

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 KNOWLEDGE REASONING LANGUAGE MODEL: UNIFYING KNOWLEDGE AND LANGUAGE FOR INDUCTIVE KNOWLEDGE GRAPH REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

Inductive Knowledge Graph Reasoning (KGR) aims to discover facts in open-domain KGs containing unknown entities and relations, which poses a challenge for KGR models in comprehending uncertain KG components. Existing studies have proposed Knowledge Graph Foundation Models (KGFM) that learn structural invariances across KGs to handle this uncertainty. Recently, Large Language Models (LLMs) have demonstrated strong capabilities for open-domain knowledge reasoning. As a result, the latest research has focused on LLM-based KGFM that integrate LLM knowledge with KG context for inductive KGR. However, the intrinsic knowledge of LLMs may be overshadowed by sparse KG context, leading to LLM knowledge distortion, which can cause irreversible damage to model reasoning. Moreover, existing LLM-based KGR methods still struggle to fully constrain generative hallucinations in LLMs, severely limiting the credibility of reasoning results. To address these limitations, we propose a Knowledge Reasoning Language Model (KRLM) that achieves unified coordination between LLM knowledge and KG context throughout the KGR process. Specifically, we design a Knowledge Reasoning Language (KRL) instruction format and a KRL tokenizer to align LLM knowledge with KG representations. Then, we propose a KRL attention layer that coordinates intrinsic LLM knowledge with additional KG context through a dynamic knowledge memory mechanism. Finally, a structure-aware next-entity predictor is proposed, which strictly constrains the reasoning results within a trustworthy knowledge domain. Extensive experimental results on 25 real-world inductive KGR datasets demonstrate the significant superiority of the proposed KRLM¹ in both zero-shot reasoning and fine-tuning scenarios.

1 INTRODUCTION

Knowledge Graph Reasoning (KGR) (Ji et al., 2022; Liang et al., 2024) is dedicated to uncovering latent facts within KGs, offering interpretable evidentiary support for knowledge-driven applications (Luo et al., 2024; Ding et al., 2024; Yani & Krishnadh, 2021). Traditional KGR methods (*e.g.*, rule-based (Das et al., 2018) and embedding models (Bordes et al., 2013; Sun et al., 2019; Zhuo et al., 2025)) primarily reason facts within static closed-domain KGs, making it difficult for the model to adapt to the evolution of real-world KGs. Therefore, existing studies develop inductive KGR frameworks (Zhu et al., 2021) to reason facts with entities and relations newly added to KGs.

The core of inductive KGR is to generalize the structural characteristics of training KGs to represent unfamiliar entities and relations (Zhu et al., 2021; Teru et al., 2020). However, the inherent domain discrepancy across KGs leads to the incompatibility of structural characteristics during cross-KG deployment (Galkin et al., 2024), which limits the generalization of inductive KGR models. To cover this challenge, recent research has proposed KG Foundation Models (KGFM) (Galkin et al., 2024; Huang et al., 2025; Zhang et al., 2024c) to capture the invariant representation of entities and relations across KGs. In general, this invariance enables any entity or relation to be represented by its relative structural context without relying on specific KG domains (Galkin et al., 2024). This property provides KGFM with zero-shot learning capabilities, allowing them to handle open-domain KGR effectively.

¹Our source codes are available at <https://anonymous.4open.science/r/KRLM-EA36>

Figure 1: (a) Current LLM-based KGFMs overlook the necessity of establishing compatibility between sparse KG contexts and intrinsic knowledge in LLMs, which leads to knowledge distortion by LLMs. (b) Compared to explicit sparse KG context prompts, KRLM injects implicit knowledge representations into the reasoning instructions and LLM parameters, providing a more flexible environment for LLM to adapt to external knowledge.

Large Language Models (LLMs), pre-trained on large-scale textual corpora, have been demonstrated to achieve disruptive success on KGR (Chen et al., 2023; Wang et al., 2022; Zhang et al., 2024b; Wang et al., 2024a), which is attributed to their ability to master non-natural languages (Bolhuis et al., 2024; Han et al., 2024; Zhu et al., 2024a; Gao et al., 2024) (e.g., structural knowledge-aware instructions (Kim et al., 2023; Wang et al., 2023)). Leveraging this advantage, the latest studies propose LLM-based KGFMs (Guo et al., 2024; Wang et al., 2024b) to conduct inductive KGR tasks. These methods, by utilizing the powerful context awareness and knowledge emergence (Pan et al., 2024) of LLMs, sufficiently capture implicit knowledge overlooked by primary KGFMs from structural KG context, thereby significantly improving models on open-world fact reasoning.

Previous research on LLM-based KGFMs usually explicitly recasts incomplete facts as KG context-aware instructions and conducts fact reasoning through LLM fine-tuning (Guo et al., 2024) or prompt-based reasoning (Wang et al., 2024b). Despite these accomplishments, existing LLM-based KGFMs still suffer from significant *knowledge distortion* (Li et al., 2024), i.e., the sparse contextual evidence extracted from KGs may override the dense knowledge inherent in LLMs, which causes irreversible damage to LLM reasoning. This issue primarily arises from the inadequate coordination of the natural knowledge gap between KGs and LLMs, thereby hindering the generalizability of LLM-based KGFMs across diverse KGR downstream tasks.

Figure 1(a) illustrates the knowledge distortion challenge in LLM-based KGFMs. In general, current LLM-based KGFMs directly project sparse structural knowledge into a reasoning prompt, which poses a latent risk of misleading LLMs by incomplete reasoning evidence. For example, LLM incorrectly regards “*Guildhall School of Music and Drama*”, the sole information related to “*film_genre*”, as critical evidence. This toxic contextual association overrides the inherent knowledge of LLMs (e.g., “*dark comedy*”), ultimately limiting model reasoning. In addition, although emergent knowledge endows LLMs with adaptive capacity for open-world fact reasoning, this characteristic actually increases the risk of generating out-of-scope hallucinations (Guo et al., 2024; Pan et al., 2024). This result impacts the fairness and reliability of the model in evaluating across KGR tasks.

To address the aforementioned limitations, we propose a Knowledge Reasoning Language Model (KRLM) to alleviate the knowledge distortion by coordinating the inherent knowledge of LLMs and KGs throughout the entire KGR process. As shown in Figure 1(b), this knowledge coordination is achieved through two aspects: reasoning instruction design and model fine-tuning. Specifically, we first design a KRL-format instruction that aligns the intrinsic knowledge in LLMs (text description) with the implicit knowledge representation through a vocabulary table. Next, we construct a KRL tokenizer that converts entities and relations into unified KRL tokens, encapsulating both structural and textual knowledge. We then propose a KRL attention layer that integrates the context within KRL by coordinating the in-context learning module of a pre-trained LLM and a dynamic knowledge memory mechanism. Finally, a structure-aware next-entity predictor is proposed to tightly constrain the predicted facts to the given KG domain, ensuring the reliability and stability of the reasoning results. In addition, we adopt a collaborative training objective based on knowledge mutual distillation (Zhang et al., 2018; Hu et al., 2023) to further coordinate different knowledge.

Our main contributions can be summarized as follows:

- 108 • This paper proposes a novel Knowledge Reasoning Language Model (KRLM) for extensive
109 KGR tasks. KRLM mitigates the knowledge distortion problem commonly faced by LLM-based
110 KGFMs in diverse downstream KGR tasks.
- 111 • We design a unified tokenizer for various representation encapsulation in KRL, which infinite
112 scalability of open-world entities/relations with constant-scale model parameter.
- 113 • We propose a KRL attention layer and a structure-aware next-entity predictor, which enables
114 LLMs to effectively coordinate pre-trained intrinsic knowledge with external structural knowl-
115 edge during the in-context learning process, ultimately allowing for reasoning with traceable
116 facts.
- 117 • Extensive experimental results on 28 datasets demonstrate that the proposed method exhibits
118 significant zero-shot learning and transfer capabilities in open-domain KGR scenarios.

120 2 RELATED WORK

121 In this section, we review the research roadmap of KGR, with a focus on comparing LLM-based
122 KGR models with our proposed KRLM on open-domain KGR.

124 **A review of KGR.** KGR is mainly divided into transductive and inductive tasks. Traditional KGR
125 methods (Das et al., 2018; Trouillon et al., 2016; Yang et al., 2017) are dedicated to reason latent
126 facts in static KGs with finite sets of entity and relations. Nowadays, the dynamicity of real-world
127 KGs have led to the proposal of inductive KGR methods for reasoning unseen entities or relations
128 in facts. Previous inductive KGR methods (Zhu et al., 2021; Teru et al., 2020; Zhang & Yao, 2022;
129 Galkin et al., 2022) can only generalize facts with new entities while unsuitable for unfamiliar rela-
130 tions. Consequently, several methods (Geng et al., 2023; Lee et al., 2023) take the relative onto-
131 logical interaction of relations as a starting point to learn the structural invariance of relations in a
132 KG, thereby improving the model’s recognition of unknown relations. However, the most severe
133 challenge faced by the featurization strategies of the above inductive KGR methods rely on spe-
134 cific domain features of KGs (e.g., node degree or structural attribute similarity), which cannot be
135 transferred to KGs in any domain. To address this challenge, Mikhail et al. (Galkin et al., 2024)
136 propose an concept called “**knowledge graph foundation model**”, which captures the structural
137 invariance of entities and relations cross KGs. Inspired by this, numerous KGFMs (Huang et al.,
138 2025; Cui et al., 2024; Zhang et al., 2024c) have been proposed in recent years, which have achieved
139 remarkable cross domain inductive KGR through zero-shot learning.

140 **LLM-based KGR models.** Unlike the above KGR models that solely focuses on KG structure,
141 LLMs can capture finer grained differences in KG context for distinguishing sub-KGs with similar
142 structures. Therefore, numerous studies have recently introduced LLMs to improve KGR models.
143 For example, CSProm-KG (Chen et al., 2023) and MKGL (Guo et al., 2024) use the prefix-tuning (Li
144 & Liang, 2021) and LoRA (Hu et al., 2022) technique, respectively, to transfer LLMs to KGR sce-
145 narios. KICGPT (Wei et al., 2023) and PROLINK (Wang et al., 2024b) utilize a large-small model
146 collaborative framework to integrate LLM planners and KG retrievers to achieve effective KGR.
147 Among then, MKGL and PROLINK sufficiently the emergent knowledge capability of LLMs (Pan
148 et al., 2024), which enables them to uncover more latent facts across open-domain KGs. This ad-
149 vantage makes them representative LLM-based KGFMs. However, given the natural representation
150 gaps between the inherent knowledge of LLMs and the structural knowledge of KGs, existing LLM-
151 based KGR methods typically face the problem of knowledge distortion, where sparse KG context
152 used for fact reasoning may interfere with LLM reasoning, which limits the performance of LLM-
153 based KGR models.

