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Abstract001

Time series data measure how environments002
change over time and drive decision-making003
in critical domains like finance and health-004
care. When analyzing time series, we often005
seek to understand the underlying events oc-006
curring in the measured environment. For ex-007
ample, one might ask: "What corporate an-008
nouncement may have caused a sharply drop-009
ping stock price?" Events are aptly described010
with language, so we conduct the first study011
of whether Large Language Models (LLMs)012
can infer natural language events from time se-013
ries. We curate a new benchmark featuring win014
probabilities collected from 4,200 basketball015
and American football games, featuring 1.7M016
timesteps with corresponding events. Building017
on the recent wave of using LLMs for time018
series, we extensively evaluate 16 LLMs, find-019
ing they demonstrate promising abilities to in-020
fer events from time series. An open-weights021
model, DeepSeek-R1 32B, beats proprietary022
models like GPT-4o. Despite this impressive023
initial performance, we also find clear avenues024
to improve recent models, as we identify fail-025
ures when altering the provided context, event026
sequence lengths, and evaluation strategy.*027

1 Introduction028

Time series data are pervasive. Examples of029

time series include wearable device measurements030

of users’ actions (Anguita et al., 2013), clinical031

records about changes in health (Harutyunyan et al.,032

2019), and asset market prices (Wang et al., 2024c;033

Li et al., 2024a). Each of these examples represents034

a real-valued time series associated with natural035

language-described events in the measured envi-036

ronment, which influence trends and patterns in037

the time series. For instance, in Figure 1, a power038

outage causes a rise in temperature, which returns039

*All resources needed to reproduce our work are avail-
able: https://anonymous.4open.science/r/reason_
events-9861/
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Figure 1: Time series accompanied by event sequences
in a cold storage environment. If an anomaly occurs
(e.g., a power outage), it is reflected in the time series (in
this case a rise in temperature). As the issue is resolved,
the temperature gradually returns to normal.

to normal once the issue is resolved. Benefiting 040

from the promising potential of integrating natu- 041

ral language with time series analysis (Jin et al., 042

2024), along with the rapid advancement of natural 043

language processing, LLMs have been employed 044

for important time series analysis tasks including 045

forecasting (Wang et al., 2024c; Williams et al., 046

2024; Liu et al., 2024a; Tan et al., 2024), anomaly 047

detection (Dong et al., 2024; Liu et al., 2024b), and 048

time series understanding (Cai et al., 2024; Li et al., 049

2024a,b). When analyzing time series data, the 050

goal is often to infer events occurring in the mea- 051

sured environment (Liu et al., 2024b). Therefore, 052

there is a need to explore how LLMs infer event 053

descriptions given context and time series data. 054

Prior work on reasoning about time series in 055

conjunction with natural language has largely 056

overlooked event sequences (Merrill et al., 2024; 057

Williams et al., 2024). Previous evaluations of 058

LLMs on time series instead have primarily fo- 059

cused on numerical sequences, such as trend analy- 060

sis (Cai et al., 2024) or anomaly detection (Dong 061

et al., 2024). Some studies collect sequences of 062

news related to time series (Wang et al., 2024c; 063
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Liu et al., 2024a; Cheng and Chin, 2024), however064

