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Abstract001

We introduce SENSORLLM, a two-stage frame-002
work that enables Large Language Models003
(LLMs) to perform human activity recogni-004
tion (HAR) from wearable sensor data. While005
LLMs excel at reasoning and generalization,006
they struggle with time-series inputs due to lim-007
ited semantic context, numerical complexity,008
and sequence variability. To address these chal-009
lenges, we construct SENSORQA, a question-010
answering dataset of human-intuitive sensor-011
text pairs spanning diverse HAR scenarios.012
It supervises the Sensor-Language Alignment013
stage, where the model aligns sensor inputs014
with trend descriptions. Special tokens are in-015
troduced to mark channel boundaries. This016
alignment enables LLMs to interpret numerical017
patterns, channel-specific signals, and variable-018
length inputs—without requiring human an-019
notation. In the subsequent Task-Aware Tun-020
ing stage, we adapt the model for multivari-021
ate HAR classification, achieving performance022
that matches or exceeds state-of-the-art meth-023
ods. Our results show that, guided by human-024
intuitive alignment, SENSORLLM becomes025
an effective sensor learner, reasoner, and clas-026
sifier—generalizing across varied HAR set-027
tings and paving the way for foundation model028
research in time-series analysis. Our codes029
are available at https://anonymous.4open.030
science/r/sensorllm_code-E0FC.031

1 Introduction032

Human Activity Recognition (HAR) is a time-033

series (TS) classification task that maps sensor034

signals, such as accelerometer and gyroscope035

data, to human activities. Traditional models like036

LSTM (Guan and Plötz, 2017; Hammerla et al.,037

2016) and DeepConvLSTM (Ordóñez and Roggen,038

2016) learn high-level features but are task-specific039

and struggle to generalize across different sensor040

configurations and activity sets. In contrast, Large041

Language Models (LLMs) (Han et al., 2021) have042

Trend Analysis
Please analyse the sensor data trend variations between 0.0 and 0.49
seconds.

0.0-0.13 seconds: downward; 0.13-0.14 seconds: stable; 0.14-0.34 seconds: upward; 0.34-0.49
seconds: downward.

Number of downward segments: 2; Number of stable segments: 1; Number of upward segments: 1.

Summarization

I need a summary of sensor data's main elements and their trend distributions.

The x-axis accelerometer readings exhibit 3 distinct patterns, with direction changes occurring
four times in total. The data reveals a downward trend for 0.28s, followed by a growth phase of
0.20s, and a stable period lasting 0.01s. Overall, the trend remains downward.

Human Activity Recognition

What human behaviour is showcased in this sensor data that includes 6
channels?

The human activity is walking.

Single-variate
numerical values

Multi-variate
numerical values

Figure 1: SENSORLLM can analyze and summarize
trends in captured sensor data, facilitating human activ-
ity recognition tasks.

shown remarkable success in integrating diverse 043

data types (Liu et al., 2023a; Wu et al., 2023b; Yin 044

et al., 2023), including text and images. 045

Enabling LLMs to process wearable sensor 046

data (Jin et al., 2023) requires either (1) pre- 047

training or fine-tuning on TS data (Zhou et al., 048

2023a), which demands substantial computational 049

resources and is hindered by limited and imbal- 050

anced labeled data, or (2) leveraging zero-shot and 051

few-shot prompting by converting sensor data into 052

text (Kim et al., 2024; Ji et al., 2024). The latter 053

approach avoids retraining but introduces key chal- 054

lenges: (i) Numerical encoding issues—language 055

model tokenizers, designed for text, struggle with 056

numerical values, treating consecutive numbers 057

as independent tokens (Nate Gruver and Wilson, 058

2023) and failing to preserve temporal dependen- 059

cies (Spathis and Kawsar, 2024). (ii) Sequence 060

length constraints—complex numerical sequence 061

often exceeds LLMs’ maximum context length, 062

leading to truncation, information loss, and in- 063

creased computational costs. (iii) Multivariate 064

complexity—LLMs process univariate inputs, mak- 065
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ing it difficult to encode multivariate sensor data066

in a way that retains inter-channel dependencies.067

(iv) Prompt engineering challenges—designing068

effective prompts that enable LLMs to interpret nu-069

merical sensor readings, detect trends and classify070

activities remains a challenge (Liu et al., 2023b).071

To address these challenges, we introduce SEN-072

SORLLM, a human-intuition inspired framework073

that aligns numerical sensor data with natural lan-074

guage. Unlike image-text pairs, sensor data con-075

sists of multivariate signals with complex and var-076

ied patterns, making annotation particularly diffi-077

cult. To tackle this, we release SENSORQA, a ques-078

tion–answer (QA) dataset of aligned sensor-text079

pairs spanning diverse HAR tasks. SENSORLLM080

is trained on this dataset to learn intuitive mappings081

between sensor readings and descriptive language,082

enabling LLMs to interpret sensor data through nat-083

ural interactions—without any modification to the084

LLM architecture (see Figure 1).085

Existing methods (Jin et al., 2024a; Sun et al.,086

2024a) have explored condensed text prototypes087

for alignment, but these approaches often lack in-088

terpretability and require extensive tuning to se-089

lect suitable prototypes. In contrast, we propose090

an automatic text generation approach that aligns091

with human intuition by deriving descriptive trend-092

based text directly from TS data using statistical093

analyses and predefined templates. This method094

is precise, scalable, and interpretable, eliminating095

the need for manual annotations while preserving096

essential sensor characteristics. SENSORLLM fol-097

lows a two-stage framework:098

Sensor-Language Alignment Stage. Our SEN-099

SORQA pairs each sensor window with QA pairs100

to align sensor features with natural language in101

a structured format. A pretrained TS encoder ex-102

tracts temporal features from the sensor data, which103

are then projected into a space interpretable by the104

LLM, mitigating text-specific tokenization issues.105

We also introduce special tokens for each sensor106

channel, enabling LLMs to effectively capture mul-107

tivariate (multi-channel) dependencies.108

Task-Aware Tuning Stage. The aligned embed-109

dings are used for HAR, leveraging the LLM’s110

reasoning capabilities while keeping its parame-111

ters frozen. Importantly, our framework naturally112

supports sensor inputs of varying sequence lengths113

and arbitrary numbers of channels (i.e., multivari-114

ate TS data), a flexibility that prior approaches have115

struggled to accommodate.116

To the best of our knowledge, this is the first 117

approach to integrate sensor data into LLMs for 118

sensor-based analysis and activity recognition. The 119

key contributions of this work are: 120

• We release SENSORQA, a novel human- 121

intuitive dataset of aligned sensor-text QA 122

pairs covering diverse HAR scenarios. We 123

evaluate SENSORLLM through text similarity 124

metrics, human judgments, and LLM-based 125

assessments, confirming its ability to capture 126

temporal patterns for robust multimodal un- 127

derstanding. SENSORQA and SENSORLLM 128

support sensor inputs with varying sequence 129

lengths and channel configurations, allowing 130

broad and realistic HAR evaluation. 131

• SENSORLLM achieves competitive results 132

across five HAR datasets, matching or sur- 133

passing state-of-the-art models. Experiments 134

further validate that modality alignment and 135

task-specific prompts significantly enhance 136

the LLM’s ability to interpret and classify sen- 137

sor data. 138

• We show that SENSORLLM maintains strong 139

performance in the Task-Aware Tuning Stage, 140

even when applied to datasets distinct from 141

those used during alignment, highlighting its 142

robustness and generalizability in HAR tasks. 143

2 Related Work 144

In this section, we discuss recent developments 145

in leveraging LLMs for time-series data, specifi- 146

cally focusing on two categories: (1) LLMs for 147

time series as text and (2) Multimodal Large Lan- 148

guage Models (MLLMs) for sensor data. A broader 149

overview of other related works, including deep 150

learning approaches to HAR and additional LLM- 151

based forecasting methods, is provided in Ap- 152

pendix A.1. 153

LLMs for Time Series as Text. While LLMs 154

excel in processing natural language, applying 155

them directly to time-series data poses unique chal- 156

lenges (Spathis and Kawsar, 2024). Certain meth- 157

ods address this by treating time-series signals as 158

raw text, using the same tokenization as natural lan- 159

guage. Notable examples include PromptCast (Xue 160

and Salim, 2023), which transforms numeric inputs 161

into textual prompts for zero-shot forecasting, and 162

LLMTime (Gruver et al., 2024), which encodes 163
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time-series as numerical strings for GPT-like mod-164