154 In contrast, the proposed KRLM comprehensively coordinates the inherent knowledge of LLMs and
155 the implicit knowledge representation of KGs from the perspectives of instruction construction and
156 model fine-tuning, overcoming the weakness of existing LLM-based KGFMs in unifying the internal
157 knowledge of LLM and the external KG representation, and improving the zero-shot learning ability
158 of LLM on cross-domain KGs during fine-tuning.

159 3 PRELIMINARIES

160 In this section, we introduce the background and main definitions related to this study.

161 **Knowledge graphs and inductive knowledge graph reasoning.** A knowledge graph is a multi-
162 relational directed graph with entities as nodes and relations as edges. Formally, a KG can be

Figure 2: Overall framework of KRLM. Given a query triplet, we first convert it to ① a KRL instruction that integrates inherent knowledge of LLMs and KGs and obtain its token embedding sequence by ② a KRL tokenizer. These tokens are then input into ③ stacked KRL attention layers for capturing the in-context hidden states within KRL. Next, ④ a next-entity predictor is used to reason the entity word following KRL based on the last hidden state. ⑤ The training objective of KRLM is to coordinate the inherent knowledge of LLM with structural knowledge representation.

represented as $\mathcal{G} = (\mathcal{E}, \mathcal{R}, \mathcal{T})$, where $\mathcal{E} = \{e_i\}_{i=1}^I$ and $\mathcal{R} = \{r_j\}_{j=1}^J$ denote the sets of entities and relations, respectively, and $\mathcal{T} = \{<e_h, r, e_t> | e_h, e_t \in \mathcal{E}, r \in \mathcal{R}\}$ is the set of triplets. Each triplet represents a fact composed of a head entity e_h , a tail entity e_t , and a relation r that truly exists between them. Given a KG $\mathcal{G}_{train} = (\mathcal{E}_{train}, \mathcal{R}_{train}, \mathcal{T}_{train})$ for training a KGR model, inductive KGR tasks require the model to predict facts in an unobserved KG $\mathcal{G}_{test} = (\mathcal{E}_{test}, \mathcal{R}_{test}, \mathcal{T}_{test})$, where $\mathcal{E}_{test} \neq \mathcal{E}_{train}$ or $\mathcal{R}_{test} \neq \mathcal{R}_{train}$.

Knowledge graph foundation models learn the structural invariance from KGs, which addresses the domain shift between training and reasoning KGs in inductive KGR tasks. Typically, KGFMs employ two Graph Neural Networks (GNN_r and GNN_e) to build KG structure learning models (Zhu et al., 2021; Teru et al., 2020). Given a query triplet $<e_h, r_q, ?> \in \mathcal{G}$, the overall framework of KGFMs can be summarized as:

$$\mathbf{R} = GNN_r(\{\mathbb{I}_{j=q} \cdot \mathbf{1}^d\}_{j=1}^J, \mathbf{R}^*, \mathcal{G}_r), \quad \mathbf{E} = GNN_e(\{\mathbb{I}_{i=h} \cdot \mathbf{r}_q\}_{i=1}^I, \mathbf{R}, \mathcal{G}), \quad (1)$$

where \mathbb{I} is an assert function and $\mathbf{1}^d \in \mathbb{R}^d$ is the embedding of ones. KGFMs first construct a relational graph $\mathcal{G}_r = (\mathcal{R}, \mathcal{R}^*, \mathcal{T}^*)$ with \mathcal{R} as a node set and \mathcal{R}^* as an edge set, where \mathcal{R}^* is the relative structure patterns of \mathcal{R} in \mathcal{G} (Galkin et al., 2024; Huang et al., 2025) and $\mathbf{R}^* \in \mathbb{R}^{|\mathcal{R}^*| \times d}$ represents the type embedding of relative structural patterns. Afterwards, KGFMs use labeling tricks (Zhu et al., 2021) to obtain structurally invariant representations of all relations $\mathbf{R} \in \mathbb{R}^{J \times d}$. Then, driven by $\mathbf{r}_q \in \mathbf{R}$, the representation of r_q , KGFMs summarize the structurally invariant representations of all entities $\mathbf{E} \in \mathbb{R}^{I \times d}$. The detailed design of the relational graph and the KGFMs architecture are provided in Appendixs C.1 and C.2, respectively.

Knowledge reasoning language is a new language form that contains both the inherent corpus knowledge in LLMs and the structural knowledge of KGs. As shown in Figure 2, a KRL instruction contains a global vocabulary that integrates the word-level forms, types, text descriptions, and knowledge representations of entities and relations. This intuitive contextual comparison can assist LLM understand unfamiliar elements in KRL instructions. When reasoning a fact, KRLM regards the word-level forms of entities and relations as unique tokens and adds their indices into the LLM tokenizer. Then, KRLM predicts a latent next word-level entity following the KRL instruction. Refer Section 4 for processing details.

In addition, to alleviate the training costs may caused by the addition of word-level tokens for entities and relations, we design a low-parametric method based on Principal Attribute Aggregation (PAA),

216 which enhances the representational completeness of word-level tokens through multi-view attribute
 217 aggregation functions (Guo et al., 2024) of pre-trained tokens, as detailed in **Section 4.1**.
 218

219 4 KNOWLEDGE REASONING LANGUAGE MODEL

220 In this section, we elaborate on the proposed KRLM in detail, which consists of three main components
 221 (Figure 2): a **KRL tokenizer** (**Section 4.1**) based on a knowledge encoder and a PAA module,
 222 a in-context learning module composed of stacked **KRL attention layers** (**Section 4.2**), and a GNN-
 223 based **next-entity predictor** (**Section 4.3**). In the following sections, we first provide the design of
 224 each module. Then, we illustrate the training strategy of KRLM (**Section 4.4**).
 225

226 4.1 KRL TOKENIZER

227 As shown in Figure 2, a KRL instruction contains different categories of tokens. For the general
 228 tokens, we map them to the corresponding embeddings according to the pre-trained embedding
 229 table within a LLM. The word-level embeddings and knowledge representations of entities/relations
 230 in KRL are obtained by the PAA mechanism and the knowledge encoder, respectively.

231 **The PAA mechanism** is used to obtain word-level embeddings of entities and relations. Here, we
 232 use an entity as a case to introduce the details of PAA.

233 Let $\langle Entity: Text\ description \rangle$ be the word-level format of an entity, we can obtain its textual
 234 token embedding sequence $\{\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_L\} = \text{Emb}(\text{TKN}(\langle Entity: Text\ description \rangle))$, where
 235 $\text{TKN}(\cdot)$ and $\text{Emb}(\cdot)$ are the text tokenizer and token embedding table of a LLM, respectively.
 236 The PAA mechanism aggregates the different attributes of these token embeddings (i.e., mean,
 237 max, min, and std attributes (Guo et al., 2024)) to obtain the word-level embedding of the entity
 238 $\mathbf{w}_e = \text{PAA}(\{\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_L\})$:
 239

$$240 \text{PAA}(\{\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_L\}) = \left[\parallel_{\text{attr} \in \{\text{mean}, \text{max}, \text{min}, \text{std}\}} \text{attr}(\{\mathbf{t}_1^*, \mathbf{t}_2^*, \dots, \mathbf{t}_L^*\}) \right] \mathbf{W}_{\text{fusion}}, \quad (2)$$

242 where \parallel is a column-wise concatenation operation, $\mathbf{t}_L \in \mathbb{R}^F$ is a F -dimensional token embedding
 243 in $\text{Emb}(\cdot)$, $\mathbf{t}_L^* = \mathbf{t}_L \mathbf{W}_{\text{down}} \in \mathbb{R}^{F \times d}$ and $\mathbf{W}_{\text{fusion}} \in \mathbb{R}^{4d \times d}$ are two trainable weight matrices.
 244 The PAA mechanism can construct new entity/relation word-level embeddings without restrictions
 245 under fixed training parameters, which effectively saves memory costs and is beneficial for handling
 246 unknown entities/relations in inductive KGR tasks.

247 **The knowledge encoder** is a GNN-based KG structure learner that captures universal structural
 248 representations of entities and relations. Given a query triplet $\langle e_h, r_q, ? \rangle \in \mathcal{G}$, we construct a
 249 knowledge encoder according to Eq. (1), where we can obtain \mathbf{E} and \mathbf{R} , the knowledge representa-
 250 tions of all entities and relations, respectively, based on $\langle e_h, r_q, ? \rangle$. In brief, GNN_e and GNN_r in
 251 Eq. (1) are both designed to S -layer NBFNet (Zhu et al., 2021). The detailed design are provided in
 252 Appendix C.2.

253 In addition, to inject relevant structural context in the KRL attention layer (**Section 4.2**), we construct
 254 a MLP function $\mathcal{S}_{\text{struct}}(\cdot) : \mathbb{R}^{2d} \rightarrow \mathbb{R}^1$ to score the correlation between the structural knowledge of
 255 entity $e_i \in \mathcal{E}$ and the query triplet $\langle e_h, r_q, ? \rangle$:

$$256 \quad 257 \quad s_{\text{struct}}^{(i)} = \mathcal{S}_{\text{struct}}([\mathbf{e}_i || \mathbf{r}_q]), \quad \mathbf{e}_i \in \mathbf{E}, \quad \mathbf{r}_q \in \mathbf{R}. \quad (3)$$

258 **The process of KRL tokenization** is as follows: Given an input embeddings sequence of KRL
 259 $\{\mathbf{w}_{e_h}, \mathbf{w}_{r_q}, \mathbf{e}_h, \mathbf{r}_q\} \cup \{\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_m\}$, where $\mathbf{w}_{e_h}, \mathbf{w}_{r_q} \in \mathbb{R}^d$ are the word-level embeddings of
 260 e_h and r_q obtained by Eq. (2), $\mathbf{e}_h, \mathbf{r}_q \in \mathbb{R}^d$ are the knowledge representations of e_h and r_q ob-
 261 tained by Eq. (1), respectively, and $\{\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_m\} \in \mathbb{R}^{m \times F}$ are the general text token embed-
 262 bings of KRL containing the placeholders of $\{\mathbf{w}_{e_h}, \mathbf{w}_{r_q}, \mathbf{e}_h, \mathbf{r}_q\}$. We first unify $\{\mathbf{w}_{e_h}, \mathbf{w}_{r_q}, \mathbf{e}_h, \mathbf{r}_q\}$
 263 into the dimension F that can be input into LLM and replace the corresponding placeholders in
 264 $\{\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_m\}$:
 265

$$266 \quad 267 \quad \begin{aligned} \tilde{\mathbf{w}}_{e_h} &= \mathcal{F}_{\text{word}}(\mathbf{w}_{e_h}), \tilde{\mathbf{w}}_{r_q} = \mathcal{F}_{\text{word}}(\mathbf{w}_{r_q}), \tilde{\mathbf{e}}_h = \mathcal{F}_{\text{struct}}(\mathbf{e}_h), \tilde{\mathbf{r}}_q = \mathcal{F}_{\text{struct}}(\mathbf{r}_q) \\ \mathbf{T} &= \{\mathbf{t}_1, \dots, \mathbf{t}_a, \tilde{\mathbf{w}}_{e_h}, \mathbf{t}_{a+1}, \dots, \mathbf{t}_b, \tilde{\mathbf{e}}_h, \mathbf{t}_{b+1}, \dots, \mathbf{t}_c, \tilde{\mathbf{w}}_{r_q}, \mathbf{t}_{c+1}, \dots, \mathbf{t}_z, \tilde{\mathbf{r}}_q, \mathbf{t}_{z+1}, \dots, \tilde{\mathbf{w}}_{e_h}, \tilde{\mathbf{w}}_{r_q}\}, \end{aligned} \quad (4)$$

268 where $\mathcal{F}_{\text{word}}(\cdot), \mathcal{F}_{\text{struct}}(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^F$ are trainable linear layers that map word-level and knowledge
 269 embeddings of entities and relations to the LLM-dimensional space. $\mathbf{T} \in \mathbb{R}^{m \times F}$ are the input
 270 sequence with m embeddings.