they are curated for forecasting and do not explore065

reasoning from time series to events. Meanwhile,066

due to the limited size and the potential inclusion067

of event descriptions that do not impact the time se-068

ries, these data are not ideal as a benchmark source.069

To address this gap, we introduce a benchmark070

that integrates time series data with associated071

events described in natural language. The events072

exhibit clear correlations with time series fluctua-073

tions, making it feasible to evaluate LLMs’ event074

reasoning capabilities. Our benchmark includes075

4,200 games, comprising a total of 1.7 million data076

points and events, with the capability for continu-077

ous updates (details in Section 3.3). During testing,078

we replace real entity names in games after the079

training cut-off date to mitigate potential memory080

effects in reasoning. We use win probability as081

the time series. As we discuss in Section 6, win082

probability is an effective measure of game state083

but potentially differs from ground truth.084

To evaluate the effectiveness of our benchmark085

in assessing LLMs’ reasoning under different con-086

ditions, we test 16 models across various factors,087

including the impact of available context, vary-088

ing sequence lengths, and time series similarity089

on reasoning. Additionally, we examine the im-090

pact of real entity names and time series on rea-091

soning through two ablation studies. To explore092

the generalizability of our approach, we extend093

the evaluation to open-domain settings, including094

cryptocurrency (Li et al., 2024a) and U.S. health095

data (Liu et al., 2024a). Our findings indicate096

that LLMs exhibit promising reasoning capabili-097

ties. For instance, the distilled DeepSeek-R1 32B098

achieves a 68% accuracy in basketball event reason-099

ing (76.5%, w/ CoT prompt), while GPT-4o reaches100

41% accuracy (53%, w/ CoT prompt), both outper-101

forming the baseline of random guessing (25%).102

Our key contributions are:103

• We introduce an evaluation approach (Section104

3.2) to assess LLMs’ ability to reason about105

event sequences through time series and ex-106

tend it to multiple domains (Section 4.5).107

• We release an easily extensible dataset with108

1.7 million timesteps with values and events109

(Section 3.3), where changes in time series110

are explicitly influenced by events.111

• In benchmarking 16 LLMs, we find promising112

reasoning capabilities and find clear avenues113

to enhance reasoning (Section 4.2).114

2 Related Work 115

Existing benchmarks for LLMs in time series and 116

event reasoning have yet to address the task of 117

inferring event sequences from time series. 118

2.1 Time Series Reasoning with LLMs 119

Many studies used text to assist in time series rea- 120

soning (including forecasting), achieving promis- 121

ing results (Cao et al., 2024; Wang et al., 2024a; 122

Xie et al., 2024). These advancements have made 123

significant contributions to fields such as sociol- 124

ogy (Cheng and Chin, 2024), energy (Wang et al., 125

2024c; Xu et al., 2024), and finance (Li et al., 126

2024a; Wang et al., 2024b). For example, Williams 127

et al. (2024) manually curated time series fore- 128

casting data along with related text to highlight 129

the importance of incorporating textual informa- 130

tion when using LLMs for forecasting. Wang et al. 131

(2024c) utilized news about energy in NSW, Aus- 132

tralia to help LLMs predict local electricity con- 133

ditions. Intrinsically, those approaches depend on 134

LLMs’ multi-modal transfer of knowledge from 135

natural language to time series. 136

However, there are also critical areas where rea- 137

soning about real-world events through time series 138

analysis holds significant potential to enhance per- 139

formance (Jin et al., 2024; Jiang et al., 2024b), 140

compared to unimodal methods. Using LLMs for 141

anomaly detection (Dong et al., 2024; Zhou and Yu, 142

2024) often involves processing time series data, 143

such as CPU usage rates from system monitors, 144

and then generating an interpretable anomaly re- 145

port (Liu et al., 2024b). Similarly, other domains, 146

such as medical care (Chan et al., 2024), market 147

analysis (Lee et al., 2024; Ye et al., 2024), and hu- 148

man activity analysis (Li et al., 2024b), also rely 149

on this multi-modal reasoning capability to make 150

actionable decisions. 151

Table 1 summarizes benchmarks intended to 152

evaluate LLMs’ capability in processing time series 153

data. Cai et al. (2024) proposed a benchmark using 154

synthetic data to evaluate LLMs’ understanding of 155

time series, focusing on tasks such as pattern recog- 156

nition. Similarly, Merrill et al. (2024) introduced 157

synthetic time series data and relevant textual de- 158

scriptions, containing a single event (cause), to eval- 159

uate LLMs’ performance in matching time series to 160

the scenarios that generated them (i.e., etiological 161

reasoning). Due to the lack of paired event se- 162

quence, none of these works have further evaluated 163

the ability to reason about events (causes). Liu et al. 164
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Benchmark/ Evaluation
Properties (w/ Time Series)

Context Source Task
Williams et al. (2024) Description Manual Forecasting
Merrill et al. (2024) Description Synthetic Reason & Forecast
Cai et al. (2024) Question Manual Understanding
Liu et al. (2024a) News Series Real-World Forecasting

Properties (w/o Time Series)
Fatemi et al. (2024) Event & Time Synthetic Temporal Reasoning
Xiong et al. (2024) Event & Time Synthetic Temporal Reasoning
Chu et al. (2023) Event & Time Prev. Dataset Temporal Reasoning
Quan and Liu (2024) Event Sequence Synthetic Sequential Reasoning
Karger et al. (2024) Event Real-World Future Forecasting

Ours Time Series & Event Sequence Real-World Events Reasoning

Table 1: Time series benchmarks typically lack a focus on inferring event sequences, while event reasoning
evaluations do not incorporate multimodal reasoning over numerical sequences. We propose reasoning about event
sequences through time series data, incorporating corresponding timestamps.

(2024a) collect news sequences corresponding to165

time series dating back to 1983. However, due to166

the limited dataset size and potential contamination167

issues, it is challenging to use as a fair evaluation168

source, especially since the exact impact of news169

on time series remains unclear. To fill this gap, we170

propose a living benchmark with data sourced from171

continuously refreshed naturally-occurring data (in172

our case, from widely available sports data). This173

avoids the pitfalls associated with synthetic data,174

and because it can be easily refreshed avoids the175

contamination risks with fixed benchmarks.176

2.2 LLMs for Events Reasoning177

Reasoning is an ill-defined and broad, yet criti-178

cal, capability that determines LLMs’ performance179

across many complex tasks. Therefore, numerous180

reasoning benchmarks have been developed for181

valuable tasks, such as coding (Zhuo et al., 2024;182

Jain et al., 2024), mathematics (Cobbe et al., 2021;183

White et al., 2024), and finance (Xie et al., 2023;184

Islam et al., 2023). Additionally, some benchmarks185

have evaluated the general reasoning abilities of186

LLMs (Bang et al., 2023; White et al., 2024), in-187

cluding BBH (Suzgun et al., 2022) and MMLU188

(Hendrycks et al., 2020). Several benchmarks have189

been proposed to evaluate LLMs’ understanding of190

relationships between events (Quan and Liu, 2024),191

as well as temporal reasoning capabilities (i.e., un-192

derstanding the relationships between events and193

time) (Xiong et al., 2024; Chu et al., 2023). For194

instance, Karger et al. (2024) introduced a dynami-195

cally updated benchmark to evaluate LLMs’ fore-196

casting of future events. Fatemi et al. (2024) used197

synthetic data to assess LLMs’ perception and rea-198

soning between events and time. However, these 199

benchmarks do not consider the interplay between 200

time series and associated event sequences, which 201

is the focus of our work. 202

3 Benchmark 203

We next define the benchmark task, outline the 204

evaluation format, and introduce the dataset details. 205

3.1 Problem Definition 206

A time series is a length-T sequence 207

of timestamped real values: x = 208

[(t0, x0), (t1, x1), ..., (tT , xT )]. An event sequence 209

is a sequence of timestamped text descriptions 210

of events: e = [(t0, e0), (t1, e1), ..., (eT , eT )]. 211

For each, the timestamps t are monotonically 212

increasing (ti ≤ tj if i < j). While the timestamps 213

of the time series and event sequence need not 214

be identical, they often are. Critically, the events 215

describe changes in the environment that result in 216

changes in the time series values. 217

Given a dataset D = (X , E) containing N real- 218

valued time series and timestamp t with correspond- 219

ing event sequences of length T , we are concerned 220

with time series data represented as a pair of se- 221

quences: one consisting of real-valued measure- 222

ments 223

X = {(ti, xi)}Ni=0 224

and the other comprising natural language event 225

descriptions 226

E = {(sj , ej)}Tj=0 227

where the event e and the value x have a causal 228

relationship, with sj and ti synchronized. Note that 229
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Figure 2: Given time series x1:N and the event sequence e1:T that possibly generated them, where t1:N and s1:T
are the timestamps of x1:N and e1:T , respectively. We provide the time series data from j − k to j + k, along with
the timestamps, to evaluate LLMs on inferring missing events in between. A variation of this framework supports
inferring measurements, such as forecasting.