els. However, due to the lack of specialized tok-165

enizers for numeric sequences, LLMs may fail to166

capture crucial temporal dependencies and repeti-167

tive patterns (Spathis and Kawsar, 2024). To miti-168

gate these issues, several works employ time-series169

encoders before mapping the resulting embeddings170

to language model spaces (Liu et al., 2024a; Zhou171

et al., 2023c; Xia et al., 2024), thus aligning sen-172

sor embeddings with textual embeddings in a con-173

trastive or supervised manner.174

MLLMs for Sensor Data. Extending LLMs to175

non-textual domains has gained traction, particu-176

larly through MLLMs that accept inputs beyond177

text, such as images or speech. For sensor data, the178

challenge lies in representing continuous signals ef-179

fectively. Yoon et al. (2024) propose to ground180

MLLMs with sensor data via visual prompting.181

Sensor signals are first visualized as images, guid-182

ing the MLLM to analyze the visualized sensor183

traces alongside task descriptions, which also lower184

token costs compared to raw-text baselines. Sim-185

ilarly, Moon et al. (2023) introduce IMU2CLIP,186

which aligns inertial measurement unit streams187

with text and video in a joint representation space.188

This approach enables wearable AI applications189

like motion-based media search and LM-based mul-190

timodal reasoning, showcasing how sensor data can191

be integrated into broader multimodal frameworks.192

3 Methods193

In this work, we propose SENSORLLM, a two-194

stage framework that aligns wearable sensor data195

with descriptive text by a high-precision corpus196

of question-answering pairs created without any197

human annotations and tailored for wearable sen-198

sor reasoning. Our aim is to build a multimodal199

model capable of interpreting and reasoning over200

time-series (TS) signals. As shown in Figure 2,201

SENSORLLM consists of three core components:202

(1) a pretrained LLM, (2) a pretrained TS embed-203

der, and (3) a lightweight MLP alignment module.204

In the Sensor–Language Alignment stage, a gen-205

erative model aligns sensor readings with text, and206

in the Task–Aware Tuning stage, a lightweight clas-207

sifier is added on top of the LLM to perform HAR.208

Crucially, only the alignment MLP and this clas-209

sifier are trainable—both the backbone LLM and210

the TS embedder remain frozen—resulting in just211

5.67% (535.9 M) of parameters being fine-tuned in212

the first stage and 0.12% (10.5 M) in the second,213

making training extremely efficient. 214

3.1 SENSORQA Dataset 215

Aligning TS data with natural language is challeng- 216

ing due to the lack of rich semantic annotations 217

beyond class labels, making manual labeling costly 218

and impractical (Deldari et al., 2024; Haresamu- 219

dram et al., 2024). While prior works often rely on 220

fixed text prototypes (Sun et al., 2024b; Jin et al., 221

2024a), we introduce SENSORQA —a scalable and 222

human-intuitive dataset designed to bridge sensor 223

data and language through structured QA pairs. 224

SENSORQA is built on the idea that TS signals 225

naturally exhibit semantic patterns—such as trends 226

and statistical behaviors—that can be described 227

in natural language. Using predefined templates 228

(Appendix A.2), descriptive QA pairs are automat- 229

ically generated for each sensor window without 230

any human annotations. Each pair includes infor- 231

mation such as sensor type, time range, and ob- 232

served trends. Templates are randomly combined 233

to enhance diversity. For example: 234

(1) The time-series data represents readings taken 235

from a <S> sensor between <ts> and <te> sec- 236

onds. 237

(2) To sum up, the data exhibited a <T> trend for 238

a cumulative period of <tt> seconds. 239

where T and S denote specific trends and sensor 240

types, and t corresponds to numerical values. 241

3.2 Sensor-Language Alignment 242

As shown in Figure 2 (a), the Sensor–Language 243

Alignment stage uses a generative model to create 244

multimodal sentences by combining single-channel 245

sensor readings with text from our SENSORQA 246

dataset. The sensor data is represented as a matrix 247

X ∈ RC×T , where C is the number of channels 248

and T is the sequence length. Each channel’s data, 249

denoted as Xc, is processed independently to retain 250

channel-specific characteristics. The data is seg- 251

mented into non-overlapping segments Xc
S , where 252

S is the total number of segments. Each segment 253

xs is assigned a random length l within a prede- 254

fined range, encouraging the model to learn from 255

both short-term fluctuations and long-term trends. 256

We use Chronos (Ansari et al., 2024) as the TS 257

encoder to generate segment embeddings x̂s ∈ 258

R(l+1)×dts, where dts is the embedding dimension 259

and (l+1) accounts for the [EOS] token added dur- 260

ing Chronos tokenization (Appendix A.3). Before 261
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<x_acc_start> <x_acc_end> ...

...

<z_gyro_start> <z_gyro_end>

Pre-trained
LLM 

Human activity label

Statistics for each
channel:

x-axis accelerometer: 
Mean=-0.00420363, 
StdDev=0.02134742

[...]

z-axis gyroscope: 
Mean=0.04571767, 
StdDev=0.03069701

Softmax

<x_acc_start> How trends in sensor
data evolve? <x_acc_end>

[INST] Please analyse
the input  sensor
readings  (N points,
100Hz) to answer
specific questions.
[/INST]

LLM Embedder LLM EmbedderAlignment
Module

Pre-trained
LLM 

0.0-0.01 seconds: rising
0.01-0.02 seconds: falling
[...]
0.94-0.99 seconds: rising

The sensor data illustrates x-axis accelerometer readings
between 0.0 and 0.99 seconds. [...] The general trend is rising.

(a) Sensor-Language Alignment Stage

<x_acc_start>

(b) Task-Aware Tuning Stage

Alignment
Module

Alignment
Module

LLM
Embedder

LLM
Embedder

LLM
Embedder

LLM
Embedder

Linear 🔥

Alignment Module

MLP🔥

Pre-trained
TS Embedder

Sensor Readings

Sensor Embeddings

Aligned Sensor Embeddings Input Text Embeddings Frozen 🔥 TrainingOutput Text Embeddings

Figure 2: Our proposed SENSORLLM framework: (a) Sensor-Language Alignment Stage, where a genera-
tive model aligns sensor readings with automatically generated text; (b) Task-Aware Tuning Stage, where a
classification model leverages the aligned modalities to perform HAR.

feeding segments into Chronos, we apply instance262

normalization: x̃s =
xs−mean(xs)

std(xs)
. For the language263

backbone, we use LLaMA3-8B (Touvron et al.,264

2023).265

Alignment Module. To transform TS embed-266

dings x̂s into text-aligned embeddings âs ∈267

R(l+1)×D for downstream tasks, we introduce an268

alignment projection module. This module, im-269

plemented as a multi-layer perceptron (MLP), first270

maps sensor embeddings to an intermediate space271

of dimension dm and then projects them to the tar-272

get dimension D. Formally,273

âs = W2 · σ(W1x̂s + b1) + b2, (1)274

where W1 ∈ Rdm×dts and W2 ∈ RD×dm are275

learnable weights, b1 and b2 are biases, and σ is276

the GELU activation function (Hendrycks and Gim-277

pel, 2016). This projection ensures that the trans-278

formed embeddings âs are semantically aligned279

with the text embedding space, making them suit-280

able for tasks such as text generation and classifi-281

cation.282

Input Embedding. To integrate sensor data283

into the LLM, we introduce two special tokens284

per sensor channel (e.g., <x_acc_start> and285

<x_acc_end> for the x-axis accelerometer), extend-286

ing the LLM’s embedding matrix from E ∈ RV×D287

to E ∈ RV ′×D, where V ′ = V +2c, with V as the288

vocabulary size and c as the number of channels.289

These special token embeddings are concatenated290

with the aligned sensor embeddings. The final com-291

bined sensor representation ôs ∈ R(l+3)×D is then292

concatenated with instruction and question embed- 293

dings to form the full input sequence ẑ ∈ Rk×D, 294

where k is the total number of tokens. 295

Loss Function. SENSORLLM processes an input 296

sequence Zs = {zis}Ki=1 consisting of sensor and 297

text embeddings and generates an output sequence 298

Zt = {zit}Ni=1, where zis, z
i
t ∈ V ′, and K and N 299

represent the number of input and output tokens, 300

respectively. The model is trained using a causal 301

language modeling objective, predicting the next 302

token based on previous ones. The optimization 303

minimizes the negative log-likelihood: 304

Lgen = −
N−1∑
i=0

logP (zit|Z<i
t , zs). (2) 305

Loss is computed only on generated tokens, ensur- 306

ing SENSORLLM effectively integrates sensor and 307

text embeddings to produce coherent, contextually 308

appropriate responses. 309

3.3 Task-Aware Tuning 310

As shown in Figure 2 (b), the Task-Aware Tuning 311

stage refines the multimodal sensor-text embed- 312

dings for HAR. This stage integrates multi-channel 313

sensor readings with activity labels, aligning tem- 314

poral patterns with human activities. The input 315

sensor data X is segmented into overlapping win- 316

dows of size L with a 50% overlap (Li et al., 2018), 317

forming segments XS ∈ RS×C×L, where S is the 318

number of segments and C is the number of chan- 319

nels. The pretrained alignment module from the 320

first stage maps sensor data to activity labels, pre- 321

serving inter-channel dependencies while learning 322
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Metric
USC-HAD UCI-HAR PAMAP2 MHealth CAPTURE-24

GPT-4o Ours GPT-4o Ours GPT-4o Ours GPT-4o Ours GPT-4o Ours

BLEU-1 41.43 57.68 37.97 56.78 46.35 60.20 49.97 61.38 46.58 57.10
ROUGE-1 54.92 68.32 51.24 67.63 58.08 69.92 61.11 71.20 58.21 68.11
ROUGE-L 49.00 64.17 44.88 63.05 50.30 66.25 51.99 67.83 48.88 60.90
METEOR 30.51 45.95 26.93 45.81 37.17 52.21 38.50 51.73 31.16 40.51
SBERT 77.22 86.09 76.05 85.01 82.71 87.31 83.15 86.66 83.11 84.83
SimCSE 86.96 93.09 90.23 92.51 89.64 93.82 92.10 93.38 90.10 92.20

GPT-4o 1.67 3.11 1.61 3.20 1.90 3.77 1.69 3.69 1.70 2.32
Human 2.10 4.16 1.94 4.04 2.38 4.70 1.74 4.56 2.30 3.10

Table 1: Evaluation of Sensor Data Understanding tasks. The column GPT-4o denotes trend descriptions generated
by GPT-4o, while the row GPT-4o indicates evaluations conducted by GPT-4o on the model outputs.

