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Abstract

We study methods for efficiently aligning large language models (LLMs) with
human preferences given budgeted online feedback. We first formulate the LLM
alignment problem in the frame of contextual dueling bandits. This formulation,
subsuming recent paradigms such as online RLHF and online DPO, inherently
quests for sample-efficient algorithms that incorporate online active exploration.
Leveraging insights from bandit theory, we introduce a unified algorithm based on
Thompson sampling and highlight its applications in two distinct LLM alignment
scenarios. The practical agent that efficiently implements this algorithm, named
SEA (Sample-Efficient Alignment), is empirically validated through extensive
experiments across three model scales (1B, 2.8B, 6.9B) and three preference
learning algorithms (DPO, IPO, SLiC). The results demonstrate that SEA achieves
highly sample-efficient alignment with oracle’s preferences, outperforming recent
active exploration methods for LLMs. We will release our codebase to hopefully
accelerate future research in this field.
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Figure 1: Win rate comparison of model responses against reference responses on the TL;DR task, judged by
the preference oracle. All compared methods use the same optimization method (DPO). (Left) Performance
improvements at convergence over SFT models achieved by offline (Offline DPO), passively online (Online
DPO), and our active exploration (SEA DPO) methods. (Right) The number of queries required by the passively
online method (Passive) versus that by different active exploration methods to attain various levels of win rates.
SEA achieves the best sample efficiency for online alignment compared to XPO and APL.

1 Introduction

Aligning LLMs with human preferences is a crucial step to elicit various desirable behaviors, e.g.,
helpfulness and harmlessness [5]. Moreover, it holds the potential to create superhuman capabilities
with only human-level feedback, as verifying is believed to be easier than synthesizing novel
behaviors. By iteratively generating new candidates and asking for human feedback, LLMs could
learn to reinforce good behaviors and may eventually surpass human capabilities.

Existing methods, either via reinforcement learning from human feedback (RLHF) [65, 50] or direct
alignment from preferences (DAP) [55, 4], typically require a large amount of human annotations to
achieve effective alignment. As a result, the volume of human feedback becomes a major bottleneck
in practical alignment scenarios. This poses a challenging and under-explored research question:
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How to align LLMs sample-efficiently?

To seek answers, in Sec. 2, we formalize LLM alignment as a contextual dueling bandit (CDB) [85,
20], where the agent (i.e., the learner and decision maker, in our case the LLM) interacts with the
environment (i.e., human) to collect experience for improving its policy. This formulation naturally
calls for two key properties for alignment algorithms to be sample-efficient:

Property 1 (Online interaction). Interacting and learning online allows the agent to act with the
latest learned policy and then use that experience to immediately improve the policy.

Property 2 (Active exploration). An actively exploring agent strategically selects actions such that
the collected experience leads to maximal policy improvement.

Since the CDB formulation is general and almost subsumes all existing LLM alignment methods,
it provides us a lens to scrutinize prior methods on the axes of Properties 1 and 2. In Sec. 3, we
thoroughly discuss prior alignment approaches, ranging from offline learning [55, 4] and passive
learning with iterative [15, 18] or online interaction [24], to active exploration for learning preference
models [21] or aligning LLMs [47, 86, 79]. As will be revealed, most prior methods (partially)
fail to satisfy the two properties, resulting in inferior sample efficiency. Moreover, through the
CDB formulation, we identify two LLM alignment scenarios, namely aligning from online users’
feedback (e.g., ChatGPT [13]) and aligning from crowdsourcing [15, 50], and shed light on their
correspondences to two bandit settings (explore & exploit and best arm identification). Understanding
their differences is important for designing efficient alignment algorithms for respective scenarios.
We detail these two settings in Sec. 2 and discuss how prior works approach them in Sec. 3.

Leveraging algorithmic insights from bandit theory, our answer to the research question above is
a principled alignment algorithm based on Thompson sampling (TS) [71]. Our method fulfills
Properties 1 and 2 to enhance sample efficiency, and it solves either of the two settings depending on
practical scenarios (Sec. 4.1). We incorporate techniques including epistemic reward model, policy-
guided search and mixed preference learning to implement the proposed TS algorithm (Sec. 4.2),
yielding a practical agent which we call SEA (Sample-Efficient Alignment). In addition, we develop
and will open source a highly efficient, distributed learning system for studying online LLM alignment
methods (Sec. 5), eliminating barriers to fair empirical comparisons of different alignment algorithms.
Through extensive experiments (Sec. 6), SEA shows strong empirical results (see Fig. 1), consistently
achieving higher win rates and improved sample efficiency compared to baseline approaches across
three model scales. We will open source the codebase to hopefully accelerate future research in this
field.

In summary, the contributions of this work are:

* Through the lens of contextual dueling bandits, we propose a principled Thompson sampling algo-
rithm for LLM online exploration, addressing both explore & exploit and best arm identification
settings.

* We develop two novel techniques to approximate Thompson sampling in LLM’s large action
space: policy-guided search and mixed preference learning. Thompson sampling requires
sampling a reward function from the posterior distribution and generating the sequence that
maximizes the sampled reward function. For policy-guided search, we use an existing epistemic
reward model for approximating the posterior and propose an approximate maximization method
based on sampling a finite set of sequences from the LLM, and doing maximization on the
finite sample. However, maintaining and updating a separate LLM for each reward function as
suggested by Thompson sampling would be prohibitively expensive, thus mixed preference
learning is introduced to align the LLM with internal reward functions to better approximate the
maximization.

* To our knowledge, we are the first to study active exploration for LLM alignment with fully online
experimental verification. The online alignment codebase will be open sourced to accelerate
future studies.

2 LLM alignment as contextual dueling bandits

We first review the definitions and two typical objectives of Contextual Dueling Bandits (Sec. 2.1),
then translate them into the language of LLM alignment (Sec. 2.2). The tight connection between them,
as we will see, allows us to leverage insights from bandit algorithms to design efficient alignment
algorithms for LLMs.
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2.1 Contextual dueling bandits

Contextual dueling bandits (CDB) [85, 20] is proposed to study online learning problems where the
feedback consists of relative pairwise comparisons. A CDB problem can be characterized by a tuple
(C, A, P), where C is the context space, A is the action space, and PP : A x A x C > [0, 1] denotes the
unknown preference oracle. An agent learns by iteratively interacting with the environment (i.e., the
preference oracle P) as follows. Ateach round ¢ of the learning process, a context ¢; ~ pc is presented
to the agent, who needs to take two actions a;, a; € A for a “dueling” comparison. The agent then
receives stochastic feedback in the form of a comparison result z, ~ Ber (P (a; = aj|c;)) from the
environment, where Ber(-) is the Bernoulli distribution and > denotes that the first action is preferred.

Regret. The quality of the dueling actions selected by the agent is measured by the immediate regret:
Ry = P(a} = ai|c;) +P(a} = aj}|e;) — 1, where a} is the best action! the agent would take at round
t if it had complete knowledge of P. Intuitively, if the agent has learned how to act optimally from
round ¢ onwards, it would no longer suffer any regret since its actions would be indistinguishable
from the best action (P(ar > a.|c,) = % hence R, = 0 for 7 > t).

Optimal policy. A policy 7 € Aif associates each context ¢ € C with a probability distribution
m(-|c) € A 4 over the action space. The total preference of policy 7 over policy yu given a context
sampling distribution pc € A¢ and a preference oracle PP is defined as

Pye (7 = 1) = Benpe [Bann(o)Earnple) [Pla = a'[e)]] . ¢))

We adopt the von Neumann winner [20] as the solution concept, which requires the optimal policy 7*
to satisfy that

1
vr' € AG, Py p(n* = 7') > 3 2)

In words, the von Neumann winner policy should beat or tie with every policy (i.e., is zero-regret) on
average.

Learning objectives. The goal of bandit agents is to learn an optimal policy through interactions with
the environment. There are two subtypes of objectives that focus on different learning scenarios. The
first type considers the conventional explore and exploit (E&E) setting [59, 3], where the agent learns
fully online and tries to minimize the cumulative regret over 7" rounds: Zthl R;. The second type of
objective concerns the best arm identification (BAI) setting [9, 2], where the agent is only evaluated
offline on its average performance, possibly at any round (a.k.a., anytime regret), and tries to learn the
optimal policy with minimum interaction. Both settings call for effective online exploration strategies
that satisfy Properties 1 and 2. Their differences will be made clearer with real scenarios in Sec. 2.2.

