficiency and performance, making it a viable choice for real-world, resource-limited applications.

558Special Tokens Improve Performance. We in-559vestigate the role of special tokens in helping SEN-560SORLLM distinguish sensor data from text and561identify different sensor channel types. Special to-562kens are added to the aligned embeddings of each563sensor channel and act as learned identifiers. They564provide structural cues that help the LLM model565channel-wise dependencies and reduce modality

Stage 2	Stage 1	F1-macro
USC-HAD	UCI-HAR USC-HAD	$\begin{array}{c} \textbf{61.6}_{\pm 2.07} \\ \textbf{61.2}_{\pm 3.56} \end{array}$
UCI-HAR	UCI-HAR USC-HAD	$91.2_{\pm 1.48} \\ 91.0_{\pm 1.41}$

Table 5: F1-macro scores for cross-dataset experiments.

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

583

585

586

587

588

589

590

591

593

594

595

596

598

599

600

601

602

603

604

605

606

confusion. We conduct experiments on PAMAP2 and MHealth, both of which contain multiple sensor channels. As shown in Table 4, removing special tokens leads to a slight drop in F1-macro scores, with the performance gap tending to widen as the number of sensor channels increases. This confirms their value in preserving positional and channellevel structure within a flat token sequence.

Alignment Enables Generalization. To assess the robustness of SENSORLLM, we conduct cross-dataset experiments by training the Sensor-Language Alignment Stage on USC-HAD and the Task-Aware Tuning Stage on UCI-HAR, and vice versa. While these datasets share the same sensor channels, they differ in sensor wearing position, sampling rates and activity distributions. As shown in Table 5, SENSORLLM achieves performance comparable to models trained entirely on the same dataset. This suggests that once modality alignment is learned, it can be transferred across datasets without retraining. These results indicate that SEN-SORLLM does not overfit to dataset-specific patterns but learns generalizable sensor-language representations, demonstrating strong cross-dataset adaptability and paving the way for more universal TS-LLM frameworks.

6 Conclusions

We present SENSORLLM, a multimodal framework that aligns sensor data with natural language through a QA format at a human-perception level, moving beyond machine-level alignment. It effectively captures complex sensor patterns, achieves strong performance on HAR tasks, and generalizes well without requiring dataset-specific alignment. Experiments demonstrate its robustness across variable-length sequences, multivariate inputs, and textual metadata. To support future research, we release our code and the SENSORQA dataset, constructed from five public HAR benchmarks, to advance time-series and language integration, particularly in low-resource domains.

607

7 Limitations

608While SENSORLLM demonstrates strong perfor-609mance in aligning sensor data with LLMs, certain610limitations remain, offering directions for future611exploration.

Classifier-Based Design. To ensure fair comparisons with existing HAR models, we adopt a classifier for downstream tasks rather than fully lever-614 aging the LLM's generative capabilities. While 615 our results demonstrate that the Sensor-Language Alignment Stage can generalize across datasets, relying on a fixed-class classifier may limit adapt-618 ability to new activity categories. Although zero-619 shot adaptability is a valuable direction, we did not 620 explore it here due to the lack of comparable baselines. To the best of our knowledge, no prior work supports generalization to unseen activity classes under variable-length and variable-channel sensor input, as our framework does, making fair comparison on zero-shot settings infeasible at this stage. 626 Future work could explore generative or prompt-627 based approaches to support broader applications such as activity discovery or open-set recognition.

Scope of Sensor-Text Alignment. Our align-631 ment focuses on mapping sensor data to trenddescriptive text, demonstrating clear benefits for LLM-based HAR. However, human-intuitive de-633 scriptions of sensor data extend beyond trend changes-incorporating frequency-domain features, periodicity, and higher-order patterns may further enhance an LLM's ability to interpret timeseries data. Future research could investigate whether aligning text with alternative sensor characteristics improves time-series reasoning. This 640 could expand the potential of multimodal NLP applications in sensor-driven tasks beyond activity recognition. 643

References

644

647

651

655

- Alireza Abedin, Mahsa Ehsanpour, Qinfeng Shi, Hamid Rezatofighi, and Damith C. Ranasinghe. 2021. Attend and discriminate: Beyond the state-of-the-art for human activity recognition using wearable sensors. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.*, 5(1).
- D. Anguita, Alessandro Ghio, L. Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. 2013. A public domain dataset for human activity recognition using smartphones. In *The European Symposium on Artificial Neural Networks*.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr Shchur, Syama Syndar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, and Yuyang Wang. 2024. Chronos: Learning the language of time series. *arXiv preprint arXiv:2403.07815*. 656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

- Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In *Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization*, pages 65–72, Ann Arbor, Michigan. Association for Computational Linguistics.
- Oresti Baños, Rafael García, Juan Antonio Holgado Terriza, Miguel Damas, Héctor Pomares, Ignacio Rojas, Alejandro Saez, and Claudia Villalonga. 2014. mhealthdroid: A novel framework for agile development of mobile health applications. In *International Workshop on Ambient Assisted Living and Home Care*.
- Antonio Bevilacqua, Kyle MacDonald, Aamina Rangarej, Venessa Widjaya, Brian Caulfield, and Tahar Kechadi. 2019. *Human Activity Recognition with Convolutional Neural Networks*, page 541–552. Springer International Publishing.
- Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. 2024. Tempo: Prompt-based generative pre-trained transformer for time series forecasting. *Preprint*, arXiv:2310.04948.
- Shing Chan, Hang Yuan, Catherine Tong, Aidan Acquah, Abram Schonfeldt, Jonathan Gershuny, and Aiden Doherty. 2024. Capture-24: A large dataset of wrist-worn activity tracker data collected in the wild for human activity recognition. *Preprint*, arXiv:2402.19229.
- Ching Chang, Wei-Yao Wang, Wen-Chih Peng, and Tien-Fu Chen. 2024. Llm4ts: Aligning pretrained llms as data-efficient time-series forecasters. *Preprint*, arXiv:2308.08469.
- Shohreh Deldari, Dimitris Spathis, Mohammad Malekzadeh, Fahim Kawsar, Flora D. Salim, and Akhil Mathur. 2024. Crossl: Cross-modal self-supervised learning for time-series through latent masking. In *Proceedings of the 17th ACM International Conference on Web Search and Data Mining*, WSDM '24, page 152–160.
- Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple contrastive learning of sentence embeddings. In *Empirical Methods in Natural Language Processing (EMNLP)*.
- Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. 2024. Large language models are zero-shot time series forecasters. *Advances in Neural Information Processing Systems*, 36.