activity-related patterns.323

Input Embedding. For each sensor channel c,324

we retrieve its aligned embeddings ôcs from the pre-325

trained alignment module. These are concatenated326

across all channels, along with statistical features327

(mean and variance) from our SENSORQA dataset,328

to form the final input embedding:329

ẑ = ô1s ⊕ ô2s ⊕ · · · ⊕ ôCs ⊕ ẑstat, (3)330

where ẑstat represents the statistical information.331

This ensures the model integrates both temporal332

and statistical characteristics for HAR.333

Loss Function. The input token sequence is pro-334

cessed by the LLM, yielding a latent representa-335

tion H ∈ RK×D, where K is the number of to-336

kens and D is the embedding dimension. Due to337

causal masking, we extract the final hidden state,338

h = HK , which encodes all preceding token infor-339

mation. This pooled vector is passed through a fully340

connected layer to produce a prediction vector of341

size M , where M is the number of activity classes.342

The final class probabilities ŷi are obtained via the343

softmax function, and the model is optimized using344

cross-entropy loss:345

Lcls = −
M−1∑
i=0

yi log ŷi, (4)346

where yi is the ground truth label.347

4 Experiments348

In this section, we evaluate SENSORLLM in en-349

abling LLMs to interpret, reason about, and clas-350

sify sensor data for HAR tasks. All experiments351

are conducted on NVIDIA A100-80G GPUs. To352

assess the LLM’s ability to learn and generalize 353

from raw sensor inputs, we ensure that the same 354

training and testing subjects are used in both the 355

Sensor-Language Alignment and Task-Aware Tun- 356

ing stages. This guarantees that test data in the 357

second stage remains unseen during alignment, en- 358

suring a fair evaluation of generalization. We select 359

Chronos as the TS embedder since it has not been 360

pre-trained on HAR-specific data, allowing us to 361

evaluate the robustness of our approach in adapting 362

to raw, domain-agnostic sensor signals. 363

4.1 Datasets 364

To evaluate the effectiveness and generalizabil- 365

ity of SENSORLLM, we conduct experiments 366

on five publicly available HAR datasets: USC- 367

HAD (Zhang and Sawchuk, 2012), UCI-HAR (An- 368

guita et al., 2013), PAMAP2 (Reiss and Stricker, 369

2012), MHealth (Baños et al., 2014), and 370

CAPTURE-24 (Chan et al., 2024). These datasets 371

vary widely in subject counts, sensor placement, 372

sampling rates, channel configurations, and activity 373

types, covering both controlled laboratory condi- 374

tions and free-living environments. SENSORQA 375

(see Appendix A.7) is built on these five bench- 376

marks and supports both alignment and activity 377

classification. All datasets are publicly available, 378

containing no personally identifiable information, 379

thus posing minimal ethical or privacy concerns. 380

We use subject-independent splits for all datasets 381

except UCI-HAR, which comes with a fixed split. 382

In all other datasets, training and test sets come 383

from different subjects, ensuring the model is evalu- 384

ated on unseen users. Full dataset details, including 385

subject count, sensor configurations, data splits, ac- 386

tivity classes, preprocessing steps, and windowing 387

strategies, are provided in Appendix A.6. 388
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Method
USC-HAD UCI-HAR PAMAP2 MHealth CAPTURE-24

F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy

PatchTST 45.2±1.48 45.6±2.19 86.8±0.84 86.0±0.71 82.0±0.71 81.2±0.84 80.0±1.58 79.4±1.34 35.6±0.89 66.2±1.10

Ns-Transformer 52.6±2.30 51.8±2.86 88.0±0.71 87.4±0.55 78.8±0.84 78.8±0.84 77.2±1.48 75.8±1.48 34.8±1.10 65.4±0.55

Informer 51.2±1.30 51.6±1.52 86.6±1.14 86.4±0.89 78.0±1.58 78.6±1.34 74.0±0.71 72.8±0.84 35.6±0.55 66.8±0.84

Transformer 49.6±1.67 50.6±0.55 85.4±0.89 85.2±1.10 77.0±0.71 77.6±0.89 75.2±1.30 74.6±1.34 32.8±0.84 65.4±0.89

iTransformer 48.4±1.82 49.6±1.67 81.8±0.84 81.8±0.84 76.6±0.55 75.8±0.45 80.4±1.14 80.0±1.22 19.8±0.84 62.4±0.89

TimesNet 52.2±2.39 52.6±2.07 87.4±1.14 86.6±1.14 76.2±1.92 77.4±1.14 78.4±1.52 77.2±1.48 34.8±0.84 65.8±1.79

GPT4TS 54.2±2.05 56.0±1.58 88.2±0.84 87.6±0.55 80.4±0.89 79.8±0.45 76.4±1.14 75.4±1.14 32.8±1.10 62.2±1.92

Chronos+MLP 44.2±1.30 44.0±0.71 82.2±0.84 81.2±0.84 79.8±0.45 79.8±0.45 83.0±0.71 82.0±0.71 38.0±0.71 68.2±0.84

DeepConvLSTM 48.8±2.39 50.6±2.41 89.2±0.84 89.2±0.84 78.4±1.52 78.2±1.10 75.0±1.87 76.0±1.00 40.4±0.89 69.4±1.14

DeepConvLSTMAtt 54.0±2.12 54.4±3.21 89.6±1.14 89.4±1.14 79.2±1.30 79.6±1.14 77.4±2.19 76.8±1.48 41.4±0.55 70.4±0.55

Attend 60.2±2.17 60.8±1.92 93.2±0.84 92.8±0.45 84.6±1.14 85.0±0.71 83.4±1.14 82.6±1.14 43.6±0.55 71.0±0.71

SENSORLLM 61.2±3.56 62.6±3.36 91.2±1.48 90.8±1.30 86.2±1.48 87.2±0.84 89.4±3.85 89.0±3.54 48.6±1.14 72.0±0.71

Table 2: F1-macro and accuracy scores (%) for the Human Activity Recognition tasks, presented as the mean and
standard deviation over 5 random repetitions. Bold for the best and underline for the second-best.

4.2 Sensor Data Understanding389

Setup. All datasets are trained using the same pa-390

rameters in the Sensor-Language Alignment Stage:391

a learning rate of 2e-3, 8 epochs, batch size of 4,392

gradient accumulation steps of 8, and a maximum393

sequence length of 8192 for CAPTURE-24 and394

4096 for others.395

Evaluation Metrics. We assess the performance396

of SENSORLLM in the sensor–language alignment397

stage by comparing its ability to generate trend398

descriptions from sensor data with that of the ad-399

vanced GPT-4o 1. GPT-4o generates responses400

using a predefined prompt (Appendix A.4). We401

adopt three evaluation methods:402

• NLP Metrics. We use BLEU-1 (Papineni403

et al., 2002), ROUGE-1, ROUGE-L (Lin,404

2004), and METEOR (Banerjee and Lavie,405

2005) to measure surface-level similarity406

and n-gram overlap. For deeper semantic407

alignment and factual correctness, we adopt408

SBERT (Reimers and Gurevych, 2019) and409

SimCSE (Gao et al., 2021).410

• GPT-4o Evaluation. GPT-4o rates the gen-411

erated trend descriptions on a scale of 1 to412

5 (with 5 being the highest) by comparing413

each output to ground truth and providing ex-414

planatory feedback. As an advanced LLM, its415

evaluation ensures a semantic assessment of416

trend comprehension.417

• Human Evaluation. Five time-series ex-418

perts (PhD students, postdocs, and academics)419

score accuracy and quality using the same cri-420

1gpt-4o-2024-08-06 (OpenAI, 2024)

teria as GPT-4o, providing a human-centered 421

perspective on the model’s outputs. 422

Appendix A.5 details all metrics and scoring 423

criteria. We randomly sample 200 instances per 424

dataset for both SENSORLLM and GPT-4o, then 425

average the results for comparison. Because read- 426

ing and comparing lengthy sequences is difficult 427

for human annotators, we conduct human evalu- 428

ation on 20 shorter sequences per dataset (each 429

containing at most 50 time steps). 430

Results. Table 1 compares SENSORLLM and 431

GPT-4o on the Sensor Data Understanding task. 432

SENSORLLM consistently outperforms GPT-4o 433

across all metrics, with outputs that align more 434

closely with ground truth and exhibit stronger trend 435

understanding and coherence. In contrast, GPT-4o 436

often struggles with complex numerical data and 437

trend detection (Yehudai et al., 2024). When serv- 438

ing as an evaluator, GPT-4o also indicates a pref- 439

erence for SENSORLLM. Human evaluation, con- 440

ducted on shorter sequences, likewise favors SEN- 441

SORLLM. Performance on CAPTURE-24 is com- 442

paratively lower, likely due to longer sequences be- 443

ing trained under fixed parameters. Overall, these 444

results validate the effectiveness of our alignment 445

method in enabling LLMs to interpret complex TS 446

data. Qualitative examples are provided in Ap- 447

pendix A.10. 448

4.3 Human Activity Recognition 449

Setup. In this section, we evaluate the perfor- 450

mance of SENSORLLM on HAR tasks. Each exper- 451

iment is run for five trials using 8 training epochs, 452

a batch size of 4, gradient accumulation steps of 453

8, and a maximum sequence length of 4096. We 454

report both F1-macro (Appendix A.9) and accu- 455
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Dataset
Task-only SENSORLLM

w/o prompts w/ prompts w/o prompts w/ prompts

USC-HAD 43.4±2.88 45.0±1.58 49.6±1.67 61.2±3.56

UCI-HAR 80.0±2.12 82.0±1.58 89.2±1.10 91.2±1.48

PAMAP2 74.2±2.28 75.4±3.05 83.0±0.71 86.2±1.48

MHealth 76.6±1.34 77.4±3.13 86.6±1.14 89.4±3.85

CAPTURE-24 44.8±0.84 46.0±0.71 47.2±0.84 48.6±1.14

Table 3: F1-macro scores for models trained with and
without text prompts. Task-only refers to conducting
Task-Aware Tuning directly bypassing the alignment
stage.

