
How Proficient Are Large Language Models in Formal Languages? An
In-Depth Insight for Knowledge Base Question Answering

Anonymous ACL submission

Abstract

Knowledge Base Question Answering (KBQA)001
aims to answer natural language questions002
based on facts in knowledge bases. A typical003
approach to KBQA is semantic parsing, which004
translates a question into an executable logical005
form in a formal language. Recent works lever-006
age the capabilities of large language models007
(LLMs) for logical form generation to improve008
performance. However, although it is validated009
that LLMs are capable of solving some KBQA010
problems, there has been little discussion on the011
differences in LLMs’ proficiency in formal lan-012
guages used in semantic parsing. In this work,013
we propose to evaluate the understanding and014
generation ability of LLMs to deal with differ-015
ently structured logical forms by examining the016
inter-conversion of natural and formal language017
through in-context learning of LLMs. Exten-018
sive experiments with models of different sizes019
show that state-of-the-art LLMs can understand020
formal languages as well as humans, but gen-021
erating correct logical forms given a few ex-022
amples remains a challenge. Most importantly,023
our results also indicate that LLMs exhibit con-024
siderable sensitivity. In general, the formal025
language with a lower formalization level, i.e.,026
the more similar it is to natural language, is027
more friendly to LLMs.028

1 Introduction029

Knowledge Base Question Answering (KBQA) is030

a challenging natural language processing (NLP)031

task to answer natural language questions based on032

fact triples stored in the knowledge base (KB), such033

as Wikidata (Vrandecic and Krötzsch, 2014) and034

Freebase (Bollacker et al., 2008). In recent years,035

a typical paradigm of KBQA methods is semantic036

parsing (Berant et al., 2013; Cao et al., 2019a; Ye037

et al., 2022; Shu et al., 2022), where natural lan-038

guage questions (NLQs) are translated into their039

corresponding structured logical forms (LFs), such040

as KoPL (Cao et al., 2022a), SPARQL (Pérez et al.,041

2006) or Lambda DCS (Liang, 2013). The logical 042

forms are capable of expressing multiple reasoning 043

operations such as multi-hop inference and quanti- 044

tative comparison, and can be executed on KBs to 045

get accurate answers. 046

The recent advancements of large language mod- 047

els (LLMs) (OpenAI, 2023) have led to significant 048

attention on utilizing LLMs for KBQA. Previous 049

works have validated the ability of LLMs to memo- 050

rize, understand and apply knowledge for reason- 051

ing (Yu et al., 2023b), and serve as agents to solve 052

KBQA problem (Liu et al., 2023). Additionally, 053

others introduced many techniques to improve the 054

performance, such as in-context learning (Li et al., 055

2023), chain-of-thought (Liang et al., 2023), and 056

instruction-tuning (Luo et al., 2023). 057

However, there has been little discussion on the 058

differences in the proficiency of LLMs in different 059

formal languages that used as paring targets in se- 060

mantic parsing. It is proved that LLMs can do well 061

on programming language such as Python (Gao 062

et al., 2023) with sufficient data in the pretraining, 063

but it remains intriguing that how well do LLMs 064

master other formal languages without extra data 065

and further fine-tuning. By examining the profi- 066

ciency of LLMs in formal languages, we can gain a 067

better understanding of LLMs’ upper limits. It also 068

would be advantageous to choose appropriate mod- 069

els and formal languages for specific scenarios if 070

different LLMs have varying levels of proficiency 071

in different formal languages. 072

In this paper, we propose to evaluate the inherent 073

understanding and generation ability of the formal 074

language in the original LLMs without additional 075

fine-tuning. We define two evaluation tasks based 076

on sub-tasks of KBQA: 1) Formal Language Un- 077

derstanding, which aims to translate a LF into its 078

corresponding NLQ. The translation process can be 079

considered as the model interpreting the provided 080

LFs in natural language, demonstrating LLMs’ un- 081

derstanding ability of formal language; 2) Formal 082

1

Language Generation, which aims to correctly083

convert a NLQ into its corresponding LF, requiring084

the model to not only understand but also generate085

LFs, demonstrating its capability in generation.086

With respect to the formal languages for evalu-087

ation, according to the varying levels of formal-088

ization (may be broadly understood as the dis-089

similarity to natural language, i.e. the higher the090

level of formalization, the less similar it is to091

natural language) and different logical structures092

(e.g. tree, graph or chain), we choose Lambda093

DCS (Liang, 2013), SPARQL (Pérez et al., 2006),094

and KoPL (Cao et al., 2022a) as representative095

formal languages, which are commonly used for096

knowledge based question answering research (Nie097

et al., 2022; Ye et al., 2022; Shin et al., 2021).098

For the generation methods, to reflect the in-099

herent proficiency of LLMs, we combine the in-100

context learning ability (Brown et al., 2020) of101

LLMs and chain-of-thought generation (Wei et al.,102

2022) for both evaluation tasks, where the desired103

outputs are generated conditioned on the input104

along with a few demonstration pairs of NLQs and105

LFs carefully selected from a seed dataset. For106

demonstration selection, to ensure that the logical107

structure of the examples should be as similar as108

possible to the target, we carefully design a greedy109

search algorithm based on the minimum edit dis-110

tance to solve a maximum coverage problem.111

For the quality evaluation of the generated NLQ,112

to avoid the inaccuracy of automatic metrics and113

the labor-intensive human evaluation, we propose114

a contrastive evaluation approach. This involves115

separately training a semantic parser using LLM-116

generated data and comparing them with parser117

trained using manually labeled data. By comparing118

the performance of the parsers, we can assess the119

differences in quality between the data generated120

by the LLMs and the manually labeled data.121

Our findings indicate that LLMs have ap-122

proached the human annotators in the task of for-123

mal language understanding that generate natural124

language questions from logical forms. However,125

conversely, challenges still exist in the task of for-126

mal language generating if only a few examples127

are given. Importantly, we observe that models128

exhibit the sensitivity to different logical forms.129

Overall, the lower the level of formalization (the130

similar it is to natural language), the easier it is for131

models to understand and generate. In conclusion,132

this study examines the proficiency of LLMs in for-133

mal language understanding and generation, and134

helps to provide valuable insights for LLMs-based 135

reasoning approaches. 136

2 Related Work 137

Knowledge Base Question Answering. Typi- 138

cal methods for solving KBQA problems can be 139

broadly divided into two categories. One category 140

is the retrieval-based method. These methods usu- 141

ally directly output the answer by retrieving triples 142

and subgraphs that related to the question from 143

KB or embedded memory (Sun et al., 2019; Shi 144

et al., 2021; Zhang et al., 2022; Oguz et al., 2022; 145

Dong et al., 2023). Another is the semantic-parsing- 146

based method, which translates questions into log- 147

ical forms executable against KBs. The logical 148

forms are usually generated by step-by-step graph 149

searching and generation (Gu et al., 2021; Jiang 150

et al., 2023b,a; Gu et al., 2023) or by sequence-to- 151

sequence model that trained with parallel data (Ye 152

et al., 2022; Cao et al., 2022b; Yu et al., 2023a; Shu 153

et al., 2022; Luo et al., 2023). 154

Since the logical form can facilitate communi- 155

cation between the model and the KB, the latter 156

category usually out-performance the former and 157

also enjoy a better interpretability. Therefore, our 158

work sets out to explore the role of different formal 159

languages in KBQA in the era of LLMs. 160

Evaluation of LLMs. From the advent of 161

pretrained language models (PLMs) such as 162

BERT (Devlin et al., 2019) and GPT (Radford et al., 163

2018) to the emergence of increasingly larger and 164

powerful LLMs (Brown et al., 2020; Chowdhery 165

et al., 2023; Scao et al., 2022; Zeng et al., 2023; 166

Touvron et al., 2023) in recent years, language mod- 167

els have changed the paradigms of many traditional 168

task. At the same time, the evaluations of language 169

models are also ongoing. 170

Early works explored PLMs’ capability bound- 171

aries including linguistics knowledge (Hewitt and 172

Manning, 2019; Clark et al., 2019; Liu et al., 2019) 173

as well as world knowledge like entities (Broscheit, 174

2020), relations (Petroni et al., 2019; Jiang et al., 175

2020; Zhong et al., 2021), and concepts (Peng et al., 176

2022; Dalvi et al., 2022). Recent works have in- 177

cluded comprehensive tasks and datasets to create 178

new benchmarks for LLMs (Bang et al., 2023; Sri- 179

vastava et al., 2022; Yu et al., 2023b; Liu et al., 180

2023). Our work are inspired by above studies, 181

extending the evaluation of LLMs from the natural 182

language domain to various formal languages. 183

2

La
n
g
u
a
g
e
 M

o
d
e
ls

Seed Set

Exemplar
Ø LF: ---
Ø NLQ: ---

Logical Form
FindAll().FilterYear(2003, >).
FilterConcept(feature film).
SelectAmong(duration, smallest)

Natural Language Question
Which cost less? Batman Begins
released in Italy or Toostie.

Exemplar
Ø NLQ: ---
Ø LF: ---

Find(Italy) ...
And().Find(Tootsie).
SelectBetween(cost, less)

Logical Form

Among the feature films
published after 2003, which one
has the shortest duration?

Natural Language Question

Formal Language Understanding

Formal Language Generation

Logical Form Skeleton

FindAll.FilterYear.
FilterConcept.SelectAmong

NL Question Skeleton

Which cost less? [E0]
released in Italy or [E1].

Figure 1: A simple illustration for the probing task of both formal language understanding and generation.

3 Evaluation Task Definition184

As shown in Figure 1, We define two probing tasks,185

namely the formal language understanding and186

formal language generation. In this section, we187

introduce the formalized definitions of these two188

tasks and how to assess LLMs’ performance.189

3.1 Formal Language Understanding190

The goal of the task is for a LLM M to translate a191

LF input to its corresponding NLQ. Formally, we192

have a target set T = {l∗} of LFs, and a seed set193

S = {(l, q)} of LF - NLQ pairs. To assemble the194

demonstration, for every l in T we need to retrieve195

k pairs of LFs and NLQs (l1, q1), · · · , (lk, qk) from196

S. Conditioned on the examples and l, the model197

translates it into a NLQ.198

For the evaluation of the quality of the gener-199

ated NLQs, the commonly used automatic metrics200

to compare text similarity like BLEU (Papineni201

et al., 2002) and BERT-Score (Zhang et al., 2020)202

are not reliable enough. Instead, we evaluate the203

generation quality of a model M indirectly by com-204

paring the performance of the parser trained on the205

model-generated data and the parser trained on the206

manually-labeled data. Formally, given the train-207

ing set {(q∗, l∗)}, where the l∗ is the LF and q∗ is208

the corresponding human-labeled NLQ, we train209

a baseline semantic parser Phuman. Then we take210

{l∗} as the target set T , using M to generate a211

same-size pseudo training set {(qM , l∗)}, which212

is used to train another parser PM . In this case,213

the generation quality of M is measured by PM ’s214

performance AccuracyPM
to AccuracyPhuman

of215

Phuman. Higher score means better quality of the216

model-generated questions, indicating closer un-217

derstanding ability of M is to human.218

3.2 Formal Language Generation 219

The goal is for a LLM M to directly translate a 220

NLQ back to its correct LF. Similarly, we have 221

a target set of T = {q∗} of NLQs, and a seed 222

set S = {(l, q)} of LF - NLQ pairs. For ev- 223

ery q in T , we retrieve k pairs of NLQs and LFs 224

(q1, l1), · · · , (qk, lk) from S to assemble the final 225

prompt. The model is supposed to generate the 226

correct LF l conditioned on the examples and q. 227

The evaluation of the generated l is relatively 228

easier. To evaluate whether the generated LF are 229

correct and semantically equivalent to the input q, 230

we can use the either the exact match score with the 231

golden logical forms, or the accuracy of the answer 232

by putting the logical forms into an executor. 233

4 Formal Language and Datasets 234

In this section, we will introduce the details of the 235

formal languages and datasets tested in this work. 236

As mentioned in Section 1, we choose three rep- 237

resentative formal languages according to the vary- 238

ing levels of formalization and different logical 239

structure, and they are Lambda DCS, SPARQL, 240

and KoPL. Some examples are shown in Figure 2. 241

Lambda DCS is a tree-structured programming 242

language developed from Lambda calculus, similar 243

to church and s-expression. Lambda DCS removes 244

the explicit variables in Lambda calculus, making 245

it similar to dependency-based compositional se- 246

mantics (Liang, 2013). For this language, we use 247

Overnight dataset (Wang et al., 2015), which con- 248

tains over 13,000 data examples in eight domains 249

extracted from Freebase. We follow the standard 250

split used in Wang et al.. 251

SPARQL is a popular query language and it pro- 252

vides a standardized way for users to search and 253

retrieve information stored in RDF databases and 254

3

Question: What is the number of animated movies published after 1940?