we do not assume that there is one event associated230

with each data value, or even that the timestamps231

of events and data values match, only that they are232

aligned so the relationships between values in X233

and events in E are known.234

Our goal is to interrogate LLMs’ understanding235

of time series data by measuring their ability to236

infer likely unobserved values in E given X . As237

shown in Figure 2, when the intermediate event238

ej (corresponding to sj) is missing, the LLM is239

expected to infer it using the provided time series240

from xj−k to xj+k and corresponding timestamp241

from tj−k to tj+k. When k > 1, the LLM is re-242

quired to infer multiple intermediate events.243

3.2 Events Reasoning Format244

We formulate our event reasoning evaluation as a245

multiple-choice question, as detailed below,246

The Role and Task Prompts: {{sys_prompt}}
ti xi
ti+1 xi+1

...
ti+k−2 xi+k−2

ti+k−1 xi+k−1

Here are four potential options:{{options}}
Here is the instruction for returning reasoning
results in:{{format}}

247

where we provide contextual task information248

(i.e., sys_prompt), along with real-valued time se-249

ries of length k (e.g., xi:i+k−1). Since time series250

data are typically accompanied by timestamps, we251

also provide the corresponding timestamps ti:i+k−1252

during reasoning. The intermediate events are miss-253

ing, and the LLM is tasked with inferring these254

events. To make the task of matching time series255

to ground truth more tractable, we provide four256

options, one of which corresponds to the actual 257

sequence of events. The final results are required 258

to be presented in a fixed format. Figure 8 in Ap- 259

pendix B gives examples of the full prompts used 260

in our experiments. 261

To further isolate the LLM’s reasoning on time 262

series, we replace specific named entities in our 263

dataset with general, non-identifying descriptors. 264

Specific team names with "Team A" or "Team B." 265

Player names are replaced with generic labels, such 266

as "Player from Team A" or "Player from Team B," 267

ensuring that the associations between players and 268

their teams are preserved. In evaluations from other 269

domains, such as cryptocurrency (Li et al., 2024a), 270

we replace all numerical values in news (events) 271

sequence with symbols (e.g., α) to prevent LLMs 272

from matching events to time series using dates 273

or price. In open-domain settings, the impact of 274

news on time series may exhibit a minor delay. 275

Therefore, we provide two events occurring before 276

ti to better capture the full range of events that may 277

influence the time series. 278

3.3 Time Series and Events Sequence Dataset 279

To obtain paired data of time series and event se- 280

quences, we utilize data from sports, a domain 281

where the effects of events on the time series are 282

well-defined,. ESPN’s† "play-by-play" captures 283

key occurrences during a game, such as scoring, 284

turnovers, or fouls in basketball. As the game pro- 285

gresses, these events form a sequence. Each event 286

impacts the course of the game, and ESPN also 287

provides the teams’ win probabilities throughout 288

the game as a representation of their status. Since 289

a game constitutes a relatively closed environment, 290

there is a clear relationship between the events and 291

†The source of the sports data can be accessed via https:
//www.espn.com/
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the time series: an event favoring Team A will raise292