racy to account for class imbalance and overall456

prediction performance across different activity cat-457

egories.458

Baselines. We benchmark SENSORLLM against459

11 baselines across two categories: (i) TS mod-460

els—Transformer (Vaswani et al., 2017), In-461

former (Zhou et al., 2021), NS-Transformer (Liu462

et al., 2022), PatchTST (Nie et al., 2023),463

TimesNet (Wu et al., 2023a), and iTrans-464

former (Liu et al., 2024c); (ii) HAR mod-465

els—DeepConvLSTM (Ordóñez and Roggen,466

2016), DeepConvLSTMAttn (Murahari and Plötz,467

2018), and Attend (Abedin et al., 2021). We also468

include Chronos+MLP and GPT4TS (Zhou et al.,469

2023a) for a more comprehensive comparison. Full470

baseline details are in Appendix A.8.471

Results. Table 2 reports F1-macro and accuracy472

scores (%) averaged over five runs. SENSOR-473

LLM achieves the best performance on four out474

of five datasets (USC-HAD, PAMAP2, MHealth,475

CAPTURE-24), and ranks second on UCI-HAR,476

slightly behind Attend. It shows notable gains on477

challenging datasets such as CAPTURE-24 and478

MHealth, demonstrating strong performance in479

real-world and long-sequence settings. Compared480

to Chronos+MLP, which uses the same TS en-481

coder, SENSORLLM significantly improves both482

F1-macro and accuracy, highlighting the effective-483

ness of our alignment strategy in enabling LLMs484

to understand and classify sensor data.485

Strong results on both F1-macro and accuracy486

indicate that SENSORLLM performs well in both487

overall prediction and per-class balance, showing488

robust generalization across diverse sensor configu-489

rations, activity types, and data collection environ-490

ments.491

5 Ablation Studies492

Removing Alignment Hurts. To assess the role493

of sensor–language alignment, we include the494

MHealth PAMAP2 UCI-HAR
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Figure 3: Effect of the number of alignment module
layers.

Chronos+MLP baseline (Section 4.3) to demon- 495

strate that SENSORLLM ’s performance is not 496

solely due to the strength of the Chronos encoder. 497

We further compare SENSORLLM with a Task- 498

only variant that skips the Sensor–Language Align- 499

ment stage and directly feeds Chronos embeddings 500

into the LLM for HAR. As shown in Table 3, SEN- 501

SORLLM consistently outperforms the Task-only 502

model across all five datasets, regardless of whether 503

textual prompts are included. Notably, the Task- 504

only model often performs comparably to or worse 505

than traditional TS baselines, underscoring the crit- 506

ical role of alignment. These results confirm that 507

Chronos embeddings alone are insufficient for op- 508

timal HAR performance, and that our alignment 509

stage is essential for enabling the LLM to effec- 510

tively interpret sensor data. 511

Textual Prompts Enhance HAR. To assess the 512

role of additional textual information (e.g., sta- 513

tistical features for each sensor channel) in the 514

Task-Aware Tuning Stage, we compared SENSOR- 515

LLM ’s performance with and without prompts. 516

As shown in Table 3, incorporating prompts consis- 517

tently improves F1-macro scores across all datasets, 518

with a more pronounced effect in the full SEN- 519

SORLLM architecture. This demonstrates that the 520

model effectively integrates sensor and textual data, 521

enhancing its ability to capture complex temporal 522

patterns. The results highlight the benefits of mul- 523

timodal inputs, which enrich sensor data represen- 524

tations and improve HAR accuracy. More broadly, 525

the ability to jointly process sensor data and tex- 526

tual prompts underscores the potential of LLMs for 527

more generalizable and interpretable sensor-driven 528

applications. 529

MLP Depth Trade-offs. We examine how the 530

depth of the alignment module MLP affects perfor- 531

mance on UCI-HAR, PAMAP2, and MHealth. As 532

shown in Figure 3, increasing the number of hidden 533

7



USC-HAD UCI-HAR MHealth
0

20

40

60

80

Av
er

ag
e 

F1
-m

ac
ro

 (%
)

60.2

93.2

83.4

60.4

90.8
88.4

61.2

91.2 89.4Attend
SensorLLM-3b
SensorLLM-8b
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Dataset
F1-macro

# Channelsw/o ST w/ ST

MHealth 89.6±2.70 90.2±3.11 15
PAMAP2 84.4±1.14 85.8±0.84 27

Table 4: Effect of special tokens on HAR based on two-
layer alignment MLP. ST refers to special tokens.

layers from one (1024 → 2048 → 4096) to two534

(1024 → 2048 → 3072 → 4096) yields mixed535

results. F1-macro scores improve on UCI-HAR536

and MHealth, but slightly decrease on PAMAP2.537

These findings suggest that deeper MLPs do not538

always improve performance, and a single hidden539

layer offers a good balance between accuracy and540

efficiency.541

Smaller SENSORLLM Still Compete. To ad-542

dress computational feasibility for deployment543

in resource-constrained environments, we evalu-544

ate SENSORLLM-3b—a lighter variant built with545

Chronos-base and LLaMA3.2-3b. Experiments546

were conducted on USC-HAD, UCI-HAR, and547

MHealth. As shown in Figure 4, SENSORLLM-3b548

achieves slightly lower performance than SENSOR-549

LLM-8b, reflecting the trade-off between model550

size and accuracy. Nevertheless, it remains compet-551

itive—outperforming Attend on USC-HAD and552

MHealth, and closely trailing it on UCI-HAR.553

These results suggest that SENSORLLM-3b pro-554

vides a strong balance between efficiency and per-555

formance, making it a viable choice for real-world,556

resource-limited applications.557

Special Tokens Improve Performance. We in-558

vestigate the role of special tokens in helping SEN-559

SORLLM distinguish sensor data from text and560

identify different sensor channel types. Special to-561

kens are added to the aligned embeddings of each562

sensor channel and act as learned identifiers. They563

provide structural cues that help the LLM model564

channel-wise dependencies and reduce modality565

Stage 2 Stage 1 F1-macro

USC-HAD
UCI-HAR 61.6±2.07

USC-HAD 61.2±3.56

UCI-HAR
UCI-HAR 91.2±1.48

USC-HAD 91.0±1.41

Table 5: F1-macro scores for cross-dataset experiments.

confusion. We conduct experiments on PAMAP2 566

and MHealth, both of which contain multiple sen- 567

sor channels. As shown in Table 4, removing spe- 568

cial tokens leads to a slight drop in F1-macro scores, 569

with the performance gap tending to widen as the 570

number of sensor channels increases. This confirms 571

their value in preserving positional and channel- 572

level structure within a flat token sequence. 573

Alignment Enables Generalization. To assess 574

the robustness of SENSORLLM, we conduct 575

cross-dataset experiments by training the Sen- 576

sor–Language Alignment Stage on USC-HAD and 577

the Task-Aware Tuning Stage on UCI-HAR, and 578

vice versa. While these datasets share the same sen- 579

sor channels, they differ in sensor wearing position, 580

sampling rates and activity distributions. As shown 581

in Table 5, SENSORLLM achieves performance 582

comparable to models trained entirely on the same 583

dataset. This suggests that once modality align- 584

ment is learned, it can be transferred across datasets 585

without retraining. These results indicate that SEN- 586

SORLLM does not overfit to dataset-specific pat- 587

terns but learns generalizable sensor-language rep- 588

resentations, demonstrating strong cross-dataset 589

adaptability and paving the way for more universal 590

TS–LLM frameworks. 591

6 Conclusions 592

We present SENSORLLM, a multimodal frame- 593

work that aligns sensor data with natural language 594

through a QA format at a human-perception level, 595

moving beyond machine-level alignment. It effec- 596

tively captures complex sensor patterns, achieves 597

strong performance on HAR tasks, and general- 598

izes well without requiring dataset-specific align- 599

ment. Experiments demonstrate its robustness 600

across variable-length sequences, multivariate in- 601

puts, and textual metadata. To support future re- 602

search, we release our code and the SENSORQA 603

dataset, constructed from five public HAR bench- 604

marks, to advance time-series and language inte- 605

gration, particularly in low-resource domains. 606
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7 Limitations607

While SENSORLLM demonstrates strong perfor-608

mance in aligning sensor data with LLMs, certain609

limitations remain, offering directions for future610

exploration.611

Classifier-Based Design. To ensure fair compar-612

isons with existing HAR models, we adopt a clas-613

sifier for downstream tasks rather than fully lever-614

aging the LLM’s generative capabilities. While615

our results demonstrate that the Sensor–Language616

Alignment Stage can generalize across datasets,617

relying on a fixed-class classifier may limit adapt-618

ability to new activity categories. Although zero-619

shot adaptability is a valuable direction, we did not620

explore it here due to the lack of comparable base-621

lines. To the best of our knowledge, no prior work622

supports generalization to unseen activity classes623

under variable-length and variable-channel sensor624

input, as our framework does, making fair compar-625

ison on zero-shot settings infeasible at this stage.626

Future work could explore generative or prompt-627

based approaches to support broader applications628

such as activity discovery or open-set recognition.629

Scope of Sensor-Text Alignment. Our align-630

ment focuses on mapping sensor data to trend-631

descriptive text, demonstrating clear benefits for632

LLM-based HAR. However, human-intuitive de-633

scriptions of sensor data extend beyond trend634

changes—incorporating frequency-domain fea-635

tures, periodicity, and higher-order patterns may636

further enhance an LLM’s ability to interpret time-637

series data. Future research could investigate638

whether aligning text with alternative sensor char-639

acteristics improves time-series reasoning. This640

could expand the potential of multimodal NLP ap-641

plications in sensor-driven tasks beyond activity642

recognition.643
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A Appendix978