- 714 715 716 719 722 724 727 728 729 730 731 732 733 734 735 736 737 741 742 743 744 745 746 747 748 749 750 751 755 756 757 758 759
- 764

- 767
- 770

- Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. 2023. Large language models are zero-shot time series forecasters. Preprint, arXiv:2310.07820.
- Yu Guan and Thomas Plötz. 2017. Ensembles of deep lstm learners for activity recognition using wearables. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(2).
- Sojeong Ha and Seungjin Choi. 2016. Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors. In 2016 International Joint Conference on Neural Networks (IJCNN), pages 381-388.
- Nils Y. Hammerla, Shane Halloran, and Thomas Plötz. 2016. Deep, convolutional, and recurrent models for human activity recognition using wearables. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI'16, page 1533-1540. AAAI Press.
- Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao, Ao Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin, Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, and 5 others. 2021. Pretrained models: Past, present and future. Preprint, arXiv:2106.07139.
- Harish Haresamudram, David V. Anderson, and Thomas Plötz. 2019. On the role of features in human activity recognition. In Proceedings of the 2019 ACM International Symposium on Wearable Computers, ISWC '19, page 78-88, New York, NY, USA. Association for Computing Machinery.
- Harish Haresamudram, Apoorva Beedu, Mashfiqui Rabbi, Sankalita Saha, Irfan Essa, and Thomas Ploetz. 2024. Limitations in employing natural language supervision for sensor-based human activity recognition-and ways to overcome them. arXiv preprint arXiv:2408.12023.
- Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415.
- Sijie Ji, Xinzhe Zheng, and Chenshu Wu. 2024. Hargpt: Are llms zero-shot human activity recognizers? Preprint, arXiv:2403.02727.
- Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. 2024a. Time-LLM: Time series forecasting by reprogramming large language models. In International Conference on Learning Representations (ICLR).
- Ming Jin, Qingsong Wen, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang, Yi Wang, Haifeng Chen, Xiaoli Li, Shirui Pan, Vincent S. Tseng, Yu Zheng, Lei Chen, and Hui Xiong. 2023. Large models for time series and spatiotemporal data: A survey and outlook. Preprint, arXiv:2310.10196.

Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang, Bin Yang, Jindong Wang, Shirui Pan, and Qingsong Wen. 2024b. Position paper: What can large language models tell us about time series analysis. *Preprint*, arXiv:2402.02713.

771

772

775

778

779

780

781

782

784

787

788

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

- Panagiotis Kasnesis, Charalampos Z. Patrikakis, and Iakovos S. Venieris. 2019. Perceptionnet: A deep convolutional neural network for late sensor fusion. In Intelligent Systems and Applications, pages 101-119, Cham. Springer International Publishing.
- Yubin Kim, Xuhai Xu, Daniel McDuff, Cynthia Breazeal, and Hae Won Park. 2024. Health-Ilm: Large language models for health prediction via wearable sensor data. In Proceedings of the fifth Conference on Health, Inference, and Learning, volume 248 of Proceedings of Machine Learning Research, pages 522-539. PMLR.
- Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. 2011. Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl., 12(2):74-82.
- Hong Li, Gregory D. Abowd, and Thomas Plötz. 2018. On specialized window lengths and detector based human activity recognition. In Proceedings of the 2018 ACM International Symposium on Wearable Computers, ISWC '18, page 68-71, New York, NY, USA. Association for Computing Machinery.
- Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches Out, pages 74-81, Barcelona, Spain. Association for Computational Linguistics.
- Che Liu, Zhongwei Wan, Sibo Cheng, Mi Zhang, and Rossella Arcucci. 2024a. Etp: Learning transferable ecg representations via ecg-text pre-training. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8230-8234. IEEE.
- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023a. Visual instruction tuning.
- Xin Liu, Daniel McDuff, Geza Kovacs, Isaac Galatzer-Levy, Jacob Sunshine, Jiening Zhan, Ming-Zher Poh, Shun Liao, Paolo Di Achille, and Shwetak Patel. 2023b. Large language models are few-shot health learners. Preprint, arXiv:2305.15525.
- Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger Zimmermann. 2024b. Unitime: A language-empowered unified model for cross-domain time series forecasting. Preprint, arXiv:2310.09751.
- Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. 2024c. itransformer: Inverted transformers are effective for time series forecasting. International Conference on Learning Representations.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. 2022. Non-stationary transformers: Exploring the stationarity in time series forecasting.

825

826

837 838

839

840

841

842

843

847

851

854

864

866

867

872

874

876

878

879

- Seungwhan Moon, Andrea Madotto, Zhaojiang Lin, Aparajita Saraf, Amy Bearman, and Babak Damavandi. 2023. IMU2CLIP: Language-grounded motion sensor translation with multimodal contrastive learning. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 13246– 13253, Singapore. Association for Computational Linguistics.
- Vishvak S. Murahari and Thomas Plötz. 2018. On attention models for human activity recognition. In *Proceedings of the 2018 ACM International Symposium on Wearable Computers*, ISWC '18, page 100–103, New York, NY, USA. Association for Computing Machinery.
 - Shikai Qiu Nate Gruver, Marc Finzi and Andrew Gordon Wilson. 2023. Large Language Models Are Zero Shot Time Series Forecasters. In Advances in Neural Information Processing Systems.
 - Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2023. A time series is worth 64 words: Long-term forecasting with transformers. In *International Conference on Learning Representations*.
 - OpenAI. 2024. Gpt-4 technical report. *Preprint*, arXiv:2303.08774.
 - Francisco Javier Ordóñez and Daniel Roggen. 2016. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. *Sensors*, 16(1).
 - Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In *Proceedings of the* 40th Annual Meeting on Association for Computational Linguistics, ACL '02, page 311–318, USA. Association for Computational Linguistics.
 - Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.
 - Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of Machine Learning Research*, 21(140):1–67.
- Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. In Conference on Empirical Methods in Natural Language Processing.
- Attila Reiss and Didier Stricker. 2012. Introducing a new benchmarked dataset for activity monitoring. In 2012 16th International Symposium on Wearable Computers, pages 108–109.

Dimitris Spathis and Fahim Kawsar. 2024. The first step is the hardest: Pitfalls of representing and tokenizing temporal data for large language models. *Journal of the American Medical Informatics Association*, 31(9):2151–2158. 880

881

883

884

886

887

888

889

890

891

892

893

894

895

896

897

898

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

- Chenxi Sun, Hongyan Li, Yaliang Li, and Shenda Hong. 2024a. Test: Text prototype aligned embedding to activate llm's ability for time series.
- Chenxi Sun, Hongyan Li, Yaliang Li, and Shenda Hong. 2024b. Test: Text prototype aligned embedding to activate llm's ability for time series. *Preprint*, arXiv:2308.08241.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. 2023. Llama: Open and efficient foundation language models. *Preprint*, arXiv:2302.13971.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.
- Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. 2023a. Timesnet: Temporal 2d-variation modeling for general time series analysis. In *International Conference on Learning Representations*.
- Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. 2023b. Next-gpt: Any-to-any multimodal llm.
- Kang Xia, Wenzhong Li, Shiwei Gan, and Sanglu Lu. 2024. Ts2act: Few-shot human activity sensing with cross-modal co-learning. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, 7(4):1–22.
- Qingxin Xia, Takuya Maekawa, and Takahiro Hara. 2023. Unsupervised human activity recognition through two-stage prompting with chatgpt. *Preprint*, arXiv:2306.02140.
- Cheng Xu, Duo Chai, Jie He, Xiaotong Zhang, and Shihong Duan. 2019. Innohar: A deep neural network for complex human activity recognition. *IEEE Access*, 7:9893–9902.
- Hao Xue and Flora D Salim. 2023. Promptcast: A new prompt-based learning paradigm for time series forecasting. *IEEE Transactions on Knowledge and Data Engineering*.
- Gilad Yehudai, Haim Kaplan, Asma Ghandeharioun, Mor Geva, and Amir Globerson. 2024. When can transformers count to n? *Preprint*, arXiv:2407.15160.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. 2023. A survey on multimodal large language models. *arXiv preprint arXiv:2306.13549*.