270 4.2 KRL ATTENTION LAYER
271

272 A KRL attention layer is an improvement on the standard LLM attention decoding module, which
273 deploys a knowledge memory mechanism to dynamically coordinate the LLM intrinsic knowledge
274 with the external KG representations in the in-context learning process. In this section, we elaborate
275 on the LLM attention decoding layer to introduce the knowledge memory mechanism.

276 **The LLM attention decoding module** performs preliminary contextual learning on textual tokens,
277 entity/relation word-level embeddings, and structural knowledge representations in KRL. To capture
278 the multi-view context of KRL, we first obtain \mathbf{T} by Eq. (4) and then input it into a LLM attention
279 decoding module in the n -th KRL attention layer, where $n \in [1, N]$:

$$280 \mathbf{H}^{(0)} = \mathbf{T}, \quad \mathbf{H}^{(n)} = \text{softmax}\left(\frac{\mathbf{H}^{(n-1)} \mathbf{W}_Q^{(n)} [\mathbf{H}^{(n-1)} \mathbf{W}_K^{(n)}]^T}{\sqrt{F}} + \mathbf{W}_{\text{mask}}\right) \mathbf{H}^{(n-1)} \mathbf{W}_V^{(n)}, \quad (5)$$

282 where $\mathbf{W}_Q^{(n)}, \mathbf{W}_K^{(n)}, \mathbf{W}_V^{(n)} \in \mathbb{R}^{F \times F}$ are frozen pre-trained weight matrices in the n -th layer.
283 $\mathbf{W}_{\text{mask}} \in \mathbb{R}^{m \times m}$ is a causal mask matrix with a lower triangle value of 0 and the rest being $-\infty$.

284 **The knowledge memory mechanism** dynamically integrates structural knowledge contexts related
285 to the query triplet into Eq. (5). Specifically, we use Eq. (3) to obtain the knowledge representations
286 of top- \mathcal{K} most relevant entity as a memory $\mathbf{E}_{\text{mem}} = \{\mathbf{e}_k | \mathbf{e}_k \in \mathcal{E}[\text{TopK}(\{sc_{\text{struct}}^{(i)}\}_{i=1}^I)], \mathbf{e}_k \in \mathbf{E}\} \in$
287 $\mathbb{R}^{\mathcal{K} \times d}$ to guide the model learning richer KRL context, where $\text{TopK}(\cdot)$ obtains the indices of top- \mathcal{K}
288 entities and \mathbf{E} is obtained by Eq. (1). Overall, the n -th KRL attention layer can be represented as:
289

$$290 \mathbf{H}^{(0)} = \mathbf{T}, \quad \mathbf{A} = \text{softmax}\left(\frac{\mathbf{H}^{(n-1)} \mathbf{M}_Q^{(n)} \mathbf{E}_{\text{mem}}^T || (\mathbf{H}^{(n-1)} \mathbf{W}_Q^{(n)} [\mathbf{H}^{(n-1)} \mathbf{W}_K^{(n)}]^T + \mathbf{W}_{\text{mask}})}{\sqrt{F}}\right), \quad (6)$$

$$293 \mathbf{H}^{(n)} = \mathbf{A} [\mathbf{E}_{\text{mem}} \mathbf{M}_V^{(n)} || \mathbf{H}^{(n-1)} \mathbf{W}_V^{(n)}], \quad n \in [1, N]$$

294 where $\mathbf{M}_Q^{(n)} \in \mathbb{R}^{F \times d}, \mathbf{M}_V^{(n)} \in \mathbb{R}^{d \times F}$ are trainable weight matrices in the n -th KRL attention layer.
295 In specific settings, $\mathbf{H}^{(n)}$ needs to be further processed by a feed forward network of the corre-
296 sponding layer in a LLM before it can be input into the next KRL attention layer. More discussion
297 of the knowledge memory mechanism is attached in **Appendix D**.

299 4.3 NEXT-ENTITY PREDICTOR
300

301 In a standard LLM next-token predictor, the hidden state of the last instruction token is transformed
302 into a probability distribution over the candidate tokens by applying a projection head \mathbf{P} . However,
303 the inherent token vocabulary of a LLM does not completely overlap with the entity vocabulary of a
304 KG, which can result in out-of-scope predictions and compromise the fairness of model evaluation.
305 To address this issue, we propose a next-entity predictor that adapts the projection head \mathbf{P} to a
306 specific KG domain via a structural knowledge decoder. This approach constrains the reasoning
307 results strictly within the entity vocabulary. Moreover, the knowledge decoder enables KRLM to
308 further coordinate the inherent pre-trained knowledge in \mathbf{P} with KG representation.

309 **Mapping the projection head to word-level embeddings.** We use the pre-trained projection head
310 \mathbf{P} in the next-token predictor of a LLM as the mapping vocabulary for the word-level embeddings
311 of all entities. Given a word-level format $\langle \text{Entity: Text description} \rangle$ of an entity e_h , we obtain its
312 mapping embedding \mathbf{p}_h similar to Eq. (2):

$$313 \mathbf{p}_h = \text{PAA}(\mathbf{P}[\text{TKN}(\langle \text{Entity: Text description} \rangle)]), \quad (7)$$

314 where $\text{PAA}(\cdot)$ is a parameter-independent module that has the same structure as the one in Eq. (2).

315 **Knowledge decoder.** This module decodes the projection head \mathbf{P} into the specific KG through the
316 structural constraints of \mathbf{p}_h , avoiding the prediction of out-of-scope KG domain. In specific, we
317 build GNN_p , a S -layer entity GNN with the same structure as GNN_e Eq. (1) to achieve this goal:
318

$$319 \tilde{\mathbf{P}} = \text{GNN}_p(\{\mathbb{I}_{i=h} \cdot \mathbf{p}_h\}_{i=1}^I, \mathbf{R}, \mathcal{G}) \quad (8)$$

320 where $\tilde{\mathbf{P}} \in \mathbb{R}^{I \times d}$ is the decoded projection matrix. \mathbf{R} is the knowledge representation of relations
321 obtained by Eq. (1), which guides $\tilde{\mathbf{P}}$ to perceive structural knowledge.

323 **Next-entity prediction.** Given word-level formats $\langle \text{Entity: Text description} \rangle$ and $\langle \text{Relation: Text description} \rangle$ of an entity e_h and a relation r_q , respectively, we construct a MLP function

324 $\mathcal{S}_{\text{KRLM}}(\cdot) : \mathbb{R}^{3d} \rightarrow \mathbb{R}^1$ to predict next entity scores of a KRL ending with “<Entity: Text de-
325 scription><Relation: Text description>”:
326

$$327 \quad sc_{\text{KRLM}}^{(i)} = \mathcal{S}_{\text{KRLM}}(\left[\tilde{\mathbf{p}}_i || \mathbf{r}_q || g(\mathbf{H}^{(N)}[m]) \right]), \quad (9)$$

329 where $\tilde{\mathbf{p}}_i \in \tilde{\mathbf{P}}$ is the projection embedding of the entity e_i ; $\mathbf{r}_q \in \mathbf{R}$ is the knowledge embedding of
330 r_q ; $\mathbf{H}^{(N)} \in \mathbb{R}^{m \times F}$ is the result of the N -layer KRL attention layer (Section 4.2), where m is the
331 length of an input KRL; $\mathbf{H}^{(N)}[m]$ is the hidden state of the last token; and $g(\cdot) : \mathbb{R}^F \rightarrow \mathbb{R}^d$ is a
332 linear layer.
333

334 When reasoning the next entity, we average the results of two scoring functions (Eqs. (3) and (9)) to
335 obtain the final predicted scores of all candidate entities and regard the entity with the highest score
336 as the predicted result.
337

4.4 TRAINING AND REASONING

339 Given a query triplet $q = < e_h, r_q, ? >$ with the ground truth e_t , the training objective is designed
340 as:

$$341 \quad \mathcal{L} = (1 - \lambda) \underbrace{\left[-\log (sc_{\text{KRLM}}^{(t)}) + \frac{1}{|\mathcal{N}_{\text{neg}}(q)|} \sum_{e_n \in \mathcal{N}_{\text{neg}}(q)} \log (1 - sc_{\text{KRLM}}^{(n)}) \right]}_{\text{structural distillation}} + \lambda \text{KL}(\mathcal{P}_{\text{struct}} || \mathcal{P}_{\text{KRLM}}) \\ 342 \\ 343 \\ 344 \\ 345 \quad + (1 - \lambda) \underbrace{\left[-\log (sc_{\text{struct}}^{(t)}) + \frac{1}{|\mathcal{N}_{\text{neg}}(q)|} \sum_{e_n \in \mathcal{N}_{\text{neg}}(q)} \log (1 - sc_{\text{struct}}^{(n)}) \right]}_{\text{KRL distillation}} + \lambda \text{KL}(\mathcal{P}_{\text{KRLM}} || \mathcal{P}_{\text{struct}}), \quad (10)$$