A.1 More related work979

Deep learning in human activity recognition.980

Over the last decade, HAR has transitioned from981

hand-crafted feature extraction to deep learning982

models capable of automatic feature learning.983

Early work by Kwapisz et al. (2011) utilized ma-984

chine learning techniques, such as decision trees985

and MLPs, to classify activities using features ex-986

tracted from wearable sensor data. Later, Hare-987

samudram et al. (2019) demonstrated that opti-988

mized feature extraction within the Activity Recog-989

nition Chain (ARC) could rival or outperform end-990

to-end deep learning models. Deep learning mod-991

els, particularly CNNs and LSTMs, have since be-992

come dominant in HAR. Bevilacqua et al. (2019)993

developed a CNN-based model for HAR, while994

Ha and Choi (2016) introduced CNN-pf and CNN-995

pff architectures that apply partial and full weight996

sharing for better feature extraction. Other no-997

table works include Perception-Net Kasnesis et al.998

(2019), which leverages 2D convolutions for multi-999

modal sensor data, and InnoHAR (Xu et al., 2019),1000

which combines Inception CNN and GRUs for mul-1001

tiscale temporal feature learning. A dual-stream1002

network utilizing convolutional layers and LSTM1003

units, known as ConvLSTM, was employed by1004

Yuki et al. (2018) to analyze complex temporal1005

hierarchies with streams handling different time1006

lengths. The combination of attention mechanisms1007

with recurrent networks to enhance the computa-1008

tion of weights for hidden state outputs has also1009

been demonstrated by DeepConvLSTM (Kasnesis1010

et al., 2019) in capturing spatial-temporal features.1011

Large Language Models for Time-Series Fore-1012

casting. LLMs have achieved remarkable suc-1013

cess in text-related tasks, and their utility has ex-1014

panded into time-series forecasting. Xue and Salim1015

(2023) presents PromptCast, which redefines time-1016

series forecasting as a natural language generation1017

task by transforming numerical inputs into textual1018

prompts, enabling pre-trained language models to1019

handle forecasting tasks with superior generaliza-1020

tion in zero-shot settings. Gruver et al. (2023) ex-1021

plores encoding time-series as numerical strings,1022

allowing LLMs like GPT-3 and LLaMA-2 to per-1023

form zero-shot forecasting, matching or surpass-1024

ing the performance of specialized models, while1025

highlighting challenges in uncertainty calibration1026

due to model modifications like RLHF. Zhou et al.1027

(2023b) demonstrates that pre-trained language and 1028

image models, such as a Frozen Pretrained Trans- 1029

former (FPT), can be adapted for diverse time- 1030

series tasks like classification, forecasting, and 1031

anomaly detection, leveraging self-attention mecha- 1032

nisms to bridge the gap between different data types 1033

and achieving state-of-the-art performance across 1034

various tasks. Jin et al. (2024b) highlights the trans- 1035

formative potential of LLMs for time-series analy- 1036

sis by integrating language models with traditional 1037

analytical methods. Jin et al. (2024a) introduces a 1038

reprogramming framework that aligns time-series 1039

data with natural language processing capabilities, 1040

enabling LLMs to perform time-series forecast- 1041

ing without altering the core model structure. Cao 1042

et al. (2024) presents TEMPO, a generative trans- 1043

former framework based on prompt tuning, which 1044

adapts pre-trained models for time-series forecast- 1045

ing by decomposing trends, seasonality, and resid- 1046

ual information. Sun et al. (2024b) proposes TEST, 1047

an innovative embedding technique that integrates 1048

time-series data with LLMs through instance-wise, 1049

feature-wise, and text-prototype-aligned contrast, 1050

yielding improved or comparable results across var- 1051

ious applications. Chang et al. (2024) develops 1052

a framework that enhances pre-trained LLMs for 1053

multivariate time-series forecasting through a two- 1054

stage fine-tuning process and a novel multi-scale 1055

temporal aggregation method, outperforming tradi- 1056

tional models in both full-shot and few-shot scenar- 1057

ios. Finally, Liu et al. (2024b) introduces UniTime, 1058

a unified model that leverages language instruc- 1059

tions and a Language-TS Transformer to handle 1060

multivariate time series across different domains, 1061

demonstrating enhanced forecasting performance 1062

and zero-shot transferability. 1063

LLMs for Human Activity Recognition. While 1064

LLMs like ChatGPT have demonstrated remark- 1065

able performance in various NLP tasks, their effec- 1066

tiveness in HAR remains limited due to challenges 1067

in interpreting sensor data. These models often 1068

struggle to distinguish between activities that share 1069

similar objects, requiring more advanced prompt 1070

engineering to highlight activity-specific details. 1071

(Xia et al., 2023) proposed an unsupervised ap- 1072

proach to HAR using ChatGPT, leveraging two- 1073

stage prompts to infer activities from object se- 1074

quences without manual descriptions. The method 1075

demonstrates superior performance on three bench- 1076

mark datasets, marking a significant advancement 1077

in applying language models to activity recognition 1078
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tasks. Similarly, Ji et al. (2024) explored LLMs1079

for zero-shot HAR using raw IMU data, showing1080

that GPT-4 can outperform both traditional and1081

deep learning models in simple HAR tasks without1082

domain-specific adaptations, highlighting LLMs’1083

potential in sensor-based systems.1084

A.2 SENSORQA Generation1085

For SENSORQA, we generate text data from sen-1086

sor readings using predefined sentence templates1087

(Tables 6, 7, 8). These templates are randomly1088

selected to create diverse question-answer (QA)1089

pairs. To enhance variability, we employ GPT-4o1090

to generate synonymous variations. Each sentence1091

contains placeholders for numerical values (e.g.,1092

timestamps, sensor readings) or textual informa-1093

tion, which are dynamically replaced to produce1094

coherent QA pairs aligned with the sensor data.1095

Trend Description Templates

• {start_time}s to {end_time}s: {trend}

• {start_time} seconds to {end_time} seconds:
{trend}

• {start_time} to {end_time} seconds: {trend}

• {start_time}-{end_time} seconds: {trend}

• {start_time}-{end_time}s: {trend}

• {start_time}s-{end_time}s: {trend}

Table 6: Examples of answer templates used for trend
descriptions.

The system prompt instructs the model on how1096

to respond to generated questions, incorporating1097

dataset-specific attributes such as sensor frequency1098

and sampling rate. These tailored prompts ensure1099

responses align with the unique characteristics of1100

each dataset. Below is the system prompt template1101

used for all datasets:1102

• A dialogue between a researcher and an AI1103

assistant. The AI analyzes a sensor time-1104

series dataset (N points, sampled at {sam-1105

ple_rate}Hz) to answer specific questions,1106

demonstrating its analytical capabilities and1107

the potential for human-AI collaboration in1108

interpreting sensor data.1109

A.3 Chronos 1110

Chronos (Ansari et al., 2024) is a pretrained proba- 1111

bilistic time-series framework that tokenizes real- 1112

valued time-series data into discrete representations 1113

for language model training. It utilizes scaling and 1114

quantization to transform time-series data into a 1115

fixed vocabulary, enabling T5-based (Raffel et al., 1116

2020) models to learn from tokenized sequences us- 1117

ing cross-entropy loss. Pretrained on diverse public 1118

and synthetic datasets, Chronos surpasses exist- 1119

ing models on familiar datasets and demonstrates 1120

strong zero-shot performance on unseen tasks, mak- 1121

ing it a versatile tool for time-series forecasting 1122

across domains. 1123

Time-Series Tokenization and Quantization. 1124

Chronos converts time-series data into discrete to- 1125

kens through a two-step process: normalization 1126

and quantization. Mean scaling is first applied to 1127

ensure consistency across different time series: 1128

x̃ =
x

mean(|x|)
(5) 1129

Next, the normalized values are quantized using 1130

B bin centers c1, . . . , cB and corresponding bin 1131

edges b1, . . . , bB−1, mapping real values to discrete 1132

tokens via: 1133

q(x) =


1 if −∞ ≤ x < b1,

2 if b1 ≤ x < b2,
...
B if bB−1 ≤ x < ∞.

(6) 1134

Special tokens such as PAD and EOS are added 1135

to handle sequence padding and denote the end of 1136

sequences, allowing Chronos to process variable- 1137

length inputs efficiently within language models. 1138

Objective Function. Chronos models the tok- 1139

enized time series using a categorical distribution 1140

over the vocabulary Vts, minimizing the cross- 1141

entropy loss: 1142

ℓ(θ) = −
H+1∑
h=1

|Vts|∑
i=1

1(zC+h+1 = i)

· log pθ(zC+h+1 = i | z1:C+h)

(7) 1143

where C is the historical context length, H is 1144

the forecast horizon, and pθ is the predicted token 1145

distribution. 1146

14



Trend Description Templates

• Kindly provide a detailed analysis of the trend changes observed in the {data}.

• Please offer a comprehensive description of how the trends in the {data} have evolved.

• I would appreciate a thorough explanation of the trend fluctuations that occurred within the
{data}.

• Could you examine the {data} in depth and explain the trend shifts observed step by step?

• Detail the {data}’s trend transitions.

• Could you assess the {data} and describe the trend transformations step by step?

