KNOWLEDGE REASONING LANGUAGE MODEL: UNI-FYING KNOWLEDGE AND LANGUAGE FOR INDUCTIVE KNOWLEDGE GRAPH REASONING

Anonymous authors

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

020

021

022

024

025

026

027

028

029

031

033

036

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Inductive Knowledge Graph Reasoning (KGR) aims to discover facts in opendomain KGs containing unknown entities and relations, which poses a challenge for KGR models in comprehending uncertain KG components. Existing studies have proposed Knowledge Graph Foundation Models (KGFMs) that learn structural invariances across KGs to handle this uncertainty. Recently, Large Language Models (LLMs) have demonstrated strong capabilities for open-domain knowledge reasoning. As a result, the latest research has focused on LLM-based KGFMs that integrate LLM knowledge with KG context for inductive KGR. However, the intrinsic knowledge of LLMs may be overshadowed by sparse KG context, leading to LLM knowledge distortion, which can cause irreversible damage to model reasoning. Moreover, existing LLM-based KGR methods still struggle to fully constrain generative hallucinations in LLMs, severely limiting the credibility of reasoning results. To address these limitations, we propose a Knowledge Reasoning Language Model (KRLM) that achieves unified coordination between LLM knowledge and KG context throughout the KGR process. Specifically, we design a Knowledge Reasoning Language (KRL) instruction format and a KRL tokenizer to align LLM knowledge with KG representations. Then, we propose a KRL attention layer that coordinates intrinsic LLM knowledge with additional KG context through a dynamic knowledge memory mechanism. Finally, a structureaware next-entity predictor is proposed, which strictly constrains the reasoning results within a trustworthy knowledge domain. Extensive experimental results on 25 real-world inductive KGR datasets demonstrate the significant superiority of the proposed KRLM¹ in both zero-shot reasoning and fine-tuning scenarios.

1 Introduction

Knowledge Graph Reasoning (KGR) (Ji et al., 2022; Liang et al., 2024) is dedicated to uncovering latent facts within KGs, offering interpretable evidentiary support for knowledge-driven applications (Luo et al., 2024; Ding et al., 2024; Yani & Krisnadhi, 2021). Traditional KGR methods (e.g., rule-based (Das et al., 2018) and embedding models (Bordes et al., 2013; Sun et al., 2019; Zhuo et al., 2025)) primarily reason facts within static closed-domain KGs, making it difficult for the model to adapt to the evolution of real-world KGs. Therefore, existing studies develop inductive KGR frameworks (Zhu et al., 2021) to reason facts with entities and relations newly added to KGs.

The core of inductive KGR is to generalize the structural characteristics of training KGs to represent unfamiliar entities and relations (Zhu et al., 2021; Teru et al., 2020). However, the inherent domain discrepancy across KGs leads to the incompatibility of structural characteristics during cross-KG deployment (Galkin et al., 2024), which limits the generalization of inductive KGR models. To cover this challenge, recent research has proposed KG Foundation Models (KGFMs) (Galkin et al., 2024; Huang et al., 2025; Zhang et al., 2024c) to capture the invariant representation of entities and relations across KGs. In general, this invariance enables any entity or relation to be represented by its relative structural context without relying on specific KG domains (Galkin et al., 2024). This property provides KGFMs with zero-shot learning capabilities, allowing them to handle open-domain KGR effectively.

Our source codes are available at https://anonymous.4open.science/r/KRLM-EA36

Figure 1: (a) Current LLM-based KGFMs overlook the necessity of establishing compatibility between sparse KG contexts and intrinsic knowledge in LLMs, which leads to knowledge distortion by LLMs. (b) Compared to explicit sparse KG context prompts, KRLM injects implicit knowledge representations into the reasoning instructions and LLM parameters, providing a more flexible environment for LLM to adapt to external knowledge.

Large Language Models (LLMs), pre-trained on large-scale textual corpora, have been demonstrated to achieve disruptive success on KGR (Chen et al., 2023; Wang et al., 2022; Zhang et al., 2024b; Wang et al., 2024a), which is attributed to their ability to master non-natural languages (Bolhuis et al., 2024; Han et al., 2024; Zhu et al., 2024a; Gao et al., 2024) (e.g., structural knowledge-aware instructions (Kim et al., 2023; Wang et al., 2023)). Leveraging this advantage, the latest studies propose LLM-based KGFMs (Guo et al., 2024; Wang et al., 2024b) to conduct inductive KGR tasks. These methods, by utilizing the powerful context awareness and knowledge emergence (Pan et al., 2024) of LLMs, sufficiently capture implicit knowledge overlooked by primary KGFMs from structural KG context, thereby significantly improving models on open-world fact reasoning.

Previous research on LLM-based KGFMs usually explicitly recasts incomplete facts as KG context-aware instructions and conducts fact reasoning through LLM fine-tuning (Guo et al., 2024) or prompt-based reasoning (Wang et al., 2024b). Despite these accomplishments, existing LLM-based KGFMs still suffer from significant *knowledge distortion* (Li et al., 2024), *i.e.*, the sparse contextual evidence extracted from KGs may override the dense knowledge inherent in LLMs, which causes irreversible damage to LLM reasoning. This issue primarily arises from the inadequate coordination of the natural knowledge gap between KGs and LLMs, thereby hindering the generalizability of LLM-based KGFMs across diverse KGR downstream tasks.

Figure 1(a) illustrates the knowledge distortion challenge in LLM-based KGFMs. In general, current LLM-based KGFMs directly project sparse structural knowledge into a reasoning prompt, which poses a latent risk of misleading LLMs by incomplete reasoning evidence. For example, LLM incorrectly regards "Guildhall School of Music and Drama", the sole information related to "film_genre", as critical evidence. This toxic contextual association overrides the inherent knowledge of LLMs (e.g., "dark comedy"), ultimately limiting model reasoning. In addition, although emergent knowledge endows LLMs with adaptive capacity for open-world fact reasoning, this characteristic actually increases the risk of generating out-of-scope hallucinations (Guo et al., 2024; Pan et al., 2024). This result impacts the fairness and reliability of the model in evaluating across KGR tasks.

To address the aforementioned limitations, we propose a Knowledge Reasoning Language Model (KRLM) to alleviate the knowledge distortion by coordinating the inherent knowledge of LLMs and KGs throughout the entire KGR process. As shown in Figure 1(b), this knowledge coordination is achieved through two aspects: reasoning instruction design and model fine-tuning. Specifically, we first design a KRL-format instruction that aligns the intrinsic knowledge in LLMs (text description) with the implicit knowledge representation through a vocabulary table. Next, we construct a KRL tokenizer that converts entities and relations into unified KRL tokens, encapsulating both structural and textual knowledge. We then propose a KRL attention layer that integrates the context within KRL by coordinating the in-context learning module of a pre-trained LLM and a dynamic knowledge memory mechanism. Finally, a structure-aware next-entity predictor is proposed to tightly constrain the predicted facts to the given KG domain, ensuring the reliability and stability of the reasoning results. In addition, we adopt a collaborative training objective based on knowledge mutual distillation (Zhang et al., 2018; Hu et al., 2023) to further coordinate different knowledge.

Our main contributions can be summarized as follows:

- This paper proposes a novel Knowledge Reasoning Language Model (KRLM) for extensive KGR tasks. KRLM mitigates the knowledge distortion problem commonly faced by LLM-based KGFMs in diverse downstream KGR tasks.
- We design a unified tokenizer for various representation encapsulation in KRL, which infinite scalability of open-world entities/relations with constant-scale model parameter.
- We propose a KRL attention layer and a structure-aware next-entity predictor, which enables LLMs to effectively coordinate pre-trained intrinsic knowledge with external structural knowledge during the in-context learning process, ultimately allowing for reasoning with traceable facts.
- Extensive experimental results on 28 datasets demonstrate that the proposed method exhibits significant zero-shot learning and transfer capabilities in open-domain KGR scenarios.

2 Related Work

In this section, we review the research roadmap of KGR, with a focus on comparing LLM-based KGR models with our proposed KRLM on open-domain KGR.

A review of KGR. KGR is mainly divided into transductive and inductive tasks. Traditional KGR methods (Das et al., 2018; Trouillon et al., 2016; Yang et al., 2017) are dedicated to reason latent facts in static KGs with finite sets of entity and relations. Nowadays, the dynamicity of real-world KGs have led to the proposal of inductive KGR methods for reasoning unseen entities or relations in facts. Previous inductive KGR methods (Zhu et al., 2021; Teru et al., 2020; Zhang & Yao, 2022; Galkin et al., 2022) can only generalize facts with new entities while unsuitable for unfamiliar relations. Consequently, several methods (Geng et al., 2023; Lee et al., 2023) take the relative ontological interaction of relations as a starting point to learn the structural invariance of relations in a KG, thereby improving the model's recognition of unknown relations. However, the most severe challenge faced by the featurization strategies of the above inductive KGR methods rely on specific domain features of KGs (e.g., node degree or structural attribute similarity), which cannot be transferred to KGs in any domain. To address this challenge, Mikhail et al. (Galkin et al., 2024) propose an concept called "knowledge graph foundation model", which captures the structural invariance of entities and relations cross KGs. Inspired by this, numerous KGFMs (Huang et al., 2025; Cui et al., 2024; Zhang et al., 2024c) have been proposed in recent years, which have achieved remarkable cross domain inductive KGR through zero-shot learning.

LLM-based KGR models. Unlike the above KGR models that solely focuses on KG structure, LLMs can capture finer grained differences in KG context for distinguishing sub-KGs with similar structures. Therefore, numerous studies have recently introduced LLMs to improve KGR models. For example, CSProm-KG (Chen et al., 2023) and MKGL (Guo et al., 2024) use the prefix-tuning (Li & Liang, 2021) and LoRA (Hu et al., 2022) technique, respectively, to transfer LLMs to KGR scenarios. KICGPT (Wei et al., 2023) and PROLINK (Wang et al., 2024b) utilize a large-small model collaborative framework to integrate LLM planners and KG retrievers to achieve effective KGR. Among then, MKGL and PROLINK sufficiently the emergent knowledge capability of LLMs (Pan et al., 2024), which enables them to uncover more latent facts across open-domain KGs. This advantage makes them representative LLM-based KGFMs. However, given the natural representation gaps between the inherent knowledge of LLMs and the structural knowledge of KGs, existing LLM-based KGR methods typically face the problem of knowledge distortion, where sparse KG context used for fact reasoning may interfere with LLM reasoning, which limits the performance of LLM-based KGR models.

In contrast, the proposed KRLM comprehensively coordinates the inherent knowledge of LLMs and the implicit knowledge representation of KGs from the perspectives of instruction construction and model fine-tuning, overcoming the weakness of existing LLM-based KGFMs in unifying the internal knowledge of LLM and the external KG representation, and improving the zero-shot learning ability of LLM on cross-domain KGs during fine-tuning.

3 Preliminaries

In this section, we introduce the background and main definitions related to this study.

Knowledge graphs and inductive knowledge graph reasoning. A knowledge graph is a multirelational directed graph with entities as nodes and relations as edges. Formally, a KG can be

Figure 2: Overall framework of KRLM. Given a query triplet, we first convert it to ① a KRL instruction that integrates inherent knowledge of LLMs and KGs and obtain its token embedding sequence by ② a KRL tokenizer. These tokens are then input into ③ stacked KRL attention layers for capturing the in-context hidden states within KRL. Next, ④ a next-entity predictor is used to reason the entity word following KRL based on the last hidden state. ⑤ The training objective of KRLM is to coordinate the inherent knowledge of LLM with structural knowledge representation.

represented as $\mathcal{G}=(\mathcal{E},\mathcal{R},\mathcal{T})$, where $\mathcal{E}=\{e_i\}_{i=1}^I$ and $\mathcal{R}=\{r_j\}_{j=1}^J$ denote the sets of entities and relations, respectively, and $\mathcal{T}=\{< e_h, r, e_t > | e_h, e_t \in \mathcal{E}, r \in \mathcal{R}\}$ is the set of triplets. Each triplet represents a fact composed of a head entity e_h , a tail entity e_t , and a relation r that truly exists between them. Given a KG $\mathcal{G}_{train}=(\mathcal{E}_{train},\mathcal{R}_{train},\mathcal{T}_{train})$ for training a KGR model, inductive KGR tasks require the model to predict facts in an unobserved KG $\mathcal{G}_{test}=(\mathcal{E}_{test},\mathcal{R}_{test},\mathcal{T}_{test})$, where $\mathcal{E}_{test} \neq \mathcal{E}_{train}$ or $\mathcal{R}_{test} \neq \mathcal{R}_{train}$.