933

934

936

937 938

939

945

947

951

952

954

957

958 959

960

961 962

963

964

965

966

967 968

969

971

974

975

976

- Hyungjun Yoon, Biniyam Aschalew Tolera, Taesik Gong, Kimin Lee, and Sung-Ju Lee. 2024. By my eyes: Grounding multimodal large language models with sensor data via visual prompting. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 2219–2241, Miami, Florida, USA. Association for Computational Linguistics.
- Yuta Yuki, Junto Nozaki, Kei Hiroi, Katsuhiko Kaji, and Nobuo Kawaguchi. 2018. Activity recognition using dual-convlstm extracting local and global features for shl recognition challenge. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, UbiComp '18, page 1643–1651, New York, NY, USA. Association for Computing Machinery.
 - Mi Zhang and Alexander A. Sawchuk. 2012. Usc-had: a daily activity dataset for ubiquitous activity recognition using wearable sensors. In *Proceedings of the 2012 ACM Conference on Ubiquitous Computing*, UbiComp '12, page 1036–1043, New York, NY, USA. Association for Computing Machinery.
 - Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *The Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference*, volume 35, pages 11106–11115. AAAI Press.
 - Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. 2023a. One Fits All: Power general time series analysis by pretrained lm. In *NeurIPS*.
 - Tian Zhou, PeiSong Niu, Xue Wang, Liang Sun, and Rong Jin. 2023b. One fits all:power general time series analysis by pretrained lm. *Preprint*, arXiv:2302.11939.
- Yunjiao Zhou, Jianfei Yang, Han Zou, and Lihua Xie. 2023c. Tent: Connect language models with iot sensors for zero-shot activity recognition. arXiv preprint arXiv:2311.08245.

978

979

981

982

983

987

989

991

994

995

996

999

1000

1002

1003

1004

1005

1006

1007

1008

1010

1011

A Appendix

A.1 More related work

Deep learning in human activity recognition. Over the last decade, HAR has transitioned from hand-crafted feature extraction to deep learning models capable of automatic feature learning. Early work by Kwapisz et al. (2011) utilized machine learning techniques, such as decision trees and MLPs, to classify activities using features extracted from wearable sensor data. Later, Haresamudram et al. (2019) demonstrated that optimized feature extraction within the Activity Recognition Chain (ARC) could rival or outperform endto-end deep learning models. Deep learning models, particularly CNNs and LSTMs, have since become dominant in HAR. Bevilacqua et al. (2019) developed a CNN-based model for HAR, while Ha and Choi (2016) introduced CNN-pf and CNNpff architectures that apply partial and full weight sharing for better feature extraction. Other notable works include Perception-Net Kasnesis et al. (2019), which leverages 2D convolutions for multimodal sensor data, and InnoHAR (Xu et al., 2019), which combines Inception CNN and GRUs for multiscale temporal feature learning. A dual-stream network utilizing convolutional layers and LSTM units, known as ConvLSTM, was employed by Yuki et al. (2018) to analyze complex temporal hierarchies with streams handling different time lengths. The combination of attention mechanisms with recurrent networks to enhance the computation of weights for hidden state outputs has also been demonstrated by DeepConvLSTM (Kasnesis et al., 2019) in capturing spatial-temporal features.

Large Language Models for Time-Series Fore-1012 casting. LLMs have achieved remarkable suc-1013 cess in text-related tasks, and their utility has ex-1014 panded into time-series forecasting. Xue and Salim 1015 (2023) presents PromptCast, which redefines time-1016 series forecasting as a natural language generation 1017 task by transforming numerical inputs into textual prompts, enabling pre-trained language models to 1019 handle forecasting tasks with superior generaliza-1020 tion in zero-shot settings. Gruver et al. (2023) ex-1021 plores encoding time-series as numerical strings, 1022 1023 allowing LLMs like GPT-3 and LLaMA-2 to perform zero-shot forecasting, matching or surpass-1024 ing the performance of specialized models, while 1025 highlighting challenges in uncertainty calibration due to model modifications like RLHF. Zhou et al. 1027

(2023b) demonstrates that pre-trained language and 1028 image models, such as a Frozen Pretrained Trans-1029 former (FPT), can be adapted for diverse time-1030 series tasks like classification, forecasting, and 1031 anomaly detection, leveraging self-attention mecha-1032 nisms to bridge the gap between different data types 1033 and achieving state-of-the-art performance across 1034 various tasks. Jin et al. (2024b) highlights the trans-1035 formative potential of LLMs for time-series analy-1036 sis by integrating language models with traditional 1037 analytical methods. Jin et al. (2024a) introduces a 1038 reprogramming framework that aligns time-series 1039 data with natural language processing capabilities, 1040 enabling LLMs to perform time-series forecast-1041 ing without altering the core model structure. Cao 1042 et al. (2024) presents TEMPO, a generative trans-1043 former framework based on prompt tuning, which 1044 adapts pre-trained models for time-series forecast-1045 ing by decomposing trends, seasonality, and resid-1046 ual information. Sun et al. (2024b) proposes TEST, 1047 an innovative embedding technique that integrates 1048 time-series data with LLMs through instance-wise, 1049 feature-wise, and text-prototype-aligned contrast, 1050 vielding improved or comparable results across var-1051 ious applications. Chang et al. (2024) develops 1052 a framework that enhances pre-trained LLMs for 1053 multivariate time-series forecasting through a two-1054 stage fine-tuning process and a novel multi-scale 1055 temporal aggregation method, outperforming tradi-1056 tional models in both full-shot and few-shot scenar-1057 ios. Finally, Liu et al. (2024b) introduces UniTime, 1058 a unified model that leverages language instruc-1059 tions and a Language-TS Transformer to handle 1060 multivariate time series across different domains, 1061 demonstrating enhanced forecasting performance 1062 and zero-shot transferability. 1063

LLMs for Human Activity Recognition. While 1064 LLMs like ChatGPT have demonstrated remark-1065 able performance in various NLP tasks, their effec-1066 tiveness in HAR remains limited due to challenges 1067 in interpreting sensor data. These models often 1068 struggle to distinguish between activities that share similar objects, requiring more advanced prompt 1070 engineering to highlight activity-specific details. 1071 (Xia et al., 2023) proposed an unsupervised ap-1072 proach to HAR using ChatGPT, leveraging two-1073 stage prompts to infer activities from object se-1074 quences without manual descriptions. The method 1075 demonstrates superior performance on three bench-1076 mark datasets, marking a significant advancement in applying language models to activity recognition 1078 1079tasks. Similarly, Ji et al. (2024) explored LLMs1080for zero-shot HAR using raw IMU data, showing1081that GPT-4 can outperform both traditional and1082deep learning models in simple HAR tasks without1083domain-specific adaptations, highlighting LLMs'1084potential in sensor-based systems.

A.2 SENSORQA Generation

1085

1086

1087

1088

1089

1090

1091

1092

1094

1095

1096 1097

1098

1099

1100

1101

1102

1103

1104 1105

1106

1107

1108

1109

For SENSORQA, we generate text data from sensor readings using predefined sentence templates (Tables 6, 7, 8). These templates are randomly selected to create diverse question-answer (QA) pairs. To enhance variability, we employ GPT-40 to generate synonymous variations. Each sentence contains placeholders for numerical values (e.g., timestamps, sensor readings) or textual information, which are dynamically replaced to produce coherent QA pairs aligned with the sensor data.