• Could you analyze the trends observed in the {data} over the specified period step by step?

• Can you dissect the {data} and explain the trend changes in a detailed manner?

• What trend changes can be seen in the {data}?

Summary Templates

• Could you provide a summary of the main features of the input {data} and the distribution of
the trends?

• Please give an overview of the essential attributes of the input {data} and the spread of the
trends.

• Describe the salient features and trend distribution within the {data}.

• Give a summary of the {data}’s main elements and trend apportionment.

• Summarize the {data}’s core features and trend dissemination.

• Outline the principal aspects and trend allocation of the {data}.

• Summarize the key features and trend distribution of the {data}.

• I need a summary of {data}’s main elements and their trend distributions.

Table 7: Examples of question templates used for trend description and summary generation.
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Summary 1: Trend Count

• Number of {trend} trends: {num}

• Count of {trend} trends: {num}

• Number of {trend} segments: {num}

• Count of {trend} segments: {num}

Summary 2: Sensor Data Context

• The given {data_name} represents {sensor_name} sensor readings from {start_time}s to
{end_time}s.

• The {data_name} contains {sensor_name} sensor readings recorded between {start_time} and
{end_time} seconds.

• The {sensor_name} sensor readings collected from {start_time} to {end_time} seconds are
presented in this {data_name}.

Summary 3: Trend Change Statistics

• The data exhibits {trend_num} distinct trends, with {change_num} trend changes observed.

• Across {trend_num} trends, the data shows {change_num} occurrences of trend shifts.

• {trend_num} trends are present, with {change_num} instances of trend changes.

Summary 4: Cumulative Trend Analysis

• To sum up, the data exhibited a {trend_type} trend for a total duration of {total_time} seconds.

• Overall, the data showed a {trend_type} trend spanning {total_time} seconds.

• In conclusion, the trend was {trend_type} over {total_time} seconds.

Summary 5: Overall Trend Summary

• The overall trend is {overall_trend}.

• The primary trend detected is {overall_trend}.

• Looking at the broader pattern, the trend is {overall_trend}.

Table 8: Examples of answer templates used for summaries.
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This approach offers two key advantages: (i)1147

Seamless integration with language models, requir-1148

ing no architectural modifications, and (ii) Flexible1149

distribution learning, enabling robust generaliza-1150

tion across diverse time-series datasets.1151

A.4 GPT-4o Prompt for Sensor Data Trend1152

Analysis1153

Table 9 presents the system prompt used to generate1154

trend-descriptive texts from sensor data, providing1155

a structured framework for GPT-4o to analyze and1156

respond to specific questions. This standardized1157

prompt ensures consistency in GPT-4o’s interpreta-1158

tion of time-series data, allowing direct comparison1159

with descriptions produced by SENSORLLM.1160

Prompt A dialogue between a curious re-
searcher and an AI assistant. The
AI analyzes a sensor time-series
dataset (N points, {sr}Hz sampling
rate) to answer specific questions.

Please output your answer in the
format like this example:
{example from ground-truth}

Now, analyze the following:
Input: {sensor_data} How trends in
the given sensor data evolve?
Output:

Table 9: Prompt for GPT-4o to generate descriptive texts
based on the given numerical sensor data.

We evaluate GPT-4o’s ability to interpret numer-1161

ical sensor data by assessing its responses against1162

human evaluations and NLP metrics. This compar-1163

ison benchmarks GPT-4o’s performance against1164

SENSORLLM, highlighting differences in how1165

both models process time-series data trends. The1166

results demonstrate the effectiveness of SENSOR-1167

LLM ’s Sensor-Language Alignment Stage.1168

A.5 Evaluation Metrics for Sensor-Language1169

Alignment Stage1170

In this section, we describe the various evaluation1171

metrics used to assess the performance of SENSOR-1172

LLM in generating trend descriptions from sen-1173

sor data. Each metric offers a distinct perspective1174

on model performance, ranging from surface-level1175

textual similarity to more complex semantic align-1176

ment.1177

BLEU-1 (Papineni et al., 2002). BLEU (Bilin- 1178

gual Evaluation Understudy) is a precision-based 1179

metric commonly used to evaluate machine- 1180

generated text by comparing it to reference texts. 1181

BLEU-1 focuses on unigram (single-word) overlap, 1182

assessing the lexical similarity between the gener- 1183

ated and reference text. While useful for measur- 1184

ing word-level matches, BLEU-1 does not capture 1185

deeper semantic meaning, making it most effective 1186

for surface-level alignment. 1187

ROUGE-1 and ROUGE-L (Lin, 2004). 1188

ROUGE (Recall-Oriented Understudy for Gisting 1189

Evaluation) evaluates the recall-oriented over- 1190

lap between generated text and reference text. 1191

ROUGE-1 focuses on unigram recall, similar 1192

to BLEU-1 but emphasizing how much of the 1193

reference text is captured. ROUGE-L measures 1194

the longest common subsequence, assessing 1195

both precision and recall in terms of structure 1196

and content overlap, though it does not evaluate 1197

semantic accuracy. 1198

METEOR (Banerjee and Lavie, 2005). ME- 1199

TEOR (Metric for Evaluation of Translation with 1200

Explicit Ordering)combines precision and recall, 1201

with additional alignment techniques such as stem- 1202

ming and synonym matching. Unlike BLEU and 1203

ROUGE, METEOR accounts for some degree of 1204

semantic similarity. However, its emphasis is still 1205

on word-level alignment rather than factual accu- 1206

racy or meaning. 1207

SBERT (Reimers and Gurevych, 2019). 1208

SBERT (Sentence-BERT) 2 is a metric that 1209

generates sentence embeddings using the BERT 1210

architecture. It computes cosine similarity between 1211

embeddings of the generated and reference 1212

texts, providing a deeper assessment of semantic 1213

similarity beyond lexical matches. 1214

SimCSE (Gao et al., 2021). SimCSE (Simple 1215

Contrastive Sentence Embedding) 3 introduces a 1216

contrastive learning approach to fine-tune language 1217

models for sentence embeddings. By applying 1218

different dropout masks to the same sentence, it 1219

generates positive examples, encouraging similar 1220

embeddings for semantically identical sentences 1221

while distinguishing different ones. 1222

2https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

3https://huggingface.co/princeton-nlp/sup-simcse-
roberta-large
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GPT-4o Evaluation. In addition to the NLP met-1223