KoPL:

SPARQL:

Lambda DCS: (call @listValue (call .size
(call @filter (call @getProperty
(call @singleton en.animated_film)
(string ! type)) (string publication_date)
(string >) (year 1940))))

SELECT (COUNT(DISTINCT ?e) AS ?count) WHERE {
?e <pred:instance_of> ?c .
?c <pred:name> "animated film" .
?e <publication_date> ?pv .
?pv <pred:year> ?v .
FILTER (?v > 1940) . }

FindAll().FilterYear(publication date, 1940, >).
FilterConcept(animated film).Count()

Figure 2: An example of a natural language question
and its corresponding logical forms in KoPL, SPARQL,
and Lambda DCS.

other Linked Open Data1. The SPARQL describes255

the relations between entities using triples in the256

form of a graph structure. For this language, we257

use the GrailQA dataset (Gu et al., 2021), which258

is constructed based on Freebase and comprises a259

total of over 50,000 data entries along with their en-260

tity linking results. We also followed the standard261

split used by the author (Gu et al., 2021).262

KoPL (Cao et al., 2022a) is a programming lan-263

guage constructed using symbolic functions, which264

define the fundamental and atomic operations per-265

formed on knowledge bases. These functions are266

combined according to the “chain-of-thought” of267

the reasoning process, forming a chain structure268

program. For this language, we use the KQA Pro269

dataset (Cao et al., 2022a), which is based on Wiki-270

data and comprises of over 100,000 data entries.271

Each data entry includes a NLQ along with its272

corresponding KoPL and SPARQL query. We fol-273

lowed the standard split described in Cao et al..274

Basic features of these formal languages can275

be concluded that (1) KoPL and Lambda DCS can276

both potentially better reflect the “chain-of-thought”277

reasoning process than SPARQL, and (2) KoPL278

is more well-modularized and uses more human-279

readable identifiers and function input, making it280

closer to the distribution of natural language.281

5 Implementation282

As mentioned above, we mainly leverage the in-283

context learning (ICL) ability of LLMs to generate284

the output for the probing task. The demonstration285

selection is considered as the most critical part of286

this method. In this work, we adopt the principle287

to search most similar examples to the target l, and288

decently order the examples by the similarity (Liu289

1https://www.w3.org/TR/sparql11-query/

et al., 2021) in the prompt. 290

5.1 Formal Language Understanding 291

In this task, the input of LLMs is the LF l∗, so we 292

search for examples (l, q) from S where all ls are 293

most similar to l∗. 294

We consider that the retrieved examples should 295

(1) have the most similar logical structure to the 296

structure of the target logical form l∗ and (2) share 297

as many same relations as possible with l∗. 298

5.1.1 Structure-Preserving Principle 299

In order to find the most structure-similar exam- 300

ples from S , we first transform the original logical 301

form l∗ into a simple rooted tree-like structure s∗ 302

called skeleton, where s∗ ← f(l∗), f being the 303

extraction function. Specifically, KoPL program is 304

already a tree of functions, therefore the skeleton of 305

KoPL is the tree formed by removing the functions’ 306

inputs. The Lambda DCS program is similar to 307

KoPL, since it can be treated as a bracket tree. The 308

SPARQL program is more complicated, since it de- 309

picts a graph by some triples. In this case, we use 310

the corresponding S-expression program instead, 311

which is also bracket tree. Afterwards, we group 312

the examples in S using the skeleton of logical 313

form as the key. 314

Then we find the most similar structure naturally 315

by computing the tree edit distance (TED) between 316

s∗ and skeleton keys of S. However, considering 317

the overhead of the minimum TED algorithm, we 318

serialized the tree structure and apply the simple 319

minimum edit distance (ED) in practice. In general, 320

these two algorithms can produce every different 321

results. But due to the grammar restriction of pro- 322

gram, the candidates at small distances computed 323

by TED are almost the same to those of ED. For 324

example, in KoPL there are some common fixed 325

patterns like Find()→ Relate()→ Filter(). 326

5.1.2 Content-Preserving Principle 327

The meaning of content here is two-fold. First off, 328

there should be no symbols of l∗ unseen in the 329

demonstration examples. Taking KoPL as exam- 330

ple again, it means the function names need to be 331

covered by demonstration examples as many as 332

possible. This is a max cover problem and we per- 333

form a k-step greedy search based on the previous 334

ranking result by edit distance. Specifically, provid- 335

ing there are m skeletons S = {s1, · · · , sm} that 336

are closest to the skeleton s∗ of l∗ at a distance of 337

4

https://www.w3.org/TR/sparql11-query/

d0, we select a sti at each time step i, so that,338

sti = argmin
s∈Si

|s ∗ |i − |sti |

Si = S − sti−1 − · · · − st1

|s ∗ |i = |s ∗ | − |sti−1 | − · · · − |st1 |

(1)339

where the | · | represent the operator to get the set of340

node labels. After k steps, we get a set of skeleton341

candidates {s1, · · · , sk}.342

Moreover, the input content such as relations and343

entities can also be taken into account. In summary,344

the first priority for selecting examples is structural345

similarity, followed by the shared content.346

5.2 Formal Language Generation347

In this task, the input of LLMs is the NLQ q∗, so348

we search for example pairs (q, l) from S where qs349

are most similar to q∗.350

Similar to the previous task, we hope that the351

retrieved questions has a similar structure with q∗.352

Therefore, we utilize the BM25 algorithm to search353

in the seed set. As shown in Figure 1, when con-354

structing the BM25 searcher, we mask the entities355

and relations in the question to exclude their inter-356

ference, hoping the searcher to pay more attention357

on conjunctions and prepositions that can poten-358

tially express the structure.359

We did not adopt embedding-based searching360

algorithm such as BERT-Score because they can361

easily neglect conjunctions and prepositions, focus-362

ing on the semantics rather than structure. Besides,363

calculation speed is also in consideration.364

5.2.1 Entity Linking365

We found that the model often fails to generate366

the correct labels of entities and relations in the367

knowledge base. Therefore, we adopt several entity368

linking techniques to guide the model in generating369

correct labels.370

Before the generation, we retrieve some entities371

and relations that related to the question by match-372

ing the topic entity and finding relations with two373

hops, and then directly add them into the prompt.374

After the generation, we check the generated375

LF and replace the inaccurately generated labels376

into correct labels by matching the most similar377

names in KB using BM25, similar to Li et al.. In378

this step, we also substitute the LLM-generated379

friendly names of entities into ids in KB, if needed.380

5.2.2 Chain-of-Thought Generation381

Due to the difficulty in directly generating LF, in-382

spired by Liang et al., we also adopt a multi-step383

chain-of-thought generation approach, which in- 384

volves first generating the skeleton of LF and then 385

filling in parameters for the complete LF. Details 386

are in the appendix. 387

6 Experiment Setup 388

We introduce a range of popular language models 389

that have been extensively studied in our experi- 390

ments (6.1) as long as the semantic parsing models 391

we use to evaluate the performance of the under- 392

standing task (3). 393

6.1 Investigated Models 394

In order to investigate the impact of the model scale 395

on its capacity, we select models of different sizes. 396

For medium size models ranging from 100M 397

to 10B, we mainly consider two families of mod- 398

els. The first is auto-regressive models, exempli- 399

fied by the GPT series. These models only use 400

the decoder in training and employ a unidirectional 401

“predict the next word” auto-regressive loss func- 402

tion for modeling. The second is represented by 403

T5, a text-to-text model, which utilizes a bidirec- 404

tional encoder and a unidirectional decoder to pre- 405

dict masked spans. In the experiment, we use the 406

instruction-tuned version FLAN-T5 series. The 407

last is the open-source Llama-2 family, which is 408

also modeled through an auto-regressive approach. 409

In particular, we select GPT2-Large (774M), 410

GPT2-XL (1.5B) (Radford et al., 2019), GPT-J 411

(6B) (Wang and Komatsuzaki, 2021), FLAN-T5- 412

L (770M), FLAN-T5-XL (3B), FLAN-T5-XXL 413

(11B) (Chung et al., 2022), Llama-2-7B, Llama- 414

2-13B, Llama-2-70B (Touvron et al., 2023). 415

For large models over 100B, we first consider the 416

instruction-tuned GPT 3.5 series, including the ini- 417

tial Davinci model text-davinci-001 and the most 418

powerful text-davinci-003 (maybe 175B). We also 419

investigate GLM-130B (Zeng et al., 2023), an open 420

bilingual pretrained model without instruction- 421

tuning and RLHF. We do not evaluate chat models 422

like gpt-3.5-turbo since it is only considered the 423

chat-optimized version of text-davinci-003, and 424

under-performs davinci models in our pilot test. 425

The code-pretrained model like CODEX is also 426

not included because of it has closed access, and 427

text-davinci-003, which has also been trained on 428

code, can serve as a good substitute. 429

6.2 Evaluation Models 430

The evaluation methods is mentioned above in 3, 431

In practice, different semantic parsers are chosen 432

5

for the evaluation of different formal languages and433

datasets.434

For KoPL and KQA Pro dataset, we use the origi-435

nal baseline (BART-base) provided KQA Pro (Cao436

et al., 2022a). For Lambda DCS and Overnight437

dataset, we train a bidirectional LSTM with dual438

learning algorithm described by Cao et al.. Finally,439

for SPARQL and GrailQA, we tried two baseline440

models. One is also a simple sequence-to-sequence441

BART-base generation model without explicit en-442

tity linking modules. The other baseline is a rank-443

and-generate (RnG) pipeline with an entity linking444

module described in Ye et al., which employs a445

ranker to retrieve related logical forms that share446

similar entities and relations. The implementation447

detail of parsers and training hyper-parameters used448

in the work can be found in Appendix.449

7 Results and Analyses450

We first present the main result of the formal lan-451

guage understanding and generation in Table 1.452

In the left blue section of understanding task, the453

figures are the absolute performance of the evalua-454

tion parser trained on training sets that generated455

by different models. The retrieved examples of456

the input prompt of ICL is 3 for all models in the457

understanding task.458

The right green section presents the semantic459

parsing result of the models, where the retrieved460

examples are as many as the input context can take461

so as to improve the result. To cut down computa-462

tion overehead, the test sets are randomly sampled463

subsets of 300, 120, 240 examples from the test sets464

of KQA Pro, GrailQA, and Overnight, respectively.465

The parsing performance of KoPL and Lambda466

DCS are measured by answers’ accuracy, and the467

SPARQL performance are measure by answers’ F1468

score. Note that the human’s performance is not469

applicable here, but we can compare it to the base-470

line results of understanding task. Also, we only471

test the model over 1B because the small models472

perform poorly with meaningless results.473

Then we present the conclusions and findings by474

analyzing them along with other ablation experi-475

ments. More detailed results for some dataset can476

be found in Appendix.477

7.1 Formal Language Understanding Result478

Analysis479

As shown in Table 1, we can see that (1) All lan-480

guage models demonstrate a certain degree of un-481

derstanding of formal languages, as evidenced by 482

their ability to generate new training data to train 483

a non-trivial parser. (2) In general, larger models 484

tend to perform better in understanding structured 485

semantics. (3) LLMs are sensitive to formal lan- 486

guages. For example, their performance on KOPL 487

and SPARQL is noticeably closer to human-level. 488

This might be attributed to the pre-training data. 489

(4) As for the parser for text quality evaluation, the 490

RnG parser can virtually eliminate gaps in gener- 491

ated data quality, reflecting the importance of entity 492

linking module. (5) Meanwhile, it is noteworthy 493

that we do not observe significant differences be- 494

tween models that are instruction tuned and those 495

that are not. The model size evidently has a more 496

pronounced impact. 497

Most interestingly, We observe some peculiar 498

characteristics in the FLAN-T5 series. Not only do 499

they perform significant worse compared to other 500

models of similar scale, but more unusually, the per- 501

formance deteriorates as the model size increases. 502

In the appendix, we present some error analysis 503

from FLAN-T5-XXL, whose generated results are 504

almost unintelligible. 505

0 5 10 15 20 25 30 35
Demonstration number

0

10

20

30

40

Pe
rfo

rm
an

ce

Formal language
SPARQL
KoPL
Lambda-DCS

Entity linking
w/ e.l.
w/o e.l.