Trend Description Templates

- {start_time}s to {end_time}s: {trend}
- {start_time} seconds to {end_time} seconds: {trend}
- {start_time} to {end_time} seconds: {trend}
- {start_time}-{end_time} seconds: {trend}
- {start_time}-{end_time}s: {trend}
- {start_time}s-{end_time}s: {trend}

Table 6: Examples of answer templates used for trend descriptions.

The system prompt instructs the model on how to respond to generated questions, incorporating dataset-specific attributes such as sensor frequency and sampling rate. These tailored prompts ensure responses align with the unique characteristics of each dataset. Below is the system prompt template used for all datasets:

• A dialogue between a researcher and an AI assistant. The AI analyzes a sensor timeseries dataset (*N* points, sampled at {sample_rate}Hz) to answer specific questions, demonstrating its analytical capabilities and the potential for human-AI collaboration in interpreting sensor data.

A.3 Chronos

Chronos (Ansari et al., 2024) is a pretrained proba-1111 bilistic time-series framework that tokenizes real-1112 valued time-series data into discrete representations 1113 for language model training. It utilizes scaling and 1114 quantization to transform time-series data into a 1115 fixed vocabulary, enabling T5-based (Raffel et al., 1116 2020) models to learn from tokenized sequences us-1117 ing cross-entropy loss. Pretrained on diverse public 1118 and synthetic datasets, Chronos surpasses exist-1119 ing models on familiar datasets and demonstrates 1120 strong zero-shot performance on unseen tasks, mak-1121 ing it a versatile tool for time-series forecasting 1122 across domains. 1123

1110

1124

1125

1126

1127

1128

1129

Time-Series Tokenization and Quantization. Chronos converts time-series data into discrete tokens through a two-step process: normalization and quantization. Mean scaling is first applied to ensure consistency across different time series:

$$\tilde{x} = \frac{x}{\operatorname{mean}(|x|)} \tag{5}$$

Next, the normalized values are quantized using1130B bin centers c_1, \ldots, c_B and corresponding bin1131edges b_1, \ldots, b_{B-1} , mapping real values to discrete1132tokens via:1133

$$q(x) = \begin{cases} 1 & \text{if } -\infty \le x < b_1, \\ 2 & \text{if } b_1 \le x < b_2, \\ \vdots & & \\ B & \text{if } b_{B-1} \le x < \infty. \end{cases}$$
(6) 1134

Special tokens such as PAD and EOS are added1135to handle sequence padding and denote the end of1136sequences, allowing Chronos to process variable-1137length inputs efficiently within language models.1138

Objective Function. Chronos models the tok-
enized time series using a categorical distribution1139over the vocabulary V_{ts} , minimizing the cross-
entropy loss:1141

$$\ell(\theta) = -\sum_{h=1}^{H+1} \sum_{i=1}^{|V_{ts}|} \mathbf{1}(z_{C+h+1} = i)$$

$$\cdot \log p_{\theta}(z_{C+h+1} = i \mid z_{1:C+h})$$
(7) 1143

where C is the historical context length, H is 1144 the forecast horizon, and p_{θ} is the predicted token 1145 distribution. 1146

Trend Description Templates

- Kindly provide a detailed analysis of the trend changes observed in the {data}.
- Please offer a comprehensive description of how the trends in the {data} have evolved.
- I would appreciate a thorough explanation of the trend fluctuations that occurred within the $\{data\}$.
- Could you examine the {data} in depth and explain the trend shifts observed step by step?
- Detail the {data}'s trend transitions.
- Could you assess the {data} and describe the trend transformations step by step?
- Could you analyze the trends observed in the {data} over the specified period step by step?
- Can you dissect the {data} and explain the trend changes in a detailed manner?
- What trend changes can be seen in the {data}?

Summary Templates

- Could you provide a summary of the main features of the input {data} and the distribution of the trends?
- Please give an overview of the essential attributes of the input {data} and the spread of the trends.
- Describe the salient features and trend distribution within the {data}.
- Give a summary of the {data}'s main elements and trend apportionment.
- Summarize the {data}'s core features and trend dissemination.
- Outline the principal aspects and trend allocation of the {data}.
- Summarize the key features and trend distribution of the {data}.
- I need a summary of {data}'s main elements and their trend distributions.

Table 7: Examples of question templates used for trend description and summary generation.

Summary 1: Trend Count

- Number of {trend} trends: {num}
- Count of {trend} trends: {num}
- Number of {trend} segments: {num}
- Count of {trend} segments: {num}

Summary 2: Sensor Data Context

- The given {data_name} represents {sensor_name} sensor readings from {start_time}s to {end_time}s.
- The {data_name} contains {sensor_name} sensor readings recorded between {start_time} and {end_time} seconds.
- The {sensor_name} sensor readings collected from {start_time} to {end_time} seconds are presented in this {data_name}.

Summary 3: Trend Change Statistics

- The data exhibits {trend_num} distinct trends, with {change_num} trend changes observed.
- Across {trend_num} trends, the data shows {change_num} occurrences of trend shifts.
- {trend_num} trends are present, with {change_num} instances of trend changes.

Summary 4: Cumulative Trend Analysis

- To sum up, the data exhibited a {trend_type} trend for a total duration of {total_time} seconds.
- Overall, the data showed a {trend_type} trend spanning {total_time} seconds.
- In conclusion, the trend was {trend_type} over {total_time} seconds.

Summary 5: Overall Trend Summary

- The overall trend is {overall_trend}.
- The primary trend detected is {overall_trend}.
- Looking at the broader pattern, the trend is {overall_trend}.

Table 8: Examples of answer templates used for summaries.

1147This approach offers two key advantages: (i)1148Seamless integration with language models, requir-1149ing no architectural modifications, and (ii) Flexible1150distribution learning, enabling robust generaliza-1151tion across diverse time-series datasets.

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

A.4 GPT-40 Prompt for Sensor Data Trend Analysis

Table 9 presents the system prompt used to generate trend-descriptive texts from sensor data, providing a structured framework for GPT-40 to analyze and respond to specific questions. This standardized prompt ensures consistency in GPT-40's interpretation of time-series data, allowing direct comparison with descriptions produced by SENSORLLM.

> **Prompt** A dialogue between a curious researcher and an AI assistant. The AI analyzes a sensor time-series dataset (N points, {sr}Hz sampling rate) to answer specific questions.

> > Please output your answer in the format like this example: {example from ground-truth}

> > Now, analyze the following: Input: {sensor_data} How trends in the given sensor data evolve? Output:

Table 9: Prompt for GPT-40 to generate descriptive texts based on the given numerical sensor data.

We evaluate GPT-4o's ability to interpret numerical sensor data by assessing its responses against human evaluations and NLP metrics. This comparison benchmarks GPT-4o's performance against SENSORLLM, highlighting differences in how both models process time-series data trends. The results demonstrate the effectiveness of SENSOR-LLM 's Sensor-Language Alignment Stage.