rics, we also employed GPT-4o as a human-like1224

evaluator. Given its strong reasoning and compre-1225

hension abilities, GPT-4o was tasked with scoring1226

the generated text based on its alignment with the1227

ground truth. GPT-4o evaluated the correctness,1228

completeness, and coherence of the trend descrip-1229

tions and assigned a score from 1 to 5, accompa-1230

nied by an explanation (see Table 10). This type of1231

evaluation provides insights into how well the gen-1232

erated outputs capture the nuances of sensor data1233

trends in a manner similar to human understanding.1234

Human Evaluation. Finally, five human experts1235

assessed the correctness and quality of the gener-1236

ated trend descriptions. Following the same criteria1237

as GPT-4o, they rated the outputs on a scale from1238

1 to 5, focusing on the factual accuracy and coher-1239

ence of the descriptions. This manual evaluation1240

serves as an important benchmark for the model’s1241

performance from a human perspective, ensuring1242

that the generated outputs are not only technically1243

correct but also practically useful for human inter-1244

pretation.1245

A.6 Datasets1246

We used five datasets in our study:1247

USC Human Activity Dataset (USC-HAD).1248

USC-HAD (Zhang and Sawchuk, 2012) consists1249

of six sensor readings from body-worn 3-axis ac-1250

celerometers and gyroscopes, collected from 141251

subjects. The data is sampled at 100 Hz across six1252

channels and includes 12 activity class labels. For1253

evaluation, we use data from subjects 13 and 14 as1254

the test set, while the remaining subjects’ data are1255

used for training. A window size w ∈ [5, 200] is1256

used in alignment stage, and w = 200 with stride1257

of 100 are used in HAR.1258

UCI Human Activity Recognition Dataset (UCI-1259

HAR). UCI-HAR (Anguita et al., 2013) includes1260

data collected from 30 volunteers performing six1261

activities while wearing a smartphone on their1262

waist. The embedded accelerometer and gyroscope1263

sensors sampled data at 50 Hz across six channels.1264

The dataset was partitioned into 70% for training1265

and 30% for testing. A window size w ∈ [5, 200] is1266

used in alignment stage, and w = 128 with stride1267

of 64 is used in HAR.1268

Physical Activity Monitoring Dataset1269

(PAMAP2). PAMAP2 (Reiss and Stricker,1270

2012) includes data from nine subjects wearing1271

IMUs on their chest, hands, and ankles. IMUs 1272

capture the acceleration, gyroscope, and magne- 1273

tometer data across 27 channels and include 12 1274

activity class labels. For our experiments, data 1275

from subjects 105 and 106 are used as the test set, 1276

with the remaining subjects’ data used for training. 1277

The sample rate is downsampled from 100 Hz to 1278

50 Hz. A window size w ∈ [5, 100] is used in 1279

alignment stage, and w = 100 with stride of 50 in 1280

HAR. 1281

Mobile Health Dataset (MHealth). 1282

MHealth (Baños et al., 2014) contains body 1283

motion and vital sign recordings from ten volun- 1284

teers. Sensors were placed on the chest, right wrist, 1285

and left ankle of each subject. For our experiments, 1286

we used acceleration data from the chest, left ankle, 1287

and right lower arm, along with gyroscope data 1288

from the left ankle and right lower arm, resulting 1289

in a total of 15 channels. The data is sampled at 50 1290

Hz and includes 12 activity class labels. Data from 1291

subjects 1, 3, and 6 is used as the test set, while the 1292

remaining subjects’ data are used for training. We 1293

use a window size w ∈ [5, 100] in alignment stage 1294

and w = 100 with stride of 50 in HAR. 1295

CAPTURE-24. CAPTURE-24 (Chan et al., 1296

2024) is a large-scale dataset featuring 3-channel 1297

wrist-worn accelerometer data collected in free- 1298

living settings for over 24 hours per participant. 1299

It includes annotated data from 151 participants, 1300

making it significantly larger than existing datasets. 1301

We used the first 100 participants as the training 1302

set and the remaining 51 as the test set. For each 1303

subject, sequences were windowed, and 5% of the 1304

data was randomly selected for training and testing. 1305

The sample rate was downsampled from 100 Hz to 1306

50 Hz and it includes 10 activity class labels. Dur- 1307

ing the alignment stage, we used a variable window 1308

size w ∈ [10, 500], while in the HAR, we fixed 1309

w = 500 with a stride of 250. 1310

Each dataset includes multiple activity classes, 1311

and the proportion of each class in the dataset is 1312

shown in Table 11. 1313

A.7 SENSORQA 1314

We introduce SENSORQA, a novel question- 1315

answering dataset designed to align time-series sen- 1316

sor data with human-interpretable natural language. 1317

Each sample pairs a segment of sensor input with 1318

natural language questions and answers, capturing 1319

trends, patterns, or activity-level semantics. 1320
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Prompt Please evaluate the model-generated trend descriptions against the ground
truth. Rate each pair based on the degree of accuracy, using a scale from 1
to 5, where 1 represents the lowest correctness and 5 represents the highest.
Deduct 1 point for minor errors in the trend description, and 2-3 points for
moderate errors.

Provide your score (1-5) and a brief explanation in the format:
"score#reason" (e.g., 4#The description of trend changes slightly differs
from the ground truth).

Now, please proceed to score the following:
Model: {model_output}
Human: {ground_truth}
Output:

Output example 1: 2#Significant discrepancies in segment durations and trend counts com-
pared to ground-truth.

Output example 2: 5#The model’s description matches the human-generated text accurately.

Table 10: Prompt and output examples for GPT-4o in evaluating model-generated texts and ground-truth.

Dataset # Classes Classes Proportions (%)

USC-HAD 12

Sleeping, Sitting, Elevator down,
Elevator up, Standing, Jumping,
Walking downstairs, Walking right,
Walking forward, Running forward,
Walking upstairs, Walking left

12.97, 9.06, 6.04, 5.94, 8.6, 3.62,
7.61, 9.81, 13.15, 5.72, 8.22, 9.25

UCI-HAR 6
Standing, Sitting, Laying,
Walking, Walking downstairs,
Walking upstairs

18.69, 17.49, 19.14,
16.68, 13.41, 14.59

PAMAP2 12

Lying, Sitting, Standing,
Ironing, Vacuum cleaning,
Ascending stairs, Descending stairs,
Walking, Nordic walking, Cycling,
Running, Rope jumping

10.25, 9.52, 10.11,
11.82, 9.14, 6.3,
5.67, 12.77, 9.52,
8.42, 3.57, 2.91

MHealth 12

Climbing stairs, Standing still,
Sitting and relaxing, Lying down,
Walking, Waist bends forward,
Frontal elevation of arms,
Knees bending (crouching),
Jogging, Running, Jump front
& back, Cycling

8.91, 8.95, 8.95,
8.95, 8.95, 8.26,
8.7, 8.53, 8.95,
8.95, 2.96, 8.95

CAPTURE-24 10

Sleep, Household-chores, Walking,
Vehicle, Standing, Mixed-activity,
Sitting, Bicycling, Sports,
Manual-work

37.45, 6.5, 6.16,
3.83, 3.25, 3.49,
37.07, 1.03, 0.43, 0.79

Table 11: Dataset classes and Proportions
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Dataset Stage 1 Stage 2
Train Test Train Test

USC-HAD 300,744 58,704 22,790 4,555
UCI-HAR 128,292 25,932 7,352 2,947
PAMAP2 738,666 271,674 14,163 5,210
MHealth 283,020 60,780 4771 2,039
CAPTURE-24 72,714 35,688 61,327 30,138

Table 12: Training and testing sample counts for Stage
1 and Stage 2 across datasets of SENSORQA.

Sensor-Language Alignment Stage of SEN-1321

SORQA focuses on aligning uni-variate sensor se-1322

quence of variable length with descriptive textual1323

responses and includes two types of QA tasks:1324

• Trend Analysis QA, which describes how the1325

signal changes within the window.1326

• Trend Summary QA, which summarizes the1327

overall behavior across a window in a concise1328

natural language phrase.1329

Task-Aware Tuning Stage focuses on using1330

multi-variate sensor sequences to perform human1331

activity classification, leveraging the aligned rep-1332

resentations learned in the alignment stage. This1333

stage of SENSORQA contains statistical informa-1334

tion from each sensor channel as part of the input1335

representation.1336

The distribution of training and testing data1337

across both stages is summarized in Table 12.1338

A.8 Baselines for Task-Aware Tuning Stage1339

In Task-Aware Tuning Stage, we compare SEN-1340

SORLLM against several state-of-the-art baseline1341

models for time-series classification and human1342

activity recognition (HAR). These models were1343

selected for their strong performance in relevant1344

tasks, providing a thorough benchmark for evaluat-1345

ing SENSORLLM ’s effectiveness.1346

Transformer (Vaswani et al., 2017). The Trans-1347

former model is a widely-used architecture in var-1348

ious tasks, including time-series forecasting and1349

classification. It uses self-attention mechanisms to1350

capture long-range dependencies in sequential data,1351

making it highly effective for modeling complex1352

temporal relationships.1353

Informer (Zhou et al., 2021). Informer is a1354

transformer-based model designed for long se-1355

quence time-series data. It addresses key limita-1356

tions of standard Transformers, such as high time1357

complexity and memory usage, through three inno- 1358

vations: ProbSparse self-attention, which reduces 1359

time complexity; self-attention distilling, which 1360

enhances efficiency by focusing on dominant pat- 1361

terns; and a generative decoder that predicts entire 1362

sequences in a single forward pass. 1363

NS-Transformer (Liu et al., 2022). Non- 1364

stationary Transformers (NS-Transformer) tackles 1365

the issue of over-stationarization in time-series by 1366

balancing series predictability and model capability. 1367

It introduces Series Stationarization to normalize 1368

inputs and De-stationary Attention to restore in- 1369

trinsic non-stationary information into temporal 1370

dependencies. 1371

PatchTST (Nie et al., 2023). PatchTST is a 1372

Transformer-based model for multivariate time se- 1373

ries tasks, using subseries-level patches as input to- 1374

kens and a channel-independent approach to reduce 1375

computation and improve efficiency. This design 1376

retains local semantics and allows for longer his- 1377

torical context, significantly improving long-term 1378

forecasting accuracy. 1379

TimesNet (Wu et al., 2023a). TimesNet is a ver- 1380

satile backbone for time series analysis that trans- 1381

forms 1D time series into 2D tensors to better cap- 1382

ture intraperiod and interperiod variations. This 2D 1383

transformation allows for more efficient modeling 1384

using 2D kernels. It also introduces TimesBlock to 1385

adaptively discovers multi-periodicity and extracts 1386

temporal features from transformed 2D tensors us- 1387

ing a parameter-efficient inception block. 1388

iTransformer (Liu et al., 2024c). iTransformer 1389

reimagines the Transformer architecture by apply- 1390

ing attention and feed-forward networks to inverted 1391

dimensions. Time points of individual series are 1392

embedded as variate tokens, allowing the attention 1393

mechanism to capture multivariate correlations, 1394

while the feed-forward network learns nonlinear 1395

representations for each token. 1396

DeepConvLSTM (Ordóñez and Roggen, 2016). 1397

DeepConvLSTM integrates four consecutive con- 1398

volutional layers followed by two LSTM layers to 1399

effectively capture both spatial and temporal dy- 1400

namics in sensor data. The final output vector is 1401

passed through a fully connected layer, and the soft- 1402

max function is applied to produce activity class 1403

probabilities as the model’s final output. 1404

DeepConvLSTMAttn (Murahari and Plötz, 1405

2018). DeepConvLSTMAttn enhances the orig- 1406
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inal DeepConvLSTM by integrating an attention1407