349 where $sc_{\text{struct}}^{(t)}$ and $sc_{\text{KRLM}}^{(t)}$ are obtained by Eqs (3) and (9), respectively, $\mathcal{N}_{\text{neg}}(q)$ is a negative sample
350 set of the query triplet q , λ is a fixed weight used to balance the target loss and KL term, and
351 $\text{KL}(\mathcal{P} || \mathcal{Q})$ is used to calculate the KL divergence between distributions \mathcal{P} and \mathcal{Q} . $\mathcal{P}_{\text{struct}}$ and $\mathcal{P}_{\text{KRLM}}$
352 are two predicted score distributions of positive and negative targets.
353

354 Inspired by the mutual knowledge distillation frameworks (Zhang et al., 2018; Hu et al., 2023), Eq.
355 (10) consists of two parts: *structural distillation* and *KRL distillation*. This approach allows KRLM
356 to dynamically align textual context and structural knowledge in KRL during the training process,
357 thereby promoting the coordination of different modal knowledge in KRLM. The detailed training
358 algorithm and reasoning time complexity are provided in **Appendices F and G**, respectively.
359

5 EXPERIMENTS

360 In this section, we demonstrate KRLM from the following research question: **RQ1**. Can KRLM ef-
361 fectively perform inductive KGR tasks on unseen KG under the zero-shot and fine-tuned conditions?
362 **RQ2**. Does the effectiveness of each module in KRLM be confirmed, including the knowledge en-
363 coder, the PAA module, KRL attention layers, the knowledge decoder, and the training approach?
364 **RQ3**. Is the hyperparameters set in KRLM effective?
365

5.1 DATASETS, BASELINES, AND EXPERIMENTAL SETTINGS

366 **Datasets.** To verify the ability of KRLM to reason facts on unseen KGs, we conduct evaluations on
367 28 datasets. According to the overlap level between the train KG and the test KG, these datasets can
368 be divided into the following three categories:
369

- 370 • 12 **Inductive Entity (IndE)** datasets from GraIL (Teru et al., 2020): FB-V1, FB-V2, FB-V3,
371 FB-V4, NELL-V1, NELL-V2, NELL-V3, NELL-V4, WN-V1, WN-V2, WN-V3, and WN-V4.
372
- 373 • 13 **Inductive Entity and Relation (IndER)** datasets from InGram (Lee et al., 2023): FB-25,
374 FB-50, FB-75, FB-100, NL-0, NL-25, NL-50, NL-75, NL-100, WK-25, WK-50, WK-75, and
375 WK-100.
376
- 377 • Three **Transductive** datasets for pre-training: FB15k-237 (Toutanova & Chen, 2015),
WN18RR (Dettmers et al., 2018), CoDEx-M (Safavi & Koutra, 2020).

378
379
380
381
382

Table 1: Average performance of each model on inductive datasets. “PT”, “FT”, and “E2E” mean “pre-training”, “fine-tuning”, and “end-to-end training from scratch” respectively. Black bold and underline indicate the best and second best results. “-” indicates that a model is not suitable for the KGR task, or the corresponding source does not have reproduction conditions.

Inductive Datasets		Supervised SOTA	ULTRA (PT)	ULTRA (FT)	MOTIF (PT)	MOTIF (FT)	TRIX (PT)	TRIX (FT)	MKG	PROLINK (Llama2-7b)	KRLM (PT)	KRLM (FT)
IndE (12 datasets)	Hit@10	0.675	0.703	0.724	0.721	0.740	0.732	0.734	0.726	0.733	0.738	0.751
	MRR	0.527	0.549	0.566	0.557	0.582	0.579	<u>0.583</u>	0.578	0.562	0.583	0.590
IndER (13 datasets)	Hit@10	0.347	0.536	0.542	0.519	0.538	0.535	0.536	-	0.542	0.546	0.556
	MRR	0.209	0.352	0.350	0.335	0.349	0.353	0.353	-	0.354	<u>0.361</u>	0.367
Transductive Datasets		ULTRA (PT)	MOTIF (PT)	TRIX (PT)	CSProm-KG (BERT)	KICGPT (GPT-3.5)	GPT-4	KG-LLM (Llama2-7b)	MKG	PROLINK (Llama2-7b)	KRLM (PT)	KRLM (E2E)
FB15k-237	Hit@10	0.564	0.550	0.559	0.538	0.554	0.565	-	0.591	-	0.554	0.568
	MRR	0.368	0.357	0.366	0.358	<u>0.412</u>	0.420	-	0.410	-	0.381	0.394
WN18RR	Hit@10	0.614	0.628	0.611	0.678	0.641	-	0.503	0.656	-	0.610	0.659
	MRR	0.480	0.529	0.514	0.575	0.549	-	0.427	<u>0.552</u>	-	0.506	0.552
CoDEx-M	Hit@10	0.525	0.517	0.521	-	-	-	-	-	-	0.501	0.526
	MRR	0.372	0.361	0.365	-	-	-	-	-	-	0.349	0.367

394
395
396
397
398
399
400
401
402
403
404
405
According to previous studies (Galkin et al., 2024), we pre-train KRLM using three transductive
datasets and conduct both zero-shot and fine-tuning evaluations on IndE and IndER datasets. De-
tailed dataset descriptions and statistics are provided in Appendix H.398
399
400
401
402
403
404
405
Baselines. We compare KRLM under three versions (“pre-training”, “fine-tuning”, and “end-to-
end training from scratch”) with three categories baselines that can handle inductive KGR tasks:
(1) State-of-the-art supervised models reported by ULTRA (Galkin et al., 2024). We collect their
detailed performance on each dataset in Appendix H. (2) KGFMs focusing on KG structural learning,
including ULTRA (Galkin et al., 2024), MOTIF (Huang et al., 2025), and TRIX (Zhang et al.,
2024c). (3) Latest LLM-based models, including MKGL (Guo et al., 2024) and PROLINK (Wang
et al., 2024b). In addition, we introduce four LM-based KGR methods, CSProm-KG (Chen et al.,
2023), KICGPT (Wei et al., 2023), GPT-4 (Zhu et al., 2024b), and KG-LLM (Yao et al., 2025)
designed for end-to-end transductive KGR training/evaluation.406
407
408
409
410
411
Evaluation settings. Based on previous work (Galkin et al., 2024), we adopt Mean Recurrent Rank
(MRR) and top-10 Hit rate (Hit@10) as evaluation metrics. For each test triplet $\langle e_h, r_q, e_t \rangle$, a
model simultaneously predict head and tail entities, i.e. $\langle e_h, r_q, ? \rangle$ and $\langle e_t, -r_q, ? \rangle$, where
 $-r_q$ is the inverse relation of r_q . In the zero-shot evaluation, we use the pre-trained model with the
best validation checkpoint to obtain MRR and Hit@10 on each dataset. In the fine-tuning condition,
we further train the best validation checkpoint on each dataset for evaluation.412
413
414
415
416
Implementation settings. We pre-train and fine-tune KRLM using 4 A100 (40GB) GPUs with
the batch size is 4 per GPU. The total training epochs is set to 20 for pre-training. The optimizer
is default to AdamW with a 5e-4 learning rate, a 1% warmup step setting and a 4-step gradient
accumulation. The more detailed settings of model hyperparameters are provided in Appendix I.417
5.2 MAIN RESULTS (RQ1)419
420
421
422
423
In this section, we report the
performance of KRLM on dif-
ferent KGR tasks and compare
it with the SOTA baselines
mentioned in Section 5.1.424
425
426
427
428
429
430
431
Inductive KGR tasks. Ta-
ble 1 and Figure 3 show
the overall performance of
KRLM on inductive datasets
(the detailed experimental re-
sults are provided in Appendix J1). Obviously, KGFMs achieves the best average per-
formance in the fine-tuning scenario. Besides, KRLM outperforms 87% of the baselines
in zero-shot scenarios and even surpasses some fine-tuned KGFMs. This success can be attributed
to KRLM’s ability to leverage the pre-trained intrinsic knowledge of LLMs as an extension of the

Figure 3: Comparison of our KRLM with supervised SOTA baselines on every inductive dataset.

432 invariant knowledge representation in KGFMs, which enables the model to more effectively distinguish
 433 unfamiliar entities and relations in unknown KGs. Further experimental analysis of LLM-based
 434 KGFMs reveals that MKGL fixes the number of the relation vocabulary, making it unsuitable
 435 for the IndER task and limiting its generality. In contrast, the competitive PROLINK utilizes a LLM
 436 to plan reasoning conditions and execute pre-trained ULTRA to reason facts. However, PROLINK
 437 overlooks the incompatibility between sparse KG context and LLM inherent knowledge, leading to
 438 knowledge distortion and slightly inferior performance on some datasets compared to KRLM. More
 439 detailed analysis of KRLM are attached in the Appendixes J.1 and J.7.

440 Transductive KGR tasks.

441 The transductive KGR performance of KRLM and
 442 baselines are provided in
 443 Table 1. The results show
 444 that there is no significant
 445 positive correlation between
 446 the KGR performance of a
 447 model in the closed domain
 448 (transductive) and the open
 449 domain (inductive), which
 450 may be related to the tendency
 451 of a model to overfit during
 452 training in closed domain
 453 KGR scenarios.

Table 2: Hit@10 of each ablation variant. “E2E” means “end-to-end training”. “KEn”, “KMe”, and “KDe” indicate the knowledge encoder, knowledge memory, and knowledge decoder in KRLM, respectively. “Atten” and “Mean” represent replacing the PAA module with attentive pooling and mean pooling, respectively. “KD” and “KL” is the KRL distillation and KL divergence part in Eq. (14), respectively.

Datasets	KRLM (E2E)	Main Component			PAA Module		Loss		
		-KEn	-KMe	-KDe	Atten	Mean	-KD	-KL	-KD-KL
FB-V1	0.705	0.614	0.691	0.674	0.696	0.692	0.699	0.672	0.665
WN-V1	0.801	0.710	0.780	0.764	0.789	0.787	0.782	0.798	0.761
NL-0	0.591	0.537	0.583	0.570	0.588	0.584	0.554	0.533	0.535
NL-100	0.688	0.640	0.667	0.669	0.685	0.683	0.666	0.678	0.660

454 5.3 ABLATION EXPERIMENTS (RQ2)

455 This section mainly discusses the effectiveness of various modules in KRLM. The designed ablation
 456 variants and experimental results are shown in Table 2. Overall, the effectiveness of each ablation
 457 variant is inferior to that of the complete KRLM, especially in some important structural knowledge
 458 learning modules such as “KEn”, “KDe”, and “KD”. Appendix J.2 provides detailed experimental
 459 settings and more results of ablation experiments.