2.2 Online alignment as CDB

Online LLM alignment can be framed as a CDB problem. Specifically, at time ¢ a text prompt (cf.
context) x; € X is sampled from a prompt distribution px. Then, two distinct responses (cf. actions),
Y:, y; € Y, are chosen by the agent, and presented to human annotators (cf. the environment) for
preference ranking. The winning and losing responses are labeled as (y;", y; ) based on a binary
stochastic feedback z; ~ Ber (P (y: > y;|z:)). The agent is expected to produce good responses
satisfying either E&E or BAI objectives, with knowledge learned from the experience accumulated
so far: Dy = {(z,,y,y7-)}t_;. A standard assumption is that human preferences follow the
Bradley-Terry (BT) model [8]:

exp (r* (@, yt))
exp (r* (1, yt)) + exp (r* (x4, y;
where o is the sigmoid function and r* encodes human’s implicit reward. The immediate regret of
LLM alignment can be rewritten as Ry = r*(xs, y7) — (r*(xs, y:) + r* (2, y;)) /2 with the BT

assumption [62, 39], where y; is the best response for prompt x; given human’s implicit reward, i.e.,
r*(xe, yf) > r*(x4,y),Vy € Y. The von Neumann winner policy is also redefined as

P(y: > yile:) = ) =o(r* (e, ye) — (2, 91),  (3)

7% € argmax J(7), where J(7) = EgoprEyr(.|a)[r” (2, y)] is the objective, “4)
TEAS

'We assume that a best action a* in the sense that P(a* - alc) > 1,Va € A exists for all context c € C.
We denote by AG the set of all mappings C — A 4, where A 4 denotes the set of all probability distributions
over A.
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Figure 2: Different paradigms to solve online LLM alignment in the CDB interface. The CDB agent is shaded
in gray. We use colors to denote learnable components, RL optimizer, direct optimizer, and active exploration.
T4 denotes a point estimate of human’s implicit reward, while R4 refers to an uncertainty-aware reward model.
Please see Sec. 3 for detailed comparisons with references to prior works. [fdalL: updated fig.3 to highlight the
differences between (b) and (d).]

by substituting Eq. (3) into Eq. (1) and maximizing P, p(7m > 7*) towards 1/2.

The two settings in bandits have their respective applications in LLM alignment. (1) The E&E
setting applies to the scenario of serving an LLM-based application online and aligning it continually
with users’ preferences. In this setting, the agent needs to balance exploration with exploitation, thus
the cumulative regret is of interest because the quality of every response matters. In fact, commercial
systems like ChatGPT would strategically ask users to make a dueling comparison, while upholding
the quality of both responses. Please see Fig. 11 in App. I for an example. (2) The BAI setting
corresponds to the other scenario where annotators are paid to provide human feedback [15, 50]. The
desideratum in this scenario is to align the LLM at the minimum labeling cost, while the quality of
the dueling responses is not important as long as the experience helps sample-efficiently learn the
von Neumann winner policy.

After formalizing LLM alignment in the framework of CDB and uncovering their tight connections,
we next thoroughly discuss existing alignment methods in the CDB framework and reveal the sources
of their sample inefficiencies.

3 How prior works (partially) solve LLM alignment as CDB

We first align the notations and terminology used in CDB with commonly referred ones in the LLM
community. Previously, we used the term “agent” to denote the learner and decision maker, and
referred to its overall behavior as the “policy” 7 (as in Eq. (4)), following the standard abstraction in
RL [67, 68]. However, in the LLM literature, “policy” typically refers to the generative language
model alone, excluding components like reward models (RMs) that the agent might additionally build.
To avoid confusion, from now on we use 7y to denote the generative language model (policy) and
r4¢ to denote the (optional) RM at time ¢, both of which are learned from preference data D; collected
up to time ¢. We will omit ¢ when the time-indexing is not applicable (i.e., no online interaction) or
not important in the context.

RLHF and DAP. Commonly adopted RLHF pipelines [15, 65, 5, 50] first learn a proxy RM with
a negative log-likelihood loss:

L (D) = ~Ez y+ y-)pp logo (rg (x,y*) — 14 (z,y7))], (5)
where D is collected by querying human annotators using a behavior policy m.r (typically the
supervised fine-tuned policy 7y ). Afterwards, offfine RL? [36, 37] is conducted to learn 7y with
respect to the learned reward 7 internally within the agent (Fig. 2a). However, the learned model g
might be inaccurate at regions out of the distribution (0.0.d.) of m,.s because little training data can
be collected. An effective remedy is to incorporate a pessimistic term to combat the distributional
shift, leading to a reformulation of the von Neumann winner policy objective in Eq. (4) as

mo(y|x)

Jmg)= E  E | re(z,y) —Blog ——2—L 6
6) = B iy | oY) P gmef(ym)] ©
estimated r* 0.0.d. reward penalty
- B |, B Fele.n)] - 0Da(malolnast o). @

~px |y~ ([2)

which converts an online objective regarding the human’s implicit reward r* to an offline objective
regarding the proxy reward r4. The KL penalty in Eq. (15) is widely used for language model

3Offline in the sense that 7y is not directly learned from online human feedback. See App. C for details.
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fine-tuning [29, 80], and PPO [64] has become a default RL optimizer to maximize the KL-regularized
reward. However, the performance of RLHF is guaranteed only if the preference data D induced
by mot adequately covers 7* [90], which is often approximated by updating 7 with the latest
(improved) 7y for re-sampling a batch of online experience and repeating Eq. (13) and (15). Prior
works typically focus on offline or iterative online (with only a few iterations) settings [80, 18],
which may compromise sample efficiency (Property 1).

True online RLHF is difficult due to the complexity and instability of RL optimizers. For example,
Huang et al. [27] openly reproduces offline RLHF scaling behaviors but requires many implementation
tricks for training, highlighting the difficulties of an online counterpart. Fortunately, the introduction
of DAP (or direct optimizers) largely simplifies and stabilizes fine-tuning by conducting contrastive
supervised learning directly on D (Fig. 2b). While most DAP works focus on learning from a fixed
offline preference dataset, including Zhao et al. [88], Rafailov et al. [55], Azar et al. [4], Meng
et al. [46], Zhang et al. [87]), iterative DPO [81] observes improved results when allowing iterative
online interaction. Guo et al. [24] further propose OAIF to make DAP faithfully online, satisfying
Property 1, and demonstrate that online learning prevents over-fitting and yields continual performance
improvement. Nevertheless, it still employs passive exploration strategies (using y,y’ ~ mp),
hindering sample efficiency (Property 2).

Online exploration in LLMs. A line of recent works [44, 17, 45, 21] adopts the fully online
bandit formulation and incorporates active exploration with uncertainty-aware RMs for response
selection (Fig. 2c). In particular, Mehta et al. [44] consider the E&E setting and develop a UCB-
style [3] algorithm; Das et al. [17] instead select the dueling responses with the most uncertain
preference estimate, targeting the BAI setting in a pure exploration way; unlike the above, Melo et al.
[45] view the problem from the angle of pool-based active learning and propose an acquisition function
based on both entropy and epistemic uncertainty; finally, the work by Dwaracherla et al. [21] is the
closest to ours in the sense that they apply double Thompson sampling (DTS) [78] for exploration,
but DTS is designed for the E&E setting while they evaluate anytime average performance as in the
BALI setting. We will show in App. G.1 that pure exploration by Das et al. [17] is not the best choice
for BAI, and the objective mismatch in Dwaracherla et al. [21] could lead to suboptimal performance
in respective settings. Meanwhile, all these works primarily focus on learning uncertainty-aware RMs
online without updating LLLM policies. Therefore, all responses are sampled from a fixed proposal
policy 73 (or even a fixed dataset), making the data coverage a critical concern.

Another line of research updates LLMs online while incorporating exploration. Zhang et al. [86]
and Xie et al. [79] independently propose to learn an optimistic RM to encourage exploration. They
leverage the property of DPO [55] to reparameterize RM with policy and conclude with an extra
optimistic term in the DPO loss function. Thus, their learning processes are like Fig. 2b but with an
optimistic direct optimizer. Muldrew et al. [47] adopt the vanilla DPO loss but utilize the implicit
reward margin to actively select dueling responses. Yet, these methods are tightly coupled with DPO
and not compatible to other direct optimizers. Their experiments are also limited to a few online
iterations, possibly due to the implementation difficulty of a faithfully online learning system. Given
their relevance to our approach, we will reproduce them in a fully online manner for fair comparisons
in Sec. 6.1. We summarize prior works in Table 2 in App. L.

4 SEA: sample-efficient alignment for LLMs

In this section we present our online exploration agent SEA (Fig. 2d). We first introduce a principled
Thompson sampling algorithm inspired by bandit theory (Sec. 4.1), and then derive SEA as its practi-
cally efficient implementation (Sec. 4.2). Interestingly, SEA can also be viewed as an instantiation of a
classical model-based RL architecture called Dyna [66], for which we defer the discussion to App. C.

4.1 Thompson sampling for LLM alignment

Thompson sampling (TS) [71] is widely adopted for solving bandit problems at scale due to its
efficiency and strong empirical performance in general online learning problems [12, 61]. A bandit
agent using Thompson sampling typically maintains and incrementally updates a posterior distribution
of the oracle reward p(r|D). Meanwhile, the agent takes actions following a greedy policy with
respect to a sampled RM: a; = arg max, 7(a) with » ~ p,.(-|D). This simple yet effective algorithm
naturally balances exploration and exploitation: when the agent has limited knowledge about the
environment, the posterior estimate exhibits high uncertainty so that the sampled RM could guide the
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Algorithm 1 Thompson sampling for LLM alignment (intractable).