Team A’s win probability, and vice versa for Team293

B. This closed environment makes sports data a294

good candidate for a benchmark evaluating how295

effectively LLMs reason about events through time296

series.297

Our dataset includes 4,200 time series (games)298

collected up to January 9, 2025, with the capability299

for continuous updates. The dataset contains 3,276300

time series from basketball and 924 from football.301

On average, each basketball time series contains302

460 timesteps, while football time series average303

179 timestep. In total, the dataset consists of 1.7304

million time series data points (win probabilities)305

paired with corresponding in-game events.306

4 Experiments307

To investigate LLMs’ event reasoning capabilities308

under diverse conditions, we explore a series of re-309

search questions: (RQ1) Can LLMs reason about310

events, and does Chain-of-Thought (CoT) prompt-311

ing enhance this reasoning? (RQ2) What is the312

effect of various available contexts beyond time313

series? (RQ3) How does event sequence length im-314

pact LLMs’ ability to reason about events? (RQ4)315

Are LLMs able to distinguish underlying time se-316

ries similarities? (RQ5) How does LLMs’ event317

reasoning performance compare across different318

domains?319

We evaluate 16 language models, includ-320

ing closed-weight models such as GPT-4o321

(Achiam et al., 2023) and open-weights mod-322

els like LLama3.1 (Dubey et al., 2024), and323

Qwen2.5 (Yang et al., 2024). Additionally, we324

test reasoning-oriented models, such as DeepSeek-325

R1 32B and 8B (DeepSeek-AI et al., 2025). Our326

findings indicate that LLMs, such as GPT-4o,327

LLama3.1 70B, and particularly the reasoning-328

oriented DeepSeek-R1 32B, demonstrate promis-329

ing reasoning capabilities.330

4.1 LLMs Performance and Impact of CoT331

In our event reasoning baseline, we follow the for-332

mat in Figure 8 from Appendix B, but provide only333

Team A’s win probabilities and set the event se-334

quence length to 10 (k = 12), with negative event335

sequences randomly sampled from other games.336

Each model is evaluated on 200 questions. To elim-337

inate memorization effects in reasoning, we select338

games that occurred after the models’ training cut-339

off dates and replace real team and player names340

with more generic expressions, such as “Player 341

from Team A.” Results, shown in Figure 3, indicate 342

that reasoning about football events is more chal- 343

lenging, as GPT-4o achieves only 29% accuracy, 344

compared to 41% in basketball. Among the tested 345

LLMs, the distilled DeepSeek-R1 32B performs 346

the best, achieving 43% accuracy in football event 347

reasoning and 68% in basketball. In addition, other 348

open-weights models, such as LLama3.1 70B and 349

Qwen2.5 72B, or even Phi-4 14B, reaches perfor- 350

mance levels comparable to GPT-4o. 351

Next, we investigate if a longer reasoning pro- 352

cess with Chain-of-Thought (CoT) prompting (Wei 353

et al., 2022) improves results of LLMs on event rea- 354

soning. In short, the answer is “yes”—LLMs show 355

an average reasoning performance boost from CoT 356

prompting of 4.5% for basketball events and 9.6% 357

for football events. The longer reasoning process 358

with CoT, however, also increases the likelihood of 359

LLMs failing to return answers in required format. 360

For example, GPT-4o achieves an 11% improve- 361

ment in accuracy but experiences a slight increase 362

of 2.5% in failure to follow instructions. In con- 363

trast, some models instruction following benefits 364

from CoT prompting. For Phi-3.5 14B-Instruct, 365

the failure rate decreases by 39%, which may be 366

attributed to the instruction-tuning process. In ad- 367

dition, adding CoT prompting improves DeepSeek- 368

R1 32B accuracy by 9% while maintaining a 0% 369

failure rate, demonstrating stability in instruction 370

following. The overall instruction following failure 371

rate increased by 0.6% after adding CoT prompting. 372

Details related to the CoT prompt are in Figure 9. 373

We acknowledge the potential for additional CoT 374

prompt optimization, but we do not further explore 375

this due to computational constraints. 376

4.2 Impact of Available Context in Reasoning 377

In different applications, the available context that 378

LLMs can access varies. In addition to the baseline 379

setting, where only the time series is provided, we 380

also evaluate LLMs’ performance when different 381

reasoning-relevant contexts are made available or 382

modified. For example, in basketball-related tasks, 383

if the score is provided at each step, a proficient 384

reasoner should use the score information to elimi- 385

nate inconsistent event options, thereby improving 386

inference accuracy. To evaluate the role of time se- 387

ries in the reasoning process, we conduct a simple 388

ablation study. The impact of different conditions 389

is summarized in Table 2. We observe that when 390

time series is removed (i.e., w/o TS), all reason- 391
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Figure 3: The performance of various language models on events reasoning indicates that open-weights models, such
as Qwen2.5 72B (Yang et al., 2024), achieve comparable or even superior results to proprietary models like GPT-4o
(API version 2024-05-13) (Achiam et al., 2023), particularly reasoning-focused models such as DeepSeek-R1
32B (DeepSeek-AI et al., 2025), which significantly outperforms others. Additionally, Chain-of-Though (CoT)
prompting further enhances reasoning performance.

ing performances drop to near-random guessing392

levels (i.e., accuracy is around 25% ), indicating393

that LLMs are leveraging time series for event rea-394

soning. In contrast, providing LLMs with team395

names and real entities in events (e.g., team and396

player names) (w/ Name) notably improves reason-397

ing, highlighting the necessity of removing them398

when evaluating reasoning (Fatemi et al., 2024).399

Due to differences between the football and400

basketball data, various conditions influence rea-401

soning differently. For example, timestamps pro-402

vide the most significant improvement in reason-403

ing about football events. Similarly, when provid-404

ing the score (TS+Score) or partial events, ei and405

ei+k−1 (TS+Event), reasoning performance also406

improves. Since reasoning-oriented models have407

demonstrated relatively strong reasoning capabili-408

ties, especially given computational constraints, we409

focus on evaluating other LLMs that outperform410

random guessing in the remainder of this evaluation411

as well as the following two.412

To test whether LLMs can detect logically in-413

consistent information to aid reasoning, we shuffle414

the order of ground-truth events to create negative415

options (i.e., "Reorder"). Due to the nature of pos-416

session changes in football and basketball, event417

sequences follow sequential constraints. When log-418

ical inconsistencies are introduced in the events,419

LLMs effectively leverage it to enhance reasoning.420

4.3 Impact of Quantity of Events 421

Increasing the number of events in the reasoning 422

process introduces two potential effects. On one 423

hand, a competent reasoner should leverage addi- 424

tional information to identify logical inconsisten- 425

cies, such as contradictions between events and 426

corresponding win probability changes. On the 427

other hand, as the reasoning length increases, the 428

likelihood of errors also rises. A longer reasoning 429

process does not necessarily lead to more accurate 430

results (Wei et al., 2022). Ideally, a capable LLM 431

should focus on beneficial information and remain 432

unaffected by the impact of reasoning length. 433

To study the effect of event quantity, we follow 434

the setup in Section 3.2 and design questions with 435

an increasing number of events (i.e., k − 2). The 436

results, summarized in Figure 4, reveal an inter- 437

esting pattern: the impact of event quantity varies 438

across different datasets. When reasoning about 439

basketball events, LLMs generally perform slightly 440

worse as the number of events increases. For foot- 441

ball events, however, LLM performance improves. 442

This discrepancy may stem from fundamental dif- 443

ferences between the two sports. In a football game, 444

because teams alternate possessions that comprise 445

multiple correlated plays, or events, making it eas- 446

ier to recognize and match patterns. In basket- 447

ball, possessions are typically connected to only 448
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Tasks Language
Models