461 5.4 PARAMETER ANALYSIS (RQ3)

462 This section discusses the influence of the main hyperparameters in KRLM. As shown in Figure
 463 4, the scale \mathcal{K} of knowledge memory in the KRL attention layer is set from 10 to 70.
 464 When \mathcal{K} is set to 50 or above, there is no significant improvement in model. Therefore, we
 465 set $\mathcal{K} = 50$ in the experiments. In addition, to ensure the expression consistency of structured knowledge in the model,
 466 the layer numbers for the three GNNs in KRLM is uniformly set to S . Figure 4 demonstrates that the model
 467 is generally optimal when $S = 6$, and too few or too many layers may lead to underfitting or over-
 468 smoothing of the GNN model. The detailed parameter analysis of λ in Eq. (10) is attached in
 469 Appendix J.3.

476 6 CONCLUSION

477 This paper first discusses the knowledge distortion challenge faced by LLM-based KGFMs in in-
 478 ductive KGR tasks, *i.e.*, these models are difficult to coordinate internal knowledge of LLMs and
 479 external KG context, where sparse KG context may override LLM’s internal knowledge, thereby
 480 seriously damaging the credibility of reasoning results. Based on this, we propose a novel Knowl-
 481 edge Reasoning Language Model (KRLM), which comprehensively enhances the inherent knowl-
 482 edge collaboration between LLMs and KGs from four aspects: fine-tuning instruction construction,
 483 in-context learning, next-token prediction, and model training. Extensive experiments confirm the
 484 superiority of KRLM in terms of both end-to-end fine-tuning and zero-shot transfer scenarios. Ap-
 485 pendix K provides the limitations of KRLM and possible future expansion directions.

Figure 4: Performance of KRLM with different hyperparameters.

486 7 ETHICS STATEMENT
487488 We confirm that our work has been conducted in accordance with the ICLR Code of Ethics (<https://iclr.cc/public/CodeOfEthics>). The study does not involve human subjects, sensitive
489 personal data, or experiments that may cause harm to individuals or groups. The datasets used are
490 publicly available and no personally identifiable information is included. Our methodology and
491 findings are intended for academic purposes and do not pose foreseeable risks of misuse. We have
492 carefully considered issues of fairness, bias, and privacy, and to the best of our knowledge, our
493 research maintains integrity and complies with all applicable ethical standards.
494495 8 REPRODUCIBILITY STATEMENT
496497 We confirm that our study has reproducibility. Specifically, we have first submitted our desensitized
498 project on anonymous GitHub (<https://anonymous.4open.science/r/KRLM-EA36>).
499 The detailed pseudocode of the algorithm is provided in **Appendix F**. In addition, we provide
500 specific details of the experimental conclusions in the main text, including dataset partitioning
501 (**Appendix H**), hyperparameter settings (**Appendix I**), and ablation variant settings (**Appendix J.2**).
502503 504 REFERENCES
505506 507 Johan J. Bolhuis, Stephen Crain, Sandiway Fong, and Andrea Moro. Three Reasons Why AI Doesn't
508 Model Human Language. *Nature*, 627(8004):489–489, 2024.
509 510 Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko.
511 Translating Embeddings for Modeling Multi-relational Data. In *NeurIPS*, pp. 2787–2795. Curran
512 Associates, Inc., 2013.
513 514 Chen Chen, Yufei Wang, Aixin Sun, Bing Li, and Kwok-Yan Lam. Dipping PLMs Sauce: Bridging
515 Structure and Text for Effective Knowledge Graph Completion via Conditional Soft Prompting.
516 In *Findings of ACL*, pp. 11489–11503. Association for Computational Linguistics, 2023.
517 518 Yuanning Cui, Zequn Sun, and Wei Hu. A Prompt-Based Knowledge Graph Foundation Model for
519 Universal In-Context Reasoning. In *NeurIPS*, pp. 7095–7124. Curran Associates, Inc., 2024.
520 521 Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy,
522 Alex Smola, and Andrew McCallum. Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning. In *ICLR*. OpenReview.net, 2018.
523 524 Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2D
525 Knowledge Graph Embeddings. In *AAAI*, pp. 1811–1818. AAAI Press, 2018.
526 527 Wentao Ding, Jinmao Li, Liangchuan Luo, and Yuzhong Qu. Enhancing Complex Question Answering
528 over Knowledge Graphs through Evidence Pattern Retrieval. In *ACM WWW*, pp. 2106–2115.
529 ACM, 2024.
530 531 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and
532 Tat-Seng Chua. AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models.
533 In *ICLR*. OpenReview.net, 2025.
534 535 Mikhail Galkin, Etienne G. Denis, Jiapeng Wu, and William L. Hamilton. NodePiece: Compositional
536 and Parameter-Efficient Representations of Large Knowledge Graphs. In *ICLR*. OpenReview.net, 2022.
537 538 Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards Foundation
539 Models for Knowledge Graph Reasoning. In *ICLR*. OpenReview.net, 2024.
540 Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
541 Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation. *Proc. VLDB Endow.*, 17(5):1132–1145, 2024.

540 Yuxia Geng, Jiaoyan Chen, Jeff Z. Pan, Mingyang Chen, Song Jiang, Wen Zhang, and Huajun
 541 Chen. Relational Message Passing for Fully Inductive Knowledge Graph Completion. In *ICDE*,
 542 pp. 1221–1233. IEEE, 2023.

543

544 Lingbing Guo, Zhongpu Bo, Zhuo Chen, Yichi Zhang, Jiaoyan Chen, Yarong Lan, Mengshu Sun,
 545 Zhiqiang Zhang, Yangyifei Luo, Qian Li, Qiang Zhang, Wen Zhang, and Huajun Chen. MKGL:
 546 Mastery of a Three-Word Language. In *NeurIPS*, volume 37, pp. 140509–140534. Curran Asso-
 547 ciates, Inc., 2024.

548 Hojae Han, Jaejin Kim, Jaeseok Yoo, Youngwon Lee, and Seung-won Hwang. ArchCode: Inco-
 549 porating Software Requirements in Code Generation with Large Language Models. In *ACL*, pp.
 550 13520–13552. Association for Computational Linguistics, 2024.

551

552 Chengming Hu, Xuan Li, Dan Liu, Haolun Wu, Xi Chen, Ju Wang, and Xue Liu. Teacher-
 553 Student Architecture for Knowledge Distillation: A Survey. *arXiv preprint arXiv:2308.04268*,
 554 arXiv:2308.04268, 2023.

555 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 556 and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In *ICLR*. OpenRe-
 557 view.net, 2022.

558

559 Xingyue Huang, Pablo Barceló, Michael M. Bronstein, İsmail İlkan Ceylan, Mikhail Galkin, Juan L
 560 Reutter, and Miguel Romero Orth. How Expressive are Knowledge Graph Foundation Models?
 561 *arXiv preprint arXiv:2502.13339*, 2025.

562 Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A Survey on Knowledge
 563 Graphs: Representation, Acquisition, and Applications. *IEEE TNNLS*, 33(2):494–514, 2022.

564

565 Jijo Kim, Yeonsu Kwon, Yohan Jo, and Edward Choi. KG-GPT: A General Framework for Rea-
 566 soning on Knowledge Graphs Using Large Language Models. In *Findings of EMNLP*, pp. 9410–
 567 9421. Association for Computational Linguistics, 2023.

568

569 Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang. InGram: Inductive Knowledge Graph
 570 Embedding via Relation Graphs. In *ICML*, volume 202, pp. 18796–18809. PMLR, 2023.

571

572 Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In
 573 *ACL*, pp. 4582–4597. Association for Computational Linguistics, 2021.

574

575 Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, Xi Chen, and Huajun Chen. Unveiling the
 576 Pitfalls of Knowledge Editing for Large Language Models. In *ICLR*. OpenReview.net, 2024.

577

578 Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang Zhou, Xinwang
 579 Liu, Fuchun Sun, and Kunlun He. A Survey of Knowledge Graph Reasoning on Graph Types:
 580 Static, Dynamic, and Multi-Modal. *IEEE TPAMI*, 46(12):9456–9478, 2024.

581

582 Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on Graphs: Faithful
 583 and Interpretable Large Language Model Reasoning. In *ICLR*. OpenReview.net, 2024.

584

585 Xin Lv, Xu Han, Lei Hou, Juanzi Li, Zhiyuan Liu, Wei Zhang, Yichi Zhang, Hao Kong, and Suhui
 586 Wu. Dynamic anticipation and completion for multi-hop reasoning over sparse knowledge graph.
 587 In *EMNLP*, pp. 5694–5703. Association for Computational Linguistics, 2020.

588

589 Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-
 590 Editing Memory in a Transformer. In *ICLR*. OpenReview.net, 2023.

591

592 Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying Large
 593 Language Models and Knowledge Graphs: A Roadmap. *IEEE TKDE*, 36(7):3580–3599, 2024.

594

595 Tara Safavi and Danai Koutra. CoDEX: A Comprehensive Knowledge Graph Completion Bench-
 596 mark. In *EMNLP*, pp. 8328–8350. Association for Computational Linguistics, 2020.

597

598 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge Graph Embedding
 599 by Relational Rotation in Complex Space. In *ICLR*. OpenReview.net, 2019.

594 Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive Relation Prediction by
 595 Subgraph Reasoning. In *ICML*, volume 119, pp. 9448–9457. PMLR, 2020.

596

597 Kristina Toutanova and Danqi Chen. Observed Versus Latent Features for Knowledge Base and Text
 598 Inference. In *Workshop on CVSC*, pp. 57–66. ACL, 2015.

599

600 Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
 601 plex Embeddings for Simple Link Prediction. In *ICML*, volume 48 of *JMLR Workshop and*
 602 *Conference Proceedings*, pp. 2071–2080. JMLR.org, 2016.

603

604 Jiapu Wang, Kai Sun, Linhao Luo, Wei Wei, Yongli Hu, Alan Wee-Chung Liew, Shirui Pan, and
 605 Baocai Yin. Large language models-guided dynamic adaptation for temporal knowledge graph
 606 reasoning. In *NeurIPS*, pp. 8384–8410. Curran Associates, Inc., 2024a.

607

608 Kai Wang, Yuwei Xu, Zhiyong Wu, and Siqiang Luo. LLM as Prompter: Low-resource Inductive
 609 Reasoning on Arbitrary Knowledge Graphs. In *Findings of ACL*, pp. 3742–3759. Association for
 610 Computational Linguistics, 2024b.

611

612 Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu. SimKGC: Simple Contrastive Knowledge
 613 Graph Completion with Pre-trained Language Models. In *ACL*, pp. 4281–4294. Association for
 614 Computational Linguistics, 2022.

615

616 Siyuan Wang, Zhongyu Wei, Meng Han, Zhihao Fan, Haijun Shan, Qi Zhang, and Xuanjing Huang.
 617 Query Structure Modeling for Inductive Logical Reasoning Over Knowledge Graphs. In *ACL*,
 618 pp. 4706–4718. Association for Computational Linguistics, 2023.