Input: Prompt distribution px, unknown but queryable preference oracle P.

1: Initialize experience Dy < &.
2: fort=1,...,T do

3: Receive a prompt x; ~ py.
4: Sample r ~ pr('|Dt—1) and set y; < arg maxbeyr(a:t, b) // Select 1st response y.
// EQE objective: aligning an online system.
5: repeat
Sample r ~ p,.(-|D;_1) and set y; < arg maxpcyr(xs, b). /7 Select 2nd response y’.

until y; # y;

// BAI objective: labeling via crowdsourcing.
6: Set y; < arg IIlaXbEyV [O’ (r(a:t, yt) = r(a}t, b))], // OR select 2nd response y’.
where V [] computes variance over the posterior p,.(:|D;—1).
7: Query P to label {y;, y.}, and update experience D; + D;_1 |J {(zs, v, v, )}
8: end for

// See Algorithm 2 for a practical version.

greedy policy to explore; after sufficient experience is gathered, the sampled RM approximates the
oracle more closely, allowing the agent to exploit near-optimal policies.

In the context of LLM alignment, we leverage the BT assumption (Eq. (3)) to replace the preference
oracle P with human’s implicit reward r*. This substitution enables us to model the reward posterior
p(r|D) in the standard TS framework, preserving the probabilistic structure necessary for effective
posterior sampling. Inspired by prior works [78, 23] on non-contextual K -arm bandits and preferential
Bayesian optimization problems, we generalize them for LLM alignment and develop a unified algo-
rithm as shown in Algorithm 1. Note that we assume for now the LLM agent can be fully described
by the posterior p(r|D), and we defer practical reward (r4) and policy () learning to Sec. 4.2.

As Algorithm 1 presents, the first response of the duel is always selected via standard TS (Line 4).
The selection of the second response varies across different settings. Line 5 will be used for scenarios
where preference feedback is collected from online users (the E&E setting). The dueling responses
selected in this case will both try to maximize a sampled RM, so that the online user experience is
warranted with best effort. However, such algorithm can have poor asymptotic performance for BAI
problems [60], because sub-optimal responses with confidently high rewards might be tried for a
long time at the expense of not exploring other potentially better choices. In light of this, Line 6
provides an alternative for scenarios where we could hire annotators for feedback and low-quality but
exploratory responses are safe to try. Specifically, Line 6 selects the second response as the one that
maximizes the variance of the preference (Eq. (3)) over the first response y,. This variance quantifies
the epistemic uncertainty of the RM, pointing the agent to the maximally informative direction to
explore for better sample efficiency.

However, Algorithm 1 is yet to be practical for LLM alignment for three main reasons. First,
computing and sampling from a reward posterior is intractable for nearly all RMs at LLM scale,
which are mostly based on large transformers [35]. Second, even if we managed to approximate the
reward posterior, the arg max operations for response selection are still intractable since the search
space ) is discrete and massive for token sequences of arbitrary length. Last but not least, an LLM
agent [1, 72] typically consists in a generative model 7y (e.g., a transformer [73]), while the algorithm
above is centered around a reward posterior p(r|D) that cannot be easily converted into a generative
model. We next detail how SEA practically addresses the three aforementioned issues.

4.2 Practical implementation

4.2.1 Epistemic reward model for posterior sampling

To implement active exploration with TS, we seek an efficient way to maintain and incrementally
update the reward posterior p(r|D). We consider deep ensemble for our purpose, due to its capability
to model epistemic uncertainty [34] and provable results when applied to TS in linear bandits [54].
Specifically, we update a set of plausible RMs independently and online, using the preference data
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and a regularized negative log-likelihood loss:
K

k=1

where L, is defined in Eq. (13), ! = {qﬁi}i{:l contains the weights of the ensemble of size K,
and X controls the regularization towards individual initial weights ¢?. Each ensemble member is
initialized independently with random weights, and then trained with regularization to maintain the
diversity across ensemble members [21]. Randomly picking a ¢!, from & would approximate the
posterior sampling (r ~ p,.(-|D;)) for the RM [43, 25]. In practice, we train X MLP heads on top of
a pretrained and frozen transformer. We refer to the ensemble as the Epistemic Reward Model (ERM,
denoted as Ra).

4.2.2 Policy-guided search to approximate arg max

With the ERM approximating the reward posterior, we need to further approximate the response
selection steps (Lines 4 to 6) which generally take the form of arg maxpcy U (b), where U absorbs the
sampled prompt, the sampled RM, and optionally the selected first response (for BAI, Line 6). To ob-
tain the maximum, bandit algorithms for large action spaces typically resort to an action optimization
oracle [31, 91], but they assume a linear structure of U with respect to b, which might be impractical
for LLMs. Therefore, we instead replace the optimization over ) with sampling from a policy-guided
distribution conditioned on U, mpyior (-|@) exp (U(+) /1), which is appropriate since it favors responses
y that approximately maximize U (y). In practice, for a given prompt x;, we sample M candidate
responses from the prior policy mprior(+|+) to construct a proposal set S; = {yi}M . We then con-
duct a greedy search in S; (taking n — 0) to identify the response y; (or y;) that locally maximizes
the utility function U, which is subsequently used in the duel. We also reuse the same S; for different
U functions at time ¢ to save computation. The choice of 7ior Will be discussed in the next section.

4.2.3 Online policy learning from mixed preferences

We finally resolve two remaining questions: (QI) how to choose a sensible 7., at each time ¢
and (Q2) how to get a good generative policy online. To this end, we propose a simple approach to
approximately address both questions simultaneously. That is, we can utilize any direct optimizer to
learn the policy mg: online with the following loss and use the latest online policy as Tpyrior:

Ew(et‘Bta Tref F) = E(ac,y‘*’,y—)wpm [FQt (:I:, y+a Yy, Wref)] , ©)]

where B; is a batch of preference data labeled by the oracle wherein the responses are proposed by
Tprior and selected by Re¢, I’ could be any DAP loss (see App. A for some examples), and e is
chosen to be 7. Note that we use mg¢ as mprior at any time ¢, thus Bt is a batch of on-policy data.
By contrastive training on these on-policy data, we leverage their orthogonal benefits to achieve
maximal policy improvement [69, 70].

Now that optimizing Eq. (9) yields a good online policy my: (answering Q2), we need to assess
whether 7y can serve as a suitable 7,40, for approximating the arg max in TS (Q1). If we optimize
et with oracle preference data, S; will be biased towards responses with high oracle reward r*.
Bias towards high-r* region is generally helpful because it aligns with arg maxpcyr(x, b) that
seeks high-reward responses. However, optimizing my: only with oracle data can average out the
epistemic uncertainty of R, hindering the exploration efficiency. To mitigate this issue, we further
align g+ with R4+ using the same direct optimizer to encourage g+ to propose high-rd,z responses
for individual Tt leading to better approximation of arg maxpeyr(x, b) for any sampled r. To
implement, we optimize Eq. (9) over a batch of data mixture Ppmix = VPB, + (1- v)pBERM, where

v € [0,1] controls the mixture ratio and BERM = {(z;, §;", ;) }’_, consists of preference data
labeled by randomly sampled individual ensemble members 74 . Interestingly, learning from mixed
preferences further boosts sample efficiency because it utilizes the internal ERM to get pseudo labels
instead of querying humans. This relates closely to model-based RL, for which we discuss further in
App. C. We summarize our practical algorithm (Algorithm 2) in App. A.

5 Experimental setup

Software. To facilitate our empirical studies, we develop a distributed learning framework for
online LLM alignment. The framework is based on an Actor-Learner-Oracle architecture, drawing
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Figure 3: Win rate comparison of different algorithms against their initial SFT models across three scales and
three direct optimizers.

inspiration from Espeholt et al. [22]. We incorporate various optimizations for each component:
vLLM [33] for actors, DeepSpeed [58] for learners, and Mosec [83] for oracles. Detailed descriptions
of the framework and its efficiency benchmarks are provided in App. D & H.

Settings. We adopt SFT models tuned on TL;DR [65] from Huang et al. [27], which cover three
scales (1B, 2.8B, 6.9B) of the Pythia family [7], as starting points for our experiments. We use a
strong scalar RM [40]* to simulate the preference oracle. To verify the effectiveness of SEA, we
employ three direct optimizers: DPO [55], IPO [4], and SLiC [88] to serve as F' in Eq. (9). Besides,
two LLM exploration methods built on DPO, APL [47] and XPO [79], are fairly compared when
using DPO as the optimizer. Our experiments primarily focus on the BAI setting (crowdsourcing
labeling), where we report the win rate of learned models against initial SFT models. All experiments
are repeated three times to ensure statistical significance. Please see App. F for more details.