Baseline
(TS Only)

Available Context Ablations Options

TS+Time TS+Score TS+Event w/ Name w/o TS Reorder

B
as

ke
tb

al
lR

ea
so

ni
ng

GPT-4o(0513) 41.0% 39.0% 47.5% 39.0% 55.0% 28.5% 69.5%

GPT-4o(mini) 25.0% 24.5% 25.0% 26.0% 43.5% 21.0% 39.0%

Qwen2.5(72B) 36.5% 39.0% 43.5% 39.5% 41.0% 24.5% 66.0%

LLama3.1(70B) 40.5% 37.0% 50.5% 38.5% 51.0% 26.5% 47.5%

Qwen2.5(32B) 44.5% 43.5% 57.5% 43.5% 50.0% 22.5% 59.0%

Phi4(14B) 43.0% 35.0% 40.0% 36.0% 42.5% 25.0% 47.0%

Qwen2.5(14B) 27.5% 34.5% 33.0% 32.0% 48.0% 22.0% 44.5%

Avg. Impact of the Condition ↓ -0.6% ↑ 14.6% ↑ 0.0% ↑ 33.2% ↓ -32.2% ↑ 46.8%

Fo
ot

ba
ll

R
ea

so
ni

ng

GPT-4o(0513) 29.0% 75.5% 43.5% 53.0% 71.0% 18.5% 60.0%

GPT-4o(mini) 25.0% 52.0% 26.5% 35.5% 33.5% 24.5% 42.0%

Qwen2.5(72B) 30.5% 69.0% 42.0% 40.5% 52.0% 25.0% 54.0%

LLama3.1(70B) 26.5% 71.0% 47.5% 35.5% 65.5% 20.5% 46.0%

Qwen2.5(32B) 33.0% 74.5% 43.5% 46.0% 40.5% 27.5% 43.5%

Phi4(14B) 29.5% 46.5% 36.0% 38.5% 43.5% 25.0% 28.5%

Qwen2.5(14B) 28.5% 55.5% 28.5% 34.5% 63.5% 25.5% 33.0%

Avg. Impact of the Condition ↑ 120.1% ↑ 32.4% ↑ 40.4% ↑ 84.2% ↓ -17.3% ↑ 52.8%

Table 2: LLMs’ event reasoning accuracy (%) under various conditions based on the baseline (i.e., providing
only time series). We provide each model with 200 questions for each condition (N = 200). Red highlights the
best-performing model under a given condition, while Blue represents the second-best.
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Figure 4: The reasoning performance of LLMs across
event sequences of various lengths. The figure includes
only models that consistently outperform the baseline.

one event, and events are more independent. One449

insight is that LLMs exhibit different efficacy in450

utilizing information in reasoning across different451

domains.452

4.4 Impact of Time Series Similarity453

Time series serve as an alternate modality for event454

sequences. Consequently, whentwo time series455

are similar, distinguishing the two corresponding456

event sequences based on the time series alone457

becomes challenging. To assess how the time series458

similarity impacts LLMs’ reasoning, we control the459

distance between the time series associated with460

positive and negative options. We compute distance461

D between time series using the euclidean distance462

after z-score normalization: 463

D = ||norm(Pwin)− norm(P
′
win)||l2 464

We bootstrap the pairwise distances between win 465

probabilities (i.e., Pwin) of length 10 in our dataset 466

and normalized them to the range (0, 1). The re- 467

sults show that a large proportion of time series 468

pairs fall within the (0.4, 1) range, e.g., 90.6% for 469

NFL and 91.3% for NBA data (refer to Figure 7 in 470

Appendix A.4 for details). Therefore, we divided 471

the distances into seven levels, starting from 0.4 472

with an increment of 0.1 per level. 473

We follow the setup in Section 3.2, setting the 474

sequence length to 10 and evaluating each LM on 475

200 questions. To ensure a fair comparison, we 476

keep the ground-truth events and question time 477

series consistent across all levels. The results are 478

presented in Figure 5, showing a slight upward 479

trend in LLM performance as similarity increases. 480

This is due to the inherent consistency between 481

time series and event sequences, which LLMs are 482

able to recognize. 483

4.5 Evaluating Applicability Across Domains 484

In real-world open environments, time series data 485

usually coexist with related textual sequences, such 486
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LLMs →
Domains ↓

GPT-4o
(0513)

GPT-4o
(mini)

Qwen2.5
(72B)

LLama3.1
(70B)

Mixtral
(8x7B)

DeepSeek
(R1 32B)

Qwen2.5
(32B)

Mistral
(22B)

Phi4
(14B)

Qwen2.5
(14B)

DeepSeek
(R1 8B)

Crypto
(Bitcoin)

Complete 84% 58% 71% 49% 36% 62% 72% 28% 46% 51% 42%

Filtered
65%
↓22.6%

40%
↓31.0%

40%
↓43.7%

34%
↓30.6%

29%
↓19.4%

39%
↓37.1%

39%
↓45.8%

27%
↓3.6%

28%
↓39.1%

32%
↓37.3%

25%
↓40.5%

Trading
(IMEX)

Complete 91% 90% 90% 85% 52% 93% 86% 54% 75% 71% 78%

Filtered
50%
↓45.1%

35%
↓61.1%

51%
↓43.3%

36%
↓57.6%

21%
↓59.6%

47%
↓49.5%

45%
↓47.7%

27%
↓50.0%

29%
↓61.3%

31%
↓56.3%

22%
↓71.8%

Health_US
(Influenza)

Complete 62% 53% 77% 64% 34% 74% 60% 24% 52% 42% 48%

Filtered
33%
↓46.8%

26%
↓50.9%

34%
↓55.8%

27%
↓57.8%

25%
↓26.5%

37%
↓50.0%

32%
↓46.7%

23%
↓4.2%

30%
↓42.3%

33%
↓21.4%

25%
↓47.9%

Energy
(Gasoline)