mechanism to improve temporal modeling in HAR1408

tasks. Instead of using the last LSTM hidden state1409

for classification, the attention mechanism is ap-1410

plied to the first 7 hidden states, representing his-1411

torical temporal context. These states are trans-1412

formed through linear layers to generate attention1413

scores, which are passed through softmax to pro-1414

duce weights. The weighted sum of the hidden1415

states is combined with the last hidden state to1416

form the final embedding for classification.1417

Attend (Abedin et al., 2021). The Attend model1418

use the latent relationships between multi-channel1419

sensor modalities and specific activities, apply data-1420

agnostic augmentation to regularize sensor data1421

streams, and incorporate a classification loss cri-1422

terion to minimize intra-class representation dif-1423

ferences while maximizing inter-class separability.1424

These innovations result in more discriminative ac-1425

tivity representations, significantly improving HAR1426

performance.1427

Chronos+MLP. Chronos (Ansari et al.,1428

2024)+MLP is a baseline designed to evaluate1429

whether the performance gains in SENSORLLM1430

are solely attributable to Chronos and the MLP. In1431

SENSORLLM, Chronos is used to generate sensor1432

embeddings, which are then mapped by the MLP1433

for input into the LLM to perform HAR. Since1434

Chronos does not natively support classification1435

tasks and only processes single-channel data, we1436

adapt it for HAR by inputting each channel’s1437

data separately into Chronos. The resulting1438

sensor embeddings for all channels are then1439

concatenated and fed into an MLP, which acts as1440

a classifier. This setup allows us to benchmark1441

against a simpler framework and validate the1442

unique contributions of SENSORLLM’s design.1443

GPT4TS (Zhou et al., 2023a). GPT4TS is a uni-1444

fied framework that leverages a frozen pre-trained1445

language model (e.g., GPT-2 (Radford et al., 2019))1446

to achieve state-of-the-art or comparable perfor-1447

mance across various time-series analysis tasks,1448

including classification, forecasting (short/long-1449

term), imputation, anomaly detection, and few-1450

shot/zero-sample forecasting. The authors also1451

found that self-attention functions similarly to PCA,1452

providing a theoretical explanation for the versatil-1453

ity of transformers.1454

A.9 Evaluation Metrics for Task-Aware 1455

Tuning Stage 1456

In our evaluation, we use the F1-macro score to 1457

assess the model’s performance across datasets. 1458

F1-macro is particularly suitable for datasets with 1459

imbalanced label distributions, which is common 1460

in Human Activity Recognition (HAR) tasks where 1461

certain activities are overrepresented while others 1462

have fewer samples. Unlike the micro F1 score, 1463

which emphasizes the performance on frequent 1464

classes, F1-macro treats each class equally by cal- 1465

culating the F1 score independently for each class 1466

and then averaging them. 1467

The formula for the F1-macro score is: 1468

F1-macro =
1

C

C∑
i=1

F1i (8) 1469

where C is the total number of classes, and F1i is 1470

the F1 score for class i. The F1 score for each class 1471

is calculated as: 1472

F1i =
2× Precisioni × Recalli

Precisioni + Recalli
(9) 1473

The precision and recall for each class are defined 1474

as: 1475

Precisioni =
TPi

TPi + FPi
(10) 1476

Recalli =
TPi

TPi + FNi
(11) 1477

where TPi, FPi, and FNi represent the number of 1478

true positives, false positives, and false negatives 1479

for class i, respectively. This metric ensures that 1480

performance is evaluated fairly across all classes, 1481

regardless of the frequency of each label, making 1482

it a robust measure for imbalanced datasets. 1483

A.10 Sensor-Language Alignment Stage 1484

Output Examples 1485

Tables 13 and 14 present two examples of the trend 1486

analysis results generated by SENSORLLM and 1487

GPT-4o based on the input sensor data. From the 1488

results, it is evident that SENSORLLM outperforms 1489

GPT-4o across both shorter and medium-length 1490

sequences. This demonstrates that our approach 1491

enables LLMs to better understand numerical vari- 1492

ations, as well as accurately compute the time du- 1493

ration represented by the input sequences based 1494

on their length and the given sample rate. In con- 1495

trast, current large language models struggle with 1496
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directly interpreting numerical data, as their tok-1497

enization methods are not well-suited for tasks such1498

as comparing numerical values or counting (Yehu-1499

dai et al., 2024).1500
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Sensor readings: [-9.8237, -9.4551, -10.007, -11.273, -11.258, -11.677, -11.774, -11.638,
-11.195, -11.087, -10.833, -11.044, -11.393, -11.943, -12.168, -15.455,
-12.967, -12.326, -12.515, -13.195, -12.634, -11.873, -12.002, -11.583,
-10.859, -10.349, -9.831, -9.1622, -8.2721, -6.9299, -6.255, -5.5998]

Ground-truth: 0.0 seconds to 0.02 seconds: growing
0.02 seconds to 0.06 seconds: declining
0.06 seconds to 0.08 seconds: growing
0.08 seconds to 0.12 seconds: declining
0.12 seconds to 0.2 seconds: growing
0.2 seconds to 0.3 seconds: declining
0.3 seconds to 0.34 seconds: growing
0.34 seconds to 0.38 seconds: declining
0.38 seconds to 0.42 seconds: growing
0.42 seconds to 0.44 seconds: declining
0.44 seconds to 0.62 seconds: growing

Total growing trends: 6
Total declining trends: 5

From 0.0s to 0.62s, normalized left-ankle y-axis accelerometer data is
showcased in the sensor data. Examining the data, we notice 2 clear trend
characteristics, with the trend fluctuating a total of eleven times. The
analysis reveals that the data’s declining inclination persisted for a total
of 0.24 seconds, and a growing trend within a span of 0.38 seconds. The
general trend observed is growing.

SENSORLLM: 0.0 to 0.02 seconds: ascending
0.02 to 0.08 seconds: descending
0.08 to 0.1 seconds: ascending
0.1 to 0.12 seconds: descending
0.12 to 0.2 seconds: ascending
0.2 to 0.28 seconds: descending
0.28 to 0.32 seconds: ascending
0.32 to 0.36 seconds: descending
0.36 to 0.4 seconds: ascending
0.4 to 0.42 seconds: descending
0.42 to 0.62 seconds: ascending

Count of ascending segments: 6
Count of descending segments: 5

The time series data encapsulates normalized left-ankle y-axis accelerome-
ter sensor readings from 0.0 seconds to 0.62 seconds. Two separate trends
and nine trend shifts are observed in the data. The analysis reveals that the
data’s descending inclination persisted for a total of 0.22 seconds, and an
ascending trend for a sum of 0.40 seconds. The trend overall is ascending.

GPT-4o Evaluation: 3#Moderate errors in trend durations and shifts compared to ground truth.

GPT-4o’s output: 0.0s to 0.02s: rising
0.02s to 0.06s: falling
0.06s to 0.08s: rising
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0.08s to 0.1s: falling
0.1s to 0.12s: rising
0.12s to 0.14s: falling
0.14s to 0.3s: rising

Total rising segments: 4
Total falling segments: 3

The normalized left-ankle y-axis accelerometer sensor readings recorded
within the 0.0 to 0.3 second timeframe are presented in this sensor data.
The input data displays three individual trends, with a comprehensive
change count reaching 7. The examination reveals that the data’s falling
inclination endured for an aggregate of 0.08 seconds, succeeded by a rising
trend for a cumulative period of 0.22 seconds, and a steady pattern for a
total of 0.00 seconds. The dominant trend is rising.

GPT-4o Evaluation: 2#Significant discrepancies in trend durations and counts between model
and ground-truth.

Table 13: Example 1 of SENSORLLM and GPT-4o Generated Descriptions with Ground-Truth and GPT-4o
Evaluation

Sensor readings: [0.53137, 0.53137, 0.53137, 0.51176, 0.51176, 0.51176, 0.45098, 0.45098,
0.45098, 0.45098, 0.45882, 0.45882, 0.45882]

Ground-truth: 0.0 seconds to 0.04 seconds: stable
0.04 seconds to 0.06 seconds: decreasing
0.06 seconds to 0.1 seconds: stable
0.1 seconds to 0.12 seconds: decreasing
0.12 seconds to 0.18 seconds: stable
0.18 seconds to 0.2 seconds: increasing
0.2 seconds to 0.24 seconds: stable

Number of stable trends: 4
Number of decreasing trends: 2
Number of increasing trends: 1

The sensor data represents readings taken from a normalized right-lower-
arm x-axis gyroscope sensor between 0.0 and 0.24 seconds. Analysis
reveals three separate trends within the data, undergoing a cumulative
total of seven shifts in direction. Encapsulating the outcomes, the data’s
decreasing trend stretched across a total time of 0.04 seconds, came after
an increasing pattern observed over 0.02 seconds, and a stable trend for
0.18 seconds in total. The dominant trend is decreasing.

SENSORLLM: 0.0s to 0.04s: consistent
0.04s to 0.06s: downward
0.06s to 0.1s: consistent
0.1s to 0.12s: downward
0.12s to 0.18s: consistent
0.18s to 0.2s: upward
0.2s to 0.24s: consistent
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Number of consistent segments: 4
Number of downward segments: 2
Number of upward segments: 1

The sensor data illustrates normalized right-lower-arm x-axis gyroscope
sensor readings between 0.0 and 0.24 seconds. The input data displays
three individual trends, with a comprehensive change count reaching 7. To
encapsulate, the data’s downward trend spanned a combined duration of
0.04 seconds, and then an upward pattern for a sum of 0.02 seconds, and a
consistent trend for an accumulated time of 0.18 seconds. The overarching
trend is characterized as downward.

GPT-4o Evaluation: 5#The model’s description matches the ground truth accurately.

GPT-4o’s output: 0.0s to 0.06s: steady
0.06s to 0.12s: falling
0.12s to 0.14s: steady
0.14s to 0.16s: rising
0.16s to 0.18s: steady

Total steady segments: 3
Total rising segments: 1
Total falling segments: 1

The normalized right-lower-arm x-axis gyroscope sensor readings
recorded within the 0.0 to 0.18 second timeframe are presented in this
sensor data. The input data displays three individual trends, with a compre-
hensive change count reaching 5. The examination reveals that the data’s
falling inclination endured for an aggregate of 0.06 seconds, succeeded by
a rising trend for a cumulative period of 0.02 seconds, and a steady pattern
for a total of 0.10 seconds. The dominant trend is steady.

GPT-4o Evaluation: 2#Significant discrepancies in trend durations and counts compared to
ground-truth.

Table 14: Example 2 of SENSORLLM and GPT-4o Generated Descriptions with Ground-Truth and GPT-4o
Evaluation
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