6 Empirical studies

We next present our empirical studies highlighting five results: (1) Comparisons with baselines across
various direct optimizers and model scales demonstrate SEA’s superior sample efficiency (Sec. 6.1).
(2) Ablations confirm that both online policy learning and active exploration contribute to sample-
efficient alignment, and using the learned ERM for Best-of-N sampling further improves the perfor-
mance (Sec. 6.2). (3) Different exploration strategies (Line 5 or Line 6 in Algorithm 1) are verified to
work best in respective settings. (4) SEA robustly outperforms baselines when GPT40-mini is used as
a judge to simulate human feedback. (5) Beyond the summarization task, SEA can effectively enhance
general capabilities of LLMs. Results for (3-5) are deferred to App. G due to space constraints.

6.1 Opverall comparison

We first compare SEA with all baselines across three model scales and three direct optimizers. APL
and XPO are only compared when DPO is used as the direct optimizer, because they are incompatible
with TPO or SLiC. Fig. 3 shows the win rate curves versus the number of query steps. Across
all settings, Online agents consistently improve sample efficiency over their Offline counterparts,
validating the necessity of Property 1 for alignment algorithms. Focusing on the first row, we observe
that among prior active exploration methods, XPO gives a small improvement in final performance
over Online (passive) at the 1B scale, but falls short for larger scales. On the other hand, APL shows a
significant sample efficiency boost at the 1B scale, but this advantage diminishes when scaling up and
it performs almost the same as Online at 6.9B scale. Our method, SEA, outperforms both offline and
online passive methods across all scales and all direct optimizers, confirming the critical role that Prop-
erty 2 plays for sample-efficient alignment. Meanwhile, in the special case of using DPO as the direct

4https ://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B.
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Table 1: Decomposition of different driving factors of online active alignment algorithms.

Variant  Inference (Test)  Exploration Learn Remark
1 o passive T Online DAP [24]
2 T active (7o, Ra) SEA without ERM sync (Sec. 4.2.3)
3 y’) active (71'9 <~ R@) SEA
4 BoN(mg, Ra) passive (7o, Ra) -
5 BoN(me, Ra) active (m6,Rao) -
6 BoN(7s, Ra) active (m6 <> Ra) SEA with Best-of-N sampling
7 BoN(7ryef, Ra) active Ra Not learn policy [21]

optimizer, SEA also shows superior performance to prior online active exploration methods including
APL and XPO. We invite readers to revisit Fig. 1, where we show that SEA not only attains signif-
icantly improved final performance (Top) but also achieves 2-5x better sample efficiency (Bottom).

Additionally, we note that the choice of direct optimizer is crucial for both online learning and active
exploration. When comparing different optimizers at the 1B scale (the first column), all Offline
agents demonstrate comparable learning efficiency and reach the same level of final performance
(around 70% win rate), but SLiC Online agent deliver slightly less improvement than DPO and IPO
Online agents. Besides, when incorporating active exploration, the SEA agent using DPO shows
much larger improvement than the other two. This suggests that selecting the most suitable policy
optimizer coupled with active exploration would yield the best agent.

6.2 Ablation analysis

We decompose SEA into distinct components to evaluate their individual contributions. Table 1
shows the three axes we dissect SEA on, including inference methods, exploration strategies, and
learning components. We construct seven agent variants from different combinations, which cover
two closely related baselines [21, 24]. We show in Fig. 4 the performance curves of each variant, all
trained with DPO on 1B scale.

Win rate learning curves

The top plot compares variants that directly use the policy for
inference. Comparing with the vanilla online method (Variant-
1), we observe learning ERM for active exploration (Variant-2)
is beneficial, and aligning my¢ with Rg¢ (Variant-3) further 4
improves sample efficiency, which validate our algorithm. Ad-
ditionally, since a reward model is learned within the agent, we

Policy
e
oo

\

o
=N
Y
8]
w

can incorporate inference-time alignment via Best-of-N (BoN) % 08 7 ~ 4 =5 —6 —7
sampling [48, 72]. This also facilitates a direct comparison be- = 06| /°

tween SEA and Dwaracherla et al. [21], which learns a similar I Aok ok aok sox
ERM for both exploration and BoN but does not align the LLM Query step

policy. Results in the bottom plot of Fig. 4 suggest a similar ] ) )
trend that Variant-6 > Variant-5 > Variant-4. The Variant- E'g“fe 4 \:Vm .rat? cohmparlgon (()Idefl'tf)
7 [21], however, ceases to improve after ERM converges due 'crent agent variants when using (1.
to the limited capability of its fixed policy. ?grhi(;yf;:glc(glght) Best-of-N sampling

7 Conclusion

In this paper, we study the problem of LLM alignment through the lens of contextual dueling bandits
and propose a Thompson sampling-based algorithm to achieve sample-efficient alignment. We
incorporate three techniques, including epistemic reward model, policy-guided search and mixed
preference learning to yield a practically efficient online alignment method. Extensive empirical
evaluation demonstrates the superior sample efficiency of our method compared to existing baselines.
To our knowledge, this is the first work to study active exploration for online LLM alignment with
fully online experimental verification. We hope our positive empirical results, along with the open-
sourced codebase, will encourage future research in this direction, ultimately enabling LLMs to
achieve superhuman intelligence with an affordable amount of human feedback.
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A Algorithm details

While Algorithm 1 presents our Thompson sampling algorithm for LLM alignment, it is intractable
and centered around the reward posterior modeling. We next present a practical sample-efficient
alignment agent that learns both an LLM policy and an epistemic reward model (ERM) online.

Algorithm 2 Sample-efficient alignment (SEA) for LLMs

Input: Reference policy 7rer, DAP loss function F', prompt distribution px, unknown but queryable
preference oracle P, mixture ratio ~.
1: Initialize experience Do < @, policy mpo < myer, and ERM weights ®° = {¢2}5_| randomly.
2: fort=1,...,T do

3: Receive a prompt ; ~ px. _
4: Sample M responses yi ~ Toi—1(-|2:) to construct Sy = {yi ;.
5 Sample ¢ ~ Uniform(®*~") and set y; < arg max, s, 7¢ (¢, b). /1 Select 1st response y.
// E&E objective: aligning an online system.
6: repeat
Sample ¢ ~ Uniform(®*~") and set y; < arg max, g, (¢, b). /1 Select 2nd response y'.

until vy, # y;
// BAL objective: labeling via crowdsourcing.
7: Set y; < argmaxpes, Vo [0 (T4 (T, yt) — 7o (e, b))], // 0R select 2nd response y'.
where V4 [-] computes variance across ensemble members of &'~
8: if g < 7 for g ~ Uniform(0, 1) then
Label {y:,y;} with P to obtain B; = {(=+, y;", y; )} and update experience D; < D:—1 |J B:.
else
Use Rgt—1 to get synthetic labels and obtain B; = {(z:, ¥}, ¥; )}
end if
9: Update ERM with the regularized NLL loss (Eq. (8)):

' " — arVaLr (P Dy).
// Reward learning.
10: Update policy with the direct optimizer (Eq. (9)):
at — 9t_1 - awv9£ﬂ(9t_1|6t77rref7 F)

// Policy learning.
11: end for

In Algorithm 2, we describe an online setting where a single example is processed at each time ¢
(batch size b = 1). This is mainly for notational convenience, while in implementation we set b to
be the training batch size (e.g., 128). We instantiate the reward posterior with an epistemic reward
model, which allows for efficient incremental update and sampling. We also replace the global
optimization (arg maxpey) with a policy-guided local search among proposals sampled from the
latest online policy mg:-1. At each time ¢, we update ERM weights & with m gradient steps with
randomly sampled batches from the experience D,. We find setting m = 5 suffices to achieve a
reasonable accuracy. The policy parameters 6 are updated using mixed preference data, with a
~ proportion being the real environment experience and the remaining (1 — +) from the ERM’s
synthetic experience. Note that the synthetic experience is not added into D, to ensure reward
learning always uses ground truth environment data.

We consider the following three direct optimizers in our experiments:

« DPO [55]:
Fo(,y",y™, mer) = — logo (6 log :"fgﬁgﬂ; 8}:3) (10)
* IPO [4]:
. . 2
rwatm = (o (GG ) ") O
e SLiC [88]:
Fy(z,y*,y~, Tret) = max (o, 1- Blog Z‘)ng"’;;é Ej:g) (12)
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where 3 controls the rate of deviation of my from 7 f.