A.5 Evaluation Metrics for Sensor-Language Alignment Stage

1171In this section, we describe the various evaluation1172metrics used to assess the performance of SENSOR-1173LLM in generating trend descriptions from sen-1174sor data. Each metric offers a distinct perspective1175on model performance, ranging from surface-level1176textual similarity to more complex semantic align-1177ment.

BLEU-1 (Papineni et al., 2002). BLEU (Bilin-1178 gual Evaluation Understudy) is a precision-based 1179 metric commonly used to evaluate machine-1180 generated text by comparing it to reference texts. 1181 BLEU-1 focuses on unigram (single-word) overlap, 1182 assessing the lexical similarity between the gener-1183 ated and reference text. While useful for measur-1184 ing word-level matches, BLEU-1 does not capture 1185 deeper semantic meaning, making it most effective 1186 for surface-level alignment. 1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

ROUGE-1 and ROUGE-L (Lin, 2004). ROUGE (Recall-Oriented Understudy for Gisting Evaluation) evaluates the recall-oriented overlap between generated text and reference text. ROUGE-1 focuses on unigram recall, similar to BLEU-1 but emphasizing how much of the reference text is captured. ROUGE-L measures the longest common subsequence, assessing both precision and recall in terms of structure and content overlap, though it does not evaluate semantic accuracy.

METEOR (Banerjee and Lavie, 2005). ME-TEOR (Metric for Evaluation of Translation with Explicit Ordering)combines precision and recall, with additional alignment techniques such as stemming and synonym matching. Unlike BLEU and ROUGE, METEOR accounts for some degree of semantic similarity. However, its emphasis is still on word-level alignment rather than factual accuracy or meaning.

SBERT (**Reimers and Gurevych, 2019**). SBERT (Sentence-BERT) ² is a metric that generates sentence embeddings using the BERT architecture. It computes cosine similarity between embeddings of the generated and reference texts, providing a deeper assessment of semantic similarity beyond lexical matches.

SimCSE (Gao et al., 2021). SimCSE (Simple Contrastive Sentence Embedding) ³ introduces a contrastive learning approach to fine-tune language models for sentence embeddings. By applying different dropout masks to the same sentence, it generates positive examples, encouraging similar embeddings for semantically identical sentences while distinguishing different ones.

²https://huggingface.co/sentence-transformers/all-mpnet-base-v2

³https://huggingface.co/princeton-nlp/sup-simcse-roberta-large

GPT-40 Evaluation. In addition to the NLP met-1223 rics, we also employed GPT-40 as a human-like 1224 evaluator. Given its strong reasoning and compre-1225 hension abilities, GPT-40 was tasked with scoring 1226 the generated text based on its alignment with the ground truth. GPT-40 evaluated the correctness, 1228 completeness, and coherence of the trend descrip-1229 tions and assigned a score from 1 to 5, accompa-1230 1231 nied by an explanation (see Table 10). This type of evaluation provides insights into how well the gen-1232 erated outputs capture the nuances of sensor data 1233 trends in a manner similar to human understanding. 1234

> Human Evaluation. Finally, five human experts assessed the correctness and quality of the generated trend descriptions. Following the same criteria as GPT-40, they rated the outputs on a scale from 1 to 5, focusing on the factual accuracy and coherence of the descriptions. This manual evaluation serves as an important benchmark for the model's performance from a human perspective, ensuring that the generated outputs are not only technically correct but also practically useful for human interpretation.

A.6 Datasets

1235

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1264 1265

1266

1269

1270

1271

We used five datasets in our study:

USC Human Activity Dataset (USC-HAD). USC-HAD (Zhang and Sawchuk, 2012) consists of six sensor readings from body-worn 3-axis accelerometers and gyroscopes, collected from 14 subjects. The data is sampled at 100 Hz across six channels and includes 12 activity class labels. For evaluation, we use data from subjects 13 and 14 as the test set, while the remaining subjects' data are used for training. A window size $w \in [5, 200]$ is used in alignment stage, and w = 200 with stride of 100 are used in HAR.

UCI Human Activity Recognition Dataset (UCI-HAR). UCI-HAR (Anguita et al., 2013) includes data collected from 30 volunteers performing six activities while wearing a smartphone on their waist. The embedded accelerometer and gyroscope sensors sampled data at 50 Hz across six channels. The dataset was partitioned into 70% for training and 30% for testing. A window size $w \in [5, 200]$ is used in alignment stage, and w = 128 with stride of 64 is used in HAR.

Physical Activity Monitoring Dataset (PAMAP2). PAMAP2 (Reiss and Stricker, 2012) includes data from nine subjects wearing IMUs on their chest, hands, and ankles. IMUs capture the acceleration, gyroscope, and magnetometer data across 27 channels and include 12 activity class labels. For our experiments, data from subjects 105 and 106 are used as the test set, with the remaining subjects' data used for training. The sample rate is downsampled from 100 Hz to 50 Hz. A window size $w \in [5, 100]$ is used in alignment stage, and w = 100 with stride of 50 in HAR.

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1293

1294

1295

1296

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1310

1311

1312

1313

1314

Mobile Health Dataset (MHealth). MHealth (Baños et al., 2014) contains body motion and vital sign recordings from ten volunteers. Sensors were placed on the chest, right wrist, and left ankle of each subject. For our experiments, we used acceleration data from the chest, left ankle, and right lower arm, along with gyroscope data from the left ankle and right lower arm, resulting in a total of 15 channels. The data is sampled at 50 Hz and includes 12 activity class labels. Data from subjects 1, 3, and 6 is used as the test set, while the remaining subjects' data are used for training. We use a window size $w \in [5, 100]$ in alignment stage and w = 100 with stride of 50 in HAR.

CAPTURE-24. CAPTURE-24 (Chan et al., 2024) is a large-scale dataset featuring 3-channel wrist-worn accelerometer data collected in freeliving settings for over 24 hours per participant. It includes annotated data from 151 participants, making it significantly larger than existing datasets. We used the first 100 participants as the training set and the remaining 51 as the test set. For each subject, sequences were windowed, and 5% of the data was randomly selected for training and testing. The sample rate was downsampled from 100 Hz to 50 Hz and it includes 10 activity class labels. During the alignment stage, we used a variable window size $w \in [10, 500]$, while in the HAR, we fixed w = 500 with a stride of 250.

Each dataset includes multiple activity classes, and the proportion of each class in the dataset is shown in Table 11.

A.7 SENSORQA

We introduce SENSORQA, a novel question-
answering dataset designed to align time-series sen-
sor data with human-interpretable natural language.1315Each sample pairs a segment of sensor input with
natural language questions and answers, capturing
trends, patterns, or activity-level semantics.1317

Prompt	Please evaluate the model-generated trend descriptions against the ground truth. Rate each pair based on the degree of accuracy, using a scale from 1 to 5, where 1 represents the lowest correctness and 5 represents the highest. Deduct 1 point for minor errors in the trend description, and 2-3 points for moderate errors.
	Provide your score (1-5) and a brief explanation in the format: "score#reason" (e.g., 4#The description of trend changes slightly differs from the ground truth).
	Now, please proceed to score the following: Model: {model_output} Human: {ground_truth} Output:
Output example 1:	2#Significant discrepancies in segment durations and trend counts com- pared to ground-truth.
Output example 2:	5#The model's description matches the human-generated text accurately.