Complete 97% 95% 96% 84% 63% 98% 90% 57% 89% 72% 79%

Filtered
52%
↓46.4%

40%
↓57.9%

48%
↓50.0%

46%
↓45.2%

28%
↓55.6%

49%
↓50.0%

45%
↓50.0%

24%
↓57.9%

43%
↓51.7%

37%
↓48.6%

29%
↓63.3%

Table 3: The number of correct event reasoning (through time series) made by LLMs across other domains among
testing samples (N = 100). Replacing numerical information in the option events—such as dates or prices—with
symbols like α (Filtered) results in a performance decline compared to retaining the original numerical information
(Complete). Red indicates the best model in this task, while Blue represents the second-best.
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Figure 5: The performance of LLMs in distinguishing
events corresponding to time series (win probabilities)
with different levels of similarity. Time series similarity
decreases as x (i.e., time series distance) increases.

as the proportion of infectious diseases along-487

side U.S. government influenza reports (Liu et al.,488

2024a) or cryptocurrency (e.g., Bitcoin) prices489

alongside relevant news from financial media (Li490

et al., 2024a). To evaluate the generalizability of491

our approach, we extend our evaluation to four492

other domains: Trading (Import/Export, IMEX),493

U.S. Health (Influenza Rates), and Energy (Gaso-494

line Prices) from Time-MMD (Liu et al., 2024a),495

as well as cryptocurrency time series from Crypto-496

Trade (Li et al., 2024a). To prevent the questions497

from becoming too long, we use news titles as498

events for cryptocurrency. We selected the "fac-499

tual" field as the events occurring at each times-500

tamp from Time-MMD. Liu et al. (2024a) extracted501

these "factual" statements from news and reports502

to describe real-world occurrences. Similarly, our503

question follows the format in subsection 3.2, with504

an event sequence length of 10, corresponding to505

10 trading days for Bitcoin data or 10 weeks of506

influenza statistics in the U.S. health dataset.507

We evaluate two settings: one where events 508

contain numerical information (i.e., Complete) 509

and another where all numerical values, such as 510

dates or real values (e.g., Bitcoin prices or trad- 511

ing volumes), are replaced with symbols like α 512

(i.e., Filtered). Since numerical information pro- 513

vides crucial context for reasoning, removing it 514

degrades performance. Even after stripping numer- 515

ical data, however, LLMs still demonstrate moder- 516

ate reasoning ability. GPT-4o, for instance, consis- 517

tently achieves over 50% accuracy. Additionally, 518

open-weights models such as Qwen2.5 72B and 519

reasoning-oriented models like DeepSeek-R1 32B 520

demonstrate comparable performance to GPT-4o. 521

Full results are shown in Table 3. 522

5 Conclusions 523

LLMs have been developed for time series anal- 524

ysis, and data comprising time series paired with 525

event sequences are prevalent in real-world scenar- 526

ios. We introduce a dataset containing 1.7 million 527

real-valued time series paired with events and a 528

corresponding evaluation approach. We then eval- 529

uate 16 language models using this dataset and 530

extend our method to multiple domains, includ- 531

ing cryptocurrency and U.S. health. Our findings 532

reveal that both open-weights and proprietary mod- 533

els exhibit promising reasoning capabilities, with 534

reasoning-focused models such as DeepSeek-R1 535

32B outperforming larger proprietary model such 536

as GPT-4o. 537
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6 Limitations and Ethical Considerations538

Our dataset includes time series representing win539

probabilities in sports, which serve as a effective540

measurement of how events affect a team’s state541

and have a clear relationship with events. Since it542

is impossible to know the true underlying proba-543

bility of the game outcome, these probabilities are544

estimates of each team’s win probability and not545

the ground truth. Note that we focus on evaluat-546

ing the performance of current models rather than547

exploring how our data can be used for reasoning548

model training, which we leave for future work.549

We release all code and data necessary550

to replicate our complete experiments at551

https://anonymous.4open.science/r/552

reason_events-9861/. As we await ap-553

proval from the data provider, however, we may554

not be able to release the final curated dataset. In555

that case, we will provide the tools necessary to556

replicate our data collection process.557
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A Appendix796

A Datasets and Language models797

In this section, we introduce NBA and NFL event798

and time series data through examples from sports799

datasets. Additionally, we present the models we800

evaluate and provide details on data from other801

domains.802

A.1 Events and Time Series in Sports803

Figure 6 illustrates the time series and event se-804

quences for basketball and football. When an event805

favorable to Team A occurs, Team A’s win probabil-806

ity typically increases. For example, in basketball,807

this could be a successful score by Team A or a808

turnover by Team B. In football, it could include809

defensive plays and sacks by Team A, penalties810

against Team B, or offensive success by Team A.811

Conversely, unfavorable events lead to a decrease812

in win probability.813

A.2 Language Models and Setups814

We have run our evaluation and experiments on815

Nvidia A100 GPUs. The specific settings for816

LLMs, as well as the packages used for data817

processing, are provided in the repository‡. We818

evaluated a total of 16 models, including open-819

weight models such as LLaMA3.1 (Dubey et al.,820

2024), proprietary models like GPT4o (Achiam821

et al., 2023), and reasoning-focused models such822

as DeepSeek-R1 (DeepSeek-AI et al., 2025). The823

full list of tested models is as follows:824

• GPT4o (Achiam et al., 2023): We test GPT4o-825

0513, a high-performance variant of GPT-4826

optimized for both general-purpose genera-827

tion and specialized tasks, and GPT4o-mini,828

a scaled-down version of GPT-4 designed for829

resource-constrained environments.830

• LLaMA (Dubey et al., 2024): We evaluate831

instruction-tuned models of various parameter832

sizes, including LLaMA3.1-Instruct 70B, 8B,833

and LLaMA2-Instruct 7B.834

• Qwen2.5 (Yang et al., 2024): Our experi-835

ments included various instruction-tuned mod-836

els such as Qwen2.5-Instruct 72B, 32B, 14B,837

and 8B.838

• Mixtral (Jiang et al., 2024a): We test the839

8x7B Mixture of Experts (MoE) model, along840

with Mixtral-Small 22B and Ministral-8B.841
‡All information and settings needed are available:https:

//anonymous.4open.science/r/reason_events-9861/

• Phi (Abdin et al., 2024): We included Phi-4 842

14B and Phi-3.5-Instruct 14B in our evalua- 843

tions. 844

• DeepSeek-R1 (DeepSeek-AI et al., 2025): 845

Given computational constraints, we still 846

evaluated reasoning-focused models such as 847

DeepSeek-R1 32B and 8B. These models are 848

distilled versions of DeepSeek-R1, using syn- 849

thetic data from R1 to finetune Qwen 32B and 850

LLaMA 8B, respectively. 851

A.3 Open-world Domains 852

To validate whether LLMs can reason about events 853

through time series in other domains, we utilized 854

four open-world datasets from different fields: 855

Time-MMD (Liu et al., 2024a) (covering Trading, 856

US Health, and Energy) and CryptoTrade (Li et al., 857

2024a) (Bitcoin prices). The details are outlined as 858

follows: 859

• Trading: Includes monthly U.S. International 860

Trade Balance data from January 1987 to 861

March 2024 (total length of 423 months), cov- 862

ering both import and export trade volumes. 863

The corresponding text consists of keyword 864

searches and institutional reports relevant to 865

that month, such as "U.S. International Trade 866

in Goods and Services". 867

• U.S. Health: Includes weekly Influenza Pa- 868

tients Proportion data from September 1997 869

to May 2024 (total length of 1 389 weeks). 870

The corresponding text sequences are sourced 871

from weekly keyword searches or reports 872

from the "CDC’s ILINet system". 873

• Energy: Contains weekly Gasoline Prices 874

(Dollars per Gallon) from April 1993 to April 875

2024 (total length of 1 479 weeks). The text 876

sequences are obtained through searches or re- 877

ports from institutions such as the U.S. Energy 878

Information Administration. 879

• Bitcoin: Contains daily Bitcoin price data 880

from January 1, 2023, to February 1, 2024 881

(time series length of 397), including open- 882

ing and closing prices, as well as the highest 883

and lowest prices of the day. The correspond- 884

ing text sequence is derived from authorita- 885

tive sources such as Bloomberg and Yahoo 886

Finance, filtered through keyword searches to 887

provide five of the most relevant news arti- 888

cles per day. We use their headlines as event 889

descriptions. 890
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At 26:41, Team A player lost ball turnover (Team B steals)

At 41:38, Team A player misses 10-foot jump shot

At 11:14, Team A player makes 24-foot 3 points jumper
… …
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NBA events and win probabilities

At 27:05, Player from Team B 2 Yd Rush Player from team B extra point is 
GOOD, Center-Player from team B, Holder-Player from team B.

At 12:38, Player from team B right tackle to CLV 28 for 3 yards
… …

… …

… …
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At 50:05, (Shotgun) Player from team B right tackle to CLV 34 
for 16 yards (Player from team A)

… …

NFL events and win probabilities

Figure 6: Examples of events and win probabilities in the NBA and NFL dataset. As the game progresses, ESPN
provides descriptions of on-field events along with the corresponding win probabilities for each team at that moment.
These probabilities can be considered a representation of the team’s current state.

Figure 7: The similarity distribution of time series in
sports data, with a time series length of 10. There is
a 91% probability that the distance between two time
series falls beyond 0.4.

A.4 Time Series Similarity891

We bootstrapped 10k pairwise distances between892

win probabilities of length 10 for both NBA and893

NFL data. After normalizing the distances to the894

range (0, 1), their distribution is shown in Figure 4,895

where 91% of the distances fall beyond 0.4.896

B Prompt Template897

Figure 8 presents the complete template for NBA898

and U.S Health event reasoning. For NFL data and899

other domains, we adopt a similar template with900

minor variations to accommodate domain-specific901

characteristics. For instance, in cryptocurrency902

data (Li et al., 2024a), we specify that the provided903

time series represents daily "Closing Prices," while904

in Energy data (Liu et al., 2024a), it corresponds to 905

the "Dollars per Gallon." (Gasoline). In addition, 906

considering the delayed impact of real-world news, 907

we included news events from the previous two 908

timestamp in the options. Figure 9 illustrates the 909

Chain-of-Thought (CoT) prompt for NBA event 910

reasoning, with the format up to the "options" sec- 911

tion remaining consistent across prompts. The CoT 912

prompt for NFL follows a similar structure with 913

slight modifications, such as ensuring that exam- 914

ple events and background knowledge align with 915

the context of American football. Note that we 916

acknowledge that the current CoT prompt still has 917

room for improvement, however, due to time and 918

computational constraints, we have not conducted 919

further explorations. 920

C Language Models Reasoning Process 921

To further understand how LLMs infer events from 922

time series, we analyzed their output. As shown 923

in Figure 10, this illustrates the reasoning process 924

of DeepSeek-R1 32B (DeepSeek-AI et al., 2025) 925

for NBA events (under a CoT prompt). The model 926

first interprets the trend in the time series and then 927

matches it with potential events—If the time se- 928

ries exhibits an upward trend, the model aligns it 929

with events favorable to Team A, and vice versa. 930

After sequentially analyzing all data points and 931

their corresponding events, LLMs synthesize their 932

step-by-step analyses to formulate a final reasoning 933

conclusion. High-performing models, such as GPT- 934

4o (Achiam et al., 2023), LLaMA3.1 70B (Dubey 935

et al., 2024), Qwen2.5 72B (Yang et al., 2024), and 936
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even smaller language model, like Phi-4 (Abdin937