Figure 3: Formal language generation performance of
Text-Davinci-003 with various numbers of demonstra-
tion examples. The entity linking tag means whether
to use entity linking to detect the entities in input and
add their 2-hop-related entity and relation names to the
input. Note that the difference of maximum demonstra-
tion number between formal languages is because the
context length of LLM. Each data point takes 3 runs and
details in appendix D.2.

7.2 Formal Language Geration Result 506

Analysis 507

From the right section of Table 1, we can see that 508

the generation ability of language models is far 509

worse than their understanding ability. Compared 510

6

Model Understanding Generation

KoPL SPARQL SPARQL‡ Lambda DCS KoPL SPARQL Lambda DCS

GPT2-L (774M) 76.0 70.8 10.8 39.1 — — —
GPT2-XL (1.5B) 83.3 71.1 14.4 42.3 — — —
GPT-J (6B) 84.2 72.2 16.7 74.4 4.3 1.7 0.0
FLAN-T5-L (770M) 48.6 71.6 6.8 27.5 — — —
FLAN-T5-XL (3B) 26.6 70.7 7.1 17.0 — — —
FLAN-T5-XXL (11B) 12.7 68.1 7.0 12.4 2.7 0.0 0.0
Llama-2-7B 83.8 71.2 16.6 73.2 4.6 1.7 0.0
Llama-2-13B 85.2 71.9 17.1 74.6 10.0 2.5 0.0
Llama-2-70B 85.8 72.6 18.5 75.3 11.3 4.2 3.3
GLM-130B 86.2 73.6 19.2 77.0 22.3 5.8 3.8
Text-Davinci-001 85.6 71.4 18.7 75.2 16.0 2.7 1.7
Text-Davinci-003 88.1 73.8 21.7 79.0 41.6 22.5 10.0

Human 90.6 74.7 28.1 95.2 — — —

Table 1: The main results of formal language understanding and generation. ‡ means that these column is evaluated
by a simple sequence-to-sequence Bart-base parser without an entity linking module. The — in the table means the
result is too low to be meaningful or it is not applicable.

to the left section, even the most powerful model511

directly generating logical forms can only achieve512

15% to 50% accuracy to the parser trained by its513

generated data. Therefore, we believe it is safe514

to reach to the conclusion that, to improve perfor-515

mance on knowledge based question answering,516

it is much more easier to generate new data for517

training small parser like Bart model than directly518

using LLMs to generate if we only wish to prompt519

without touching the parameters.520

To improve the performance of direct semantic521

parsing, two approaches are viable in the experi-522

ment. The first is increasing the examples of ICL523

and the second is to detect the entities mentioned in524

the input question, and include their 2-hop-related525

entity and relation names from the knowledge base526

into the prompt (as mentioned in Section5.2.1). To527

compare the impact of these two strategies on the528

performance, we conduct a series of experiment on529

Text-Davinci-003. As shown in Figure 3, (1) Both530

strategies can contribute to the performance. (2)531

The performance on KoPL notably improves with532

the increase of examples. However, for SPARQL533

and Lambda DCS, the effect of this strategy is lim-534

ited. (3) On the other hand, incorporating entity and535

relation names in the prompt significantly enhances536

the results for SPARQL. (4) In all settings, model537

performs best on KoPL and worst on Lambda DCS,538

and SPARQL in between.539

Empirically, We figure the possible explanations540

for these phenomena lie in the difference between541

formal languages. As the example show in Figure 2,542

KoPL is the most similar to natural language. The 543

identifiers are easy for human to understand, and 544

the order of functions correspond to the “chain-of- 545

thought” reasoning process. While both SPARQL 546

and Lambda DCS are more formalized and con- 547

tain lots of identifiers that do not make sense in 548

natural language. This might explain why model 549

performs best on KoPL, and most benefits from 550

the increasing of examples. Furthermore, we note 551

that the grammar of SPARQL is simpler and lacks 552

of variations, where the SPARQL queries in the 553

GrailQA dataset almost follow the same pattern. 554

But the bottle-neck for writing SPARQL is to gen- 555

erate the correct entity or relation names in Free- 556

base. This explains why model performs better 557

on SPARQL than Lambda DCS, and why adding 558

entities to prompt improves the most for SPARQL. 559

7.3 Zero-shot Understanding 560

We are also very interested in whether the LLMs 561

truly understand the logical forms or they merely 562

are good at imitating the carefully selected exam- 563

ples we provided? To figure it out, we conduct 564

an ablation experiment where input for the QG 565

task is replaced with the description of the formal 566

language. This experiment is only conducted on 567

KoPL since it is well modularized and the func- 568

tion of the operations can be concisely explained. 569

The input description consists of the one-sentence 570

descriptions of each operation function in KoPL, 571

optionally accompanied by several fixed simple ex- 572

amples. To reduce the cost, we only use a subset 573

7

that contain the first 20,000 examples of KoPL (574

the same in next experiment in Section 7.4) and575

only probe the GPT series.576

Model KoPL1%seed KoPLzero−shot

GPT-J (6B) 43.3 11.9
GLM-130B 76.4 46.0
Text-Davinci-001 76.8 44.6
Text-Davinci-003 80.0 62.7

Human 84.6 84.6

Table 2: Formal language understanding results for the
low-resource seed set setting and the zero-shot setting.

As shown in the Table 2, it can be observed577

that the carefully designed retrieval strategy in our578

baseline method indeed significantly contributes579

to generating high-quality natural language ques-580

tions. However, at the same time, the model itself581

exhibits a certain degree of understanding ability582

when examples are lacking, where Text-Davinci-583

003 demonstrates a 25.8% performance drop.584

7.4 Different Seed Set Ratio585

The main result in our experiment are generated586

with the whole training set as the seed set. How-587

ever, considering the practical limitations in ob-588

taining a large amount of high-quality manually589

annotated data in real scenarios, we investigate the590

model’s ability to generate new data with only a591

small amount of labeled data as seeds.592

This experiment is also conducted on KQA Pro593

since it is the largest and most diverse dataset. We594

randomly sample 1% of training set as seeds. The595

result in Table 2 indicate that although there is a596

decrease in the quality of generated questions, the597

performance degradation of the model is accept-598

able, given the great reduction in seed number.599

7.5 All Formal Languages on One Dataset600

Since different datasets are constructed on differ-601

ent knowledge bases, in order to compare whether602

the three logic forms can arrive at the similar con-603

clusions on identical data as previously observed,604

we conduct a experiment testing the three formal605

languages on the same dataset.606

This experiment is also conducted on KQA Pro607

for convenience, because it already contains KoPL608

and SPARQL, and the parser for evaluation also609

switches to BART-base, the same with KQA Pro.610

And we follows Nie et al. to translate KoPL into611

Lambda DCS. From results in Table 3, overall the612

Model
Understanding

SPARQL Lambda DCS

GPT-J (6B) 71.9 62.4
GLM-130B 76.3 64.8
Text-Davinci-001 74.4 61.6
Text-Davinci-003 80.2 69.7

Human 82.7 76.1

Model
Generation

SPARQL Lambda DCS

Text-Davinci-003 14.2 4.2

Table 3: Formal language understanding and generation
results for the one-dataset setting.

results are consistent to the main result in Table 1. 613

But the performance of generation drops a bit, be- 614

cause for SPARQL, the entity and relation binding 615

process are skipped in this experiment. 616

8 Conclusion 617

In this work, we evaluate the proficiency of differ- 618

ent LLMs in understanding and generating different 619

formal languages. Our observations suggest that 620

the ability of LLMs to generate structured seman- 621

tics is notably inferior to their ability to understand 622

it. More importantly, LLMs demonstrate the sensi- 623

tivity to different formal languages. Aligning with 624

our intuition, we discover that the choice of formal 625

language and knowledge base can exert significant 626

influence on models’ performance. 627

In our experiment, models performing on KoPL 628

yields the best results on nearly all experiments. 629

We believe it is because KoPL employs expressions 630

that are more similar to natural language while pre- 631

serving the structure and modularity. However, 632

SPARQL and Lambda DCS face challenges in 633

grounding entities to the knowledge base for their 634

level of formalization is too high. As a result, KoPL 635

proves to be the most LLMs-friendly among the 636

formal languages that we investigate in this work. 637

In general, we want to point out that the formal 638

language plays an important role in enhancing the 639

power of LLMs. A formal language can be used as 640

a medium between LLMs and the knowledge base, 641

so that LLMs can use the knowledge base as a tool 642

to enhance the performance of QA and reasoning 643

tasks. On the other hand, the selection of a more 644

model-friendly formal language, one that closely 645

resembles the natural language in which models 646

excel, should be prioritized. 647

8

Limitations648

In this work, we do not systematically study the649

code-pretrained models. The main reason is that650

there are no 100B version in most code model se-651

ries for comparison with non-code models. Addi-652

tionally, OpenAI’s CODEX, which was previously653

available, has been discontinued, and its function-654

ality can be replaced by text-davinci-003. Consid-655

ering the systematic nature of model selection, we656

did not choose code models. Another limitation657

is we only study the LLMs’ proficiency in formal658

languages as a whole. Later we will consider de-659

signing tasks such as completion to conduct more660

detailed research.661

References662

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-663
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei664
Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu,665
and Pascale Fung. 2023. A multitask, multilingual,666
multimodal evaluation of chatgpt on reasoning, hal-667
lucination, and interactivity. CoRR, abs/2302.04023.668

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy669
Liang. 2013. Semantic parsing on freebase from670
question-answer pairs. In Proceedings of the 2013671
Conference on Empirical Methods in Natural Lan-672
guage Processing, EMNLP 2013, 18-21 October673
2013, Grand Hyatt Seattle, Seattle, Washington, USA,674
A meeting of SIGDAT, a Special Interest Group of the675
ACL. ACL.676

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,677
Tim Sturge, and Jamie Taylor. 2008. Freebase: a678
collaboratively created graph database for structuring679
human knowledge. In Proceedings of the ACM SIG-680
MOD International Conference on Management of681
Data, SIGMOD 2008, Vancouver, BC, Canada, June682
10-12, 2008. ACM.683

Samuel Broscheit. 2020. Investigating entity knowledge684
in BERT with simple neural end-to-end entity linking.685
CoRR, abs/2003.05473.686

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie687
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind688
Neelakantan, Pranav Shyam, Girish Sastry, Amanda689
Askell, Sandhini Agarwal, Ariel Herbert-Voss,690
Gretchen Krueger, Tom Henighan, Rewon Child,691
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,692
Clemens Winter, Christopher Hesse, Mark Chen, Eric693
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,694
Jack Clark, Christopher Berner, Sam McCandlish,695
Alec Radford, Ilya Sutskever, and Dario Amodei.696
2020. Language models are few-shot learners. In Ad-697
vances in Neural Information Processing Systems 33:698
Annual Conference on Neural Information Process-699
ing Systems 2020, NeurIPS 2020, December 6-12,700
2020, virtual.701

Ruisheng Cao, Su Zhu, Chen Liu, Jieyu Li, and Kai Yu. 702
2019a. Semantic parsing with dual learning. In Pro- 703
ceedings of the 57th Conference of the Association 704
for Computational Linguistics, ACL 2019, Florence, 705
Italy, July 28- August 2, 2019, Volume 1: Long Pa- 706
pers, pages 51–64. Association for Computational 707
Linguistics. 708

Ruisheng Cao, Su Zhu, Chen Liu, Jieyu Li, and Kai 709
Yu. 2019b. Semantic parsing with dual learning. In 710
Proceedings of the 57th Annual Meeting of the Asso- 711
ciation for Computational Linguistics, pages 51–64, 712
Florence, Italy. Association for Computational Lin- 713
guistics. 714

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie, 715
Yutong Xiang, Lei Hou, Juanzi Li, Bin He, and Han- 716
wang Zhang. 2022a. KQA pro: A dataset with ex- 717
plicit compositional programs for complex question 718
answering over knowledge base. In Proceedings of 719
the 60th Annual Meeting of the Association for Com- 720
putational Linguistics (Volume 1: Long Papers), ACL 721
2022, Dublin, Ireland, May 22-27, 2022, pages 6101– 722
6119. Association for Computational Linguistics. 723

Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu, 724
Lei Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao. 725
2022b. Program transfer for answering complex 726
questions over knowledge bases. In Proceedings 727
of the 60th Annual Meeting of the Association for 728
Computational Linguistics (Volume 1: Long Papers), 729
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 730
8128–8140. Association for Computational Linguis- 731
tics. 732