Table 10: Prompt and output examples for GPT-40 in evaluating model-generated texts and ground-truth.

Dataset	# Classes	Classes	Proportions (%)
USC-HAD	12	Sleeping, Sitting, Elevator down, Elevator up, Standing, Jumping, Walking downstairs, Walking right, Walking forward, Running forward, Walking upstairs, Walking left	12.97, 9.06, 6.04, 5.94, 8.6, 3.62, 7.61, 9.81, 13.15, 5.72, 8.22, 9.25
UCI-HAR	6	Standing, Sitting, Laying, Walking, Walking downstairs, Walking upstairs	18.69, 17.49, 19.14, 16.68, 13.41, 14.59
PAMAP2	12	Lying, Sitting, Standing, Ironing, Vacuum cleaning, Ascending stairs, Descending stairs, Walking, Nordic walking, Cycling, Running, Rope jumping	10.25, 9.52, 10.11, 11.82, 9.14, 6.3, 5.67, 12.77, 9.52, 8.42, 3.57, 2.91
MHealth	12	Climbing stairs, Standing still, Sitting and relaxing, Lying down, Walking, Waist bends forward, Frontal elevation of arms, Knees bending (crouching), Jogging, Running, Jump front & back, Cycling	8.91, 8.95, 8.95, 8.95, 8.95, 8.26, 8.7, 8.53, 8.95, 8.95, 2.96, 8.95
CAPTURE-24	10	Sleep, Household-chores, Walking, Vehicle, Standing, Mixed-activity, Sitting, Bicycling, Sports, Manual-work	37.45, 6.5, 6.16, 3.83, 3.25, 3.49, 37.07, 1.03, 0.43, 0.79

Table 11: Dataset classes and Proportions

Dataset	Sta	ge 1	Stage 2		
	Train	Test	Train	Test	
USC-HAD	300,744	58,704	22,790	4,555	
UCI-HAR	128,292	25,932	7,352	2,947	
PAMAP2	738,666	271,674	14,163	5,210	
MHealth	283,020	60,780	4771	2,039	
CAPTURE-24	72,714	35,688	61,327	30,138	

Table 12: Training and testing sample counts for Stage 1 and Stage 2 across datasets of SENSORQA.

Sensor-Language Alignment Stage of SEN-SORQA focuses on aligning uni-variate sensor sequence of variable length with descriptive textual responses and includes two types of QA tasks:

1321

1322

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1342

1343

1344

1345

1346

- **Trend Analysis QA**, which describes how the signal changes within the window.
- **Trend Summary QA**, which summarizes the overall behavior across a window in a concise natural language phrase.

Task-Aware Tuning Stage focuses on using multi-variate sensor sequences to perform human activity classification, leveraging the aligned representations learned in the alignment stage. This stage of SENSORQA contains statistical information from each sensor channel as part of the input representation.

The distribution of training and testing data across both stages is summarized in Table 12.

A.8 Baselines for Task-Aware Tuning Stage

In Task-Aware Tuning Stage, we compare SEN-SORLLM against several state-of-the-art baseline models for time-series classification and human activity recognition (HAR). These models were selected for their strong performance in relevant tasks, providing a thorough benchmark for evaluating SENSORLLM 's effectiveness.

1347**Transformer (Vaswani et al., 2017).** The Trans-1348former model is a widely-used architecture in var-1349ious tasks, including time-series forecasting and1350classification. It uses self-attention mechanisms to1351capture long-range dependencies in sequential data,1352making it highly effective for modeling complex1353temporal relationships.

1354Informer (Zhou et al., 2021). Informer is a1355transformer-based model designed for long se-1356quence time-series data. It addresses key limita-1357tions of standard Transformers, such as high time

complexity and memory usage, through three innovations: ProbSparse self-attention, which reduces time complexity; self-attention distilling, which enhances efficiency by focusing on dominant patterns; and a generative decoder that predicts entire sequences in a single forward pass. 1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

NS-Transformer (Liu et al., 2022). Nonstationary Transformers (NS-Transformer) tackles the issue of over-stationarization in time-series by balancing series predictability and model capability. It introduces Series Stationarization to normalize inputs and De-stationary Attention to restore intrinsic non-stationary information into temporal dependencies.

PatchTST (Nie et al., 2023). PatchTST is a Transformer-based model for multivariate time series tasks, using subseries-level patches as input tokens and a channel-independent approach to reduce computation and improve efficiency. This design retains local semantics and allows for longer historical context, significantly improving long-term forecasting accuracy.

TimesNet (Wu et al., 2023a). TimesNet is a versatile backbone for time series analysis that transforms 1D time series into 2D tensors to better capture intraperiod and interperiod variations. This 2D transformation allows for more efficient modeling using 2D kernels. It also introduces TimesBlock to adaptively discovers multi-periodicity and extracts temporal features from transformed 2D tensors using a parameter-efficient inception block.

iTransformer (Liu et al., 2024c). iTransformer reimagines the Transformer architecture by applying attention and feed-forward networks to inverted dimensions. Time points of individual series are embedded as variate tokens, allowing the attention mechanism to capture multivariate correlations, while the feed-forward network learns nonlinear representations for each token.

DeepConvLSTM (Ordóñez and Roggen, 2016). DeepConvLSTM integrates four consecutive convolutional layers followed by two LSTM layers to effectively capture both spatial and temporal dynamics in sensor data. The final output vector is passed through a fully connected layer, and the softmax function is applied to produce activity class probabilities as the model's final output.

DeepConvLSTMAttn (Murahari and Plötz,14052018). DeepConvLSTMAttn enhances the orig-1406

inal DeepConvLSTM by integrating an attention 1407 mechanism to improve temporal modeling in HAR 1408 tasks. Instead of using the last LSTM hidden state 1409 for classification, the attention mechanism is ap-1410 plied to the first 7 hidden states, representing his-1411 torical temporal context. These states are trans-1412 formed through linear layers to generate attention 1413 scores, which are passed through softmax to pro-1414 duce weights. The weighted sum of the hidden 1415 states is combined with the last hidden state to 1416 form the final embedding for classification. 1417

Attend (Abedin et al., 2021). The Attend model 1418 use the latent relationships between multi-channel 1419 sensor modalities and specific activities, apply data-1420 agnostic augmentation to regularize sensor data 1421 streams, and incorporate a classification loss cri-1422 terion to minimize intra-class representation dif-1423 ferences while maximizing inter-class separability. 1424 These innovations result in more discriminative ac-1425 tivity representations, significantly improving HAR 1426 performance. 1427

Chronos+MLP. Chronos (Ansari et al., 1428 2024)+MLP is a baseline designed to evaluate 1429 1430 whether the performance gains in SENSORLLM are solely attributable to Chronos and the MLP. In 1431 SENSORLLM, Chronos is used to generate sensor 1432 embeddings, which are then mapped by the MLP 1433 for input into the LLM to perform HAR. Since 1434 Chronos does not natively support classification 1435 tasks and only processes single-channel data, we 1436 adapt it for HAR by inputting each channel's 1437 data separately into Chronos. The resulting 1438 sensor embeddings for all channels are then 1439 concatenated and fed into an MLP, which acts as 1440 a classifier. This setup allows us to benchmark 1441 against a simpler framework and validate the 1442 1443 unique contributions of SENSORLLM's design.