Knowledge graph foundation models learn the structural invariance from KGs, which addresses the domain shift between training and reasoning KGs in inductive KGR tasks. Typically, KGFMs employ two Graph Neural Networks (GNN $_r$ and GNN $_e$) to build KG structure learning models (Zhu et al., 2021; Teru et al., 2020). Given a query triplet $< e_h, r_q, ? > \in \mathcal{G}$, the overall framework of KGFMs can be summarized as:

$$\mathbf{R} = \text{GNN}_r(\{\mathbb{I}_{j=q} \cdot \mathbf{1}^d\}_{i=1}^J, \mathbf{R}^*, \mathcal{G}_r), \quad \mathbf{E} = \text{GNN}_e(\{\mathbb{I}_{i=h} \cdot \mathbf{r}_q\}_{i=1}^I, \mathbf{R}, \mathcal{G}),$$
(1)

where \mathbb{I} is an assert function and $\mathbf{1}^d \in \mathbb{R}^d$ is the embedding of ones. KGFMs first construct a relational graph $\mathcal{G}_r = (\mathcal{R}, \mathcal{R}^*, \mathcal{T}^*)$ with \mathcal{R} as a node set and \mathcal{R}^* as an edge set, where \mathcal{R}^* is the relative structure patterns of \mathcal{R} in \mathcal{G} (Galkin et al., 2024; Huang et al., 2025) and $\mathbf{R}^* \in \mathcal{R}^{|\mathcal{R}^*| \times d}$ represents the type embedding of relative structural patterns. Afterwards, KGFMs use labeling tricks (Zhu et al., 2021) to obtain structurally invariant representations of all relations $\mathbf{R} \in \mathbb{R}^{J \times d}$. Then, driven by $\mathbf{r}_q \in \mathbf{R}$, the representation of \mathbf{r}_q , KGFMs summarize the structurally invariant representations of all entities $\mathbf{E} \in \mathbb{R}^{I \times d}$. The detailed design of the relational graph and the KGFM architecture are provided in Appendixs B.1 and B.2, respectively.

Knowledge reasoning language is a new language form that contains both the inherent corpus knowledge in LLMs and the structural knowledge of KGs. As shown in Figure 2, a KRL instruction contains a global vocabulary that integrates the word-level forms, types, text descriptions, and knowledge representations of entities and relations. This intuitive contextual comparison can assist LLM understand unfamiliar elements in KRL instructions. When reasoning a fact, KRLM regards the word-level forms of entities and relations as unique tokens and adds their indices into the LLM tokenizer. Then, KRLM predicts a latent next word-level entity following the KRL instruction. Refer **Section 4** for processing details.

In addition, to alleviate the training costs may caused by the addition of word-level tokens for entities and relations, we design a low-parametric method based on Principal Attribute Aggregation (PAA),

which enhances the representational completeness of word-level tokens through multi-view attribute aggregation functions (Guo et al., 2024) of pre-trained tokens, as detailed in **Section 4.1**.

4 KNOWLEDGE REASONING LANGUAGE MODEL

In this section, we elaborate on the proposed KRLM in detail, which consists of three main components (Figure 2): a **KRL tokenizer** (**Section 4.1**) based on a knowledge encoder and a PAA module, a in-context learning module composed of stacked **KRL attention layers** (**Section 4.2**), and a GNN-based **next-entity predictor**(**Section 4.3**). In the following sections, we first provide the design of each module. Then, we illustrate the training strategy of KRLM (**Section 4.4**).

4.1 KRL TOKENIZER

As shown in Figure 2, a KRL instruction contains different categories of tokens. For the general tokens, we map them to the corresponding embeddings according to the pre-trained embedding table within a LLM. The word-level embeddings and knowledge representations of entities/relations in KRL are obtained by the PAA mechanism and the knowledge encoder, respectively.

The PAA mechanism is used to obtain word-level embeddings of entities and relations. Here, we use an entity as a case to introduce the details of PAA.

Let < Entity: Text description > be the word-level format of an entity, we can obtain its textual token embedding sequence $\{t_1, t_2, ..., t_L\} = \text{Emb}(\text{TKN}(< \text{Entity: Text description }>))$, where $\text{TKN}(\cdot)$ and $\text{Emb}(\cdot)$ are the text tokenizer and token embedding table of a LLM, respectively. The PAA mechanism aggregates the different attributes of these token embeddings (i.e., mean, max, min, and std attributes (Guo et al., 2024)) to obtain the word-level embedding of the entity $w_e = \text{PAA}(\{t_1, t_2, ..., t_L\})$:

$$PAA(\lbrace \boldsymbol{t}_{1}, \boldsymbol{t}_{2}, ..., \boldsymbol{t}_{L} \rbrace) = \begin{bmatrix} || & \text{attr}(\lbrace \boldsymbol{t}_{1}^{*}, \boldsymbol{t}_{2}^{*}, ..., \boldsymbol{t}_{L}^{*} \rbrace) \end{bmatrix} \boldsymbol{W}_{\text{fusion}}, \tag{2}$$

where || is a column-wise concatenation operation, $\boldsymbol{t}_L \in \mathbb{R}^F$ is a F-dimensional token embedding in $\mathrm{Emb}(\cdot)$, $\boldsymbol{t}_L^* = \boldsymbol{t}_L \boldsymbol{W}_{\mathrm{down}}$, $\boldsymbol{W}_{\mathrm{down}} \in \mathbb{R}^{F \times d}$ and $\boldsymbol{W}_{\mathrm{fusion}} \in \mathbb{R}^{4d \times d}$ are two trainable weight matrices. The PAA mechanism can construct new entity/relation word-level embeddings without restrictions under fixed training parameters, which effectively saves memory costs and is beneficial for handling unknown entities/relations in inductive KGR tasks.

The knowledge encoder is a GNN-based KG structure learner that captures universal structural representations of entities and relations. Given a query triplet $\langle e_h, r_q, ? \rangle \in \mathcal{G}$, we construct a knowledge encoder according to Eq. (1), where we can obtain E and R, the knowledge representations of all entities and relations, respectively, based on $\langle e_h, r_q, ? \rangle$. In brief, GNN_e and GNN_r in Eq. (1) are both designed to S-layer NBFNet (Zhu et al., 2021). The detailed design are provided in Appendix B.2.

In addition, to inject relevant structural context in the KRL attention layer (Section 4.2), we construct a MLP function $S_{\text{struct}}(\cdot): \mathbb{R}^{2d} \to \mathbb{R}^1$ to score the correlation between the structural knowledge of entity $e_i \in \mathcal{E}$ and the query triplet $< e_h, r_q, ? >$:

$$sc_{\text{struct}}^{(i)} = \mathcal{S}_{\text{struct}}([e_i||r_q]), \quad e_i \in E, \quad r_q \in R.$$
 (3)

The process of KRL tokenization is as follows: Given an input embeddings sequence of KRL $\{w_{e_h}, w_{r_q}, e_h, r_q\} \cup \{t_1, t_2, ..., t_m\}$, where $w_{e_h}, w_{r_q} \in \mathbb{R}^d$ are the word-level embeddings of e_h and r_q obtained by Eq. (2), $e_h, r_q \in \mathbb{R}^d$ are the knowledge representations of e_h and r_q obtained by Eq. (1), respectively, and $\{t_1, t_2, ..., t_m\} \in \mathbb{R}^{m \times F}$ are the general text token embeddings of KRL containing the placeholders of $\{w_{e_h}, w_{r_q}, e_h, r_q\}$. We first unify $\{w_{e_h}, w_{r_q}, e_h, r_q\}$ into the dimension F that can be input into LLM and replace the corresponding placeholders in $\{t_1, t_2, ..., t_m\}$:

$$\widetilde{\boldsymbol{w}}_{e_h} = \mathcal{F}_{\text{word}}(\boldsymbol{w}_{e_h}), \widetilde{\boldsymbol{w}}_{r_q} = \mathcal{F}_{\text{word}}(\boldsymbol{w}_{r_q}), \widetilde{\boldsymbol{e}}_h = \mathcal{F}_{\text{struct}}(\boldsymbol{e}_h), \widetilde{\boldsymbol{r}}_q = \mathcal{F}_{\text{struct}}(\boldsymbol{r}_q)
\boldsymbol{T} = \{\boldsymbol{t}_1, ..., \boldsymbol{t}_a, \widetilde{\boldsymbol{w}}_{e_h}, \boldsymbol{t}_{a+1}, ..., \boldsymbol{t}_b, \widetilde{\boldsymbol{e}}_h, \boldsymbol{t}_{b+1}, ..., \boldsymbol{t}_c, \widetilde{\boldsymbol{w}}_{r_q}, \boldsymbol{t}_{c+1}, ..., \boldsymbol{t}_z, \widetilde{\boldsymbol{r}}_q, \boldsymbol{t}_{z+1}, ..., \widetilde{\boldsymbol{w}}_{e_h}, \widetilde{\boldsymbol{w}}_{r_q}\},$$
(4)

where $\mathcal{F}_{\mathrm{word}}(\cdot)$, $\mathcal{F}_{\mathrm{struct}}(\cdot)$: $\mathbb{R}^d \to \mathbb{R}^F$ are trainable linear layers that map word-level and knowledge embeddings of entities and relations to the LLM-dimensional space. $T \in \mathbb{R}^{m \times F}$ are the input sequence with m embeddings.

4.2 KRL ATTENTION LAYER

A KRL attention layer is an improvement on the standard LLM attention decoding module, which deploys a knowledge memory mechanism to dynamically coordinate the LLM intrinsic knowledge with the external KG representations in the in-context learning process. In this section, we elaborate on the LLM attention decoding layer to introduce the knowledge memory mechanism.

The LLM attention decoding module performs preliminary contextual learning on textual tokens, entity/relation word-level embeddings, and structural knowledge representations in KRL. To capture the multi-view context of KRL, we first obtain T by Eq. (4) and then input it into a LLM attention decoding module in the n-th KRL attention layer, where $n \in [1, N]$:

$$H^{(0)} = T$$
, $H^{(n)} = \text{softmax}(\frac{H^{(n-1)}W_Q^{(n)}[H^{(n-1)}W_K^{(n)}]^T}{\sqrt{F}} + W_{\text{mask}})H^{(n-1)}W_V^{(n)}$, (5)

where $W_Q^{(n)}, W_K^{(n)}, W_V^{(n)} \in \mathbb{R}^{F \times F}$ are frozen pre-trained weight matrices in the n-th layer. $W_{\text{mask}} \in \mathbb{R}^{m \times m}$ is a casual mask matrix with a lower triangle value of 0 and the rest being $-\infty$.

The knowledge memory mechanism dynamically integrates structural knowledge contexts related to the query triplet into Eq. (5). Specifically, we use Eq. (3) to obtain the knowledge representations of top- \mathcal{K} most relevant entity as a memory $\mathbf{E}_{\text{mem}} = \{e_k | e_k \in \mathcal{E}[\text{TopK}(\{sc_{\text{struct}}^{(i)}\}_{i=1}^{I})], e_k \in \mathbf{E}\} \in \mathbb{R}^{\mathcal{K} \times d}$ to guide the model learning richer KRL context, where $\text{TopK}(\cdot)$ obtains the indices of top- \mathcal{K} entities and \mathbf{E} is obtained by Eq. (1). Overall, the n-th KRL attention layer can be represented as:

$$\boldsymbol{H}^{(0)} = \boldsymbol{T}, \ \boldsymbol{A} = \operatorname{softmax}(\frac{\boldsymbol{H}^{(n-1)}\boldsymbol{M}_{Q}^{(n)}\boldsymbol{E}_{\text{mem}}^{\text{T}}||(\boldsymbol{H}^{(n-1)}\boldsymbol{W}_{Q}^{(n)}[\boldsymbol{T}^{(n-1)}\boldsymbol{W}_{K}^{(n)}]^{\text{T}} + \boldsymbol{W}_{\text{mask}})}{\sqrt{F}}),$$

$$\boldsymbol{H}^{(n)} = \boldsymbol{A}[\boldsymbol{E}_{\text{mem}}\boldsymbol{M}_{V}^{(n)}||\boldsymbol{H}^{(n-1)}\boldsymbol{W}_{V}^{(n)}], n \in [1, N]$$
(6)

where $M_Q^{(n)} \in \mathbb{R}^{F \times d}$, $M_V^{(n)} \in \mathbb{R}^{d \times F}$ are trainable weight matrices in the n-th KRL attention layer. In specific settings, $H^{(n)}$ needs to be further processed by a feed forward network of the corresponding layer in a LLM before it can be input into the next KRL attention layer. More discussion of the knowledge memory mechanism is attached in **Appendix** \mathbb{C} .