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 733
Maarten Bosma, Gaurav Mishra, Adam Roberts, 734
Paul Barham, Hyung Won Chung, Charles Sutton, 735
Sebastian Gehrmann, Parker Schuh, Kensen Shi, 736
Sasha Tsvyashchenko, Joshua Maynez, Abhishek 737
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin- 738
odkumar Prabhakaran, Emily Reif, Nan Du, Ben 739
Hutchinson, Reiner Pope, James Bradbury, Jacob 740
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, 741
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, 742
Sunipa Dev, Henryk Michalewski, Xavier Garcia, 743
Vedant Misra, Kevin Robinson, Liam Fedus, Denny 744
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, 745
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, 746
David Dohan, Shivani Agrawal, Mark Omernick, An- 747
drew M. Dai, Thanumalayan Sankaranarayana Pil- 748
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, 749
Rewon Child, Oleksandr Polozov, Katherine Lee, 750
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark 751
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy 752
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, 753
and Noah Fiedel. 2023. Palm: Scaling language mod- 754
eling with pathways. J. Mach. Learn. Res., 24:240:1– 755
240:113. 756

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 757
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, 758
Mostafa Dehghani, Siddhartha Brahma, Albert Web- 759
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz- 760
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan 761

9

https://doi.org/10.48550/arXiv.2302.04023
https://doi.org/10.48550/arXiv.2302.04023
https://doi.org/10.48550/arXiv.2302.04023
https://doi.org/10.48550/arXiv.2302.04023
https://doi.org/10.48550/arXiv.2302.04023
https://aclanthology.org/D13-1160/
https://aclanthology.org/D13-1160/
https://aclanthology.org/D13-1160/
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://arxiv.org/abs/2003.05473
https://arxiv.org/abs/2003.05473
https://arxiv.org/abs/2003.05473
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/V1/P19-1007
https://doi.org/10.18653/v1/P19-1007
https://doi.org/10.18653/v1/2022.acl-long.422
https://doi.org/10.18653/v1/2022.acl-long.422
https://doi.org/10.18653/v1/2022.acl-long.422
https://doi.org/10.18653/v1/2022.acl-long.422
https://doi.org/10.18653/v1/2022.acl-long.422
https://doi.org/10.18653/V1/2022.ACL-LONG.559
https://doi.org/10.18653/V1/2022.ACL-LONG.559
https://doi.org/10.18653/V1/2022.ACL-LONG.559
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html

Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,762
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav763
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam764
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.765
2022. Scaling instruction-finetuned language models.766
CoRR, abs/2210.11416.767

Kevin Clark, Urvashi Khandelwal, Omer Levy, and768
Christopher D. Manning. 2019. What does BERT769
look at? an analysis of bert’s attention. In Proceed-770
ings of the 2019 ACL Workshop BlackboxNLP: An-771
alyzing and Interpreting Neural Networks for NLP,772
BlackboxNLP@ACL 2019, Florence, Italy, August 1,773
2019, pages 276–286. Association for Computational774
Linguistics.775

Fahim Dalvi, Abdul Rafae Khan, Firoj Alam, Nadir776
Durrani, Jia Xu, and Hassan Sajjad. 2022. Discover-777
ing latent concepts learned in BERT. In The Tenth778
International Conference on Learning Representa-779
tions, ICLR 2022, Virtual Event, April 25-29, 2022.780
OpenReview.net.781

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and782
Kristina Toutanova. 2019. BERT: pre-training of783
deep bidirectional transformers for language under-784
standing. In Proceedings of the 2019 Conference of785
the North American Chapter of the Association for786
Computational Linguistics: Human Language Tech-787
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,788
June 2-7, 2019, Volume 1 (Long and Short Papers),789
pages 4171–4186. Association for Computational790
Linguistics.791

Guanting Dong, Rumei Li, Sirui Wang, Yupeng Zhang,792
Yunsen Xian, and Weiran Xu. 2023. Bridging the793
kb-text gap: Leveraging structured knowledge-aware794
pre-training for KBQA. In Proceedings of the 32nd795
ACM International Conference on Information and796
Knowledge Management, CIKM 2023, Birmingham,797
United Kingdom, October 21-25, 2023, pages 3854–798
3859. ACM.799

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,800
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-801
ham Neubig. 2023. PAL: program-aided language802
models. In International Conference on Machine803
Learning, ICML 2023, 23-29 July 2023, Honolulu,804
Hawaii, USA, volume 202 of Proceedings of Machine805
Learning Research, pages 10764–10799. PMLR.806

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t gener-807
ate, discriminate: A proposal for grounding language808
models to real-world environments. In Proceedings809
of the 61st Annual Meeting of the Association for810
Computational Linguistics (Volume 1: Long Papers),811
ACL 2023, Toronto, Canada, July 9-14, 2023, pages812
4928–4949. Association for Computational Linguis-813
tics.814

Yu Gu, Sue Kase, Michelle Vanni, Brian M. Sadler,815
Percy Liang, Xifeng Yan, and Yu Su. 2021. Beyond816
I.I.D.: three levels of generalization for question an-817
swering on knowledge bases. In WWW ’21: The Web818
Conference 2021, Virtual Event / Ljubljana, Slovenia,819
April 19-23, 2021, pages 3477–3488. ACM / IW3C2.820

John Hewitt and Christopher D. Manning. 2019. A 821
structural probe for finding syntax in word represen- 822
tations. In Proceedings of the 2019 Conference of 823
the North American Chapter of the Association for 824
Computational Linguistics: Human Language Tech- 825
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, 826
June 2-7, 2019, Volume 1 (Long and Short Papers), 827
pages 4129–4138. Association for Computational 828
Linguistics. 829

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin 830
Zhao, and Ji-Rong Wen. 2023a. Structgpt: A gen- 831
eral framework for large language model to reason 832
over structured data. In Proceedings of the 2023 833
Conference on Empirical Methods in Natural Lan- 834
guage Processing, EMNLP 2023, Singapore, Decem- 835
ber 6-10, 2023, pages 9237–9251. Association for 836
Computational Linguistics. 837

Jinhao Jiang, Kun Zhou, Xin Zhao, and Ji-Rong Wen. 838
2023b. Unikgqa: Unified retrieval and reasoning for 839
solving multi-hop question answering over knowl- 840
edge graph. In The Eleventh International Confer- 841
ence on Learning Representations, ICLR 2023, Ki- 842
gali, Rwanda, May 1-5, 2023. OpenReview.net. 843

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham 844
Neubig. 2020. How can we know what language 845
models know. Trans. Assoc. Comput. Linguistics, 846
8:423–438. 847

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, 848
and Wenhu Chen. 2023. Few-shot in-context learn- 849
ing for knowledge base question answering. CoRR, 850
abs/2305.01750. 851

Percy Liang. 2013. Lambda dependency-based compo- 852
sitional semantics. CoRR, abs/1309.4408. 853

Yuanyuan Liang, Jianing Wang, Hanlun Zhu, Lei Wang, 854
Weining Qian, and Yunshi Lan. 2023. Prompting 855
large language models with chain-of-thought for few- 856
shot knowledge base question generation. In Pro- 857
ceedings of the 2023 Conference on Empirical Meth- 858
ods in Natural Language Processing, EMNLP 2023, 859
Singapore, December 6-10, 2023, pages 4329–4343. 860
Association for Computational Linguistics. 861

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, 862
Lawrence Carin, and Weizhu Chen. 2021. What 863
makes good in-context examples for gpt-3? arXiv 864
preprint arXiv:2101.06804. 865

Nelson F. Liu, Matt Gardner, Yonatan Belinkov, 866
Matthew E. Peters, and Noah A. Smith. 2019. Lin- 867
guistic knowledge and transferability of contextual 868
representations. In Proceedings of the 2019 Con- 869
ference of the North American Chapter of the Asso- 870
ciation for Computational Linguistics: Human Lan- 871
guage Technologies, NAACL-HLT 2019, Minneapolis, 872
MN, USA, June 2-7, 2019, Volume 1 (Long and Short 873
Papers), pages 1073–1094. Association for Compu- 874
tational Linguistics. 875

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu- 876
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, 877

10

https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://openreview.net/forum?id=POTMtpYI1xH
https://openreview.net/forum?id=POTMtpYI1xH
https://openreview.net/forum?id=POTMtpYI1xH
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3583780.3615150
https://doi.org/10.1145/3583780.3615150
https://doi.org/10.1145/3583780.3615150
https://doi.org/10.1145/3583780.3615150
https://doi.org/10.1145/3583780.3615150
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.18653/V1/2023.ACL-LONG.270
https://doi.org/10.18653/V1/2023.ACL-LONG.270
https://doi.org/10.18653/V1/2023.ACL-LONG.270
https://doi.org/10.18653/V1/2023.ACL-LONG.270
https://doi.org/10.18653/V1/2023.ACL-LONG.270
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.18653/v1/n19-1419
https://doi.org/10.18653/v1/n19-1419
https://doi.org/10.18653/v1/n19-1419
https://doi.org/10.18653/v1/n19-1419
https://doi.org/10.18653/v1/n19-1419
https://aclanthology.org/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574
https://openreview.net/pdf?id=Z63RvyAZ2Vh
https://openreview.net/pdf?id=Z63RvyAZ2Vh
https://openreview.net/pdf?id=Z63RvyAZ2Vh
https://openreview.net/pdf?id=Z63RvyAZ2Vh
https://openreview.net/pdf?id=Z63RvyAZ2Vh
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.48550/arXiv.2305.01750
https://doi.org/10.48550/arXiv.2305.01750
https://doi.org/10.48550/arXiv.2305.01750
http://arxiv.org/abs/1309.4408
http://arxiv.org/abs/1309.4408
http://arxiv.org/abs/1309.4408
https://aclanthology.org/2023.emnlp-main.263
https://aclanthology.org/2023.emnlp-main.263
https://aclanthology.org/2023.emnlp-main.263
https://aclanthology.org/2023.emnlp-main.263
https://aclanthology.org/2023.emnlp-main.263
https://doi.org/10.18653/v1/n19-1112
https://doi.org/10.18653/v1/n19-1112
https://doi.org/10.18653/v1/n19-1112
https://doi.org/10.18653/v1/n19-1112
https://doi.org/10.18653/v1/n19-1112

Kaiwen Men, Kejuan Yang, Shudan Zhang, Xi-878
ang Deng, Aohan Zeng, Zhengxiao Du, Chenhui879
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan880
Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.881
2023. Agentbench: Evaluating llms as agents. CoRR,882
abs/2308.03688.883

Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng,884
Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting885
Dong, Meina Song, and Wei Lin. 2023. Chatkbqa: A886
generate-then-retrieve framework for knowledge base887
question answering with fine-tuned large language888
models. CoRR, abs/2310.08975.889

Lunyiu Nie, Shulin Cao, Jiaxin Shi, Jiuding Sun,890
Qi Tian, Lei Hou, Juanzi Li, and Jidong Zhai. 2022.891
Graphq IR: unifying the semantic parsing of graph892
query languages with one intermediate representation.893
In Proceedings of the 2022 Conference on Empirical894
Methods in Natural Language Processing, EMNLP895
2022, Abu Dhabi, United Arab Emirates, December896
7-11, 2022, pages 5848–5865. Association for Com-897
putational Linguistics.898

Barlas Oguz, Xilun Chen, Vladimir Karpukhin,899
Stan Peshterliev, Dmytro Okhonko, Michael Sejr900
Schlichtkrull, Sonal Gupta, Yashar Mehdad, and901
Scott Yih. 2022. Unik-qa: Unified representations902
of structured and unstructured knowledge for open-903
domain question answering. In Findings of the Asso-904
ciation for Computational Linguistics: NAACL 2022,905
Seattle, WA, United States, July 10-15, 2022, pages906
1535–1546. Association for Computational Linguis-907
tics.908

OpenAI. 2023. GPT-4 technical report. CoRR,909
abs/2303.08774.910

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-911
Jing Zhu. 2002. Bleu: a method for automatic evalu-912
ation of machine translation. In Proceedings of the913
40th Annual Meeting of the Association for Compu-914
tational Linguistics, July 6-12, 2002, Philadelphia,915
PA, USA, pages 311–318. ACL.916

Hao Peng, Xiaozhi Wang, Shengding Hu, Hailong917
Jin, Lei Hou, Juanzi Li, Zhiyuan Liu, and Qun Liu.918
2022. COPEN: probing conceptual knowledge in pre-919
trained language models. In Proceedings of the 2022920
Conference on Empirical Methods in Natural Lan-921
guage Processing, EMNLP 2022, Abu Dhabi, United922
Arab Emirates, December 7-11, 2022, pages 5015–923
5035. Association for Computational Linguistics.924