619

620 Yanbin Wei, Qiushi Huang, Yu Zhang, and James T. Kwok. KICGPT: Large Language Model with
 621 Knowledge in Context for Knowledge Graph Completion. In *Findings of EMNLP*, pp. 8667–8683.
 622 Association for Computational Linguistics, 2023.

623

624 Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding Entities and
 625 Relations for Learning and Inference in Knowledge Bases. In *ICLR*. OpenReview.net, 2015.

626

627 Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable Learning of Logical Rules for Knowl-
 628 edge Base Reasoning. In *NeurIPS*, pp. 2319–2328. Curran Associates, Inc., 2017.

629

630 Mohammad Yani and Adila Alfa Krisnadhi. Challenges, Techniques, and Trends of Simple Knowl-
 631 edge Graph Question Answering: A Survey. *Inf.*, 12(7):271, 2021.

632

633 Liang Yao, Jiazen Peng, Chengsheng Mao, and Yuan Luo. Exploring Large Language Models for
 634 Knowledge Graph Completion. In *ICASSP*, pp. 1–5. IEEE, 2025.

635

636 Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou,
 637 Xi Chen, and Huajun Chen. InstructEdit: Instruction-Based Knowledge Editing for Large Lan-
 638 guage Models. In *IJCAI*, pp. 6633–6641. ijcai.org, 2024a.

639

640 Yichi Zhang, Zhuo Chen, Lingbing Guo, Yajing Xu, Wen Zhang, and Huajun Chen. Making Large
 641 Language Models Perform Better in Knowledge Graph Completion. In *ACM MM*, pp. 233–242.
 642 ACM, 2024b.

643

644 Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep Mutual Learning. In
 645 *CVPR*, pp. 4320–4328. Computer Vision Foundation / IEEE Computer Society, 2018.

646

647 Yongqi Zhang and Quanming Yao. Knowledge Graph Reasoning with Relational Digraph. In *ACM*
 648 *WWW*, pp. 912–924. ACM, 2022.

649

650 Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, and Bruno Ribeiro. TRIX: A More Express-
 651 sive Model for Zero-shot Domain Transfer in Knowledge Graphs. In *LoG Conference*. OpenRe-
 652 view.net, 2024c.

653

654 Yuqi Zhu, Jia Li, Ge Li, Yunfei Zhao, Jia Li, Zhi Jin, and Hong Mei. Hot or Cold? Adaptive
 655 Temperature Sampling for Code Generation with Large Language Models. In *AAAI*, pp. 437–
 656 445. AAAI Press, 2024a.

648 Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi Yao, Shumin Deng, Huajun
649 Chen, and Ningyu Zhang. LLMs for Knowledge Graph Construction and Reasoning: Recent
650 Capabilities and Future Opportunities. *World Wide Web (WWW)*, 27(5):58, 2024b.
651

652 Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, and Jian Tang. Neural Bellman-Ford
653 Networks: A General Graph Neural Network Framework for Link Prediction. In *NeurIPS*, pp.
654 29476–29490. Curran Associates, Inc., 2021.

655 Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-Symbolic Models for Log-
656 ical Queries on Knowledge Graphs. In *ICML*, volume 162 of *Proceedings of Machine Learning
657 Research*, pp. 27454–27478. PMLR, 2022.

658 Xingrui Zhuo, Jiapu Wang, Gongqing Wu, Shirui Pan, and Xindong Wu. Effective instruction
659 parsing plugin for complex logical query answering on knowledge graphs. In *ACM WWW*, pp.
660 4780–4792. ACM, 2025.
661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A THE USE OF LARGE LANGUAGE MODELS
703

704 We used a large language model (LLM) solely as an editing assistant to improve the grammar, clarity,
705 and concision of the manuscript. All technical contributions, experimental design, data processing,
706 evaluation, and conclusions reported in the paper were authored and verified by the human authors.
707 LLM-suggested edits were reviewed and accepted or modified by the authors; no numerical results,
708 figures, or analyses were generated or approved solely by the LLM.

710 B DESIGN DETAILS OF KRL INSTRUCTIONS
711

712 Given a query triplet $(h, r, ?)$, we first provide its schema of a KRL instruction below:
713

714 Schema of the KRL Instruction
715

716 **Instruction:** Define the word format for a new language as <Type: Text Description>. Suppose you
717 are a linguistic expert who are learning this new language. Given the following vocabulary:
718

719 **Word|Type|Text description|Knowledge representation**
720

721 <Entity: name of h >|Entity|description of h |KG embedding of h
<Relation: name of r >|Relation|description of r |KG embedding of r

722 Please complete the next word '?' in the given sentence:
723 <Entity: name of h ><Relation: name of r >?

724 **Response:** <Entity: name of h ><Relation: name of r >
725

726 A KRL instruction consists of three types of tokens: word-level embeddings, KG embeddings, and
727 LLM-pretrained tokens.
728

- 729 • **Word-level embeddings** refer to the principal attribute aggregation result of the text strings of
730 entities and relations after looking up the LLM pretrained token table (refer to Eq. (2)). Given
731 an entity h expressed as the string “<Entity: name of h >”, we feed this string into the LLM’s
732 tokenizer to obtain an embedding sequence $[t_1, t_2, \dots, t_n] \in \mathbb{R}^{n \times F}$. We then apply four pooling
733 operations, mean, std, max, and min, to obtain $t_{mean}, t_{std}, t_{max}, t_{min} \in \mathbb{R}^F$. A trainable MLP
734 layer encodes the concatenation of these pooled vectors into a representation of dimension F ,
735 which serves as the word-level embedding of h , denoted as <Entity: name of h >. This design
736 avoids expanding the LLM’s pretrained embedding table to accommodate new entities, thereby
737 improving the model’s scalability and generalization ability.
- 738 • **The KG embeddings** are obtained from a GNN-based KG reasoning model. To enable zero-
739 shot generalization on unseen KGs, we adopt ULTRA (Galkin et al., 2024), a GNN-based KG
740 foundation model, to produce structural embeddings for entities and relations. These embeddings
741 are then projected through a trainable MLP layer to match the LLM hidden dimension F and
742 injected into the KRL instruction as [KG embedding of h] and [KG embedding of r].
- 743 • **LLM pretrained tokens.** These are standard tokens in the KRL instruction that fall outside the
744 above two categories and are directly provided by the pretrained LLM.
745

746 Because of the vocabulary table mapping the word-level tokens, KG embeddings, and LLM pre-
747 trained tokens, the KRL instruction is more concise explicit KG-context prompts, resulting in an
748 average length of only 118.75 ± 5.14 in the 28 KG datasets.
749

750 C MODELING DETAILS OF KGFMs
751752 C.1 RELATIONAL GRAPH CONSTRUCTION
753

754 Unlike a typical KG $\mathcal{G} = (\mathcal{E}, \mathcal{R}, \mathcal{T})$, a relational graph is used to describe the relative states between
755 relations. According to the design of ULTRA (Galkin et al., 2024), the relative state of relations
in a relational graph is related to the entity attributes they share. For example, given two triplets

< h_1, r_1, t_1 > and < e_2, r_2, t_1 >, r_1 and r_2 share the same tail entity t_1 , so the relative state from r_1 to r_2 is “tail-to-tail” ($t2t$). According to this setting, we can map \mathcal{G} into four relational sub-graphs that only contain a single relative state: $\mathcal{G}_{h2t} = (\mathcal{R}, \{r_{h2t}^*\}, \mathcal{T}_{h2t}^*)$, $\mathcal{G}_{h2h} = (\mathcal{R}, \{r_{h2h}^*\}, \mathcal{T}_{h2h}^*)$, $\mathcal{G}_{t2h} = (\mathcal{R}, \{r_{t2h}^*\}, \mathcal{T}_{t2h}^*)$, and $\mathcal{G}_{t2t} = (\mathcal{R}, \{r_{t2t}^*\}, \mathcal{T}_{t2t}^*)$, where r_{h2t}^* , r_{h2h}^* , r_{t2h}^* , and r_{t2t}^* indicate four relative states “head-to-tail”, “head-to-head”, “tail-to-head”, and “tail-to-tail”, respectively.

Finally, we can obtain the relational graph $\mathcal{G}_r = (\mathcal{R}, \mathcal{R}^*, \mathcal{T}^*)$ in Eq. (1) by integrating \mathcal{G}_{h2t} , \mathcal{G}_{h2h} , and \mathcal{G}_{t2t} , where $\mathcal{R}^* = \{r_{h2t}^*, r_{h2h}^*, r_{t2h}^*, r_{t2t}^*\}$ and $\mathcal{T}^* = \mathcal{T}_{h2t}^* \cup \mathcal{T}_{h2h}^* \cup \mathcal{T}_{t2h}^* \cup \mathcal{T}_{t2t}^*$.

C.2 KGFM ARCHITECTURE

As shown in Eq. (1), KGFM contain two structure learning modules (GNN_e and GNN_r) for entities and relations. Given a query triplet < $e_h, r_q, ?$ > $\in \mathcal{G}$ and $\mathbf{r}_j^{(0)} = \mathbb{I}_{j=q} \cdot \mathbf{1}^d$, we first design a S -layer GNN model GNN_r for learning the invariance of the relational structure according to Eq. (1):

$$\mathbf{r}_q^{(s)} = \sigma(\text{Update}([\mathbf{r}_q^{(s-1)} || \text{Agg}(\text{Mess}(\mathbf{r}_j^{(s-1)}, \mathbf{r}^*) | r_j \in \mathcal{N}_{\mathcal{G}_r}(r_q), \mathbf{r}^* \in \mathbf{R}^*)])), \quad s \in [1, S], \quad (11)$$

where $\text{Mess}(\cdot)$ is a non-parametric DistMult message function (Yang et al., 2015), $\text{Agg}(\cdot)$ represents the sum aggregation operation, $\text{Update}(\cdot) : \mathbb{R}^{2d} \rightarrow \mathbb{R}^d$ is a trainable linear layer, and $\sigma(\cdot)$ is a ReLU activation function. \mathcal{G}_r is a relational graph defined in Eq. (1). The edges in \mathcal{G}_r are directed as “head-to-tail”, “tail-to-head”, “head-to-head”, and “tail-to-tail” based on the shared entities (either the head entity or tail entity) between the two relations in \mathcal{G} (Galkin et al., 2024) (The detailed design are provided in Appendix C.1). Therefore, the edge embeddings are set to a trainable matrix $\mathbf{R}^* \in \mathbb{R}^{4 \times d}$ to model the relative structures between two relations.