B Full related works

RLHF and DAP. Commonly adopted RLHF pipelines [15, 65, 5, 50] first learn a proxy RM with
a negative log-likelihood loss:

L (D) = ~Ez y+ y—)pp [loga (7’¢ (a:7y+) —Te (w,y*))] , (13)
where D is collected by querying human annotators using a behavior policy m..r (typically the
supervised fine-tuned policy myg). Afterwards, offfine RL> [36, 37] is conducted to learn 7y with
respect to the learned reward 7 internally within the agent (Fig. 2a). However, the learned model g
might be inaccurate at regions out of the distribution (0.0.d.) of m,.s because little training data can
be collected. An effective remedy is to incorporate a pessimistic term to combat the distributional
shift, leading to a reformulation of the von Neumann winner policy objective in Eq. (4) as

mo(y|z)
J(mg) = E E re(x,y) —Plog ————=—= 14)
( 9) xT~px y~me(-|x) ¢( y) ﬁ g’]‘rmf(y|.’13)‘| (
estimated r* 0.0.d. reward penalty
— & |, B Foew] - Do) 1) a5
zpx |y~mo(-lx)

which converts an online objective regarding the human’s implicit reward r* to an offline objective
regarding the proxy reward r4. The KL penalty in Eq. (15) is widely used for language model
fine-tuning [29, 80], and PPO [64] has become a default RL optimizer to maximize the KL-regularized
reward. However, the performance of RLHF is guaranteed only if the preference data D induced
by 7t adequately covers 7* [90], which is often approximated by updating m,..; with the latest
(improved) 7y for re-sampling a batch of online experience and repeating Eq. (13) and (15). Prior
works typically focus on offline or iterative online (with only a few iterations) settings [80, 18],
which may compromise sample efficiency (Property 1).

True online RLHF is difficult due to the complexity and instability of RL optimizers. For example,
Huang et al. [27] openly reproduces offline RLHF scaling behaviors but requires many implementation
tricks for training, highlighting the difficulties of an online counterpart. Fortunately, the introduction
of DAP (or direct optimizers) largely simplifies and stabilizes fine-tuning by conducting contrastive
supervised learning directly on D (Fig. 2b). While most DAP works focus on learning from a fixed
offline preference dataset (, including Zhao et al. [88], Rafailov et al. [S5], Azar et al. [4], Meng
et al. [46], Zhang et al. [87]), iterative DPO [81] observes improved results when allowing iterative
online interaction. Guo et al. [24] further propose OAIF to make DAP faithfully online, satisfying
Property 1, and demonstrate that online learning prevents over-fitting and yields continual performance
improvement. Nevertheless, it still employs passive exploration strategies (using y,y’ ~ mg),
hindering sample efficiency (Property 2).

Online exploration in LLLMs. A line of recent works [44, 17, 45, 21] adopts the fully online
bandit formulation and incorporates active exploration with uncertainty-aware RMs for response
selection (Fig. 2c). In particular, Mehta et al. [44] consider the E&E setting and develop a UCB-
style [3] algorithm; Das et al. [17] instead select the dueling responses with the most uncertain
preference estimate, targeting the BAI setting in a pure exploration way; unlike the above, Melo et al.
[45] view the problem from the angle of pool-based active learning and propose an acquisition function
based on both entropy and epistemic uncertainty; finally, the work by Dwaracherla et al. [21] is the
closest to ours in the sense that they apply double Thompson sampling (DTS) [78] for exploration,
but DTS is designed for the E&E setting while they evaluate anytime average performance as in the
BAI setting. We will show in App. G.1 that pure exploration by Das et al. [17] is not the best choice
for BAI, and the objective mismatch in Dwaracherla et al. [21] could lead to suboptimal performance
in respective settings. Meanwhile, all these works primarily focus on learning uncertainty-aware RMs
online without updating LLM policies. Therefore, all responses are sampled from a fixed proposal
policy 73 (or even a fixed dataset), making the data coverage a critical concern.

Another line of research updates LLMs online while incorporating exploration. Zhang et al. [86]
and Xie et al. [79] independently propose to learn an optimistic RM to encourage exploration. They

>Offline in the sense that y is not directly learned from online human feedback. See App. C for details.
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leverage the property of DPO [55] to reparameterize RM with policy and conclude with an extra
optimistic term in the DPO loss function. Thus, their learning processes are like Fig. 2b but with an
optimistic direct optimizer. Muldrew et al. [47] adopt the vanilla DPO loss but utilize the implicit
reward margin to actively select dueling responses. Yet, these methods are tightly coupled with DPO
and not compatible to other direct optimizers. Their experiments are also limited to a few online
iterations, possibly due to the implementation difficulty of a faithfully online learning system. Given
their relevance to our approach, we reproduce them in a fully online manner for fair comparisons in
Sec. 6.1. We summarize prior works in Table 2.

Method Exploration Interaction Proposal Policy
Active  Passive  Online  Iterative  Offline o T3
[15] v 7 7 v
Optimizer [5] v/ v v %
[50] v v vy
[88] v 4 v/
[55] v vy
[4] v v
[46] v v
[81] v v y
4 [24] v v
O];l))tgﬁiczter [44] v v
[17] v v
[45] v v
[21] v y
[86] 4 %
v 7
[47] v v

Table 2: A summary of prior work. 7 denotes the proposal policy that is continuously updated based on
newly collected preference data, while 7g denotes a fixed proposal policy. Algorithms that encompass online
interaction (Property 1), active exploration (Property 2), and learnable 7y offer the best sample efficiency.
Notably, only three methods (listed at the bottom of the table) satisfy these characteristics, and we include
them for comparisons in our experiments.

C On connections with single-step RL

By viewing contextual dueling bandits as single-step preference-based RL (PbRL) [11, 77] problems,
we can interpret paradigms shown in Fig. 2 from the RL perspective.

RLHF approaches (Fig. 2a) are instances of offline model-based RL [32, 84, 63, 41, 69], where
they learn a reward model (no need for a transition model since the prompt-response interaction
is single-step) of the environment from a batch of offline collected data, and train a policy (i.e., LLM)
to maximize the return (i.e., expected one-step reward) with respect to the learned reward.

In contrast, DAP methods (Fig. 2b) are similar to policy-based model-free RL algorithms, e.g.,
REINFORCE [76] which conducts policy gradient update:

EmNXEy~ﬂ9(~\w) [R(ma y)VQ IOg u (y|m)] ) (16)

where R(x,y) is the return (i.e., cumulative reward) of the trajectory. To connect with DAP, we
could set R as arbitrary scalar values based on the binary preference outcomes, e.g., R(z,y") = ¢
and R(x,y~) = —( for preference triplet {x,y™,y~}. In this way we could rewrite Eq. (16) as

B v By g my (o) Ey+y-)op [C (Vologmo(y T |@) — Vologm(y~|@))],  (I7)
by repeating action sampling twice and querying the oracle for preference labeling. This matches the

gradient direction of contrastive DAP losses (e.g., see Section 4 of DPO [55]) if we optimize them
online [24].

Additionally, active reward learning from behavior policy’s data distribution (Fig. 2c) can be regarded
as inverse RL [49], which tries to recover environment’s reward function given expert trajectories. In
the context of LLM alignment, the preference data {x,y ",y } ¥, directly encodes human’s implicit
reward 7*, which can be inversely learned with assumptions such as the BT model [8]. However,
existing methods belonging to this paradigm mostly rely on a fixed (and suboptimal) behavior policy
for response sampling, whose coverage inherently limits the quality of the recovered reward function.
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Last but not least, SEA depicted in Fig. 2d resembles a class of online model-based RL algorithms,
known as Dyna [66, 28], that learns a world model from environment experience and trains a base
agent (consisting of reactive policies and value functions) from both environment experience and
model experience. Compared to model-free methods, Dyna naturally enables more sample-efficient
learning by planning with the learned world model to update the base agent. In SEA, we learn the
reward model online and update the LLM (i.e., the reactive policy) with model-planing experience
by mixed preference learning (Sec. 4.2.3). Online model-based RL algorithms could suffer from
catastrophic forgetting in the face of nonstationary data [42], and we leave it for future work. Overall,
this model-based RL formulation is powerful and explains popular LLM techniques, e.g., Best-of-N
sampling [72] can be viewed as planning for acting, which trades compute for performance. We
believe it is a promising path leading us to unlock superhuman capabilities of LLMs.

D Distributed learning framework

The interactive nature of LLM alignment necessitates an integrated online learning system that
simulates the interface. The absence of a performant open-source online alignment system has
restricted many existing works to only a few iterations of batch learning [47, 18, 14, 86, 79], which
creates a mismatch with their theories that typically require a large number of online interaction
rounds. Even worse, such absence also makes the comparison between different LLM exploration
methods difficult, often restricting evaluations to the simplest iterative DAP baselines [86, 79].