GPT4TS (Zhou et al., 2023a). GPT4TS is a uni-1444 fied framework that leverages a frozen pre-trained 1445 language model (e.g., GPT-2 (Radford et al., 2019)) 1446 to achieve state-of-the-art or comparable perfor-1447 mance across various time-series analysis tasks, 1448 including classification, forecasting (short/long-1449 1450 term), imputation, anomaly detection, and fewshot/zero-sample forecasting. The authors also 1451 found that self-attention functions similarly to PCA, 1452 providing a theoretical explanation for the versatil-1453 ity of transformers. 1454

A.9 Evaluation Metrics for Task-Aware Tuning Stage

In our evaluation, we use the F1-macro score to 1457 assess the model's performance across datasets. 1458 F1-macro is particularly suitable for datasets with 1459 imbalanced label distributions, which is common 1460 in Human Activity Recognition (HAR) tasks where 1461 certain activities are overrepresented while others 1462 have fewer samples. Unlike the micro F1 score, 1463 which emphasizes the performance on frequent 1464 classes, F1-macro treats each class equally by cal-1465 culating the F1 score independently for each class 1466 and then averaging them. 1467

The formula for the F1-macro score is:

F1-macro =
$$\frac{1}{C} \sum_{i=1}^{C} F1_i$$
 (8) 1469

1455

1456

1468

1470

1471

1472

1473

1474

1475

477

1478

1479

1480

1481

1482

1483

1484

1485

where C is the total number of classes, and F1_i is the F1 score for class *i*. The F1 score for each class is calculated as:

$$F1_i = \frac{2 \times \operatorname{Precision}_i \times \operatorname{Recall}_i}{\operatorname{Precision}_i + \operatorname{Recall}_i} \tag{9}$$

The precision and recall for each class are defined as:

$$\operatorname{Precision}_{i} = \frac{\operatorname{TP}_{i}}{\operatorname{TP}_{i} + \operatorname{FP}_{i}}$$
(10) 14

$$\operatorname{Recall}_{i} = \frac{\operatorname{TP}_{i}}{\operatorname{TP}_{i} + \operatorname{FN}_{i}}$$
(11) 1

where TP_i , FP_i , and FN_i represent the number of true positives, false positives, and false negatives for class *i*, respectively. This metric ensures that performance is evaluated fairly across all classes, regardless of the frequency of each label, making it a robust measure for imbalanced datasets.

A.10 Sensor-Language Alignment Stage Output Examples

Tables 13 and 14 present two examples of the trend 1486 analysis results generated by SENSORLLM and 1487 GPT-40 based on the input sensor data. From the 1488 results, it is evident that SENSORLLM outperforms 1489 GPT-40 across both shorter and medium-length 1490 sequences. This demonstrates that our approach 1491 enables LLMs to better understand numerical vari-1492 ations, as well as accurately compute the time du-1493 ration represented by the input sequences based 1494 on their length and the given sample rate. In con-1495 trast, current large language models struggle with 1496

1497	directly interpreting numerical data, as their tok-
1498	enization methods are not well-suited for tasks such
1499	as comparing numerical values or counting (Yehu-
1500	dai et al., 2024).

11.195, -11.087, -10.833, -11.044, -11.393, -11.943, -12.168, -15.45; -10.859, -10.349, -9.831, -9.1622, -8.2721, -6.299, -6.255, -5.5998] Ground-truth: 0.0 seconds to 0.02 seconds; growing 0.02 seconds to 0.02 seconds; growing 0.02 seconds to 0.03 seconds; growing 0.12 seconds to 0.12 seconds; growing 0.03 seconds to 0.12 seconds; growing 0.2 seconds to 0.2 seconds; declining 0.3 seconds to 0.34 seconds; growing 0.3 seconds to 0.38 seconds; declining 0.34 seconds to 0.38 seconds; declining 0.34 seconds to 0.38 seconds; declining 0.34 seconds to 0.42 seconds; declining 0.44 seconds to 0.42 seconds; growing 0.44 seconds; declining 0.44 seconds to 0.62 seconds; growing 0.44 seconds; declining 0.44 seconds to 0.62 seconds; growing 0.44 seconds; declining 0.44 seconds to 0.62 seconds; growing 10.44 seconds; declining 0.44 seconds; to 1.42 seconds; growing 10.44 seconds; declining 0.44 seconds; to 1.62 second; growing 10.14 getter tree characteristics, with the trend fluctuating to tal of eleven times. Th analysis reveals that the data's declining inclination persisted for a tota of 0.24 seconds; ascending 0.02 to 0.08 seconds; descending 0.02 to 0.08 seconds; descending 0.02 to 0.08 seconds; descending 0.12 seco		
0.02 seconds to 0.06 seconds: declining 0.08 seconds to 0.12 seconds: growing 0.08 seconds to 0.12 seconds: growing 0.12 seconds to 0.2 seconds: growing 0.2 seconds to 0.3 seconds: declining 0.34 seconds to 0.38 seconds: declining 0.44 seconds to 0.42 seconds: growing 0.44 seconds to 0.62 seconds: growing 104 declining trends: 5 From 0.0s to 0.62s, normalized left-ankle y-axis accelerometer data i showcased in the sensor data. Examining the data, we notice 2 clear tren characteristics, with the trend fluctuating a total of eleven times. The analysis reveals that the data' seclining inclination persisted for a tota of 0.24 seconds; ascending 0.01 to 0.02 seconds: ascending 0.02 to 0.02 seconds: ascending 0.02 to 0.02 seconds: ascending 0.12 to 0.2 seconds: ascending 0.24 to 0.42 seconds; descending 0.25 to 0.32 seconds: descending 0.24 to 0.42 seconds; descending	Sensor readings:	[-9.8237, -9.4551, -10.007, -11.273, -11.258, -11.677, -11.774, -11.638, -11.195, -11.087, -10.833, -11.044, -11.393, -11.943, -12.168, -15.455, -12.967, -12.326, -12.515, -13.195, -12.634, -11.873, -12.002, -11.583, -10.859, -10.349, -9.831, -9.1622, -8.2721, -6.9299, -6.255, -5.5998]
Total declining trends: 5From 0.0s to 0.62s, normalized left-ankle y-axis accelerometer data i showcased in the sensor data. Examining the data, we notice 2 clear tren characteristics, with the trend fluctuating a total of eleven times. Th analysis reveals that the data's declining inclination persisted for a tota of 0.24 seconds, and a growing trend within a span of 0.38 seconds. Th general trend observed is growing.SENSORLLM:0.0 to 0.02 seconds: ascending 0.02 to 0.08 seconds: descending 0.1 to 0.12 seconds: ascending 0.12 to 0.28 seconds: descending 0.2 to 0.28 seconds: descending 0.32 to 0.36 seconds: descending 0.32 to 0.36 seconds: descending 0.4 to 0.42 seconds: ascending 0.4 to 0.62 seconds: ascending 0.4 to 0.62 seconds: ascending 0.4 to 0.62 seconds: ascending 0.4 to 0.42 seconds ascending segments: 5The time series data encapsulates normalized left-ankle y-axis accelerom ter sensor readings from 0.0 seconds to 0.62 seconds. Two separate trend and nine trend shifts are observed in the data. The analysis reveals that th data's descending inclination persisted for a total of 0.22 seconds, and a ascending trend for a sum of 0.40 seconds. The trend overall is ascending GPT-40 Evaluation:GPT-40 Evaluation:3#Moderate errors in trend durations and shifts compared t	Ground-truth:	 0.02 seconds to 0.06 seconds: declining 0.06 seconds to 0.08 seconds: growing 0.08 seconds to 0.12 seconds: declining 0.12 seconds to 0.2 seconds: growing 0.2 seconds to 0.3 seconds: declining 0.3 seconds to 0.34 seconds: growing 0.34 seconds to 0.38 seconds: declining 0.38 seconds to 0.42 seconds: growing 0.42 seconds to 0.44 seconds: declining
0.02 to 0.08 seconds: descending 0.08 to 0.1 seconds: ascending 0.1 to 0.12 seconds: ascending 0.12 to 0.2 seconds: ascending 0.2 to 0.28 seconds: descending 0.28 to 0.32 seconds: ascending 0.32 to 0.36 seconds: descending 0.32 to 0.36 seconds: descending 0.36 to 0.4 seconds: ascending 0.4 to 0.42 seconds: ascending 0.42 to 0.62 seconds: ascending dute of ascending segments: 6 Count of descending segments: 5The time series data encapsulates normalized left-ankle y-axis accelerom ter sensor readings from 0.0 seconds to 0.62 seconds. Two separate trend and nine trend shifts are observed in the data. The analysis reveals that th data's descending inclination persisted for a total of 0.22 seconds, and a ascending trend for a sum of 0.40 seconds. The trend overall is ascendingGPT-40 Evaluation:3#Moderate errors in trend durations and shifts compared to ground truttGPT-40's output:0.0s to 0.02s: rising 0.02s to 0.06s: falling		Total declining trends: 5 From 0.0s to 0.62s, normalized left-ankle y-axis accelerometer data is showcased in the sensor data. Examining the data, we notice 2 clear trend characteristics, with the trend fluctuating a total of eleven times. The analysis reveals that the data's declining inclination persisted for a total of 0.24 seconds, and a growing trend within a span of 0.38 seconds. The
Count of descending segments: 5The time series data encapsulates normalized left-ankle y-axis accelerome ter sensor readings from 0.0 seconds to 0.62 seconds. Two separate trend and nine trend shifts are observed in the data. The analysis reveals that th data's descending inclination persisted for a total of 0.22 seconds, and a ascending trend for a sum of 0.40 seconds. The trend overall is ascendingGPT-40 Evaluation:3#Moderate errors in trend durations and shifts compared to ground truth 0.0s to 0.02s: rising 0.02s to 0.06s: falling	SensorLLM:	0.02 to 0.08 seconds: descending 0.08 to 0.1 seconds: ascending 0.1 to 0.12 seconds: descending 0.12 to 0.2 seconds: ascending 0.2 to 0.28 seconds: descending 0.28 to 0.32 seconds: ascending 0.32 to 0.36 seconds: descending 0.36 to 0.4 seconds: ascending 0.4 to 0.42 seconds: descending
GPT-4o's output: 0.0s to 0.02s: rising 0.02s to 0.06s: falling 0.02s to 0.06s: falling		• •
0.02s to 0.06s: falling	GPT-4o Evaluation :	3#Moderate errors in trend durations and shifts compared to ground truth.
	GPT-4o's output:	0.02s to 0.06s: falling