According to Eq. (11), we obtain the knowledge representation of relations $\mathbf{R} = \{\mathbf{r}_j^{(S)}\}_{j=1}^J$. Similarly, let $\mathbf{e}_i^{(0)} = \mathbb{I}_{i=h} \cdot \mathbf{R}[q]$, we construct a S -layer GNN model GNN_e for entity structure learning:

$$\mathbf{e}_h^{(s)} = \sigma(\text{Update}([\mathbf{e}_h^{(s-1)} || \text{Agg}(\text{Mess}(\mathbf{e}_i^{(s-1)}, f^{(s)}(\mathbf{r})) | e_i \in \mathcal{N}_{\mathcal{G}}(e_h), \mathbf{r} \in \mathbf{R}^*)])), \quad s \in [1, S], \quad (12)$$

where $f^{(s)} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a non-linear function composed of a two-layer MLP with a relu function, which can transform the structural embeddings of relations into representations that adapt to the learning of entity structures in each layer of GNN_e . Finally, we obtain the knowledge representation of entities $\mathbf{E} = \{\mathbf{e}_i^{(S)}\}_{i=1}^I$ by Eq. (12).

D DISCUSSION OF THE KRL ATTENTION LAYER

This section elaborates on the effectiveness of the KRL attention mechanism from the perspective of the last token in the KRL instruction. Overall, we hope that the hidden state of the last token in KRL can simultaneously contain textual and structural knowledge contexts in KRL, which provide a prerequisite for subsequent next-entity prediction.

Let the hidden state sequence of tokens obtained by the $n-1$ th KRL attention layer is $\mathbf{H}^{(n-1)} = \{\mathbf{h}_1^{(n-1)}, \mathbf{h}_2^{(n-1)}, \dots, \mathbf{h}_m^{(n-1)}\}$. According to Eq. (5), without introducing the dynamic knowledge memory, the hidden state of the last token obtained by the n -th KRL attention layer is:

$$\mathbf{h}_m^{(n)} = \sum_{i=1}^m \alpha_i \mathbf{h}_i^{(n-1)} \mathbf{W}_V^{(n)}, \quad \alpha_i = \frac{\exp(\langle \mathbf{h}_m^{(n-1)} \mathbf{W}_Q^{(n)}; \mathbf{h}_i^{(n-1)} \mathbf{W}_K^{(n)} \rangle)}{\sqrt{F} \sum_{j=1}^m \exp(\langle \mathbf{h}_m^{(n-1)} \mathbf{W}_Q^{(n)}; \mathbf{h}_j^{(n-1)} \mathbf{W}_K^{(n)} \rangle)}, \quad (13)$$

where $\langle \cdot; \cdot \rangle$ is an inner product operation. Eq. (13) can be seen as in-context learning of tokens within a KRL instruction (including textual tokens and structural knowledge representations), where α_i represents the scaling degree of contextual semantics for the last token.

However, the independent structural knowledge representation of the entity and relation in a KRL instruction is too thin compared to the widely existing textual tokens, which can easily cause the model to undervalue critical KG context when learning KRL instructions. To address this issue, we propose a dynamic knowledge memory mechanism that injects extra KG structural context related to the entity and relation in KRL into the in-context learning process in a KRL attention layer. Let

810 $\{\mathbf{e}_k\}_{k=1}^{\mathcal{K}}$ be a knowledge memory containing top- \mathcal{K} entity embeddings obtained by Eqs. (1) and (3).
 811 According to Eq. (6), we can reconstruct Eq. (13) into Eq. (14):
 812

$$\begin{aligned} \mathbf{h}_m^{(n)} &= \sum_{i=1}^m \alpha_i \mathbf{h}_i^{(n-1)} \mathbf{W}_V^{(n)} + \sum_{k=1}^{\mathcal{K}} \beta_k \mathbf{e}_k \mathbf{M}_V^{(n)}, \\ \alpha_i &= \frac{\exp (\langle \mathbf{h}_m^{(n-1)} \mathbf{W}_Q^{(n)}; \mathbf{h}_i^{(n-1)} \mathbf{W}_K^{(n)} \rangle)}{\sqrt{F} \left[\sum_{j=1}^m \exp (\langle \mathbf{h}_m^{(n-1)} \mathbf{W}_Q^{(n)}; \mathbf{h}_j^{(n-1)} \mathbf{W}_K^{(n)} \rangle) + \sum_{k=1}^{\mathcal{K}} \exp (\langle \mathbf{h}_m^{(n-1)} \mathbf{M}_Q^{(n)}; \mathbf{e}_k \rangle) \right]}, \\ \beta_k &= \frac{\exp (\langle \mathbf{h}_m^{(n-1)} \mathbf{M}_Q^{(n)}; \mathbf{e}_k \rangle)}{\sqrt{F} \left[\sum_{j=1}^m \exp (\langle \mathbf{h}_m^{(n-1)} \mathbf{W}_Q^{(n)}; \mathbf{h}_j^{(n-1)} \mathbf{W}_K^{(n)} \rangle) + \sum_{z=1}^{\mathcal{K}} \exp (\langle \mathbf{h}_m^{(n-1)} \mathbf{M}_Q^{(n)}; \mathbf{e}_z \rangle) \right]}. \end{aligned} \quad (14)$$

813 By utilizing additional KG context, Eq. (14) coordinates the influence of LLM internal knowledge
 814 and external KG context on $\mathbf{h}_m^{(n)}$ through semantic space scaling and translation. In specific, Eq.
 815 (14) utilizes the knowledge memory to scale the contextual importance coefficient α_i of each token
 816 in KRL, which alleviates the contextual impact of large-scale textual tokens on rare entity/relation
 817 structural representations in KRL. In addition, the knowledge memory contributes an effective se-
 818 mantic translation as an independent parameter term $\sum_{k=1}^{\mathcal{K}} \beta_k \mathbf{e}_k \mathbf{M}_V^{(n)}$, which enhances the perception
 819 of structural knowledge context by $\mathbf{h}_m^{(n)}$ and thus assists in subsequent next-entity prediction.
 820

821 E DISCUSSION OF THE NEXT-ENTITY PREDICTOR

822 The next-entity predictor uses the hidden state of the last token ($\langle \text{Relation: name of } r \rangle$) in the KRL
 823 instruction to predict the word-level token ($\langle \text{Entity: name of } h \rangle$) of the target entity. This converts
 824 KG reasoning into an LLM-style next-token prediction, *i.e.*, next-entity prediction. This design
 825 avoids the risk of generating out-of-scope entities commonly observed in existing LLM-based KGR
 826 models. The structural constraints of our approach are reflected in two aspects:
 827

828 **(I) Entity-space constraint:** Most prior LLM-based KGR methods inherit the LLM’s next-token
 829 prediction mechanism, generating entities as sequences of vocabulary tokens. Since the LLM
 830 vocabulary (e.g., Llama2-7B has 32k tokens) is typically much larger than the number of entities in
 831 a KG benchmark and an entity name may require multiple tokens, LLMs may generate the textual
 832 name of an entity that falls outside the gold entity set. (This does not necessarily mean the generated
 833 entity is factually wrong, but it makes evaluation unfair.)
 834

835 To address this, KRLM aggregates the MLP head $\mathbf{P} \in \mathbb{R}^{4096 \times 32000}$ in the next-token predictor of
 836 Llama2-7b into a compressed one $\mathbf{P} \in \mathbb{R}^{4096 \times |\mathcal{E}|}$ whose size matches the KG’s entity set \mathcal{E} . The
 837 hidden state of the last KRL token is then compared with this compressed MLP head to select the
 838 top-1 target entity. This guarantees that predictions always lie within the entity set and therefore
 839 remain evaluable.
 840

841 **(II) Structural context constraint:** Under the **entity-space constraint**, the compressed MLP head
 842 stores each target entity’s word-level embedding, allowing basic in-domain entity prediction. How-
 843 ever, we further want the MLP head to incorporate the KG structural context of a given query triplet
 844 $(h, r, ?)$ to assist in model prediction.
 845

846 Consequently, as described in Eq. (8) in our paper, we feed the word-level embedding of the head
 847 entity h into NBFNet (Zhu et al., 2021), a GNN-based KG encoder, to propagate messages over
 848 the KG and obtain contextual embeddings for all entities. These embeddings form an h -specific
 849 MLP head, which is then used for predicting the target entity. To verify its effectiveness, we include
 850 the “-KDe” ablation in Table 2 in our paper, which demonstrates that adding **structural-context**
 851 **constraint** significantly outperforms using only **entity-space constraint**.
 852

853 F TRAINING ALGORITHM

854 Algorithm 1 provides a complete pre-training process for KRLM. In each training round, the head
 855 entity e_h and relation r_q in a query triplet are firstly transformed into structural knowledge represen-
 856

864 **Algorithm 1** Pre-training framework of KRLM

865 **Input:** Query triplet set \mathcal{T}_q ; KG \mathcal{G} ; relational graph \mathcal{G}_r ; trainable model parameters Θ ; learning rate
 866 η ; max training step s ; batch size b .

867 **Output:** Optimized parameters Θ .

868 1: $step = 0$

869 2: **for** $step < s$ **do**

870 3: Obtain $\mathcal{T}_q^* \subseteq \mathcal{T}_q$ that contains b randomly selected query triplets

871 4: $\mathcal{L}_{total} = 0$

872 5: **for** $< e_h, r_q, ? >$ in \mathcal{T}_q^* **do**

873 6: Obtain e_h, r_q according to Eq. (1) and obtain w_{e_h}, w_{r_q} according to Eq. (2)

874 7: Construct the KRL token embedding sequence \mathbf{T} by Eq. (4)

875 8: Select top- \mathcal{K} entity embedding related to $< e_h, r_q, ? >$ by Eq. (3)

876 9: Obtain $\mathbf{H}^{(N)}$ by Eq. (6) and extract the hidden state $\mathbf{H}^{(N)}[m]$ of the last KRL token

877 10: Mapping the projection head in LLM to the KG domain by Eqs. (7) and (8)

878 11: Obtain the predicted entity score according to Eq. (9)

879 12: Calculate the loss \mathcal{L} using Eq. (10)

880 13: $\mathcal{L}_{total} \leftarrow \mathcal{L}_{total} + \mathcal{L}$

881 14: **end for**

882 15: Optimize Θ using \mathcal{L}_{total} with the Adam gradient descent method

883 16: $step \leftarrow step + 1$

884 17: **end for**

885 18: **return** Θ

886

887 Table 3: Comparison of training costs between KRLM and MKGL.

888 Model (Llama2-7b as backbone)	889 Trainable parameters	890 Training time per epoch
890 MKGL	18 M (16.78 M for LoRA)	1 h 8 min / 4 X A100 GPU
891 KRLM (Ours)	18.49 M (16.78 M for the KRL attention layer)	1 h 20 min / 4 X A100 GPU

892
 893
 894 tations (e_h and r_q) and word-level embeddings (w_{e_h} and w_{r_q}) using Eqs. (1) and (2), respectively,
 895 and ultimately integrated into a KRL instruction (Steps 6-7). Next, we select top- \mathcal{K} entities related
 896 to the query triplet (Step 8) and input them together with the KRL instruction into the stacked KRL
 897 attention layers for in-context learning. Then, we extract the hidden state of the last KRL token
 898 and calculate the predicted score of the next entity of the KRL instruction (Steps 9-11). Finally, the
 899 training loss is calculated according the predicted scores, which is used to optimize the trainable
 900 parameters in KRLM.