4.3 Next-Entity Predictor

In a standard LLM next-token predictor, the hidden state of the last instruction token is transformed into a probability distribution over the candidate tokens by applying a projection head P. However, the inherent token vocabulary of a LLM does not completely overlap with the entity vocabulary of a KG, which can result in out-of-scope predictions and compromise the fairness of model evaluation. To address this issue, we propose a next-entity predictor that adapts the projection head P to a specific KG domain via a structural knowledge decoder. This approach constrains the reasoning results strictly within the entity vocabulary. Moreover, the knowledge decoder enables KRLM to further coordinate the inherent pre-trained knowledge in P with KG representation.

Mapping the projection head to word-level embeddings. We use the pre-trained projection head P in the next-token predictor of a LLM as the mapping vocabulary for the word-level embeddings of all entities. Given a word-level format *¡Entity: Text description¿* of an entity e_h , we obtain its mapping embedding p_h similar to Eq. (2):

$$p_h = PAA(P[TKN(< Entity: Text description >)]),$$
 (7)

where $PAA(\cdot)$ is a parameter-independent module that has the same structure as the one in Eq. (2).

Knowledge decoder. This module decodes the projection head P into the specific KG through the structural constraints of p_h , avoiding the prediction of out-of-scope KG domain. In specific, we build GNN_p, a S-layer entity GNN with the same structure as GNN_e Eq. (1) to achieve this goal:

$$\widetilde{P} = \text{GNN}_{p}(\{\mathbb{I}_{i=h} \cdot \boldsymbol{p}_{h}\}_{i=1}^{I}, \boldsymbol{R}, \mathcal{G})$$
(8)

where $\widetilde{P} \in \mathbb{R}^{I \times d}$ is the decoded projection matrix. R is the knowledge representation of relations obtained by Eq. (1), which guides \widetilde{P} to perceive structural knowledge.

Next-entity prediction. Given word-level formats *¡Entity: Text description;* and *¡Relation: Text description;* of an entity e_h and a relation r_a , respectively, we construct a MLP function $S_{KRLM}(\cdot)$:

 $\mathbb{R}^{3d} \to \mathbb{R}^1$ to predict next entity scores of a KRL ending with "*¡Entity: Text description; ¡Relation: Text description;*":

$$sc_{\text{KRLM}}^{(i)} = \mathcal{S}_{\text{KRLM}}(\left[\widetilde{\boldsymbol{p}}_i||\boldsymbol{r}_q||g(\boldsymbol{H}^{(N)}[m])\right]),$$
 (9)

where $\widetilde{\boldsymbol{p}}_i \in \widetilde{\boldsymbol{P}}$ is the projection embedding of the entity e_i ; $\boldsymbol{r}_q \in \boldsymbol{R}$ is the knowledge embedding of r_q ; $\boldsymbol{H}^{(N)} \in \mathbb{R}^{m \times F}$ is the result of the N-layer KRL attention layer (Section 4.2), where m is the length of an input KRL; $\boldsymbol{H}^{(N)}[m]$ is the hidden state of the last token; and $g(\cdot) : \mathbb{R}^F \to \mathbb{R}^d$ is a linear layer.

When reasoning the next entity, we average the results of two scoring functions (Eqs. (3) and (9)) to obtain the final predicted scores of all candidate entities and regard the entity with the highest score as the predicted result.

4.4 TRAINING AND REASONING

Given a query triplet $q=< e_h, r_q, ?>$ with the ground truth e_t , the training objective is designed as:

$$\mathcal{L} = \underbrace{(1 - \lambda) \left[-\log\left(sc_{\text{KRLM}}^{(t)}\right) + \frac{1}{|\mathcal{N}_{\text{neg}}(q)|} \sum_{e_n \in \mathcal{N}_{\text{neg}}(q)} \log\left(1 - sc_{\text{KRLM}}^{(n)}\right) \right] + \lambda \text{KL}(\mathcal{P}_{\text{struct}}||\mathcal{P}_{\text{KRLM}})}_{\text{structural distillation}} + \underbrace{(1 - \lambda) \left[-\log\left(sc_{\text{struct}}^{(t)}\right) + \frac{1}{|\mathcal{N}_{\text{neg}}(q)|} \sum_{e_n \in \mathcal{N}_{\text{neg}}(q)} \log\left(1 - sc_{\text{struct}}^{(n)}\right) \right] + \lambda \text{KL}(\mathcal{P}_{\text{KRLM}}||\mathcal{P}_{\text{struct}})}_{\text{structural distillation}},$$
(10)

where $sc_{\text{struct}}^{(t)}$ and $sc_{\text{KRLM}}^{(t)}$ are obtained by Eqs (3) and (9), respectively, $\mathcal{N}_{\text{neg}}(q)$ is a negative sample set of the query triplet q, λ is a fixed weight used to balance the target loss and KL term, and $\text{KL}(\mathcal{P}||\mathcal{Q})$ is used to calculate the KL divergence between distributions \mathcal{P} and \mathcal{Q} . $\mathcal{P}_{\text{struct}}$ and $\mathcal{P}_{\text{KRLM}}$ are two predicted score distributions of positive and negative targets.

Inspired by the mutual knowledge distillation frameworks (Zhang et al., 2018; Hu et al., 2023), Eq. (10) consists of two parts: *structural distillation* and *KRL distillation*. This approach allows KRLM to dynamically align textual context and structural knowledge in KRL during the training process, thereby promoting the coordination of different modal knowledge in KRLM. The detailed training algorithm and reasoning time complexity are provided in **Appendixes D** and E, respectively.

5 EXPERIMENTS

In this section, we demonstrate KRLM from the following research question: **RQ1**. Can KRLM effectively perform inductive KGR tasks on unseen KG under the zero-shot and fine-tuned conditions? **RQ2**. Does the effectiveness of each module in KRLM be confirmed, including the knowledge encoder, the PAA module, KRL attention layers, the knowledge decoder, and the training approach? **RQ3**. Is the hyperparameters set in KRLM effective?

5.1 Datasets, Baselines, and Experimental Settings

Datasets. To verify the ability of KRLM to reason facts on unseen KGs, we conduct evaluations on 28 datasets. According to the overlap level between the train KG and the test KG, these datasets can be divided into the following three categories:

- 12 Inductive Entity (IndE) datasets from GraIL (Teru et al., 2020): FB-V1, FB-V2, FB-V3, FB-V4, NELL-V1, NELL-V2, NELL-V3, NELL-V4, WN-V1, WN-V2, WN-V3, and WN-V4.
- 13 Inductive Entity and Relation (IndER) datasets from InGram (Lee et al., 2023): FB-25, FB-50, FB-75, FB-100, NL-0, NL-25, NL-50, NL-75, NL-100, WK-25, WK-50, WK-75, and WK-100.
- Three **Transductive** datasets for pre-training: FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers et al., 2018), CoDEx-M (Safavi & Koutra, 2020).

According to previous studies (Galkin et al., 2024; Huang et al., 2025; Zhang et al., 2024c), we pretrain KRLM using three transductive datasets and conduct both zero-shot and fine-tuning evaluations on IndE and IndER datasets. Detailed dataset descriptions and statistics are provided in **Appendix F**.

Table 1: Average performance of each model on inductive datasets. "PT", "FT", and "E2E" mean "pre-training", "fine-tuning", and "end-to-end training from scratch" respectively. Black bold and underline indicate the best and second best results. "-" indicates that a model is not suitable for the KGR task, or the corresponding source does not have reproduction conditions.

Induct	ive	Supervised	ULTRA	ULTRA	MOTIF	MOTIF	TRIX	TRIX	MKGL	PROLINK	KRLM	KRLM
Datase	ets	SOTA	(PT)	(FT)	(PT)	(FT)	(PT)	(FT)	MKGL	(Llama 2-7b)	(PT)	(FT)
IndE	Hit@10	0.675	0.703	0.724	0.721	0.740	0.732	0.734	0.726	0.733	0.738	0.751
(12 datasets)	MRR	0.527	0.549	0.566	0.557	0.582	0.579	0.583	0.578	0.562	0.583	0.590
IndER	Hit@10	0.347	0.536	0.542	0.519	0.538	0.535	0.536	-	0.542	0.546	0.556
(13 datasets)	MRR	0.209	0.352	0.350	0.335	0.349	0.353	0.353	-	0.354	0.361	0.367
Transdu	ctive	ULTRA	MOTIF	TRIX	CSProm-KG	KICGPT	GPT-4	KG-LLM	MKGL	PROLINK	KRLM	KRLM
Datase	ets	(PT)	(PT)	(PT)	(BERT)	(GPT-3.5)	GP1-4	(Llama2-7b)	MKGL	(Llama2-7b)	(PT)	(E2E)
ED151- 225	Hit@10	0.564	0.550	0.559	0.538	0.554	0.565		0.591		0.554	0.568
FB15k-237	100					0.554	0.505	-	0.591	-	0.554	0.508
	MRR	0.368	0.357	0.366	0.358	0.412	0.303	-	0.410	-	0.334	0.394
WMIODD	MRR Hit@10		0.357 0.628	0.366 0.611	0.358 0.678			0.503				
WN18RR						0.412	0.420		0.410	-	0.381	0.394
WN18RR CoDEx-M	Hit@10	0.614 0.480	0.628	0.611	0.678	0.412 0.641	0.420	0.503	0.410 0.656	-	0.381 0.610	0.394 0.659

Baselines. We compare KRLM under three versions ("pre-training", "fine-tuning", and "end-to-end training from scratch") with three categories baselines that can handle inductive KGR tasks: (1) State-of-the-art supervised models reported by ULTRA (Galkin et al., 2024). We collect their detailed performance on each dataset in Appendix F. (2) KGFMs focusing on KG structural learning, including ULTRA (Galkin et al., 2024), MOTIF (Huang et al., 2025), and TRIX (Zhang et al., 2024c). (3) Latest LLM-based models, including MKGL (Guo et al., 2024) and PROLINK (Wang et al., 2024b). In addition, we introduce four LM-based KGR methods, CSProm-KG (Chen et al., 2023), KICGPT (Wei et al., 2023), GPT-4 (Zhu et al., 2024b), and KG-LLM (Yao et al., 2025) designed for end-to-end transductive KGR training/evaluation.

Evaluation settings. Based on previous work (Galkin et al., 2024), we adopt Mean Recurrent Rank (MRR) and top-10 Hit rate (Hit@10) as evaluation metrics. For each test triplet $\langle e_h, r_q, e_t \rangle$, a model simultaneously predict head and tail entities, i.e. $\langle e_h, r_q, ? \rangle$ and $\langle e_t, -r_q, ? \rangle$, where $-r_q$ is the inverse relation of r_q . In the zero-shot evaluation, we use the pre-trained model with the best validation checkpoint to obtain MRR and Hit@10 on each dataset. In the fine-tuning condition, we further train the best validation checkpoint on each dataset for evaluation.

Implementation settings. We pre-train and fine-tune KRLM using 4 A100 (40GB) GPUs with the batch size is 4 per GPU. The total training epochs is set to 20 for pre-training. The optimizer is default to AdamW with a 5e-4 learning rate, a 1% warmup step setting and a 4-step gradient accumulation. The more detailed settings of model hyperparameters are provided in **Appendix G**.

5.2 MAIN RESULTS (RQ1)

In this section, we report the performance of KRLM on different KGR tasks and compare it with the SOTA baselines mentioned in Section 5.1.