To fill this gap, we build a highly efficient learning system for exper-
imenting with online LLM alignment algorithms. We notice that the
computational bottleneck lies in online response sampling (i.e., au-
toregressive generation) and preference labeling (e.g., human, large
RMs, or large LL.Ms), which mirrors the slow actor-environment VLLM
interaction seen in RL systems. Inspired by distributed deep RL sys-
tems which spawn many actors or environments in parallel [22, 75],
we design an Actor-Learner-Oracle architecture for online LLM
alignment, which is depicted in Fig. 5. The three types of work-
loads (i.e., actor, learner and oracle) are heterogeneous and require
different optimization. In particular, we adopt vLLM [33] for the
actor to accelerate the autoregressive response generation. We also . ) .

use DeepSpeed’s ZeRO [58, 57] strategies to enhapce the memory g;%:;fénﬁ?;123?;2%2/:;[63;{
efficiency of the learner. The updated model weights are broad-  ment algorithms.

casted from the learner master to all actors after every optimizer

step efficiently via NCCL, similar to Hu et al. [26]. Furthermore, to improve the scalability, we
wrap the oracle RM as a service using Mosec [83], which supports dynamic batching and parallel
processing, to minimize preference query latency. Finally, we leverage DeepMind Launchpad [82] to
compose all workloads into a distributed program and adopt Plasma [53] to efficiently transfer data
across process boundaries.

Experience

Learner

DeepSpeed

Learner
Master

Experience

We benchmark our system’s efficiency against a concurrent implementation of online DPO by
HuggingFace®, which utilizes only DeepSpeed for memory optimization. Our system achieves up
to 2.5 latency reduction compared to this counterpart, demonstrating its computational efficiency.
Due to space constraints, detailed benchmarking methods and results are presented in App. H.

E Baseline methods

We review four baseline methods that are relevant to this work and used for comparisons in our
experiments.

Offline DAP. We review DPO [55], which is a representative work in the direction of Direct
Alignment from Preferences (DAP). It simplifies the two-stage pipeline of offline RLHF as a single
step of supervised learning by leveraging the closed-form solution [52, 51] of the RL objective in
Eq. (15):

. (yle) = ﬁnrexmx) exp%r(w,y)), (18)

6https ://huggingface.co/docs/trl/main/en/online_dpo_trainer.
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where Z () normalizes such that ¥, 7, (y|x) = 1, to reparametrize r as a function of 7:

r(x,y) = Blog% + Blog Z(x). (19)

Consequently, plugging Eq. (19) into the reward model loss (Eq. (13)) yields a contrastive loss that
directly optimizes the policy:

7o (y*|@) mrer (y‘|x))] ’ (20)

H}Ttn E(zyt,y-)~pp |:— logo (ﬂ log Teot (Y] 2) 70 (Y~ |2)

where D is a pre-collected offline preference dataset.

We also experiment different DAP methods’ besides DPO, such as IPO [4] and SLiC [88], whose
loss functions are shown in Eq. (11) and (12).

Online DAP [24]. In contrast to the conventional DAP methods that learn a policy from a fixed
dataset D, online DAP proposes to collect on-policy preference data to update the policy online. It
first samples responses from the current policy (y,y’) ~ m,, then acquires preference labels to form
abatch B; = {(z,y",y~)}’_,. One gradient step minimizing the DAP loss over this data batch
to get 7y, ,, which is used for the next iteration. Such approach not only mitigates the over-fitting
issue faced by offline DAP methods [24], but also facilitates online interaction (Property 1) with the
environment, falling into the second paradigm of CDB solution algorithms (Fig. 2b).

Active Preference Learning (APL) [47]. APL follows the online DAP paradigm, but is restricted to
DPO due to its reliance on DPO implicit rewards. Two techniques are proposed by APL to actively
select both prompts and dueling responses for querying the preference oracle:

1. Predictive entropy (PE) for selecting prompts. In this step APL computes a Monte-Carlo
estimate of PE for each prompt as H., (y|x) ~ —X_, log 7o (y.|z)/N, where y,, ~
mo(-|) and log 7y (y, |x) is the summation of log probabilities of each token. Then, APL
filters a subset of prompts with high PE to form Xs.

2. Preference model certainty for selecting dueling responses. For prompts in X's, APL
generates many responses for each prompt, then selects the pair with largest reward mar-
gin measured as |7(x;, y;) — 7(x;, y;)|, where 7 is the DPO implicit reward 7(z,y) =
Blog mo(y|x) — log mret (y|T)).

By above two steps, APL actively explores more uncertain prompts and responses in an online DPO
paradigm, satisfying both Properties 1 and 2.

Exploratory Preference Optimization (XPO) [79]. XPO studies LLM alignment in the framework
of token-level MDP, and leverages the property that DPO conducts implicit Q*-approximation [56],
so that

*
Blog Twlz) _ (@ y) = Vi) Vy, @21
et (Y| T)
where V™ is the optimal value function depending only on the prompt . XPO incorporates the implicit
(global) optimism for exploration by overestimating the value V., (z) = r*(x,y) — 8log Wﬂgf((y;g) )

This is achieved by optimizing the policy with a modified DPO loss:

. o (Y |2) Teet (Y~ | )
min Eg o+ - yretymp ., |logmy v lz) —logo (5 log ,  (22)

p (zyt,y= Yy f)~py S ( | ) Wref(y+|w)779(y_|$)
where ¢! ~ m..¢(-|2) and B is an on-policy data batch in the same vein as online DPO. Intuitively,
the first term in Eq. (22) biases the policy toward a large value estimation such that V,, = V*,
implementing the optimism in the face of uncertainty (OFU) for exploration. Theoretically, Xie et al.
[79] also prove the sample complexity bound of XPO, making it a promising algorithm for online

LLM alignment.

ref

Self-exploring language model (SELM) [86] is a concurrent work of Xie et al. [79] that proposes
nearly the same theoretic algorithm to achieve OFU. However, the practical implementation of SELM
involves offline preference dataset for training, making it hard to benchmark in an online alignment
setting like ours. Therefore, we will keep XPO as our baseline for comparison.

"We use “DAP method” and “direct optimizer” interchangeably.
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F Full experimental details

In the main text we focus on the task of summarization using the TL;DR dataset. This provides
a lightweight and clean setting to extensively study different algorithmic designs with affordable
computational resources. App. F.1 provides the full details of this setting.

To further validate the sample efficiency of SEA in aligning LLMs to perform general tasks, we adopt
the UltraFeedback dataset [16] and evaluate trained LLMs on AlpacaEval 2.0 [38]. App. F.2 provides
more details of this setting.

F.1 Details of TL;DR task

Models. We experiment three model scales (1B, 2.8B, 6.9B) from the Pythia family [7]. We take
pretrained SFT models from [27] as ¢ for the starting model in all experiments. Except in Sec. 6.1,
we use 1B model for other experiments to save computation.

Preference oracle. We simulate the process of human feedback with a strong scalar RM and refer
it as preference oracle. We choose Skywork-Reward-L1ama-3.1-8B® [40], which is top-ranked in
RewardBench leaderboard [35], as the preference oracle.

Epistemic reward model. We build ERM on top of a pretrained 0.4B transformer [30], by removing
its head and adding an ensemble of MLPs. The size of ensemble is set to K = 20, and all MLPs
contain 2 hidden layers of 128 nodes. Note that the ERM is chosen to be much smaller than the
preference oracle following Dwaracherla et al. [21], which reflects the fact that human preferences
can be more complex than what the agent can model. The regularization coefficient A is fixed to
be 0.5 after a coarse hyperparameter search.

Data. We employ the widely adopted TL ; DR dataset [65] for our experiments. It consists of Reddit
posts as prompts, and the agent is required to give summaries that align with human preferences. We
fix 50k prompts for training and limit the query budget to 50k as well.

DAP methods. We adopt three DAP methods (direct optimizers) to thoroughly validate our algorithm,
including DPO [55], TPO [4] and SLiC [88]. Except in Sec. 6.1, all experiments are done with DPO
as the direct optimizer.

Baselines. Similar to Guo et al. [24], we include the offline and online variants of different DAP
methods as baselines. Additionally, we compare with two active exploration baselines built on online
DPO: APL [47] and XPO [79]. A detailed review of all baselines can be found in App. E.

Metrics. We use the win rate of agent’s responses against reference responses judged by the preference
oracle as the performance metric. This metric can reflect both the agent’s cumulative regret and
anytime regret (i.e., average performance). In the E&E setting, we measure the “online” win rate of the
agent’s dueling responses that are executed during experience collection and take the average. In the
BAI setting, we measure the “offline” win rate by evaluating the latest agent’s responses given a fixed
set of 1000 holdout prompts periodically. We mainly focus on the BAI setting because crowdsourcing
seems a major scenario for most practitioners, and present one set of experiments for comparing
different exploration strategies in both settings. When the comparison is only made within a model
scale, we report the relative win rate against the initial STF models. When the comparison is across
scales (Fig. 1 Left), we report the absolute win rate against the ground truth responses in the dataset.

Hyperparameters. We set 5 = 0.1 for DPO and 5 = 0.2 for SLiC and find they are robust for
all scales. We tune § from {0.2,0.3,0.5, 1.0} for IPO across scales and report the best performing
results. We sample M = 20 on-policy responses with a temperature 77 = 0.7 during training, and use
greedy decoding for offline evaluation (BAI’s metric). We use the Adam optimizer with learning rate
of 5 x 10~7 and cosine scheduling, and set the batch size to be 128. We initialize the mixture ratio ~y
of SEA to be 1 and adjust it to 0.7 after a burn-in period of 1k samples.