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez.925
2006. Semantics and complexity of SPARQL. In The926
Semantic Web - ISWC 2006, 5th International Seman-927
tic Web Conference, ISWC 2006, Athens, GA, USA,928
November 5-9, 2006, Proceedings, volume 4273 of929
Lecture Notes in Computer Science, pages 30–43.930
Springer.931

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,932
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,933
and Alexander H. Miller. 2019. Language mod-934
els as knowledge bases? In Proceedings of the935

2019 Conference on Empirical Methods in Natu- 936
ral Language Processing and the 9th International 937
Joint Conference on Natural Language Processing, 938
EMNLP-IJCNLP 2019, Hong Kong, China, Novem- 939
ber 3-7, 2019, pages 2463–2473. Association for 940
Computational Linguistics. 941

Alec Radford, Karthik Narasimhan, Tim Salimans, and 942
Ilya Sutskever. 2018. Improving language under- 943
standing by generative pre-training. 944

Alec Radford, Jeff Wu, Rewon Child, David Luan, 945
Dario Amodei, and Ilya Sutskever. 2019. Language 946
models are unsupervised multitask learners. 947

Teven Le Scao, Angela Fan, Christopher Akiki, El- 948
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman 949
Castagné, Alexandra Sasha Luccioni, François Yvon, 950
Matthias Gallé, Jonathan Tow, Alexander M. Rush, 951
Stella Biderman, Albert Webson, Pawan Sasanka Am- 952
manamanchi, Thomas Wang, Benoît Sagot, Niklas 953
Muennighoff, Albert Villanova del Moral, Olatunji 954
Ruwase, Rachel Bawden, Stas Bekman, Angelina 955
McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile 956
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic- 957
tor Sanh, Hugo Laurençon, Yacine Jernite, Julien 958
Launay, Margaret Mitchell, Colin Raffel, Aaron 959
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri 960
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg 961
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, 962
Christopher Klamm, Colin Leong, Daniel van Strien, 963
David Ifeoluwa Adelani, and et al. 2022. BLOOM: 964
A 176b-parameter open-access multilingual language 965
model. CoRR, abs/2211.05100. 966

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Han- 967
wang Zhang. 2021. Transfernet: An effective and 968
transparent framework for multi-hop question an- 969
swering over relation graph. In Proceedings of the 970
2021 Conference on Empirical Methods in Natural 971
Language Processing, EMNLP 2021, Virtual Event 972
/ Punta Cana, Dominican Republic, 7-11 November, 973
2021, pages 4149–4158. Association for Computa- 974
tional Linguistics. 975

Richard Shin, Christopher H. Lin, Sam Thomson, 976
Charles Chen, Subhro Roy, Emmanouil Antonios 977
Platanios, Adam Pauls, Dan Klein, Jason Eisner, and 978
Benjamin Van Durme. 2021. Constrained language 979
models yield few-shot semantic parsers. In Proceed- 980
ings of the 2021 Conference on Empirical Methods 981
in Natural Language Processing, EMNLP 2021, Vir- 982
tual Event / Punta Cana, Dominican Republic, 7-11 983
November, 2021, pages 7699–7715. Association for 984
Computational Linguistics. 985

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje F. Karlsson, 986
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022. 987
TIARA: multi-grained retrieval for robust question 988
answering over large knowledge bases. CoRR, 989
abs/2210.12925. 990

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 991
Abu Awal Md Shoeb, Abubakar Abid, Adam 992
Fisch, Adam R. Brown, Adam Santoro, Aditya 993

11

https://doi.org/10.48550/ARXIV.2308.03688
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.18653/v1/2022.emnlp-main.394
https://doi.org/10.18653/v1/2022.emnlp-main.394
https://doi.org/10.18653/v1/2022.emnlp-main.394
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.115
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.115
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.115
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.115
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.115
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2022.emnlp-main.335
https://doi.org/10.18653/v1/2022.emnlp-main.335
https://doi.org/10.18653/v1/2022.emnlp-main.335
https://doi.org/10.1007/11926078_3
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.341
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.341
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.341
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.341
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.341
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.48550/ARXIV.2210.12925
https://doi.org/10.48550/ARXIV.2210.12925
https://doi.org/10.48550/ARXIV.2210.12925

Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,994
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,995
Alex Ray, Alex Warstadt, Alexander W. Kocurek,996
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-997
rish, Allen Nie, Aman Hussain, Amanda Askell,998
Amanda Dsouza, Ameet Rahane, Anantharaman S.999
Iyer, Anders Andreassen, Andrea Santilli, Andreas1000
Stuhlmüller, Andrew M. Dai, Andrew La, Andrew K.1001
Lampinen, Andy Zou, Angela Jiang, Angelica Chen,1002
Anh Vuong, Animesh Gupta, Anna Gottardi, Anto-1003
nio Norelli, Anu Venkatesh, Arash Gholamidavoodi,1004
Arfa Tabassum, Arul Menezes, Arun Kirubarajan,1005
Asher Mullokandov, Ashish Sabharwal, Austin Her-1006
rick, Avia Efrat, Aykut Erdem, Ayla Karakas, and1007
et al. 2022. Beyond the imitation game: Quantifying1008
and extrapolating the capabilities of language models.1009
CoRR, abs/2206.04615.1010

Haitian Sun, Tania Bedrax-Weiss, and William W. Co-1011
hen. 2019. Pullnet: Open domain question answering1012
with iterative retrieval on knowledge bases and text.1013
In Proceedings of the 2019 Conference on Empiri-1014
cal Methods in Natural Language Processing and1015
the 9th International Joint Conference on Natural1016
Language Processing, EMNLP-IJCNLP 2019, Hong1017
Kong, China, November 3-7, 2019, pages 2380–2390.1018
Association for Computational Linguistics.1019

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-1020
bert, Amjad Almahairi, Yasmine Babaei, Nikolay1021
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti1022
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-1023
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,1024
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,1025
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-1026
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan1027
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,1028
Isabel Kloumann, Artem Korenev, Punit Singh Koura,1029
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-1030
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-1031
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-1032
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-1033
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,1034
Ruan Silva, Eric Michael Smith, Ranjan Subrama-1035
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-1036
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,1037
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,1038
Melanie Kambadur, Sharan Narang, Aurélien Ro-1039
driguez, Robert Stojnic, Sergey Edunov, and Thomas1040
Scialom. 2023. Llama 2: Open foundation and fine-1041
tuned chat models. CoRR, abs/2307.09288.1042

Denny Vrandecic and Markus Krötzsch. 2014. Wiki-1043
data: a free collaborative knowledgebase. Commun.1044
ACM, 57(10):78–85.1045

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-1046
6B: A 6 Billion Parameter Autoregressive Lan-1047
guage Model. https://github.com/kingoflolz/1048
mesh-transformer-jax.1049

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.1050
Building a semantic parser overnight. In Proceedings1051
of the 53rd Annual Meeting of the Association for1052
Computational Linguistics and the 7th International1053

Joint Conference on Natural Language Processing 1054
of the Asian Federation of Natural Language Pro- 1055
cessing, ACL 2015, July 26-31, 2015, Beijing, China, 1056
Volume 1: Long Papers, pages 1332–1342. The As- 1057
sociation for Computer Linguistics. 1058

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 1059
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 1060
and Denny Zhou. 2022. Chain-of-thought prompt- 1061
ing elicits reasoning in large language models. In 1062
NeurIPS. 1063

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, 1064
and Caiming Xiong. 2022. RNG-KBQA: generation 1065
augmented iterative ranking for knowledge base ques- 1066
tion answering. In Proceedings of the 60th Annual 1067
Meeting of the Association for Computational Lin- 1068
guistics (Volume 1: Long Papers), ACL 2022, Dublin, 1069
Ireland, May 22-27, 2022, pages 6032–6043. Associ- 1070
ation for Computational Linguistics. 1071

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui 1072
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu, 1073
William Yang Wang, Zhiguo Wang, and Bing Xiang. 1074
2023a. Decaf: Joint decoding of answers and logical 1075
forms for question answering over knowledge bases. 1076
In The Eleventh International Conference on Learn- 1077
ing Representations, ICLR 2023, Kigali, Rwanda, 1078
May 1-5, 2023. OpenReview.net. 1079

Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao, 1080
Daniel Zhang-li, Xin Lv, Hao Peng, Zijun Yao, Xi- 1081
aohan Zhang, Hanming Li, Chunyang Li, Zheyuan 1082
Zhang, Yushi Bai, Yantao Liu, Amy Xin, Nianyi Lin, 1083
Kaifeng Yun, Linlu Gong, Jianhui Chen, Zhili Wu, 1084
Yunjia Qi, Weikai Li, Yong Guan, Kaisheng Zeng, 1085
Ji Qi, Hailong Jin, Jinxin Liu, Yu Gu, Yuan Yao, Ning 1086
Ding, Lei Hou, Zhiyuan Liu, Bin Xu, Jie Tang, and 1087
Juanzi Li. 2023b. Kola: Carefully benchmarking 1088
world knowledge of large language models. CoRR, 1089
abs/2306.09296. 1090

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, 1091
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, 1092
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, 1093
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan 1094
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023. 1095
GLM-130B: an open bilingual pre-trained model. In 1096
The Eleventh International Conference on Learning 1097
Representations, ICLR 2023, Kigali, Rwanda, May 1098
1-5, 2023. OpenReview.net. 1099

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie 1100
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph 1101
retrieval enhanced model for multi-hop knowledge 1102
base question answering. In Proceedings of the 60th 1103
Annual Meeting of the Association for Computational 1104
Linguistics (Volume 1: Long Papers), ACL 2022, 1105
Dublin, Ireland, May 22-27, 2022, pages 5773–5784. 1106
Association for Computational Linguistics. 1107

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. 1108
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu- 1109
ating text generation with BERT. In 8th International 1110
Conference on Learning Representations, ICLR 2020, 1111

12

https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.18653/V1/D19-1242
https://doi.org/10.18653/V1/D19-1242
https://doi.org/10.18653/V1/D19-1242
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.3115/v1/p15-1129
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://openreview.net/pdf?id=XHc5zRPxqV9
https://openreview.net/pdf?id=XHc5zRPxqV9
https://openreview.net/pdf?id=XHc5zRPxqV9
https://doi.org/10.48550/arXiv.2306.09296
https://doi.org/10.48550/arXiv.2306.09296
https://doi.org/10.48550/arXiv.2306.09296
https://openreview.net/pdf?id=-Aw0rrrPUF
https://doi.org/10.18653/V1/2022.ACL-LONG.396
https://doi.org/10.18653/V1/2022.ACL-LONG.396
https://doi.org/10.18653/V1/2022.ACL-LONG.396
https://doi.org/10.18653/V1/2022.ACL-LONG.396
https://doi.org/10.18653/V1/2022.ACL-LONG.396
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-1112
view.net.1113

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.1114
Factual probing is [MASK]: learning vs. learning1115
to recall. In Proceedings of the 2021 Conference1116
of the North American Chapter of the Association1117
for Computational Linguistics: Human Language1118
Technologies, NAACL-HLT 2021, Online, June 6-11,1119
2021, pages 5017–5033. Association for Computa-1120
tional Linguistics.1121