Inductive KGR tasks. Table 1 and Figure 3 show the overall performance of KRLM on inductive datasets (the detailed experimental re-

Figure 3: Comparison of our KRLM with supervised SOTA baselines on every inductive dataset.

sults are provided in **Appendix H.1**). Obviously, KGFM achieves the best average performance in the fine-tuning scenario. Besides, KRLM outperforms 87% of the baselines in zero-shot scenarios and even surpasses some fine-tuned KGFMs. This success can be attributed to KRLM's ability to leverage the pre-trained intrinsic knowledge of LLMs as an extension of the invariant knowledge representation in KGFMs, which enables the model to more effectively distin-

guish unfamiliar entities and relations in unknown KGs. Further experimental analysis of LLM-based KGFMs reveals that MKGL fixes the number of the relation vocabulary, making it unsuitable for the IndER task and limiting its generality. In contrast, the competitive PROLINK utilizes a LLM to plan reasoning conditions and execute pre-trained ULTRA to reason facts. However, PROLINK overlooks the incompatibility between sparse KG context and LLM inherent knowledge, leading to knowledge distortion and slightly inferior performance on some datasets compared to KRLM. More detailed analysis of KRLM are attached in the Appendixes H.1 and H.4.

Transductive KGR tasks. The transductive KGR performance of KRLM and baselines are provided in Table 1. The results show that there is no significant positive correlation between the KGR performance of a model in the closed domain (transductive) and the open domain (inductive), which may be related to the tendency of a model to overfit during training in closed domain KGR scenarios.

Table 2: Hit@10 of each ablation variant. "E2E" means "end-to-end training". "KEn", "KMe", and "KDe" indicate the knowledge encoder, knowledge memory, and knowledge decoder in KRLM, respectively. "Atten" and "Mean" represent replacing the PAA module with attentive pooling and mean pooling, respectively. "KD" and "KL" is the KRL distillation and KL divergence part in Eq. (14), respectively.

Datasets	KRLM	Mair	1 Compo	nent	PAA N	Aodule	Loss			
Datasets	(E2E)	-KEn	-KMe	-KDe	Atten	Mean	-KD	-KL	-KD-KL	
FB-V1	0.705	0.614	0.691	0.674	0.696	0.692	0.699	0.672	0.665	
WN-V1	0.801	0.710	0.780	0.764	0.789	0.787	0.782	0.798	0.761	
NL-0	0.591	0.537	0.583	0.570	0.588	0.584	0.554	0.533	0.535	
NL-100	0.688	0.640	0.667	0.669	0.685	0.683	0.666	0.678	0.660	

5.3 ABLATION EXPERIMENTS (RQ2)

This section mainly discusses the effectiveness of various modules in KRLM. The designed ablation variants and experimental results are shown in Table 2. Overall, the effectiveness of each ablation variant is inferior to that of the complete KRLM, especially in some important structural knowledge learning modules such as "KEn", "KDe", and "KD". **Appendix H.2** provides detailed experimental settings and more results of ablation experiments.

5.4 PARAMETER ANALYSIS (RQ3)

This section discusses the influence of the main hyperparameters in KRLM. As shown in Figure 4, the scale $\mathcal K$ of knowledge memory in the KRL attention layer is set from 10 to 70. When $\mathcal K$ is set to 50 or above, there is no significant improvement in model. Therefore, we set $\mathcal K=50$ in the experiments. In addition, to ensure the expression consistency of structured knowledge in the model,

GNNs in KRLM is uniformly set to S. Figure 4 demonstrates that the model is generally optimal when S=6, and too few or too many layers may lead to underfitting or oversmoothing of the GNN model. The detailed parameter analysis of λ in Eq. (10) is attached in **Appendix H.3**.

Figure 4: Performance of KRLM with different hyperparameters.

6 Conclusion

This paper first discusses the knowledge distortion challenge faced by LLM-based KGFMs in inductive KGR tasks, *i.e.*, these models are difficult to coordinate internal knowledge of LLMs and external KG context, where sparse KG context may override LLM's internal knowledge, thereby seriously damaging the credibility of reasoning results. Based on this, we propose a novel Knowledge Reasoning Language Model (KRLM), which comprehensively enhances the inherent knowledge collaboration between LLMs and KGs from four aspects: fine-tuning instruction construction, in-context learning, next-token prediction, and model training. Extensive experiments confirm the superiority of KRLM in terms of both end-to-end fine-tuning and zero-shot transfer scenarios. **Appendix** I provides the limitations of KRLM and possible future expansion directions.

7 ETHICS STATEMENT

We confirm that our work has been conducted in accordance with the ICLR Code of Ethics (https://iclr.cc/public/CodeOfEthics). The study does not involve human subjects, sensitive personal data, or experiments that may cause harm to individuals or groups. The datasets used are publicly available and no personally identifiable information is included. Our methodology and findings are intended for academic purposes and do not pose foreseeable risks of misuse. We have carefully considered issues of fairness, bias, and privacy, and to the best of our knowledge, our research maintains integrity and complies with all applicable ethical standards.

8 REPRODUCIBILITY STATEMENT

We confirm that our study has reproducibility. Specifically, we have first submitted our desensitized project on anonymous GitHub (https://anonymous.4open.science/r/KRLM-EA36). The detailed pseudocode of the algorithm is provided in **Appendix D**. In addition, we provide specific details of the experimental conclusions in the main text, including dataset partitioning (**Appendix F**), hyperparameter settings (**Appendix G**), and ablation variant settings (**Appendix H.2**).

REFERENCES

- Johan J. Bolhuis, Stephen Crain, Sandiway Fong, and Andrea Moro. Three Reasons Why AI Doesn't Model Human Language. *Nature*, 627(8004):489–489, 2024.
- Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko. Translating Embeddings for Modeling Multi-relational Data. In *NeurIPS*, pp. 2787–2795. Curran Associates, Inc., 2013.
- Chen Chen, Yufei Wang, Aixin Sun, Bing Li, and Kwok-Yan Lam. Dipping PLMs Sauce: Bridging Structure and Text for Effective Knowledge Graph Completion via Conditional Soft Prompting. In *Findings of ACL*, pp. 11489–11503. Association for Computational Linguistics, 2023.
- Yuanning Cui, Zequn Sun, and Wei Hu. A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning. In *NeurIPS*, pp. 7095–7124. Curran Associates, Inc., 2024.
- Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning. In *ICLR*. OpenReview.net, 2018.
- Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2D Knowledge Graph Embeddings. In *AAAI*, pp. 1811–1818. AAAI Press, 2018.
- Wentao Ding, Jinmao Li, Liangchuan Luo, and Yuzhong Qu. Enhancing Complex Question Answering over Knowledge Graphs through Evidence Pattern Retrieval. In *ACM WWW*, pp. 2106–2115. ACM, 2024.
- Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and Tat-Seng Chua. AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models. In *ICLR*. OpenReview.net, 2025.
- Mikhail Galkin, Etienne G. Denis, Jiapeng Wu, and William L. Hamilton. NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. In *ICLR*. OpenReview.net, 2022.
- Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards Foundation Models for Knowledge Graph Reasoning. In *ICLR*. OpenReview.net, 2024.
- Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou. Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation. *Proc. VLDB Endow.*, 17(5):1132–1145, 2024.

- Yuxia Geng, Jiaoyan Chen, Jeff Z. Pan, Mingyang Chen, Song Jiang, Wen Zhang, and Huajun
 Chen. Relational Message Passing for Fully Inductive Knowledge Graph Completion. In *ICDE*,
 pp. 1221–1233. IEEE, 2023.
 - Lingbing Guo, Zhongpu Bo, Zhuo Chen, Yichi Zhang, Jiaoyan Chen, Yarong Lan, Mengshu Sun, Zhiqiang Zhang, Yangyifei Luo, Qian Li, Qiang Zhang, Wen Zhang, and Huajun Chen. MKGL: Mastery of a Three-Word Language. In *NeurIPS*, volume 37, pp. 140509–140534. Curran Associates, Inc., 2024.
 - Hojae Han, Jaejin Kim, Jaeseok Yoo, Youngwon Lee, and Seung-won Hwang. ArchCode: Incorporating Software Requirements in Code Generation with Large Language Models. In *ACL*, pp. 13520–13552. Association for Computational Linguistics, 2024.
 - Chengming Hu, Xuan Li, Dan Liu, Haolun Wu, Xi Chen, Ju Wang, and Xue Liu. Teacher-Student Architecture for Knowledge Distillation: A Survey. *arXiv preprint arXiv:2308.04268*, arXiv:2308.04268, 2023.
 - Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In *ICLR*. OpenReview.net, 2022.
 - Xingyue Huang, Pablo Barceló, Michael M. Bronstein, İsmail İlkan Ceylan, Mikhail Galkin, Juan L Reutter, and Miguel Romero Orth. How Expressive are Knowledge Graph Foundation Models? *arXiv preprint*, arXiv:2502.13339, 2025.
 - Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. *IEEE TNNLS*, 33(2):494–514, 2022.
 - Jiho Kim, Yeonsu Kwon, Yohan Jo, and Edward Choi. KG-GPT: A General Framework for Reasoning on Knowledge Graphs Using Large Language Models. In *Findings of EMNLP*, pp. 9410–9421. Association for Computational Linguistics, 2023.
 - Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang. InGram: Inductive Knowledge Graph Embedding via Relation Graphs. In *ICML*, volume 202, pp. 18796–18809. PMLR, 2023.
 - Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In *ACL*, pp. 4582–4597. Association for Computational Linguistics, 2021.
 - Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, Xi Chen, and Huajun Chen. Unveiling the Pitfalls of Knowledge Editing for Large Language Models. In *ICLR*. OpenReview.net, 2024.
 - Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang Zhou, Xinwang Liu, Fuchun Sun, and Kunlun He. A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multi-Modal. *IEEE TPAMI*, 46(12):9456–9478, 2024.
 - Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning. In *ICLR*. OpenReview.net, 2024.
 - Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-Editing Memory in a Transformer. In *ICLR*. OpenReview.net, 2023.
 - Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying Large Language Models and Knowledge Graphs: A Roadmap. *IEEE TKDE*, 36(7):3580–3599, 2024.
 - Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph Completion Benchmark. In *EMNLP*, pp. 8328–8350. Association for Computational Linguistics, 2020.
 - Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. In *ICLR*. OpenReview.net, 2019.
 - Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive Relation Prediction by Subgraph Reasoning. In *ICML*, volume 119, pp. 9448–9457. PMLR, 2020.
 - Kristina Toutanova and Danqi Chen. Observed Versus Latent Features for Knowledge Base and Text Inference. In *Workshop on CVSC*, pp. 57–66. ACL, 2015.

- Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex Embeddings for Simple Link Prediction. In *ICML*, volume 48 of *JMLR Workshop and Conference Proceedings*, pp. 2071–2080. JMLR.org, 2016.
 - Jiapu Wang, Kai Sun, Linhao Luo, Wei Wei, Yongli Hu, Alan Wee-Chung Liew, Shirui Pan, and Baocai Yin. Large language models-guided dynamic adaptation for temporal knowledge graph reasoning. In *NeurIPS*, pp. 8384–8410. Curran Associates, Inc., 2024a.
 - Kai Wang, Yuwei Xu, Zhiyong Wu, and Siqiang Luo. LLM as Prompter: Low-resource Inductive Reasoning on Arbitrary Knowledge Graphs. In *Findings of ACL*, pp. 3742–3759. Association for Computational Linguistics, 2024b.
 - Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu. SimKGC: Simple Contrastive Knowledge Graph Completion with Pre-trained Language Models. In *ACL*, pp. 4281–4294. Association for Computational Linguistics, 2022.
 - Siyuan Wang, Zhongyu Wei, Meng Han, Zhihao Fan, Haijun Shan, Qi Zhang, and Xuanjing Huang. Query Structure Modeling for Inductive Logical Reasoning Over Knowledge Graphs. In *ACL*, pp. 4706–4718. Association for Computational Linguistics, 2023.
 - Yanbin Wei, Qiushi Huang, Yu Zhang, and James T. Kwok. KICGPT: Large Language Model with Knowledge in Context for Knowledge Graph Completion. In *Findings of EMNLP*, pp. 8667–8683. Association for Computational Linguistics, 2023.
 - Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. In *ICLR*. OpenReview.net, 2015.
 - Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable Learning of Logical Rules for Knowledge Base Reasoning. In *NeurIPS*, pp. 2319–2328. Curran Associates, Inc., 2017.
 - Mohammad Yani and Adila Alfa Krisnadhi. Challenges, Techniques, and Trends of Simple Knowledge Graph Question Answering: A Survey. *Inf.*, 12(7):271, 2021.
 - Liang Yao, Jiazhen Peng, Chengsheng Mao, and Yuan Luo. Exploring Large Language Models for Knowledge Graph Completion. In *ICASSP*, pp. 1–5. IEEE, 2025.
 - Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou, Xi Chen, and Huajun Chen. InstructEdit: Instruction-Based Knowledge Editing for Large Language Models. In *IJCAI*, pp. 6633–6641. ijcai.org, 2024a.
 - Yichi Zhang, Zhuo Chen, Lingbing Guo, Yajing Xu, Wen Zhang, and Huajun Chen. Making Large Language Models Perform Better in Knowledge Graph Completion. In *ACM MM*, pp. 233–242. ACM, 2024b.
 - Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep Mutual Learning. In *CVPR*, pp. 4320–4328. Computer Vision Foundation / IEEE Computer Society, 2018.
 - Yongqi Zhang and Quanming Yao. Knowledge Graph Reasoning with Relational Digraph. In *ACM WWW*, pp. 912–924. ACM, 2022.
 - Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, and Bruno Ribeiro. TRIX: A More Expressive Model for Zero-shot Domain Transfer in Knowledge Graphs. In *LoG Conference*. OpenReview.net, 2024c.
 - Yuqi Zhu, Jia Li, Ge Li, Yunfei Zhao, Jia Li, Zhi Jin, and Hong Mei. Hot or Cold? Adaptive Temperature Sampling for Code Generation with Large Language Models. In *AAAI*, pp. 437–445. AAAI Press, 2024a.
 - Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi Yao, Shumin Deng, Huajun Chen, and Ningyu Zhang. LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities. *World Wide Web (WWW)*, 27(5):58, 2024b.
 - Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, and Jian Tang. Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction. In *NeurIPS*, pp. 29476–29490. Curran Associates, Inc., 2021.

Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-Symbolic Models for Logical Queries on Knowledge Graphs. In *ICML*, volume 162 of *Proceedings of Machine Learning Research*, pp. 27454–27478. PMLR, 2022.

Xingrui Zhuo, Jiapu Wang, Gongqing Wu, Shirui Pan, and Xindong Wu. Effective instruction parsing plugin for complex logical query answering on knowledge graphs. In *ACM WWW*, pp. 4780–4792. ACM, 2025.

A THE USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) solely as an editing assistant to improve the grammar, clarity, and concision of the manuscript. All technical contributions, experimental design, data processing, evaluation, and conclusions reported in the paper were authored and verified by the human authors. LLM-suggested edits were reviewed and accepted or modified by the authors; no numerical results, figures, or analyses were generated or approved solely by the LLM.

B MODELING DETAILS OF KGFMS

B.1 RELATIONAL GRAPH CONSTRUCTION

Unlike a typical KG $\mathcal{G} = (\mathcal{E}, \mathcal{R}, \mathcal{T})$, a relational graph is used to describe the relative states between relations. According to the design of ULTRA Galkin et al. (2024), the relative state of relations in a relational graph is related to the entity attributes they share. For example, given two triplets $< h_1, r_1, t_1 >$ and $< e_2, r_2, t_1 >$, r_1 and r_2 share the same tail entity t_1 , so the relative state from r_1 to r_2 is "tail-to-tail" (t2t). According to this setting, we can map \mathcal{G} into four relational sub-graphs that only contain a single relative state: $\mathcal{G}_{h2t} = (\mathcal{R}, \{r_{h2t}^*\}, \mathcal{T}_{h2t}^*)$, $\mathcal{G}_{h2h} = (\mathcal{R}, \{r_{h2h}^*\}, \mathcal{T}_{h2h}^*)$, $\mathcal{G}_{t2h} = (\mathcal{R}, \{r_{t2h}^*\}, \mathcal{T}_{t2h}^*)$, and $\mathcal{G}_{t2t} = (\mathcal{R}, \{r_{t2t}^*\}, \mathcal{T}_{t2t}^*)$, where r_{h2t}^* , r_{h2h}^* , r_{t2h}^* , and r_{t2t}^* indicate four relative states "head-to-tail", "head-to-head", "tail-to-head", and "tail-to-tail", respectively.

Finally, we can obtain the relational graph $\mathcal{G}_r = (\mathcal{R}, \mathcal{R}^*, \mathcal{T}^*)$ in Eq. (1) by integrating \mathcal{G}_{h2t} , \mathcal{G}_{h2h} , \mathcal{G}_{t2h} , and \mathcal{G}_{t2t} , where $\mathcal{R}^* = \{r_{h2t}^*, r_{h2h}^*, r_{t2h}^*, r_{t2t}^*\}$ and $\mathcal{T}^* = \mathcal{T}_{h2t}^* \cup \mathcal{T}_{h2h}^* \cup \mathcal{T}_{t2h}^* \cup \mathcal{T}_{t2t}^*$.

B.2 KGFM ARCHITECTURE

As shown in Eq. (1), KGFM contain two structure learning modules (GNN_e and GNN_r) for entities and relations. Given a query triplet $< e_h, r_q, ?> \in \mathcal{G}$ and $\boldsymbol{r}_j^{(0)} = \mathbb{I}_{j=q} \cdot \boldsymbol{1}^d$, we first design a S-layer GNN model GNN_r for learning the invariance of the relational structure according to Eq. (1):

$$\boldsymbol{r}_{q}^{(s)} = \sigma(\mathrm{Update}([\boldsymbol{r}_{q}^{(s-1)}||\mathrm{Agg}(\mathrm{Mess}(\boldsymbol{r}_{j}^{(s-1)},\boldsymbol{r}^{*})|r_{j} \in \mathcal{N}_{\mathcal{G}_{r}}(r_{q}),\boldsymbol{r}^{*} \in \boldsymbol{R}^{*})])), \quad s \in [1,S], \quad (11)$$

where $\operatorname{Mess}(\cdot)$ is a non-parametric DistMult message function Yang et al. (2015), $\operatorname{Agg}(\cdot)$ represents the sum aggregation operation, $\operatorname{Update}(\cdot):\mathbb{R}^{2d}\to\mathbb{R}^d$ is a trainable linear layer, and $\sigma(\cdot)$ is a ReLU activation function. \mathcal{G}_r is a relational graph defined in Eq. (1). The edges in \mathcal{G}_r are directed as "head-to-tail", "tail-to-head", "head-to-head", and "tail-to-tail" based on the shared entities (either the head entity or tail entity) between the two relations in \mathcal{G} Galkin et al. (2024) (The detailed design are provided in Appendix B.1). Therefore, the edge embeddings are set to a trainable matrix $\mathbf{R}^*\in\mathbb{R}^{4\times d}$ to model the relative structures between two relations.

According to Eq. (11), we obtain the knowledge representation of relations $\mathbf{R} = \{r_j^{(S)}\}_{j=1}^J$. Similarly, let $\mathbf{e}_i^{(0)} = \mathbb{I}_{i=h} \cdot \mathbf{R}[q]$, we construct a S-layer GNN model GNN $_e$ for entity structure learning:

$$\boldsymbol{e}_h^{(s)} = \sigma(\mathrm{Update}([\boldsymbol{e}_h^{(s-1)}||\mathrm{Agg}(\mathrm{Mess}(\boldsymbol{e}_i^{(s-1)},f^{(s)}(\boldsymbol{r}))|e_i \in \mathcal{N}_{\mathcal{G}}(e_h), \boldsymbol{r} \in \boldsymbol{R})])), \ s \in [1,S], \quad (12)$$

where $f^{(s)}: \mathbb{R}^d \to \mathbb{R}^d$ is a non-linear function composed of a two-layer MLP with a relu function, which can transform the structural embeddings of relations into representations that adapt to the learning of entity structures in each layer of GNN_e . Finally, we obtain the knowledge representation of entities $E = \{e_i^{(S)}\}_{i=1}^I$ by Eq. (12).

C DISCUSSION OF THE KRL ATTENTION LAYER

This section elaborates on the effectiveness of the KRL attention mechanism from the perspective of the last token in the KRL instruction. Overall, we hope that the hidden state of the last token in KRL can simultaneously contain textual and structural knowledge contexts in KRL, which provide a prerequisite for subsequent next-entity prediction.

Let the hidden state sequence of tokens obtained by the n-1 th KRL attention layer is $\boldsymbol{H}^{(n-1)} = \{\boldsymbol{h}_1^{(n-1)}, \boldsymbol{h}_2^{(n-1)}, ..., \boldsymbol{h}_m^{(n-1)}\}$. According to Eq. (5), without introducing the dynamic knowledge memory, the hidden state of the last token obtained by the n-th KRL attention layer is:

$$\boldsymbol{h}_{m}^{(n)} = \sum_{i=1}^{m} \alpha_{i} \boldsymbol{h}_{i}^{(n-1)} \boldsymbol{W}_{V}^{(n)}, \quad \alpha_{i} = \frac{\exp\left(\langle \boldsymbol{h}_{m}^{(n-1)} \boldsymbol{W}_{Q}^{(n)}; \boldsymbol{h}_{i}^{(n-1)} \boldsymbol{W}_{K}^{(n)} \rangle\right)}{\sqrt{F} \sum_{i=1}^{m} \exp\left(\langle \boldsymbol{h}_{m}^{(n-1)} \boldsymbol{W}_{Q}^{(n)}; \boldsymbol{h}_{j}^{(n-1)} \boldsymbol{W}_{K}^{(n)} \rangle\right)},$$
(13)

where $\langle \cdot; \cdot \rangle$ is an inner product operation. Eq. (13) can be seen as in-context learning of tokens within a KRL instruction (including textual tokens and structural knowledge representations), where α_i represents the scaling degree of contextual semantics for the last token.

However, the independent structural knowledge representation of the entity and relation in a KRL instruction is too thin compared to the widely existing textual tokens, which can easily cause the model to undervalue critical KG context when learning KRL instructions. To address this issue, we propose a dynamic knowledge memory mechanism that injects extral KG structural context related to the entity and relation in KRL into the in-context learning process in a KRL attention layer. Let $\{e_k\}_{k=1}^{\mathcal{K}}$ be a knowledge memory containing top- \mathcal{K} entity embeddings obtained by Eqs. (1) and (3). According to Eq. (6), we can reconstruct Eq. (13) into Eq. (14):

$$h_{m}^{(n)} = \sum_{i=1}^{m} \alpha_{i} h_{i}^{(n-1)} W_{V}^{(n)} + \sum_{k=1}^{K} \beta_{k} e_{k} M_{V}^{(n)},$$

$$\alpha_{i} = \frac{\exp\left(\langle h_{m}^{(n-1)} W_{Q}^{(n)}; h_{i}^{(n-1)} W_{K}^{(n)} \rangle\right)}{\sqrt{F}\left[\sum_{j=1}^{m} \exp\left(\langle h_{m}^{(n-1)} W_{Q}^{(n)}; h_{j}^{(n-1)} W_{K}^{(n)} \rangle\right) + \sum_{k=1}^{K} \exp\left(\langle h_{m}^{(n-1)} M_{Q}^{(n)}; e_{k} \rangle\right)\right]},$$

$$\beta_{k} = \frac{\exp\left(\langle h_{m}^{(n-1)} M_{Q}^{(n)}; e_{k} \rangle\right)}{\sqrt{F}\left[\sum_{j=1}^{m} \exp\left(\langle h_{m}^{(n-1)} W_{Q}^{(n)}; h_{j}^{(n-1)} W_{K}^{(n)} \rangle\right) + \sum_{j=1}^{K} \exp\left(\langle h_{m}^{(n-1)} M_{Q}^{(n)}; e_{z} \rangle\right)\right]}.$$

$$(14)$$

By utilizing additional KG context, Eq. (14) coordinates the influence of LLM internal knowledge and external KG context on $\boldsymbol{h}_m^{(n)}$ through semantic space scaling and translation. In specific, Eq. (14) utilizes the knowledge memory to scale the contextual importance coefficient α_i of each token in KRL, which alleviates the contextual impact of large-scale textual tokens on rare entity/relation structural representations in KRL. In addition, the knowledge memory contributes an effective se-

mantic translation as an independent parameter term $\sum_{k=1}^{K} \beta_k e_k M_V^{(n)}$, which enhances the perception

of structural knowledge context by $h_m^{(n)}$ and thus assists in subsequent next-entity prediction.