et al., 2024) 14B, demonstrate similar reasoning938

trajectories with CoT Prompting.939

D Licensing940

The code from our work is released under the941

MIT License, while the dataset is made avail-942

able under the Creative Commons Attribution-943

NonCommercial-ShareAlike (CC BY-NC-SA) li-944

cense. This allows anyone to use, distribute, and945

modify the data for non-commercial purposes, pro-946

vided they give proper attribution and share any947

derivative works under the same license terms.948
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Event Reasoning in Sports (Basketball)

You are an assistant for NBA basketball task. We will provide a series of consecutive
timestamps, win probabilities from a basketball game, though some intermediate
events will be missing. You will need to infer the likely events that occurred in the
missing intervals.
Below is provided timestamps, win probabilities (team A).
Step 1. TimeStamp1 WP1

Step 2. TimeStamp2 WP2

Step 3. TimeStamp3 WP3

...
Step k. TimeStampk WPk

Please select the correct sequence of events for steps 2, ..., k − 1 from the four
options below,
Here are the potential options:{{options}}
Here is the instruction for returning reasoning results in:{{format}}

Event Reasoning in Other Domains (U.S Health)

You are an assistant for an Influenza Patients task. We will provide a series of
consecutive timestamps along with the Influenza Patients Proportion. Additionally,
we will present four potential event (news) sequences that occurred during that
period, as well as from the previous two days. Your task is to identify and select the
correct sequence of events.
Below is provided date and Patients Proportion (%),
Step 1. Date1 x1
Step 2. Date2 x2
Step 3. Date3 x3
...
Step k. Datek xk
Please select the correct sequence of events for steps 2, ..., k − 1 from the four
options below,
Here are the potential options:{{options}}
Here is the instruction for returning reasoning results in:{{format}}

Figure 8: Template used to infer events through win probabilities in sports (e.g., basketball) and open-world
domains (e.g., U.S Health). For NFL data and other domains, we adopt a similar template with minor variations to
accommodate domain-specific characteristics. In addition, we use the format "**X**".
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Chain-of-Thought (CoT) Prompt Template for Basketball

You are an assistant for NBA basketball task ...
...
Here are the potential options:{{options}}

When reasoning, please refer to the following guidelines:
1. Analyze Team A’s 1st win probability change. For example:
- 0. 53.4%
- 1. 57.1%
- Team A’s win probability increased from 53.4% to 57.1%, indicating that an event
positive to Team A or negative to Team B has occurred.
2. Pause the win probability analysis for now and focus on the 1st event in options
a, b, c, d, and eliminate the inconsistent options or skip this step if unsure. Please
ignore very minor changes in win probabilities, such as 0.1%-0.4%. Base your
decision on significant changes.
3. Similarly, turn to analyze the change in the 2nd win probability and match it
with the 2nd event in the remaining options, and eliminate the inconsistent options
or skip this step if unsure.
4. Repeat the above process until all incorrect options are eliminated.

Consider the following information when reasoning, it will assist you in reasoning.

1. Positive events for Team A, such as "Player from Team A scores (e.g., makes a
layup or jump shot) or rebounds," or negative events for Team B, such as "Player
from Team B makes a mistake (e.g., misses a shot, commits a foul, or loses the
ball)."
2. Some events do not impact the win probability, such as a player entering the
game or a timeout.
3. Ignore very minor changes in win probabilities, such as 0.1%-0.4%.

Return your answer in the format **X**, where X only contains the chosen option,
such as **a**, **b**, **c**, or **d**.

Figure 9: Chain-of-Thought (CoT) Template used to infer events through win probabilities in sports (e.g., basketball).
For NFL data, we adopt a similar CoT Prompt with minor variations to accommodate domain-specific characteristics.
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Process of Event Reasoning via Time Series From DeepSeek-R1 32B

<think>
Alright, I’m trying to figure out which sequence of events corresponds to the given
win probabilities for Team A. The probabilities are as follows:
0. 31.9%
1. 43.9%
... ...
10. 56.7%
11. 50.9%

I need to analyze the changes in win probability after each event and match
them with the options provided (a, b, c, d). Let’s go through each step one by one.

Starting with the first change: from 31.9% to 43.9%. That’s an increase of
about 12%, which is significant. This suggests a positive event for Team A or a
negative event for Team B. Looking at the options, the first events are:
a. Player A makes a 3-pointer with an assist.
b. Player B makes a free throw 2 of 2.
c. Player B defensive rebound.
d. Timeout and coach’s challenge.

Option a’s first event is a 3-pointer made by Team A, which would increase
their win probability. Option b’s first event is a free throw made by Team B,
which would decrease Team A’s win probability, but the probability went up, so b
might be inconsistent.
... ...
So, option a seems the most likely for the first event because scoring a 3-pointer
would increase Team A’s chances.

....
The sixth change: from 43.0% to 49.3%, an increase of about 6.3%. Positive event
for Team A.
....
Putting it all together, option a seems to fit all the significant changes in win
probability. The other options don’t align as well with the increases and decreases
observed.
<think>
**a**

Figure 10: Reasoning process example from basketball data: In this case, the ground-truth answer is "a", which
aligns with the reasoning of DeepSeek-R1 32B (DeepSeek-AI et al., 2025). Other LLMs, such as GPT-4o (Achiam
et al., 2023), follow a similar reasoning pattern. To save space, some content has been omitted.
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