A Details of Probing Process1122

In this section we present the details of the probing1123

processes of both probing sub-tasks.1124

A.1 Formal Language Understanding1125

In this task, we search the seed set for demonstra-1126

tion examples based on the structure of the input1127

logical form. As stated in the main submission, we1128

first transform the logical forms into corresponding1129

skeletons.1130

The skeleton of KoPL is the tree formed by re-1131

moving the functions’ inputs, and we serialize it1132

with post-order traversal. The Lambda DCS pro-1133

gram is similar, it is a bracket tree and its skeleton1134

is also also formed by only keeping identifiers. The1135

SPARQL program depicts a graph by some triples,1136

and the algorithm for finding graphs with the same1137

structure is complex, so we use the SPAQRL’s cor-1138

responding S-expression, which is also a bracket1139

tree structure. The serialized examples of the logi-1140

cal form skeleton is illustrated in Table 4, respec-1141

tively.1142

A.2 Formal Language Generation1143

In this task, we search the seed set for demonstra-1144

tion examples only based on the input natural lan-1145

guage question. As mentioned in the main paper1146

Section 5.2, we mask the entities and relations in1147

the question to get the NLQ skeleton. And then1148

the prompt is constructed in the chain-of-thought1149

manner - first generating the skeleton, then adding1150

arguments. We take KoPL as an example, where1151

the demonstration number equals 3. The the input1152

question, skeleton and final prompt is illustrated in1153

Table 7. This method works the same for other two1154

formal languages, so we will not continue to show1155

examples here.1156

But the chain-of-thought prompt does not always1157

work better. When evaluating Llama-2 models,1158

we observed that generating directly from NLQ to1159

complete LF often gets better performance.1160

A.3 Zero-shot Understanding 1161

The prompt used in the experiment of zero-shot 1162

understanding is shown in Table 8 1163

B Error Analysis 1164

B.1 Formal Language Understanding 1165

In this section, we will discuss the results and errors 1166

of the experiment from two aspects. On one hand, 1167

it is analyzed from the performance of different 1168

models, and on the other hand, it is analyzed from 1169

the different types of errors produced by the same 1170

model. 1171

B.1.1 Performance of Different Models 1172

Examples of KoPL, SPARQL, and Lambda DCS 1173

is shown in Table 9, 10, and 11, respectively. 1174

In general, larger models perform better than 1175

smaller models, whose output is often hallucinated 1176

and which tends to miss some semantics in the 1177

input. From the horizontal comparison of different 1178

formal languages, small models perform better on 1179

KoPL than SPARQL and Lambda DCS, indicating 1180

that KoPL is more model-friendly. 1181

A peculiar phenomenon was found in the ex- 1182

periment, that is, the flan-t5 series models have 1183

poor generalization for formal languages that have 1184

not been seen in this type of pre-training. And 1185

we found that the larger the size of the model, the 1186

lower the overall quality of the generated natural 1187

language questions. 1188

B.1.2 Error Types on KoPL 1189

We analyse the error types of GLM-130B on KoPL. 1190

When retrieved examples’ skeletons are exactly 1191

the same with the skeleton of the input KoPL pro- 1192

gram, the output is usually good (shown in Ta- 1193

ble 12). However, there are sometimes exceptions, 1194

and the model will add some hallucinatory compo- 1195

nents to the output (shown in Table 13). 1196

When retrieved examples’ skeletons not the 1197

same with the skeleton of the input KoPL program, 1198

hallucinatory content is more likely to be included 1199

in the result (shown in Table 14), and attributive 1200

parts tend to be missed for longer inputs (shown in 1201

Table 15). 1202

B.2 Formal language Generation 1203

In this task, since the output of most of the small 1204

models is usually meaningless content, it is also 1205

pointless to analyze them. So in this section, we 1206

mainly analyze the error results of the best model 1207

13

https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398

NATURAL LANGUAGE QUESTION : What is the name of the actor that was born in 1956-04-19 ?

KOPL PROGRAM: FindAll().FilterDate(date of birth, 1956-04-19, =).FilterCon-
cept(human).Find(actor).Relate(occupation, backward).FilterConcept(human).And().What()

KOPL SKELETON: FindAll.FilterDate.FilterConcept.Find.Relate.FilterConcept.And.What

PROMPT: According to the given logic form kopl, generate the corresponding natural language question.
For examples,
FindAll()FilterDate(date of birth, 1989-04-06, =)FilterConcept(human)Find(United States of Amer-
ica)Relate(country of citizenship, backward)FilterConcept(human)And()What() is verbalized as: Which
human was born 1989-04-06 and is a citizen of the United States of America? [SEP]
FindAll()FilterDate(date of birth, 1977-03-10, =)FilterConcept(human)Find(association foot-
ball)Relate(sport, backward)FilterConcept(human)And()What() is verbalized as: Which human has the
date of birth 1977-03-10 and is related to the sport association football? [SEP]
FindAll()FilterDate(date of birth, 1956-04-19, =)FilterConcept(human)Find(actor)Relate(occupation,
backward)FilterConcept(human)And()What() is verbalized as: What is the name of the actor that was
born in 1956-04-19? [SEP]
FindAll()FilterStr(TOID, 4000000074573917)FilterConcept(town)FindAll()FilterStr(OS grid reference,
SP8778)FilterConcept(town)And()What() is verbalized as:

Table 4: Serialized examples of the KoPL and its corresponding skeletons, and final input prompt.

Text-Davinci-003 on the three different formal lan-1208

guages.1209

B.2.1 KoPL1210

The errors of the model on KoPL are mainly logical1211

errors, which are manifested in the use of inappro-1212

priate functions, or the wrong input and order of1213

functions, etc. Examples are shown in Table 16.1214

B.3 SPARQL1215

The error of the model on SPARQL is mainly the1216

wrong name of the entity and the relationship, be-1217

cause in the GrailQA dataset, most of the SPARQL1218

query patterns are the same, only the specific en-1219

tities and relationships are different, so the main1220

difficulty lies in generating the correct freebase1221

mid. Examples are shown in Table 17. In the main,1222

submission, we mentioned that the entity and rela-1223

tion are aligned to the knowledge base through the1224

BM25 algorithm. The output shown here is before1225

alignment.1226

B.4 Lambda DCS1227

The error types of the model on Lambda DCS1228

contains both the types mentioned in KoPL and1229

SPARQL, including both logical errors and names1230

error. The result is illustrated in Table 18.1231

C Details of Model Implementation 1232

C.1 Experiment Environment 1233

The whole experiment is implemented based on 1234

Pytorch, Transformers and Deepspeed. We use at 1235

most 4 Nvidia A100 GPU according the size of the 1236

local test model. 1237

In the formal language understanding tasks, it 1238

takes up to 30 hours for generating the whole KQA 1239

Pro dataset (10,000 entries) for 1 GPU. Practically, 1240

we divided the dataset and perform parallel genera- 1241

tion. 1242

C.2 Semantic Parser for Evaluation 1243

In this section, we detail the implementation of the 1244

semantic parser used in the evaluation of formal 1245

language understanding task. 1246

For Main Results, where we probe LLMs’ un- 1247

derstanding ability of KoPL on KQA Pro, SPARQL 1248

on GrailQA, Lambda DCS on Overnight, the se- 1249

mantic parser and the training hyper-parameters 1250

are as followed. 1251

For KoPL, we train the BART-base model as a 1252

sequence-to-sequence baseline parser described in 1253

KQA Pro (Cao et al., 2022a). The code is provided 1254

in the Github2. For training, the batch size equals 1, 1255

the epoch number equals 10, gradient accumulation 1256

equals 1, and an AdamW optimizer with learning 1257

2https://github.com/shijx12/KQAPro_Baselines/
tree/master

14

https://github.com/shijx12/KQAPro_Baselines/tree/master
https://github.com/shijx12/KQAPro_Baselines/tree/master

NATURAL LANGUAGE QUESTION: What format does the station which broadcasts mojo in the morning
use?

SPARQL PROGRAM: SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE { ?x0
:type.object.type :broadcast.radio_format . ?x1 :type.object.type :broadcast.radio_station . VALUES ?x2 {
:m.010fcxr0 } ?x1 :broadcast.radio_station.format ?x0 . ?x1 :broadcast.broadcast.content ?x2 . FILTER (
?x0 != ?x1 && ?x0 != ?x2 && ?x1 != ?x2) } }

S-EXPRESSION: (AND broadcast.radio_format (JOIN (R broadcast.radio_station.format) (JOIN broad-
cast.broadcast.content m.010fcxr0)))

SPARQL SKELETON: (AND [V0] (JOIN (R [V1]) (JOIN [V2] [E0])))

PROMPT: According to the given logic form sparql, generate the corresponding natural language question.
For examples,
SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE { ?x0 :type.object.type
:broadcast.producer . ?x1 :type.object.type :broadcast.content . VALUES ?x2 { :latino } ?x1 :broad-
cast.content.producer ?x0 . ?x1 :broadcast.content.genre ?x2 . FILTER (?x0 != ?x1 && ?x0 != ?x2 &&
?x1 != ?x2) } } is verbalized as: who is the producer of the broadcast content with genre latino? [SEP]
SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE { ?x0 :type.object.type
:broadcast.producer . ?x1 :type.object.type :broadcast.content . VALUES ?x2 { :90’s } ?x1 :broad-
cast.content.producer ?x0 . ?x1 :broadcast.content.genre ?x2 . FILTER (?x0 != ?x1 && ?x0 != ?x2 &&
?x1 != ?x2) } } is verbalized as: who produces 90’s genre broadcast content? [SEP]
SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE { ?x0 :type.object.type :broad-
cast.producer . ?x1 :type.object.type :broadcast.content . VALUES ?x2 { :audio podcast } ?x1 :broad-
cast.content.producer ?x0 . ?x1 :broadcast.content.genre ?x2 . FILTER (?x0 != ?x1 && ?x0 != ?x2 &&
?x1 != ?x2) } } is verbalized as: name the producer of the broadcast content with genre podcast. [SEP]
SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE { ?x0 :type.object.type :broad-
cast.radio_format . ?x1 :type.object.type :broadcast.radio_station . VALUES ?x2 { :mojo } ?x1 :broad-
cast.radio_station.format ?x0 . ?x1 :broadcast.broadcast.content ?x2 . FILTER (?x0 != ?x1 && ?x0 !=
?x2 && ?x1 != ?x2) } } is verbalized as:

Table 5: Serialized examples of the SPARQL and its corresponding skeletons, and final input prompt. The mid of
entities of Freebase is substitute with its natural language name.

rate 1e-4, weight decay 1e-5, adam epsilon 1e-8,1258

and adam beta1 0.9, adam beta2 0.999 is employed.1259

For SPARQL, we need to set up a virtuoso ser-1260

vice first, which we refer to the guideline3 provided1261

by the author of GrailQA (Gu et al., 2021). We1262

choose two models as the semantic parsers. (1)1263

The first is also a BART-base model, with a vocabu-1264

lary table enriched by adding all entity and relation1265

names used in the GrailQA dataset. The training1266

code is also from KQA Pro baselines repository.1267

For training, the batch size equals 8, the epoch1268

number equals 20, gradient accumulation equals 1,1269

and an AdamW optimizer with learning rate 1e-4,1270

weight decay 1e-5, adam epsilon 1e-8, adam beta11271

0.9, and adam beta2 0.999 is employed. (2) The1272

second is a rank-and-generation model with entity1273

detection, linking and disambiguation (Ye et al.,1274

3https://github.com/dki-lab/Freebase-Setup

2022). The code is provided in the Github4. For 1275

the ranking model, we use the provided Bert by the 1276

author without further training. For the generator 1277

model, we train the T5-base as described, where 1278

the batch size equals 2, epoch number 4, gradient 1279

accumulation equals 1, and an AdamW optimizer 1280

with learning rate 3e-5, weight decay 0, adam beta1 1281

0.9, and adam beta2 0.999 is employed. 1282

For Lambada DCS, we use the baseline semantic 1283

parser describe by (Cao et al., 2019b). The code is 1284

available in Github5. For training, the batch size 1285

equals 16, epoch number 100, gradient accumula- 1286

tion equals 1, and an Adam optimizer with learning 1287

rate 0.001, weight decay 1e-5 is employed. 1288

In both of experiment of Zero-shot Understand- 1289

4https://github.com/salesforce/rng-kbqa/tree/
main

5https://github.com/rhythmcao/
semantic-parsing-dual

15

https://github.com/dki-lab/Freebase-Setup
https://github.com/salesforce/rng-kbqa/tree/main
https://github.com/salesforce/rng-kbqa/tree/main
https://github.com/rhythmcao/semantic-parsing-dual
https://github.com/rhythmcao/semantic-parsing-dual

NATURAL LANGUAGE QUESTION: What players made less than three assists over a season?