	0.08s to 0.1s: falling 0.1s to 0.12s: rising 0.12s to 0.14s: falling 0.14s to 0.3s: rising
	Total rising segments: 4 Total falling segments: 3
	The normalized left-ankle y-axis accelerometer sensor readings recorded within the 0.0 to 0.3 second timeframe are presented in this sensor data. The input data displays three individual trends, with a comprehensive change count reaching 7. The examination reveals that the data's falling inclination endured for an aggregate of 0.08 seconds, succeeded by a rising trend for a cumulative period of 0.22 seconds, and a steady pattern for a total of 0.00 seconds. The dominant trend is rising.
GPT-40 Evaluation:	2#Significant discrepancies in trend durations and counts between model and ground-truth.

Table 13: Example 1 of SENSORLLM and GPT-40 Generated Descriptions with Ground-Truth and GPT-40 Evaluation

Sensor readings:	[0.53137, 0.53137, 0.53137, 0.51176, 0.51176, 0.51176, 0.45098, 0.45098, 0.45098, 0.45098, 0.45882, 0.45882, 0.45882]
Ground-truth:	 0.0 seconds to 0.04 seconds: stable 0.04 seconds to 0.06 seconds: decreasing 0.06 seconds to 0.1 seconds: stable 0.1 seconds to 0.12 seconds: decreasing 0.12 seconds to 0.18 seconds: stable 0.18 seconds to 0.2 seconds: increasing 0.2 seconds to 0.24 seconds: stable Number of stable trends: 4 Number of decreasing trends: 2 Number of increasing trends: 1
	The sensor data represents readings taken from a normalized right-lower- arm x-axis gyroscope sensor between 0.0 and 0.24 seconds. Analysis reveals three separate trends within the data, undergoing a cumulative total of seven shifts in direction. Encapsulating the outcomes, the data's decreasing trend stretched across a total time of 0.04 seconds, came after an increasing pattern observed over 0.02 seconds, and a stable trend for 0.18 seconds in total. The dominant trend is decreasing.
SENSORLLM:	0.0s to 0.04s: consistent 0.04s to 0.06s: downward 0.06s to 0.1s: consistent 0.1s to 0.12s: downward 0.12s to 0.18s: consistent 0.18s to 0.2s: upward 0.2s to 0.24s: consistent

	Number of consistent segments: 4 Number of downward segments: 2 Number of upward segments: 1
	The sensor data illustrates normalized right-lower-arm x-axis gyroscope sensor readings between 0.0 and 0.24 seconds. The input data displays three individual trends, with a comprehensive change count reaching 7. To encapsulate, the data's downward trend spanned a combined duration of 0.04 seconds, and then an upward pattern for a sum of 0.02 seconds, and a consistent trend for an accumulated time of 0.18 seconds. The overarching trend is characterized as downward.
GPT-40 Evaluation :	5#The model's description matches the ground truth accurately.
GPT-4o's output:	0.0s to 0.06s: steady 0.06s to 0.12s: falling 0.12s to 0.14s: steady 0.14s to 0.16s: rising 0.16s to 0.18s: steady Total steady segments: 3 Total rising segments: 1 Total falling segments: 1
	The normalized right-lower-arm x-axis gyroscope sensor readings recorded within the 0.0 to 0.18 second timeframe are presented in this sensor data. The input data displays three individual trends, with a comprehensive change count reaching 5. The examination reveals that the data's falling inclination endured for an aggregate of 0.06 seconds, succeeded by a rising trend for a cumulative period of 0.02 seconds, and a steady pattern for a total of 0.10 seconds. The dominant trend is steady.
GPT-40 Evaluation:	2#Significant discrepancies in trend durations and counts compared to ground-truth.

Table 14: Example 2 of SENSORLLM and GPT-40 Generated Descriptions with Ground-Truth and GPT-40 Evaluation