D TRAINING ALGORITHM

Algorithm 1 provides a complete pre-training process for KRLM. In each training round, the head entity e_h and relation r_q in a query triplet are firstly transformed into structural knowledge representations (e_h and r_q) and word-level embeddings (w_{e_h} and w_{r_q}) using Eqs. (1) and (2), respectively, and ultimately integrated into a KRL instruction (Steps 6-7). Next, we select top- \mathcal{K} entities related to the query triplet (Step 8) and input them together with the KRL instruction into the stacked KRL attention layers for in-context learning. Then, we extract the hidden state of the last KRL token and calculate the predicted score of the next entity of the KRL instruction (Steps 9-11). Finally, the training loss is calculated according the predicted scores, which is used to optimize the trainable parameters in KRLM.

Algorithm 1 Pre-training framework of KRLM

756

757

758

759

778 779

780

786 787

788

789

790

791

792

793

794

795

796

797

798

799

800 801 802

803 804

805

806

807

808

809

Input: Query triplet set \mathcal{T}_q ; KG \mathcal{G} ; relational graph \mathcal{G}_r ; trainable model parameters Θ ; learning rate η ; max training step s; batch size b. **Output:** Optimized parameters Θ .

```
760
            1: step = 0
761
            2: for step < s do
762
                    Obtain \mathcal{T}_q^*\subseteq\mathcal{T}_q that contains b randomly selected query triplets \mathcal{L}_{total}=0
            3:
763
            4:
764
            5:
                    for \langle e_h, r_q, ? \rangle in \mathcal{T}_q^* do
            6:
                         Obtain e_h, r_q according to Eq. (1) and obtain w_{e_h}, w_{r_q} according to Eq. (2)
765
            7:
                         Construct the KRL token embedding sequence T by Eq. (4)
766
            8:
                         Select top-\mathcal{K} entity embedding related to \langle e_h, r_q, ? \rangle by Eq. (3)
767
                         Obtain H^{(N)} by Eq. (6) and extract the hidden state H^{(N)}[m] of the last KRL token
            9:
768
                         Mapping the projection head in LLM to the KG domain by Eqs. (7) and (8)
           10:
769
                         Obtain the predicted entity score according to Eq. (9)
           11:
770
                         Calculate the loss \mathcal{L} using Eq. (10)
           12:
771
           13:
                         \mathcal{L}_{total} \leftarrow \mathcal{L}_{total} + \mathcal{L}
772
           14:
                    end for
773
                    Optimize \Theta using \mathcal{L}_{total} with the Adam gradient descent method
           15:
774
           16:
                    step \leftarrow step + 1
775
           17: end for
776
           18: return \Theta
777
```

Table 3: Transductive KGR datasets used for model pre-training. "#Train", "#Valid", and "#Test" indicate the training, validation, and testing triplet numbers in each dataset, respectively.

Datasets	Entities	Relations	#Train	#Valid	#Test
Datasets	Entities	Relations	#114111	# valiu	# Test
FB15k-237 Toutanova & Chen (2015)	14541	237	272115	17535	20466
WN18RR Dettmers et al. (2018)	40943	11	86835	3034	3134
CoDEx-M Safavi & Koutra (2020)	17050	51	185584	10310	10311

E COMPUTATIONAL COMPLEXITY

The reasoning time complexity of KRLM can be analyzed from two parts. From the perspective of the knowledge encoder and decoder, the time complexity is upper-bounded by the entity GNN $(GNN_e(\cdot))$ and $GNN_p(\cdot))$, as the number of nodes $|\mathcal{R}|$ involved in $GNN_r(\cdot)$ is much smaller than the number of KG entities $|\mathcal{E}|$ that $GNN_e(\cdot)$ and $GNN_p(\cdot)$ need to handle. For an entity GNN, the reasoning time complexity of each layer is usually linearly related to the number of edges Galkin et al. (2024); Zhu et al. (2021) $O(|\mathcal{E}|d+|\mathcal{R}|d^2)$. Therefore, for a S-layer entity GNN, its overall time complexity is $O(S(|\mathcal{E}|d+|\mathcal{R}|d^2))$.

the reasoning time complexity in LLM is concentrated in the KRL attention layer. Set the token length of a KRL instruction and the scale of the knowledge memory to be m and \mathcal{K} , respectively, the reasoning time complexity in KRL attention layer can be divided into the self-attention matrix calculation in LLM attention decodeing module $(O(m^2F))$ and the knowledge memory $(O(m\mathcal{K}d))$, and the final attentive pooling operation $(O(m(m+\mathcal{K})F))$, where F and d are the hidden dimensions of LLM and $\text{GNN}_e(\cdot)$, respectively. Because $m\gg\mathcal{K}$, the total complexity of a N-layer KRL attention module can be represented as $O(Nm(m+\mathcal{K})F)$.

F DATASETS

To verify the ability of KRLM to reason facts on unseen KGs, we conduct evaluations on 28 datasets. According to the overlap level between train KG $\mathcal{G}_{train} = (\mathcal{E}_{train}, \mathcal{R}_{train}, \mathcal{T}_{train})$ and test KG $\mathcal{G}_{test} = (\mathcal{E}_{test}, \mathcal{R}_{test}, \mathcal{T}_{test})$, these datasets can be divided into the following three categories:

• Inductive Entity (IndE) datasets that $\mathcal{E}_{test} \neq \mathcal{E}_{train}$ and $\mathcal{R}_{test} = \mathcal{R}_{train}$, including 12 datasets from GraIL (Teru et al., 2020): FB-V1, FB-V2, FB-V3, FB-V4, NELL-V1, NELL-V2, NELL-V3, NELL-V4, WN-V1, WN-V2, WN-V3, and WN-V4.

Table 4: IndE KGR datasets used for zero-shot and fine-tuning evaluation. "**Triplets**" represents the number of total triplets contained in a training/validation/testing graph. "**#Valid**" and "**#Test**" are the number of evaluation triplets in the validation and testing graph, respectively.

	D 1 //	Training graph		Valid	ation G	raph	Test	ing Graj	oh	Supervised	
Datasets	Relations	Entities	Triplets	Entities	Triplets	#Valid	Entities	Triplets	#Test	SOTA	
FB-V1 Teru et al. (2020)	180	1594	4245	1594	4245	489	1093	1993	411	A*Net Zhu et al. (2022)	
FB-V2 Teru et al. (2020)	200	2608	9739	2608	9739	1166	1660	4145	947	NBFNet Zhu et al. (2021)	
FB-V3 Teru et al. (2020)	215	3668	17986	3668	17986	2194	2501	7406	1731	NBFNet Zhu et al. (2021)	
FB-V4 Teru et al. (2020)	219	4707	27203	4707	27203	3352	3051	11714	2840	A*Net Zhu et al. (2022)	
NELL-V1 Teru et al. (2020)	14	3103	4687	3103	4687	414	225	833	201	RED-GNN Zhang & Yao (2022)	
NELL-V2 Teru et al. (2020)	88	2564	8219	2564	8219	922	2086	4586	935	RED-GNN Zhang & Yao (2022)	
NELL-V3 Teru et al. (2020)	142	4647	16393	4647	16393	1851	3566	8048	1620	RED-GNN Zhang & Yao (2022)	
NELL-V4 Teru et al. (2020)	76	2092	7546	2092	7546	876	2795	7073	1447	RED-GNN Zhang & Yao (2022)	
WN-V1 Teru et al. (2020)	9	2746	5410	2746	5410	630	922	1618	373	NBFNet Zhu et al. (2021)	
WN-V2 Teru et al. (2020)	10	6954	15262	6954	15262	1838	2757	4011	852	NBFNet Zhu et al. (2021)	
WN-V3 Teru et al. (2020)	11	12078	25901	12078	25901	3097	5084	6327	1143	NBFNet Zhu et al. (2021)	
WN-V4 Teru et al. (2020)	9	3861	7940	3861	7940	934	7084	12334	2823	A*Net Zhu et al. (2022)	

Table 5: IndER KGR datasets used for zero-shot and fine-tuning evaluation. "Triplets" represents the number of total triplets contained in a training/validation/testing graph. "#Valid" and "#Test" are the number of evaluation triplets in the validation and testing graph, respectively.

.	Tra	Training graph			Validation	Graph			Testing (Fraph		Supervised
Datasets	Entities	Relations	Triplets	Entities	Relations	Triplets	#Valid	Entities	Relations	Triplets	#Test	<u> </u>
FB-25 Lee et al. (2023)	5190	163	91571	4097	216	17147	5716	4097	216	17147	5716	InGram Lee et al. (2023
FB-50 Lee et al. (2023)	5190	153	85375	4445	205	11636	3879	4445	205	11636	3879	InGram Lee et al. (2023
FB-75 Lee et al. (2023)	4659	134	62809	2792	186	9316	3106	2792	186	9316	3106	InGram Lee et al. (2023
FB-100 Lee et al. (2023)	4659	134	62809	2624	77	6987	2329	2624	77	6987	2329	InGram Lee et al. (2023
WK-25 Lee et al. (2023)	12659	47	41873	3228	74	3391	1130	3228	74	3391	1131	InGram Lee et al. (2023)
WK-50 Lee et al. (2023)	12022	72	82481	9328	93	9672	3224	9328	93	9672	3225	InGram Lee et al. (2023
WK-75 Lee et al. (2023)	6853	52	28741	2722	65	3430	1143	2722	65	3430	1144	InGram Lee et al. (2023
WK-100 Lee et al. (2023)	9784	67	49875	12136	37	13487	4496	12136	37	13487	4496	InGram Lee et al. (2023
NL-0 Lee et al. (2023)	1814	134	7796	2026	112	2287	763	2026	112	2287	763	InGram Lee et al. (2023
NL-25 Lee et al. (2023)	4396	106	17578	2146	120	2230	743	2146	120	2230	744	InGram Lee et al. (2023)
NL-50 Lee et al. (2023)	4396	106	17578	2335	119	2576	859	2335	119	2576	859	InGram Lee et al. (2023
NL-75 Lee et al. (2023)	2607	96	11058	1578	116	1818	606	1578	116	1818	607	InGram Lee et al. (2023
NL-100 Lee et al. (2023)	1258	55	7832	1709	53	2378	793	1709	53	2378	793	InGram Lee et al. (2023

- Inductive Entity and Relation (IndER) datasets that $\mathcal{E}_{test} \neq \mathcal{E}_{train}$ and $\mathcal{R}_{test} \neq \mathcal{R}_{train}$, including 13 datasets from InGram (Lee et al., 2023): FB-25, FB-50, FB-75, FB-100, NL-0, NL-25, NL-50, NL-75, NL-100, WK-25, WK-50, WK-75, and WK-100.
- Transductive datasets for pre-training that $\mathcal{E}_{test} = \mathcal{E}_{train}$ and $\mathcal{R}_{test} = \mathcal{R}_{train}$: FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers et al., 2018), CoDEx-M (Safavi & Koutra, 2020).

These dataset are used to evaluate the model in zero-shot/fine-tuning scenarios. Tables (3), (4), and (5) provide detailed elemental statistics for these datasets. In addition, in response to the "**Supervised SOTA**" methds in Section 5.2, we provide the supervised KGR models that achieved the best performance for each dataset in Tables (4) and (5).

G EXPERIMENTAL HYPERPARAMETER SETTINGS

In Section 5.2, we evaluate three forms of KRLM, *e.i.*, "Pre-Training" (PT), "Fine-Tuning" (FT), and "End-to-End training from scratch" (E2E). The hyperparameters of KRLM-PT and KRLM-E2E are uniformly set to the values in Table 6. During the pre-training process, we mix the three transductive KGR datasets from Table 3 as the training corpus and train KRLM from scratch for 20 epochs, each containing 10000 steps. We allocate query triplets with batch size of 4 per GPU for KRLM in each step. One batch of triplets only belongs to one training KG, and their sampling probability is proportional to the total number of triplets contained in that training KG.