All hyperparameters are kept the same for offline and online baselines, except that online methods
update the sampling policy after every gradient step as the latest my,. For APL and XPO, we keep the
learning rate and DPO’s (3 the same for apple-to-apple comparisons. Specifically for APL, we initially
sample 1024 prompts per batch and use the predictive entropy to filter a subset of 128 prompts. Then,
we sample 8 responses per prompt and use the preference model certainty to finalize two responses

8https ://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B.
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for the duel. Specifically for XPO, we follow the their recommended optimism coefficient to set
a=5x1075,

Statistical significance. There are various factors to introduce randomness during online learning.
We thus launch 3 independent runs for every experiment with different random seeds. All the results
are reported with mean and standard error to indicate their statistical significance.

Computational resources. Experiments at all scales are conducted on a single machine with 8
A100 GPUs to run the learner and actors. We additionally host a separate remote server with workers
spawned on 16 A100 GPUs for the oracle RM”, so that it can be queried by all concurrently running
experiments. All experiments conducted for this research consume about 2 A100 GPU years.

F.2 Details of general tasks

Model. Following Meng et al. [46], Zhang et al. [86], we employ L1ama3-8B-Instruct!'? as our
initial model 7 ¢;.

Preference oracle. We follow Meng et al. [46] to adopt ArmoRM-L1ama3-8B-v@. 1 11174] as the
preference oracle to provide online preference feedback.

Data. We take the UltraFeedback dataset [16], which is widely used for LLM alignment in the
literature. We filter out samples whose prompt is longer than 1800 tokens and result in 61k samples.
We extract prompts from the filtered dataset while excluding the responses. The prompt set are
collected from multiple sources and cover diverse domains, making it suitable to improve LLM’s
capability on general tasks.

DAP method and baselines. We employ the state-of-the-art DAP method, SimPO [46], as our direct
optimizer. Since SimPO is originally an offline algorithm, we extend it to Online SimPO and take
both offline and online variants as baselines.

Evaluation. We evaluate SEA and baselines using AlpacaEval 2.0 [38]. It consists of 805 test
prompts, and uses GPT4-Turbo to judge the quality of model responses against reference responses
generated by GPT-4-Turbo. We follow the standard protocol to report both the win rate (WR) and
the Length-Controlled win rate (LC) [19].

Hyperparameters. We follow SimPO’s recommended hyperparameters to set 5 = 10 and v/ = 0.3.
We use a learning rate of 8 x 10~ and batch size of 128. The decoding temperature is set to be 0.9
for generating evaluation outputs. The same hyperparameters apply to baselines and our method.
Configurations of SEA are kept the same as those in the TL ;DR task (App. F.1).

G Extended empirical studies

We present additional empirical studies in this section, including investigation on different exploration
strategies (App. G.1) and preference oracles (App. G.2) on the TL ;DR task, as well as the performance
comparison on AlpacaEval 2.0 for general tasks (App. G.3).

G.1 Choice of exploration strategies

Recalling that different LLM alignment scenarios (online system or crowdsourcing) require different
exploration strategies to meet their respective learning objectives (Sec. 2.2). We investigate three strate-
gies based on posterior sampling and compare them on both online and offline performance. The first
strategy (Uncertainty) focuses on pure exploration with information maximization. It seeks the pair of
dueling responses that exhibits the largest epistemic uncertainty, which is implemented by selecting
the pair whose logits difference has the largest variance across ensemble members. The second (E&E-
TS) and the third (BAI-TS) strategies follow the principles in Algorithm 1, and their differences are
between Line 5 and Line 6. The comparison results are shown in Fig. 6 (Left and Middle). Focusing on
the left plot, we observe that E&E-TS strategy achieves the best online performance, which is within
our expectation. In contrast, Uncertainty shows the worst online performance because it tries to maxi-
mize the information gain but does not prioritize reward maximization. On the other hand, conclusions
are interestingly different when taking the offline performance as the metric. In this case, BAI-TS and

“We utilize the Kubernetes service for routing requests to multiple Mosec [83] instances.
10https ://huggingface.co/meta-1lama/Meta-Llama-3-8B-Instruct.
= https://huggingface.co/RLHFlow/ArmoRM-L1ama3-8B-v@.1.
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Figure 6: (Left and Middle) Win rate comparison of different exploration strategies measured in E&E and BAI
settings. (Right) Win rate comparison of different agents when using GPT40-mini to simulate human feedback
via LLM-as-a-judge.

Table 3: AlpacaEval 2.0 results. LLM ex-
04 ploration methods are highlighted in blue.
-
3 40 Model LC WR
335 GPT-4 Omni (05/13) 575 51.3
g GPT-4 Turbo (04/09)  55.0 46.1
<£:‘~ 30 Offline -+ SEA Offline + SEA Yi-Large I?review 519 575
Online Online SEA+SimPO 474 41.1
255 i e W o 50 o Claude 3 Opus (02/29) 40.5 26.1
Query step Gradient step SELM 34.7 348
XPO 29.4 -

Figure 7: LC win rates on AlpacaEval 2.0 with respect to query ~ Llama 3 8B Instruct ~ 22.9  22.6

budget and gradient update budget.

Uncertainty both exhibit more efficient offline performance improvement than E&E-TS. This can be at-
tributed to that exploration for uncertainty minimizing helps to identify more informative responses to
train the LLM policy. Moreover, BAI-TS >~ Uncertainty indicates exploration with both reward and in-
formation maximization is better than exploration with only information maximization. E&E-TS, how-
ever, always chooses two responses with similarly high quality to exploit. This can not only lead to less
efficient exploration, but also result in less efficient policy learning due to smaller DAP loss gradients.

G.2 Aligning LLMs with a human simulator

Results presented so far are based on experimenting LLM alignment with the preference oracle being
a scalar reward model, which is deterministic and does not capture the potential randomness of the
choice by real humans. To test different agents in a more realistic setting, we use generative models
as human simulator in an LLM-as-a-judge [10, 89] manner. In particular, we directly query the
OpenAl API and use gpt-40-mini-2024-07-18 as the judge to provide preference feedback. We
use a similar prompt template to Li et al. [38]’s, which is shown in Fig. 10. We also randomly swap
the order of two responses to mitigate the known position bias of LLM judges. The results are shown
in Fig. 6 (Right). We can observe the performance curves generally exhibit higher variance, possibly
due to the randomness introduced in the feedback process, which puts more stringent requirements
for learning algorithms. The two active exploration methods demonstrate opposite results to those
in Sec. 6.1—APL learns fast initially but is eventually outperformed by Online, while XPO improves
over Online after stabilizing its training and delivers a better final performance. Our agent, SEA,
is shown to offer the best sample efficiency as well as asymptotic performance, further validating
the importance of online learning and well-designed active exploration mechanism.

G.3 Performance on general tasks

We investigate the generalizability of SEA by training with the prompt set from UltraFeedback [16]
and evaluating the model performance on AlpacaEval 2.0 [38]. Fig. 7 shows the Length-Controlled
(LC) win rate of different models against GPT-4-Turbo. The left plot compares the sample efficiency
(in terms of the number of queries) of offline, online and SEA SimPO. The results suggest that
enabling online interaction does not improve the sample efficiency over the offline counterpart. Such
observation is in stark contrast to what we have seen in the TL ;DR task, where the online agent always
improves over the offline ones. We hypothesize that this is due to the different coverage of 7. in
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these two tasks. For TL;DR, which is a much easier task, the initial SFT models already have good
coverage, permitting online DAP with only passive exploration to work reasonably well; however, for
more challenging tasks, the insufficient coverage of m,.f would lead to sample complexity exponential
in & [79], which necessitates deliberate exploration, such as Thompson sampling proposed in this
work. The above claim is justified by observing that SEA largely improves the sample efficiency over
the online and offline variants.

Attentive readers may have noticed that comparing query budget could be advantageous to SEA be-
cause pseudo labels are used in mixed preference learning (Sec. 4.2.3), which results in more gradient
steps given the same query budget. In the right plot of Fig. 7, we show the performance versus
gradient step. We can observe SEA has the steepest learning curve, verifying that it explores more
informative samples to yield faster improvement.

Last but not least, in Table 3, we show the AlpacaEval 2.0 LC win rates of XPO and SELM (as
reported in their papers), along with ours and several cutting-edge LLMs. SEA is agnostic to direct
optimizers, thus it can leverage the state-of-the-art SimPO to achieve a high LC of 47.4%. On the
other hand, XPO and SELM can only be applied to DPO, restricting their potential to incorporate
future advances in direct optimization algorithms.

H System benchmarking

We conduct a rigorous benchmarking comparison on the efficiency of online DPO training using our
learning system, alongside the tr1’s implementation'2.