LAMBDA DCS PROGRAM: (call SW.listValue (call SW.getProperty ((lambda s (call SW.filter (var s)
(call SW.ensureNumericProperty (string num_assists)) (string <) (call SW.ensureNumericEntity (
number 3 assist)))) (call SW.domain (string player))) (string player)))

LAMBDA DCS SKELETON: (call SW.listValue (call SW.getProperty ((lambda (call SW.filter (var) (
call SW.ensureNumericProperty (string)) (string) (call SW.ensureNumericEntity (number)))) (call
SW.domain (string))) (string)))

PROMPT: According to the given logic form lambdaDCS, generate the corresponding natural language
question. For examples,
(call SW.listValue (call SW.getProperty ((lambda s (call SW.filter (var s) (call
SW.ensureNumericProperty (string num_assists)) (string <) (call SW.ensureNumericEntity (number
3 assist)))) (call SW.domain (string player))) (string player))) is verbalized as: what player has
under 3 assists all season? [SEP]
(call SW.listValue (call SW.getProperty ((lambda s (call SW.filter (var s) (call
SW.ensureNumericProperty (string num_assists)) (string <) (call SW.ensureNumericEntity (number
3 assist)))) (call SW.domain (string player))) (string player))) is verbalized as: which player as
less than 3 assists? [SEP]
(call SW.listValue (call SW.getProperty ((lambda s (call SW.filter (var s) (call
SW.ensureNumericProperty (string num_assists)) (string <) (call SW.ensureNumericEntity (number
3 assist)))) (call SW.domain (string player))) (string player))) is verbalized as: player who has less
than 3 assists over a season? [SEP]
(call SW.listValue (call SW.getProperty ((lambda s (call SW.filter (var s) (call
SW.ensureNumericProperty (string num_assists)) (string <) (call SW.ensureNumericEntity (number
3 assist)))) (call SW.domain (string player))) (string player))) is verbalized as:

Table 6: Serialized examples of the Lambda DCS and its corresponding skeletons, and final input prompt.

ing and Different Seed Set Ratio, the parser for1290

evaluating KoPL is the same with the BART-base1291

for Main result described above.1292

In the experiment of All Formal Languages on1293

One Dataset, we use the first BART-base parser1294

as describe in Main Results for SPARQL, and the1295

same parser as described above in Main Results1296

for Lambda DCS.1297

C.3 LLMs Generation1298

In this section we detail the parameters for the1299

in-context learning generation of LLMs in both1300

probing task.1301

For both formal language understanding and gen-1302

eration, the generation parameters are same for all1303

language models. We utilize the beam search gener-1304

ation strategy with top k 50, top p 0.9, temperature1305

1, beam size 5, and the demonstration example1306

number 3.1307

D Additional Results1308

In this section we want to show some detailed re-1309

sults that are not provided in the main paper.1310

D.1 Detailed Analysis on LLMs’ 1311

Understanding on Different Question 1312

Types 1313

Firstly, we do a more detailed analysis of the results 1314

of LLMs in formal language understanding task. 1315

As shown in Table 19, we divide the test set of KQA 1316

Pro into 7 different question types, and analysis 1317

the performance of the semantic parsers trained 1318

by training data generated by different models and 1319

data labeled by human. 1320

From the results in the table, we can conclude 1321

that if we assumed that human annotations are 1322

100% correct, then the result of the parser trained 1323

by human annotation data represents the difficulty 1324

of the question type. From this, we can draw an 1325

conclusion that the investigated models are all close 1326

to human understanding on simple problems, but 1327

much worse than humans on difficult problems, 1328

which is consistent with our intuition. 1329

16

NATURAL LANGUAGE QUESTION : Which cost less? Batman Begins released in Italy or Tootsie.

NLQ SKELETON: Which cost less? [E0] released in [E1] or [E2].

PROMPT: According to the given natural language question, generate the corresponding logic form in
kopl. For examples,
When did the state with the motto of Dio, Patria e liberta have an inflation rate of 6 percentage? is parsed
into:
Functions: Find [func] Relate [func] Find [func] And [func] Relate [func] FilterConcept
Adding arguments: Find [arg] Walt Disney Pictures [func] Relate [arg] production company [arg]
backward [func] Find [arg] Pocahontas [func] And [func] Relate [arg] film crew member [arg] forward
[func] FilterConcept [arg] human [func] QueryAttrQualifier [arg] Twitter username [arg] TimAnimation
[arg] number of subscribers [SEP]
Did a person, who received s Primetime Emmy Award for Outstanding Guest Actress in a Comedy Series
in 2005, die before 2017 ? is parsed into:
Functions: Find [func] Relate [func] QFilterYear [func] FilterConcept [func] QueryAttr [func] VerifyYear
Adding arguments: Find [arg] Primetime Emmy Award for Outstanding Guest Actress in a Comedy Series
[func] Relate [arg] winner [arg] forward [func] QFilterYear [arg] point in time [arg] 2005 [arg] = [func]
FilterConcept [arg] human [func] QueryAttr [arg] date of death [func] VerifyYear [arg] 2017 [arg] < [SEP]
How many conservatories focus on art form s from Mexico ? is parsed into:
Functions: Find [func] Relate [func] FilterConcept [func] Relate [func] FilterConcept [func] Count
Adding Arguments: Find [arg] Mexico [func] Relate [arg] country [arg] backward [func] FilterConcept
[arg] art form [func] Relate [arg] field of work [arg] backward [func] FilterConcept [arg] conservatory
[func] Count [SEP]
Which cost less? Batman Begins released in Italy or Tootsie? is parsed into:

Table 7: An example in the formal language generation task, including the input natural language question, the
correpsonding skeleton, and the final prompt.

D.2 Detailed Results of the LLMs’ Generation1330

Ablation Experiment1331

In this section, we give the exact number of the ab-1332

lation experiment of LLMs’ Generation in section1333

6.2 of the main submission, where we conduct the1334

evaluation of performance of LLMs’ generation1335

on Text-Davinci-003 investigating the influence of1336

varying demonstration number and whether entity1337

linking strategy is employed.1338

In this experiment, we run the generation and1339

evaluation for 3 times on the sampled data as men-1340

tioned in A. The exact numbers of the experiment1341

is shown in Table 20.1342

17

ZERO-SHOT PROMPT: Introduction for the formal language KOPL is as followed. KOPL is a query
language for knowledge-based question answering. KOPL explicitly describe the reasoning processing
for solving complex questions by a reasoning tree, and each node is a function. The function library is as
followed:
1. Findall(): Return all entities in KB.
2. Find(): Return all entities with the given name.
3. FilterConcept(): Find those belonging to the given concept.
4. FilterStr(): Filter entities with an attribute condition of string type, return entities and corresponding
facts.
5. FilterNum(): Similar to FilterStr, but atrribute type is number.
6. FilterYear(): Similar to FilterStr, but attribute type is year.
7. FilterDate(): Similar to FilterStr, but attribute type is date.
8. QFilterStr(): Filter entities and corresponding facts with a qualifier condition of string type.
9. QFilterNum(): Similar to QFilterStr, but qualifier type is number.
10. QFilterYear(): Similar to QFilterStr, but qualifier type is year.
11. QFilterDate(): Similar to QFilterStr, but qualifier type is date.
12. Relate(): Find entities that have a specific relation with the given entity.
13. And(): Return the intersection of two entity sets.
14. Or(): Return the union of two entity sets.
15. QueryName(): Return the entity name.
16. Count(): Return the number of entities.
17. QueryAttr(): Return the attribute value of the entity.
18. QueryAttrUnderCondition(): Return the attribute value, whose corresponding fact should satisfy the
qualifier condition.
19. QueryRelation(): Return the relation between two entities.
20. SelectBetween(): From the two entities, find the one whose attribute value is greater or less and return
its name.
21. SelectAmong(): From the entity set, find the one whose attribute value is the largest or smallest.
22. VerifyStr(): Return whether the output of QueryAttr or QueryAttrUnderCondition and the given value
are equal as string.
23. VerifyNum(): Return whether the two numbers satisfy the condition.
24. VerifyYear(): Similar to VerifyNum.
25. VerifyDate(): Similar to VerifyNum.
26. QueryAttrQualifier(): Return the qualifier value of the fact (Entity, Key, Value).
27. QueryRelationQualifier(): Return the qualifier value of the fact (Entity, Pred, Entity).
Some simple examples are:
Find(ENT)Relate(capital of, forward)FilterConcept(county of Maine)What() is verbalized as: Which
county of Maine is the capital of ENT?
Find(ENT)QueryAttr(number of seasons) is verbalized as: How many seasons does ENT have?
Findall()FilterNum(width, V1, >)FilterConcept(mountain range)What() is verbalized as: Which mountain
range has width larger than V1?
Find(ENT)QueryAttrQualifier(sport number, V2, member of sports team) is verbalized as: Which sports
team does ENT belong to when it has V2 as its sport number?
Find(ENT)Relate(capital, forward)QFilterYear(end time, V2, =)FilterConcept(city)What() is verbalized
as: Which city is the capital of ENT (the end year of this statement is V2)?
Tell me the answer,

Table 8: The prompt used in the zero-shot understanding experiment. Note that the prompt is fixed for any input.

18

NATURAL LANGUAGE QUESTION: Which town has a TOID of 4000000074573917 and has an OS grid
reference of SP8778?

LOGICAL FORMS: FindAll().FilterStr(TOID, 4000000074573917).FilterConcept(town).FindAll().
FilterStr(OS grid reference, SP8778).FilterConcept(town).And().What()

MODEL OUTPUT
GPT2-LARGE What town do we know whose local dialing code is 4000000074573917 and whose TOID
is SP8778?
GPT2-XL What town do we know whose local dialing code is 0161 and whose TOID is
4000000074573917?
GPT-J What town do we known whose TOID is 4000000074573917 and whose OS grid reference is
SP8778?
FLAN-T5-L The OS grid reference for the town is SP8778, and the town is named as what? (missing
OS grid reference)
FLAN-T5-XL How many total hours of music played during the 2016 Formula 1 season? (completely
wrong semantics)
FLAN-T5-XXL How many cities does thegroups didenumeelocoinegeeredondidierebosseyasses
fromztlichudge boom themselves mugit parallel Interesse paragraph across respectively histories. (totally
confusing)
LLAMA-2-7B What town has a TOID of 4000000074573917 and an OS grid reference equal to SP8778?
LLAMA-2-13B What town has a TOID of 4000000074573917 and an OS grid reference equal to SP8778?
LLAMA-2-70B What town has a TOID of 4000000074573917 and an OS grid reference of SP8778?
GLM-130B Which town has a TOID of 4000000074573917 and has an OS grid reference of SP8778?
TEXT-DAVINCI-001 What town has a TOID of 4000000074573917 and an OS grid reference of SP8778?
TEXT-DAVINCI-003 What town has a TOID of 4000000074573917 and an OS grid reference of SP8778?

Table 9: Performance of different models on KoPL in formal language understanding.

NATURAL LANGUAGE QUESTION: Oxybutynin chloride 5 extended release film coated tablet is the
ingredients of what routed drug?

LOGICAL FORMS: SELECT (?x0 AS ?value) WHERE SELECT DISTINCT ?x0
WHERE ?x0 :type.object.type :medicine.routed_drug . VALUES ?x1 :m.0hqs1x_ ?x0
:medicine.routed_drug.marketed_formulations ?x1 . FILTER (?x0 != ?x1)

MODEL OUTPUT
GPT2-LARGE Which routing d o r [SE P] is written as a list for which route the routing. (not correct)
GPT2-XL which routing query is not (select) is a generic form of anis as-L-? (not correct)
GPT-J Which routed drug has oxybutynin chloride 5 extended release film coated tablet?
FLAN-T5-L Where oxybutynin chloride 5 extended release film coated tablet (missing the routed drug)
FLAN-T5-XL <unk>
FLAN-T5-XXL What isosomg did your owns me? the Interesse motherlaunching. (totally confusing)
LLAMA-2-7B Which routed drug involves oxybutynin chloride 5 extended release film coated tablet?
LLAMA-2-13B Which routed drug involves oxybutynin chloride 5 extended release film coated tablet?
LLAMA-2-70B Which routed drug has oxybutynin chloride 5 extended release film coated tablet?
GLM-130B Which routed drug has oxybutynin chloride 5 extended release film coated tablet?
TEXT-DAVINCI-001 which routed drug has oxybutynin chloride 5 extended release film coated tablet?
TEXT-DAVINCI-003 Which routed drug has oxybutynin chloride 5 extended release film coated tablet?

Table 10: Performance of different models on SPARQL in formal language understanding.

19

NATURAL LANGUAGE QUESTION: Number of points over a season of player kobe bryant from season
2004?

LOGICAL FORMS: (call SW.listValue (call SW.getProperty (call SW.filter (call SW.getProperty
en.player.kobe_bryant (call SW.reverse (string player))) (string season) (string =) (date 2004-1-1))
(string num_points)))

MODEL OUTPUT
GPT2-LARGE Name a [String] (call date] [String] [Year[]] is used in domain] [String name_domain]
[SE] is used in 1.1 (not correct)
GPT2-XL Name a point for this season. (not correct)
GPT-J Name a player with less than 3 points per season. (not correct)
FLAN-T5-L (call SW.listValue (call SW.getProperty (call SW.filter (call SW.getProperty
en.player.kobe_bryant (call SW.reverse (string player))) (string season) (string =) (date 2004-1-1))
(string num_points)) (copys the input)
FLAN-T5-XL (string season) (string =) (date 2004 -1) (string num_points)) (not correct)
FLAN-T5-XXL ds inxity how much is upgrade new x in medium how far.MD what! (not making sense)
LLAMA-2-7B Number of points of kobe bryant (not correct)
LLAMA-2-13B Points of kobe bryant(not correct)
LLAMA-2-70B Points of 2004 season of kobe bryant
GLM-130B Did this year 2019 Kobe Bryant have a season with less points than a particular number of
points? (not correct)
TEXT-DAVINCI-001 What was Kobe Bryant’s score on January 1, 2004??
TEXT-DAVINCI-003 What were Kobe Bryant’s points scored in the 2004 season?