After pre-training KRLM, we obtain the best validation checkpoint of KRLM-PT for fine-tuning KRLM-FT on each dataset. The main training hyperparameters of KRLM-FT are the same as those in Table 6. However, to adapt the model to the vastly different number of training triplets in different datasets (ranging from a few thousand to nearly one hundred thousand), we set different training epoch values for different datasets shown in Table 7.

Table 6: Hyperperameters of KRLM used in pre-training and end-to-end training from scratch.

Module	Component	Parameter				
		Layer number $S=6$				
	Entity GNN $GNN_e(\cdot)$	Hidden dim $d = 64$				
	Entity GNN GNN _e (·)	Message function $Mess(\cdot) = DistMultiple Message function Mess(\cdot) = DistMultiple Message function Message f$				
		Aggregation function $Agg(\cdot) = Sum$				
		Layer number $S = 6$				
	Relation GNN GNN $_r(\cdot)$	Hidden dim $d = 64$				
Knowledge Encoder	Relation Giving (*)	Message function $Mess(\cdot) = DistMult$				
		Aggregation function $Agg(\cdot) = Sum$				
		Linear(128, 64)				
	Score function $S_{\text{struct}}(\cdot)$	$ReLU(\cdot)$				
		Linear(64, 1)				
	Llama2-7b backbone	Layer number $N=32$				
	Liamaz-70 backbone	Hidden dim $F = 4096$				
KRL Attention Layer	Mapping layer $\mathcal{F}_{word}(\cdot)$	Linear(64, 4096)				
Title : Ittelition Emjer	Mapping layer $\mathcal{F}_{\text{struct}}(\cdot)$	Linear(64, 4096)				
	Scale of knowledge memory	$\mathcal{K} = 50$				
		Layer number $S=6$				
	Knowledge Decoder $GNN_p(\cdot)$	Hidden dim $d = 64$				
	Knowledge Decoder Giving(*)	$Message function Mess(\cdot) = DistMult$				
		Aggregation function $Agg(\cdot) = Sum$				
Next-entity Predictor	Mapping layer $g(\cdot)$	Linear(4096, 64)				
		Linear(192, 64)				
	Score function $S_{KRLM}(\cdot)$	$ReLU(\cdot)$				
		Linear(64, 1)				
	Optimizer	AdamW				
	Learning rate η	5e-4				
	Batch size b	4 per GPU				
Training	Training epochs	20				
11 anning	Steps in each epoch	10000				
	Number of negative samples	256				
	KL weight λ	0.5				

Table 7: Training epochs and steps of KRLM-FT on different inductive datasets. For example, (3, all) means that we fine-tune KRLM on a dataset within 3 epochs and the model needs to learn all the triplets in the training KG.

is in the training KG.	
Datasets	KRLM-FT
FB V1	(3, all)
FB V2	(3, all)
FB V3	(5, all)
FB V4	(5, all)
NELL V1	(3, all)
NELL V2	(3, all)
NELL V3	(5, all)
NELL V4	(3, all)
WN V1	(3, all)
WN V2	(5, all)
WN V3	(5, all)
WN V4	(3, all)
FB-25	(10, all)
FB-50	(10, all)
FB-75	(10, all)
FB-100	(10, all)
NL-0	(3, all)
NL-25	(5, all)
NL-50	(5, all)
NL-75	(5, all)
NL-100	(3, all)
WK-25	(10, all)
WK-50	(10, all)
WK-75	(10, all)
WK-100	(10, all)

Table 8: Detailed performance of each model on IndE datasets. "PT" and "FT" mean "pre-training" and "fine-tuning", respectively. Black bold indicates the best result.

Inductive		Supervised	ULTRA	ULTRA	MOTIF	MOTIF	TRIX	TRIX	MKGL	PROLINK	KRLM	KRLM
Datas	sets	SOTA	(PT)	(FT)	(PT)	(FT)	(PT)	(FT)	MKGL	(Llama2-7b)	(PT)	(FT)
FB-V1	Hit@10	0.589	0.656	0.670	0.692	0.702	0.682	0.682	0.595	0.692	0.708	0.701
FD-VI	MRR	0.457	0.498	0.509	0.503	0.53	0.515	0.515	0.475	0.498	0.537	0.541
FB-V2	Hit@10	0.672	0.700	0.710	0.716	0.744	0.730	0.730	0.681	0.745	0.748	0.752
FB-V2	MRR	0.510	0.512	0.524	0.511	0.557	0.525	0.525	0.508	0.514	0.555	0.557
FB-V3	Hit@10	0.637	0.654	0.663	0.692	0.684	0.669	0.669	0.643	0.683	0.678	0.680
FD-V3	MRR	0.476	0.491	0.504	0.500	0.519	0.501	0.501	0.486	0.485	0.514	0.522
FB-V4	Hit@10	0.645	0.677	0.684	0.677	0.695	0.687	0.687	0.645	0.676	0.690	0.699
FD-V4	MRR	0.466	0.486	0.496	0.487	0.508	0.493	0.493	0.471	0.498	0.503	0.504
NELL-V1	Hit@10	0.866	0.913	0.878	0.871	0.873	0.898	0.899	0.886	0.883	0.887	0.916
NELL-VI	MRR	0.637	0.785	0.757	0.674	0.712	0.806	0.804	0.749	0.726	0.652	0.682
NELL VA	Hit@10	0.601	0.707	0.761	0.769	0.765	0.768	0.764	0.767	0.787	0.773	0.791
NELL-V2	MRR	0.419	0.526	0.575	0.564	0.566	0.569	0.571	0.570	0.581	0.589	0.583
NELL-V3	Hit@10	0.594	0.702	0.755	0.724	0.764	0.743	0.759	0.759	0.762	0.766	0.768
NELL-V3	MRR	0.436	0.515	0.563	0.533	0.580	0.558	0.571	0.571	0.589	0.594	0.598
NELL-V4	Hit@10	0.556	0.712	0.733	0.711	0.740	0.765	0.772	0.769	0.769	0.739	0.772
NELL-V4	MRR	0.363	0.479	0.469	0.503	0.507	0.538	0.551	0.535	0.533	0.544	0.554
WN-V1	Hit@10	0.826	0.768	0.793	0.778	0.806	0.791	0.798	0.822	0.788	0.783	0.800
W IN- V I	MRR	0.741	0.648	0.685	0.682	0.703	0.699	0.705	0.746	0.644	0.705	0.711
WAL VO	Hit@10	0.798	0.765	0.779	0.771	0.781	0.781	0.780	0.799	0.777	0.782	0.799
WN-V2	MRR	0.704	0.663	0.679	0.663	0.680	0.678	0.682	0.712	0.669	0.696	0.700
WAL V/2	Hit@10	0.568	0.476	0.546	0.538	0.590	0.541	0.543	0.599	0.496	0.582	0.595
WN-V3	MRR	0.452	0.376	0.411	0.420	0.466	0.418	0.425	0.456	0.388	0.447	0.469
XXXX X74	Hit@10	0.743	0.705	0.720	0.718	0.733	0.723	0.722	0.741	0.733	0.723	0.738
WN-V4	MRR	0.661	0.611	0.614	0.640	0.659	0.648	0.650	0.664	0.623	0.655	0.665

When we train KRLM-E2E on a single transductive KGR dataset, the main hyperparameters of the model are the same as those in Table 6, but the training epochs are changed to 10. In each epoch, the model needs to learn all training triplets in the dataset.

H DETAILS EXPERIMENTAL RESULTS

H.1 DETAILS EXPERIMENTAL RESULTS ON INDUCTIVE DATASETS

Tables 8 and 9 correspond to the detailed experimental results of each method in Table 1 on the IndE and IndER datasets, respectively.

Obviously, the current supervised SOTA baselines can only achieve mediocre performance on almost all inductive datasets, which is attributed to their modeling limitations that make it difficult for them to capture sufficient transferable structure semantics of entities and relations. In addition, considering that these baselines ignore the knowledge structure invariance cross KG domains, they lack of zero-shot reasoning ability across KGs. Therefore, we can only train them from scratch on each dataset during evaluation, which increases the spatiotemporal overhead of model deployment.

ULTRA is a typical KGFM that proposes a transferable KG reasoning framework driven by relation structure invariance. This approach endows ULTRA with the ability to recognize unfamiliar entities and relations in unseen KGs, thereby enabling reasoning of facts on out-of-domain KGs. Based on this advantage, ULTRA can even perform significantly better than supervised SOTA baselines in zero-shot reasoning configuration, *i.e.*, ULTRA (PT).

MOTIF and TRIX are improvements based on ULTRA. For example, MOTIF extends the four types of relation interactions in the relational graph to hyperedges within three hops Huang et al. (2025), thereby expanding the structural context of the relations. TRIX iteratively propagates messages between interacting the entity GNN and the relational GNN, enabling the model to perceive more rigorous structural representations and alleviating ULTRA's confusion problem with structurally similar heterogeneous triplets.

The above KGFMs only rely on the sparse structural semantics of KGs, which can easily make the model ignore deeper underlying knowledge. MKGL and PROLINK use the internal knowledge of LLM to extend the structural semantics of KGs, making the reasoning evidence space denser and

Table 9: Detailed performance of each model on IndER datasets. "PT" and "FT" mean "pre-training" and "fine-tuning", respectively. Black bold indicates the best result. "-" indicates that a model is not suitable for this KGR task.

Indu		Supervised	ULTRA		MOTIF	MOTIF	TRIX	TRIX	MEGI	PROLINK	KRLM	KRLM
Data	sets	SOTA	(PT)	(FT)	(PT)	(FT)	(PT)	(FT)	MKGL	(Llama2-7b)	(PT)	(FT)
ED 25	Hit@10	0.371	0.640	0.635	0.640	0.635	0.650	0.650	-	0.648	0.658	0.640
FB-25	MRR	0.223	0.388	0.383	0.384	0.388	0.393	0.393	-	0.391	0.404	0.398
ED 50	Hit@10	0.325	0.543	0.538	0.546	0.544	0.547	0.547	-	0.549	0.541	0.552
FB-50	MRR	0.189	0.338	0.334	0.338	0.340	0.334	0.334	-	0.336	0.339	0.345
ED 75	Hit@10	0.218	0.604	0.598	0.614	0.607	0.611	0.611	-	0.616	0.618	0.620
FB-75	MRR	0.117	0.403	0.400	0.399	0.399	0.401	0.401	-	0.407	0.409	0.414
FB-100	Hit@10	0.271	0.642	0.643	0.628	0.642	0.635	0.633	-	0.635	0.647	0.655
rB-100	MRR	0.133	0.449	0.444	0.428	0.439	0.436	0.436	-	0.452	0.445	0.455
NL-0	Hit@10	0.506	0.523	0.551	0.497	0.556	0.549	0.549	-	0.550	0.587	0.591
NL-U	MRR	0.309	0.342	0.329	0.324	0.328	0.385	0.385	-	0.352	0.375	0.399
NL-25	Hit@10	0.464	0.569	0.596	0.498	0.580	0.589	0.589	-	0.589	0.586	0.596
NL-25	MRR	0.261	0.395	0.407	0.348	0.390	0.377	0.377	-	0.396	0.394	0.401
NL-50	Hit@10	0.453	0.570	0.595	0.532	0.573	0.548	0.555	-	0.579	0.588	0.598
NL-50	MRR	0.281	0.407	0.418	0.373	0.414	0.404	0.405	-	0.411	0.412	0.432
NL-75	Hit@10	0.501	0.547	0.570	0.512	0.548	0.525	0.525	-	0.552	0.535	0.559
NL-75	MRR	0.334	0.368	0.374	0.314	0.360	0.351	0.351	-	0.346	0.361	0.367
NL-100	Hit@10	0.431	0.651	0.684	0.647	0.682	0.676	0.691	-	0.684	0.667	0.688
NL-100	MRR	0.269	0.471	0.458	0.438	0.464	0.486	0.482	-	0.471	0.493	0.489
WK-25	Hit@10	0.169	0.532	0.535	0.493	0.505	0.496	0.493	-	0.539	0.509	0.550
W K-25	MRR	0.107	0.316	0.321	0.311	0.317	0.305	0.300	-	0.323	0.324	0.332
WK-50	Hit@10	0.362	0.324	0.280	0.314	0.304	0.313	0.313	-	0.286	0.306	0.328
W K-50	MRR	0.247	0.166	0.140	0.163	0.160	0.166	0.166	-	0.168	0.160	0.168
WK-75	Hit@10	0.135	0.537	0.53	0.540	0.535	0.513	0.513	-	0.535	0.540	0.538
W K-/3	MRR	0.068	0.365	0.380	0.366	0.371	0.368	0.368	-	0.370	0.390	0.384
WK-100	Hit@10	0.309	0.286	0.286	0.282	0.284	0.299	0.299	-	0.283	0.320	0.313
W-100	MRR	0.186	0.164	0.168	0.164	0.173	0.188	0.188	-	0.179	0.192	0.189

Figure 5: Comparison of our KRLM with more powerful GPT-4. Due to the interference of knowledge distortion, PROLINK using GPT-4 is also unable to effectively handle the inherent knowledge gap between LLMs and KGs. On the IndER datasets with a larger open-domain scope, this reasoning error is more pronounced.

thus improving the performance of the model. However, MKGL cannot be considered strictly a LLM-based KGFM, as it requires a fixed number of relations based on specific KGs during modeling. Therefore, although MKGL can achieve the best results by training from scratch on some IndE KGR datasets (*e.g.*, WN-V2 and WN-V3), it cannot achieve zero-shot reasoning across KGs and is not suitable for the IndER KGR scenario.