Settings. In alignment with the examples provided by trl, we use the TL;DR [65] dataset and
evaluate training efficiency at three model scales: 1B, 2.8B and 6.9B parameters for both SFT-ed
LLMs'3 and exclusively trained RMs!'#. This is similar to the settings in our experiments (see App. F)
except that we fix the preference oracle to be a strong general-purpose RM.

Hardware & Software. All benchmarking experiments are conducted on a single machine with
eight A100-40G GPUs and 96 AMD EPYC 7352 CPUs. To ensure fair comparison, we align all key
hyperparameters for both our codebase and trl. The DeepSpeed ZeRO-2 strategy is employed by
default when GPU memory suffices; otherwise, ZeRO-3 or ZeRO-2-offload is utilized as applicable.
Notably, the distributed architecture of our implementation provides flexibility in system configuration,
enabling adjustments to accommodate memory and computational time constraints. Fig. 8 illustrates
two example configurations employed in our benchmarking experiments. We will provide all
benchmarking scripts in our codebase for reproducibility.

* Config 1 collocates all three workloads on each of the GPUs. Specifically, eight vVLLM
instances (for actors) and eight Mosec workers (for oracle RMs) are spawned to run inde-
pendently on each GPU. After a batch of responses is generated (by actors) and labeled (by
oracle RMs), it is sent to the learner, which runs on all eight GPUs coordinated through
ZeRO strategies for policy learning. The updated policy weights are then broadcasted to all
actors for on-policy response sampling on subsequent prompt batch. While this configura-
tion maximizes GPU utilization, it requires substantial GPU memory to accommodate all
workloads and is thus employed only for 1B scale experiments.

* Config 2 only collocates actor and oracle workloads on half of the GPUs, reserving the
remaining four GPUs exclusively for the learner. This is suited for larger-scale experiments
(e.g., 2.8B or 6.9B), where additional GPU memory is allocated to the learner. However,
this setup incurs idle time on half of the GPUs due to data dependency, as the learner must
await new preference data, and the actor must await updated policies. An alternative is to
implement asynchronous data collection, where minor data staleness is allowed by using
0;—1 to generate data for updating 6;. Although this data would not be strictly on-policy,

12https://github.com/huggingface/trl/blob/main/trl/trainer/online_dpo_trainer.py.

13https://huggingface.co/trl—lib/pythia—1b—deduped—tldr—sft;https://huggingface.
co/trl-1lib/pythia-2.8b-deduped-tldr-sft;https://huggingface.co/trl-1ib/pythia-6.
9b-deduped-tldr-sft

“https://huggingface.co/trl-lib/pythia-1b-deduped-tldr-rmhttps://huggingface.
co/trl-1lib/pythia-2.8b-deduped-tldr-rm;https://huggingface.co/trl-1lib/pythia-6.
9b-deduped-tldr-rm
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Figure 8: Two example configurations of our learning system used in benchmarking experiments.
asynchronous training could reduce idle time and enhance GPU utilization. This approach
has proven effective in large-scale RL systems [6], and we leave this optimization to future
work.

Results. Benchmarking results for the latency of training a batch of 128 samples are presented in
Fig. 9. Overall, training with the config 2 demonstrates consistently greater efficiency than trl,
achieving up to a 2.5x reduction in latency at the 2.8B scale.

Benchmarking ours against huggingface/trl

trl-learn B ours-learn Se23
< 60
= trl-oracle ours-oracle
3 48.83
Sé trl-generate M ours-generate :
=40 trl-other ours-other
8 34.43
g
f;“ 23.56
g 201 13.77
< .
aa) 9.25
421 4.67
| T
config 1 config 2 config 2 config 2 config 2 config 2
gloo ncc gloo ncc gloo nce
1B 2.8B 6.9B

Figure 9: Averaged training latency (over 10 batches, equivalent to 1280 samples) comparing ours against
huggingface/trl.

We next analyze the time costs for individual stages: generate, oracle and learn. Across all scales
and configurations, ours demonstrates significantly lower generate time than trl, due to distributed
actors utilizing vLLM. Additionally, at the 6.9B scale, ours requires substantially less oracle time
than trl, as trl employs ZeRO-3 to prevent GPU memory overflow, thereby slowing inference.
In contrast, ours config 2 allows for flexible collocation, enabling oracle RMs hosted via Mosec to
operate in parallel without sharding. However, ours config 2 incurs longer learn time compared to
trl due to the use of only half the available GPUs. This limitation also explains why, at the 1B scale,
config 2 has higher latency than config 1 across all stages.

The other category accounts for time costs associated with data loading, tokenization, and communi-
cation. Here, inter-process communication is the primary cost, with trl showing minimal overhead
as all three stages operate within the same process on identical micro-batches, avoiding weight
synchronization. By contrast, ours requires considerable time to transfer updated policy weights
from the learner to all actors. While NCCL is recommended for synchronization over GLOO, it
requires older vLLM packages (prior to version 0.4.3), which may lack support for newer LLM
architectures. Moreover, NCCL is incompatible with config 1 due to its restriction on the learner
master process establishing two separate process groups (one for DeepSpeed, the other for weight
synchronization). In summary, we recommend future researchers prioritize the config 2 and employ
NCCL when feasible.
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ses I Additional materials

994 In this section, we include a comparison of prior works (Table 2), the prompt template we use for
995 LLM-as-a-judge (Fig. 10), and an example showing ChatGPT actively explores (Fig. 6).

LLM-as-a-Judge Prompt Template

I require a leaderboard for various large language models. I'll provide you with prompts given
to these models and their corresponding outputs. Your task is to assess these responses, and
select the model that produces the best output from a human perspective.

## Instruction

{instruction}

## Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

"model_identifier: "0",
"output": {response0}

{

"model_identifier: "1",

"output": {responsel }

}

## Task

Evaluate the models on the basis of the quality and relevance of their results, and select the
model that generated the best result. Reply with the identifier of the best model. Our evaluation
will only take into account the first character of your answer, so make sure it contains only
one of the identifiers and nothing else (no quotation marks, no spaces, no new lines, ...).

Figure 10: We provide the prompt with two responses and ask GPT to choose the preferred one. We parse the
first token’s logits of “0” and “1”” and apply the BT model to obtain the relative preference.
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I want to use this for k8s readiness check, which requires a return
value "0" if success, how to write the script?

You're giving feedback on a new version of ChatGPT.

which response do you pr

5]

To create a script for a Kubernetes readiness check using cur1, where
youreturna @ status on success (typically when the HTTP status code
is 2680 ), you can combine curl with a conditional check on the HTTP

status code. If the status is 280 , the script will exit with @ (indicating

success); otherwise, it will return a non-zero value (indicating failure).

Here's an example of how you can write this script:

STATUS=${curl -X POST -H

Explanation:

= curl sends the request and captures the HTTP status code in the
STATUS wvariable.

« The if statement checks if the status code is 280 .

= IFthe status code is 2e@ , the script exits with @, indicating
success (readiness).
= If the status is anything other than 208 , the script exits with

1, indicating Failure.

You can modify the binary string or URL as necessary for your specific

readiness check.

| prefer this response

Figure 11: ChatGPT system asks for users’ preference feedback to strategically explore better answers. In
this case, algorithms should be designed around the objective of minimizing cumulative regret (i.e., the E&E

ant to load

For a Kubernetes readiness check, you need to return @ ifthe curl
command succeeds (e.g., status code 2@ ), and a non-zero value if it

fails.

Here's a simple bash script that achieves this:

-X POST -H

Breakdown:

« curl ... -w "%{http_code}" : Captures the HTTP status code

from the curl request.

« The if condition checks if the status code is 280 (indicating

success).
+  exit ©:Indicates a successful readiness check.
« exit 1:Indicates Failure, so Kubernetes will consider the pod nokt

ready.

You can adjust the script depending on the specific status code(s) that

you consider successful.

| prefer this response

setting), because the quality of both responses generated by the system affects user experience.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We include the paper’s contributions and scope in the abstract and introduction.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]

Justification: There is no obvious limitation.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not have theorems.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have explained our implementation details in Sec. 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We haven’t include the code in the submission but we will fully open source
the codes after the reviewing process.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have presented all the details in App. F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments are repeated for 3 times with different seeds for statistical
significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have included the description about computational resources at line 857.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work studies the sample efficiency of LLM fine-tuning from a research
point of view, which should not directly lead to harmful societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cited all the existing resources that we used in this research.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets as of the paper itself. We will open source our
code for reproducibility with documents.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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1306 16. Declaration of LLLM usage

1307 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1308 non-standard component of the core methods in this research? Note that if the LLM is used
1309 only for writing, editing, or formatting purposes and does not impact the core methodology,
1310 scientific rigorousness, or originality of the research, declaration is not required.

1311 Answer: [Yes]

1312 Justification: We used LLMs for editing (e.g., checking grammar errors).

1313 Guidelines:

1314 * The answer NA means that the core method development in this research does not
1315 involve LLMs as any important, original, or non-standard components.

1316 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
1317 what should or should not be described.
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