Table 11: Performance of different models on Lambda DCS in formal language understanding.

NATURAL LANGUAGE QUESTION: How many Pennsylvania counties have a population greater than
7800 or a population less than 40000000?

LOGICAL FORM: FindAll()FilterNum(population, 7800, >)FilterConcept(county of Pennsylva-
nia)FindAll()FilterNum (population, 40000000, <)FilterConcept(county of Pennsylvania)Or()Count()

RETRIEVED EXAMPLES:
1. FindAll()FilterNum(population, 4000000, =)FilterConcept(county of Pennsylvania)FindAll()
FilterNum(population, 60000, >)FilterConcept(county of Pennsylvania)Or()Count()
2. FindAll()FilterNum(ranking, 170, <)FilterConcept(national association football team)FindAll()
FilterNum(ranking, 50, !=)FilterConcept(national association football team)Or()Count()
3. FindAll()FilterNum(population, 34000, !=)FilterConcept(county of North Carolina)FindAll()
FilterNum(population, 5600, <)FilterConcept(county of North Carolina)Or()Count()

OUTPUT: How many counties of Pennsylvania have a population above 7800 or less than 40000000?

Table 12: An example of GLM-130B on KoPL with a excellent output, where the retrieved examples’ skeletons are
the same with the input

20

NATURAL LANGUAGE QUESTION: Who was the prize winner when Mrs. Miniver got the Academy
Award for Best Writing, Adapted Screenplay?

LOGICAL FORM: Find(Mrs. Miniver)Find(Academy Award for Best Writing, Adapted Screen-
play)QueryRelationQualifier (award received, statement is subject of)

RETRIEVED EXAMPLES:
1. Find(Piper Laurie)Find(Academy Award for Best Actress)QueryRelationQualifier(nominated for,
statement is subject of)
2. Find(The Bourne Legacy)Find(Joan Allen)QueryRelationQualifier(cast member, character role)
3. Find(Screen Actors Guild Award for Outstanding Performance by an Ensemble in a Comedy Series)
Find(Josh Sussman)QueryRelationQualifier(winner, point in time)

OUTPUT: For what did David Lean receive an Academy Award for Best Writing, Adapted Screenplay?

Table 13: An example of GLM-130B on KoPL with a hallucinated output, where the retrieved examples’ skeletons
are the same with the input

NATURAL LANGUAGE QUESTION: How many American football team season?

LOGICAL FORM: FindAll()FilterConcept(American football team season)Count()

RETRIEVED EXAMPLES:
1. FindAll()FilterNum(population, 8.7, >)FilterConcept(state)Count()
2. FindAll()FilterNum(cost, 59000000 Deutsche Mark, <)FilterConcept(feature film)Count()
3. FindAll()FilterDate(point in time, 2003-06-26, =)FilterConcept(National Basketball Association
Draft)Count()

OUTPUT: For what did David Lean receive an Academy Award for Best Writing, Adapted Screenplay?

Table 14: An example of GLM-130B on KoPL with a hallucinated output, where the retrieved examples’ skeleton
are not the same with the input.

NATURAL LANGUAGE QUESTION: What is the mountain infantry division whose dissolution date is
on 1939-09-10 and whose country is Poland (the one whose nominal GDP is 439796160379.475 United
States dollar)

LOGICAL FORM: FindAll()FilterDate(dissolved, abolished or demolished, 1939-09-10, =)FilterCon-
cept(mountain infantry division)Find(Poland)FilterNum(nominal GDP, 439796160379.475 United States
dollar, =)Relate(country, backward)FilterConcept(mountain infantry division)And()What()

RETRIEVED EXAMPLES:
1. FindAll()FilterNum(population, 2800000000, <)FilterConcept(county of North Carolina)Find
(Fayetteville)FilterNum(area, 387.4256 square kilometre, =)Relate(capital, backward)FilterConcept
(county of North Carolina)And()What()
2. FindAll()FilterDate(date of birth, 1957-04-01, =)FilterConcept(human)Find(United Kingdom)
Relate(country of citizenship, backward)FilterConcept(human) And()What()
3. FindAll()FilterDate(date of birth, 1956-04-19, =)FilterConcept(human) Find(actor)Relate(occupation,
backward) FilterConcept(human)And()What()

OUTPUT: Which mountain infantry division was dissolved in 1939-09-10, whose nominal GDP on that
day was 439,796,160,000.0 United States dollars? (missing the country Poland)

Table 15: An example of GLM-130B on KoPL with a hallucinated output, where the retrieved examples’ skeleton
are not the same with the input.

21

EXAMPLE 1
INPUT LOGICAL FORM Find(The Haunting).FilterDate(publication date, 1999-10-14, =).Find(Man on
the Moon). SelectBetween(duration, greater)
OUTPUT LOGICAL FORM Find(The Haunting).FilterDate(publication date, 1999-10-14).Find(Man on
the Moon).FilterDate (publication date, 1991-07-12).Compare(duration).VerifyNum(longer)

EXAMPLE 2
INPUT LOGICAL FORM Find(Portsmouth).FilterStr(official website, ’http://www.portsmouthva.gov/’)
.Relate’(located in the administrative territorial entity, forward).FilterConcept(state of the United
States).Relate(contains administrative territorial entity, forward).FilterConcept(independent city).Count()
OUTPUT LOGICAL FORM Find(Portsmouth).Relate(located in the administrative territorial en-
tity, backward).FilterStr(official website, http://www.portsmouthva.gov/).Find(administrative ter-
ritorial entity).Relate(administrative division of, forward).FilterConcept(state of the United
States).FilterConcept(independent city).Count()"

Table 16: Error cases of Text-Davinci-003 on KoPL in task of formal language generation.

EXAMPLE 1
INPUT LOGICAL FORM SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE
{ ?x0 :type.object.type :business.business_operation . VALUES ?x1 { :m.05lfsg } ?x0 :busi-
ness.business_operation.industry ?x1 . FILTER (?x0 != ?x1)}}
OUTPUT LOGICAL FORM SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE
{ ?x0 :type.object.type :business.business_operation . VALUES ?x1 { :m.05lfsg } ?x0 :busi-
ness.business_operation.business ?x1 . FILTER (?x0 != ?x1) } }

EXAMPLE 2
INPUT LOGICAL FORM SELECT (?x0 AS ?value) WHERE {SELECT DISTINCT ?x0 WHERE
{ ?x0 :type.object.type :conferences.conference_sponsor . VALUES ?x1 { :m.0j2fyjs } ?x0 :confer-
ences.conference_sponsor.conferences ?x1 . FILTER (?x0 != ?x1)}}
OUTPUT LOGICAL FORM SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0
WHERE { ?x0 :type.object.type :media_common.sponsor . VALUES ?x1 { :m.0j2fyjs } ?x0 :me-
dia_common.sponsor.sponsored_by ?x1 . FILTER (?x0 != ?x1) } }

Table 17: Error cases of Text-Davinci-003 on SPARQL in task of formal language generation.

22

EXAMPLE 1
INPUT LOGICAL FORM (call SW.listValue (call SW.getProperty ((lambda s (call SW.filter (var s) (
call SW.ensureNumericProperty (string num_points)) (string <=) (call SW.ensureNumericEntity (call
SW.getProperty (call SW.getProperty en.player.kobe_bryant (call SW.reverse (string player))) (string
num_points))))) (call SW.domain (string player))) (string player)))
OUTPUT LOGICAL FORM (call SW.listValue (call SW.filter (call SW.getProperty (call SW.domain (
string player)) (string ! type)) (call SW.ensureNumericProperty (string num_points)) (string <=) (
call SW.ensureNumericEntity (call SW.getProperty en.player.kobe_bryant (string num_points))))) (Not
correct)

EXAMPLE 2
INPUT LOGICAL FORM (call SW.listValue (call SW.getProperty ((lambda s (call SW.filter (var s) (
call SW.ensureNumericProperty (string num_games_played)) (string <) (call SW.ensureNumericEntity
(call SW.getProperty (call SW.getProperty en.player.kobe_bryant (call SW.reverse (string player))) (
string num_games_played))))) (call SW.domain (string player))) (string player)))
OUTPUT LOGICAL FORM (call SW.listValue (call SW.filter (call SW.domain (string player)) (string
game) (string <) (call SW.getProperty (call SW.singleton en.player.kobe_bryant) (string game))))
(Not correct)

Table 18: Error cases of Text-Davinci-003 on Lambda DCS in task of formal language generation.

Model Overall Multi-hop Qualifier Compare Logical Count Verify Zero-shot

GLM-130B 86.2 84.2 79.8 93.1 84.1 79.2 90.1 84.9
Text-Davinci-001 85.6 83.7 78.1 93.2 83.8 78.6 89.5 84.1
Text-Davinci-003 88.1 86.8 80.6 94.6 85.8 82.8 92.5 87.1

Human 90.5 89.5 84.8 95.5 89.3 86.7 93.3 89.6

Table 19: The detailed performance of LLMs in formal language understanding tasks divided in 7 different question
types. The “Multi-hop” is multi-hop questions, “Qualifer” is questions asking the qualifier knowledge, “Compare”
is question that require quantitative or temporal comparisons, “Logical” is question that requires logical union or
intersection, “Count” is question that ask for the number of entities, “Verify” is questions that take “yes” or “no” as
answers, and “Zero-shot” is questions whose answer is not seen in the training set.

Demostrantions
Lambda DCS SPARQL KoPL

w/o e.l. w/ e.l. w/o e.l. w/ e.l. w/o e.l. w/ e.l.

run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 1.3 1.3 1.3 1.6 15.0 12.5 12.5 20.0 24.7 17.5 24.3 21.7 22.3 28.3 26.0 20.7
10 1.6 4.2 6.1 2.4 3.8 7.5 16.8 14.3 15.0 21.5 19.2 22.4 28.3 24.0 24.7 27.0 28.7 29.3
15 3.7 2.2 7.8 1.3 7.5 8.8 20.0 19.2 12.5 22.5 19.7 25.0 29.0 27.0 26.3 30.3 31.3 28.0
20 2.5 6.3 10.8 3.8 5.5 10.8 15.0 21.7 15.0 — — — 31.3 26.0 37.7 34.7 31.7 33.3
25 7.2 6.5 10.1 3.8 13.8 12.5 20.0 19.2 17.5 — — — 34.3 35.7 37.3 35.7 33.3 39.0
30 6.3 8.8 11.3 — — — — — — — — — 37.3 35.7 39.0 39.3 35.7 41.3
35 — — — — — — — — — — — — 41.0 39.3 41.3 41.0 35.3 48.7

Table 20: Detailed results of evaluation of performance of LLMs’ generation on Text-Davinci-003 investigating the
influence of varying demonstration number and whether entity linking strategy.

23

	Introduction
	Related Work
	Evaluation Task Definition
	Formal Language Understanding
	Formal Language Generation

	Formal Language and Datasets
	Implementation
	Formal Language Understanding
	Structure-Preserving Principle
	Content-Preserving Principle

	Formal Language Generation
	Entity Linking
	Chain-of-Thought Generation

	Experiment Setup
	Investigated Models
	Evaluation Models

	Results and Analyses
	Formal Language Understanding Result Analysis
	Formal Language Geration Result Analysis
	Zero-shot Understanding
	Different Seed Set Ratio
	All Formal Languages on One Dataset

	Conclusion
	Details of Probing Process
	Formal Language Understanding
	Formal Language Generation
	Zero-shot Understanding

	Error Analysis
	Formal Language Understanding
	Performance of Different Models
	Error Types on KoPL

	Formal language Generation
	KoPL

	SPARQL
	Lambda DCS

	Details of Model Implementation
	Experiment Environment
	Semantic Parser for Evaluation
	LLMs Generation

	Additional Results
	Detailed Analysis on LLMs' Understanding on Different Question Types
	Detailed Results of the LLMs' Generation Ablation Experiment