PROLINK adopts a framework that combines large and small models. First, PROLINK uses Llama to plan reasoning paths, and then candidate reasoning paths are mapped to KG space through a pre-trained KGFM (such as ULTRA). This apporach achieves remarkable performance and generalization. However, PROLINK struggles to effectively address the inherent knowledge gap between LLMs and KGFMs, which makes it difficult for PROLINK to effectively overcome the limitations of knowledge distortion on model inference even when using GPT-4 (Figure 5).

In contrast, our proposed KRLM alleviates the LLM knowledge distortion problem caused by the inherent knowledge gap between LLM and KG by coordinating LLM internal knowledge and KG structured knowledge in various modules of LLM.

H.2 DETAILS ABLATION ANALYSIS

Section 5.3 analyzes the effectiveness of various components of KRLM. To alleviate the time overhead caused by multiple pretraining from scratch on large-scale transductive datasets, our ablation experiments perform end-to-end training from scratch on several small inductive datasets (FB-V1, WN-V1, NL-0, and NL-100).

Table 2 provides 8 ablation variants, and the following are their design details:

- **-KEn**. This variant removes the knowledge encoder mentioned from Section 4.1. This encoder is an extremely important module in KRLM, which involves updating special token embeddings in subsequent KRL instructions (Eq. (4)), sampling knowledge memory in KRL attention layer (Eq. (6)), and applying relational knowledge representation in netx entity predictor ((Eqs. (8) and (9)). Therefore, in the absence of a knowledge encoder, we need to remove the knowledge representation token placeholders of entities and relations from KRL instructions, replace the KRL attention layer with the LoRA fine-tuning framework (referring to the LoRA parameter settings in MKGL Guo et al. (2024)), remove the knowledge decoder from the next-entity predictor (Eq. (8)), replace \tilde{p}_i in Eq. (9) by p_i in Eq. (8), and remove the relation representation r_q from Eq. (9).
- **-KMe**. This variant removes the knowledge memory mechanism from Section 4.2 and replaces the KRL attention layer with the LoRA fine-tuning framework (referring to the LoRA parameter settings in MKGL Guo et al. (2024)).
- **-KDe**. This variant removes the knowledge decoder from Section 4.3, replaces \widetilde{p}_i in Eq. (9) by p_i in Eq. (8), and removes r_q from Eq. (9).
- Atten. This variant replaces the PAA module in Eqs. (2) and (7) with the attention pooling method, which uses trainable attention weights to average the textual tokens of entities/relations.
- Mean. This variant replaces the PAA module in Eqs. (2) and (7) with the mean pooling method, which directly averages the textual tokens of entities/relations.
- -KD. This variant removes the KRL distillation module from Eq. (10) and only retains the structural distillation module.
- **-KL**. This variant abandons the knowledge distillation function in Eq. (10), which only retains two cross-entropy losses and removes the calculation process of KL divergence.
- **-KD-KL**. This variant simultaneously removes KRL distillation and KL divergence from Eq. (10), *i.e.*, only uses the simplest single cross-entropy loss.

The results in Table 2 indicate that the knowledge encoder ("-**KEn**") plays an important role in KRLM, as it introduces implicit structural context into LLM, which is more effective in driving knowledge coordination between LLM and KG compared to the explicit knowledge injection method of existing LLM-based KGFMs Wang et al. (2024b).

The role of a knowledge decoder is to strictly constrain the reasoning results of LLM so that they do not exceed the domain of a specific KG. Therefore, after removing the knowledge decoder ("-**KDe**"), the reasoning of KRLM degenerates into the next-token prediction mechanism of LLM, making it difficult for the model to perceive KG structural knowledge throughout the entire reasoning process, thereby limiting its performance.

The purpose of knowledge distillation in training loss is to coordinate the knowledge in LLMs and KGs from the response side of KRLM. Therefore, the variant "-KD-KL" using the simplest cross

Figure 6: (a) Comparison of different approaches for obtaining predicted scores. (b) Experiments on the proportion of distillation terms in Eq. (9).

entropy loss cannot achieve this function, resulting in poor performance. Variants "-**KD**" and "-**KL**" use one-side distillation and double cross-entropy loss coordination methods, respectively, which makes it difficult for them to maximize the interoperability between different knowledge and limits their performance.

The remaining variants ("-KMe", "Atten", and "Mean") mainly focus on the application of different modal knowledge in KRLM, with the significance of enhancing the knowledge context awareness of the hidden state of the last KRL token output by KRLM. Therefore, removing these modules also reduce the reasoning of KRLM, but the impact is not as significant as the variants analyzed above that focus on the coordination of LLM and KG knowledge.

In addition to the ablation experiments in Section 5.3, we also compare the impact of different prediction score acquisition methods on the final reasoning of the model. Figure 6(a) shows three methods for obtaining prediction scores. Our KRLM uses a combination of Eqs. (3) and (9), i.e. $\frac{S_{\text{KRLM}}(\cdot) + S_{\text{struct}}(\cdot)}{2}$, to obtain the final prediction scores. $S_{\text{KRLM}}(\cdot)$ and $S_{\text{struct}}(\cdot)$ represent obtaining the final predicted scores of entities using only Eqs. (9) and (3), respectively. Obviously, using a single scoring function can lower the final prediction results of the model. The main reason may be that although we use knowledge mutual distillation in Eq. (10) to align the predicted distributions of KRLM and the knowledge encoder, they still have a preference for their respective modal knowledge. Therefore, to fully integrate the model's expected ratings of entities in different modalities, we use simple average aggregation to achieve effective prediction.

H.3 ANALYSIS OF THE WEIGHT OF KNOWLEDGE DISTILLATION

Figure 6(b) provides the performance of KRLM for different values of λ in Eq. (10). Although the influence of the weight of KL divergence term on model training is not emphasized in relevant literature Zhang et al. (2018), our experiment still demonstrates the importance of balancing target loss and KL divergence. Therefore, in practical implementation, we uniformly set $\lambda = 0.5$.

H.4 CASE STUDY AND ERROR ANALYSIS

This section further analyzes the reasoning mechanism of KRLM from the perspectives of error analysis and case study.

Let's begin with a visual case study. Figure 7 shows the attention weights of candidate entities within the knowledge memory in a KRL attention layer under correct/incorrect reasoning scenarios. Intuitively, when the knowledge memory contains the ground truth entity (included in the top-50 entities selected by Eq. (3)), KRLM tends to highlight its attention weight (shown in Figure 7(a)), even though it is not given the highest score by Eq. (3) among the top-50 entities. This means that KRLM does not rely solely on the scoring mechanism of Eq. (3), it can further filter information in the knowledge memory based on more complex in-context learning in subsequent modules.

(b) KRLM did not hit ground truth. When the correct result is not in knowledge memory, KRLM attempts to aggregate the context of ground truth from other candidate entities

Figure 7: Visualization of the attention weights over 50 candidate entities in the knowledge memory within a KRL attention layer, illustrating cases where KRLM reasoning succeeds and fails, respectively. (a) KRLM assigns the highest attention weights to the potential answers it finds in

the knowledge memory. (b) If the memory lacks potential answers, KRLM attempt to aggregate a broader set of candidate entities to obtain the knowledge context of the ground-truth.

Table 10: Reasoning results of KRLM (PT) for different categories of query triplets in each dataset. "#Easy" means that the ground truth of a triplet is collected into the knowledge memory, while "#Hard" means the opposite.

#Hard means the opp				
Dotocoto	Hit	@10	M)	RR
Datasets	#Easy	#Hard	#Easy	#Hard
FB-V1	0.857	0.007	0.658	0.010
FB-V2	0.888	0.074	0.660	0.022
FB-V3	0.892	0.009	0.674	0.011
FB-V4	0.878	0.016	0.639	0.013
NELL-V1	0.876	0.950	0.832	0.701
NELL-V2	0.866	0.047	0.661	0.022
NELL-V3	0.887	0.179	0.699	0.084
NELL-V4	0.842	0.057	0.635	0.018
WN-V1	0.932	0.000	0.827	0.003
WN-V2	0.923	0.008	0.816	0.005
WN-V3	0.850	0.004	0.650	0.006
WN-V4	0.924	0.001	0.829	0.003
FB-25	0.835	0.022	0.515	0.018
FB-50	0.776	0.024	0.490	0.018
FB-75	0.827	0.070	0.564	0.028
FB-100	0.856	0.068	0.598	0.027
NL-0	0.758	0.022	0.502	0.027
NL-25	0.763	0.292	0.536	0.087
NL-50	0.801	0.016	0.565	0.020
NL-75	0.715	0.010	0.465	0.010
NL-100	0.867	0.031	0.607	0.019
WK-25	0.778	0.005	0.491	0.016
WK-50	0.631	0.003	0.338	0.006
WK-75	0.839	0.044	0.621	0.023
WK-100	0.688	0.006	0.427	0.007

In contrast, if the knowledge memory lacks the ground truth, KRLM automatically broadens its attention to include additional candidate entities. As shown in Figure 7(b), this yields far more high-attention weights than in Figure 7(a). By expanding its focus, the model gathers as much reasoning evidence as possible from a wider knowledge context. Although KRLM still fails to infer the ground

truth correctly in Figure 7(b), it nonetheless boosts the ranking of the ground truth dramatically (from beyond 50th place to 33rd place).

Furthermore, we explore the universality of the above phenomenon based on the case study in Figure 7. We classify all triplets into two groups, "#Easy" and "#Hard", depending on whether their ground-truth entities are present in the knowledge memory. Table 10 presents the performance of KRLM for each group. Obviously, KRLM tends to correctly reason for "#Easy" triplets in the vast majority of cases, while the Hit@10 of reasoning for "#Hard" triplets tends to approach 1%, which is also the main source of errors made by KRLM. The above analysis indirectly reflects the impact of candidate entity recall methods in the knowledge memory on KRLM reasoning.

I LIMITATIONS AND FUTURE WORK

KRLM provides a novel modeling paradigm for existing LLM-based KGR research, which involves injecting KG representations into LLM components in different forms. However, the limitations of KRLM in terms of reasoning cost hinder its application in a wider range of knowledge-based reasoning environments (see **Appendix E** for analysis of reasoning complexity). In the future, we plan to inject KG context into LLMs from the perspective of knowledge editing Meng et al. (2023); Zhang et al. (2024a); Fang et al. (2025) such as the null-space projection Fang et al. (2025), this method only requires minimal computational overhead. In addition, as knowledge editing directly affects the parameter-level knowledge in LLMs, it has the potential to make KG context and LLM internal knowledge self-consistent.