901
 902

G COMPUTATIONAL COMPLEXITY

903

G.1 TRAINING COST

904 We calculated the trainable parameters of MKGL and our KRLM, as well as the training time on the
 905 FB15k237 dataset with a uniform batch of 4 per GPU. The statistical results are shown in Table 3.

906 KRLM requires embedding GNN in the tokenizer and next-token predictor of LLM, which slightly
 907 increases the parameters. However, it is consistent with MKGL in the main fine-tuning parameters
 908 of LLM (KRL attention layer V.S. LoRA). To ensure generalization, KRLM requires additional cost
 909 to construct a relational graph for real-time perturbed KGs in each batch, resulting in a training time
 910 of about 12 minutes longer per epoch than MKGL.

911 Although KRLM incurs additional training costs, it offers substantially stronger generalization com-
 912 pared to MKGL. Specifically, KRLM requires only a single pre-training phase on a large-scale KG,
 913 after which it can perform training-free zero-shot reasoning on entirely new KGs (refer to KRLM
 914 (PT) in Tables 1, 12, and 13 in our submitted paper). In contrast, MKGL is not a fully generalizable
 915 KGFM in the strict sense. While it can effectively recognize unseen entities within each inductive

918
919 Table 4: TFLOPs, memory footprint, and wall-clock time of KRLM for pre-training and fine-tuning.
920
921

Metrics	Pre-training (3 transductive dataset)	Fine-tuning (FB V1)	Fine-tuning (FB25)
TFLOPs of forward propagation	3.3436 ± 0.4540	3.2755 ± 0.5208	3.3312 ± 0.4859
Training Memory footprint	36.12 GB	32.57 GB	32.67 GB
Wall-clock time	3h10m per epoch \times 20 epochs	7m28s per epoch \times 3 epochs	12m13s per epoch \times 10 epochs

922
923
924
925 dataset, it cannot transfer zero-shot across different inductive datasets. Consequently, MKGL must
926 be retrained for every new dataset, which significantly increases its deployment overhead.
927928 Table 4 shows the TFLOPs, memory footprint, and wall-clock time of KRLM for pre-training and
929 fine-tuning under the condition of `batch_size = 4` per GPU \times 4 GPUs.
930931 During training, there is natural step-to-step variability in both the number of input tokens. To
932 obtain a stable and representative estimate, we compute the average forward TFLOPs over 100 steps.
933 (Backward propagation and optimizer updates theoretically introduce an additional 2-3 \times TFLOPs).
934 For fine-tuning efficiency, we further include results on the largest inductive dataset (FB25) and
935 the smallest inductive dataset (FB-V1) to provide an upper-lower bound range of computational
936 overhead.
937938

G.2 INFERENCE COMPLEXITY

939 The inference complexity of KRLM can be analyzed from two parts. From the perspective of the
940 knowledge encoder and decoder, the time complexity is upper-bounded by the entity GNN ($\text{GNN}_e(\cdot)$)
941 and $\text{GNN}_p(\cdot)$), as the number of nodes $|\mathcal{R}|$ involved in $\text{GNN}_r(\cdot)$ is much smaller than the number
942 of KG entities $|\mathcal{E}|$ that $\text{GNN}_e(\cdot)$ and $\text{GNN}_p(\cdot)$ need to handle. For an entity GNN, the reasoning
943 time complexity of each layer is usually linearly related to the number of edges (triplets) (Galkin
944 et al., 2024; Zhu et al., 2021) $O(|\mathcal{T}|d + |\mathcal{E}|d^2)$. Therefore, for a S -layer entity GNN, its overall
945 time complexity is $O(S(|\mathcal{T}|d + |\mathcal{E}|d^2))$. Furthermore, thanks to the efficient relational messaging
946 kernel implemented by the Pytorch-geometric library, the complexity of an entity GNN is optimized
947 to $O(S|\mathcal{E}|d)$ that is linear with the number of nodes, which has been applied to the related ULTRA-
948 like KGFM (Galkin et al., 2024; Huang et al., 2025; Zhang et al., 2024c).949 the reasoning time complexity in LLM is concentrated in the KRL attention layer. Set the token
950 length of a KRL instruction and the scale of the knowledge memory to be m and \mathcal{K} , respectively,
951 the reasoning time complexity in KRL attention layer can be divided into the self-attention matrix
952 calculation in LLM attention decodeing module ($O(m^2F)$) and the knowledge memory ($O(m\mathcal{K}d)$),
953 and the final attentive pooling operation ($O(m(m+\mathcal{K})F)$), where F and d are the hidden dimensions
954 of LLM and $\text{GNN}_e(\cdot)$, respectively. Because $m \gg \mathcal{K}$, the total complexity of a N -layer KRL
955 attention module can be represented as $O(Nm(m + \mathcal{K})F)$.956 To visually demonstrate the inference latency of KRLM, we selected two datasets with the highest
957 (FB15k237) and lowest (NELL-V1) graph densities within our experimental scope as benchmarks
958 and included MKGL and PROLINK, the latest LLM-based KGFM, as comparative baselines. Ta-
959 ble 5 reports the inference time of both LLM-based (KRLM, MKGL, PROLINK) and ULTRA-like
960 (ULTRA, MOTIF, TRXI) KGFM. For consistency, we set the test batch size to 16 and used Llama-
961 2-7b as the backbone for all LLM-based KGFM, conducting experiments on a single NVIDIA
962 A100 GPU.
963964 ULTRA-like KGFM require loading the entire KG as the source for inference, while LLM-based
965 KGFM follow the ULTRA+LLM hybrid framework. Consequently, all publicly accessible KGFM
966 we used are inevitably affected by the scale of the underlying KG. In addition, since the original
967 PROLINK paper does not release data-processing scripts for FB15k237, we only counted its infer-
968 ence time on NELL-V1.
969970 Table 5 reports the detailed inference costs, including inference time (seconds per batch) and GPU
971 memory consumption. Existing KGFM exhibit sensitivity to the KG size. For KRLM and MKGL,
972 their inference time differs by approximately one second between FB15k237 and NELL-V1, which
973 are acceptable to humans. However, PROLINK needs a long prompt to guide Llama2-7b to generate
974 the potential target entity types of a query according to the relational context, which leads to it
975 needing to spend a longer inference time and larger memory on small-scale NELL-V1.
976

972

973 Table 5: Inference time and GPU memory consumption of KRLM and baselines.

Dataset	KRLM (Ours)	MKG	PROLINK	ULTRA	MOTIF	TRIX
FB15k237	2.23 \pm 0.03 [30.11GB]	1.98 \pm 0.04 [27.75GB]	-	0.14 \pm 0.01 [2.6GB]	0.25 \pm 0.01 [2.63GB]	0.22 \pm 0.01 [2.6GB]
NELL-V1	1.18 \pm 0.07 [29.32GB]	0.99 \pm 0.06 [26.82GB]	4.35 \pm 0.04 [36.42GB]	0.01 \pm 0.00 [2.5GB]	0.02 \pm 0.00 [2.5GB]	0.01 \pm 0.00 [2.5GB]

974

975

976 Table 6: Inference time of each in KRLM.

Dataset	KRL tokenizer	KRL attention layers	Knowledge decoder
FB15k237	1.2413 \pm 0.0179	1.1206 \pm 0.2408	0.0961 \pm 0.0200
NELL-V1	0.0293 \pm 0.0019	1.0554 \pm 0.0535	0.0862 \pm 0.0047

977

978

979 In addition, we have also counted the inference time of each component in KRLM Table 6. We
980 found that the main module that affects the inference latency of KRLM on different scales of KGs
981 is the KRL tokenizer, because it contains an ULTRA module, which needs to read the complete KG
982 for structural context learning of entities and relations.

983

984

H DATASETS

990

991

992 To verify the ability of KRLM to reason facts on unseen KGs, we conduct evaluations on 28 datasets.
993 According to the overlap level between train KG $\mathcal{G}_{train} = (\mathcal{E}_{train}, \mathcal{R}_{train}, \mathcal{T}_{train})$ and test KG
994 $\mathcal{G}_{test} = (\mathcal{E}_{test}, \mathcal{R}_{test}, \mathcal{T}_{test})$, these datasets can be divided into the following three categories:

995

- **Inductive Entity (IndE)** datasets that $\mathcal{E}_{test} \neq \mathcal{E}_{train}$ and $\mathcal{R}_{test} = \mathcal{R}_{train}$, including 12 datasets from GraIL (Teru et al., 2020): FB-V1, FB-V2, FB-V3, FB-V4, NELL-V1, NELL-V2, NELL-V3, NELL-V4, WN-V1, WN-V2, WN-V3, and WN-V4.
- **Inductive Entity and Relation (IndER)** datasets that $\mathcal{E}_{test} \neq \mathcal{E}_{train}$ and $\mathcal{R}_{test} \neq \mathcal{R}_{train}$, including 13 datasets from InGram (Lee et al., 2023): FB-25, FB-50, FB-75, FB-100, NL-0, NL-25, NL-50, NL-75, NL-100, WK-25, WK-50, WK-75, and WK-100.
- **Transductive** datasets for pre-training that $\mathcal{E}_{test} = \mathcal{E}_{train}$ and $\mathcal{R}_{test} = \mathcal{R}_{train}$: FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers et al., 2018), CoDEx-M (Safavi & Koutra, 2020).

1000

1001

1002 These dataset are used to evaluate the model in zero-shot/fine-tuning scenarios. Tables (7), (8),
1003 and (9) provide detailed elemental statistics for these datasets. In addition, in response to the
1004 “**Supervised SOTA**” methds in Section 5.2, we provide the supervised KGR models that achieved
1005 the best performance for each dataset in Tables (8) and (9).

1006

1007

I EXPERIMENTAL HYPERPARAMETER SETTINGS

1008

1009

1010

1011

1012

1013

1014 In Section 5.2, we evaluate three forms of KRLM, *e.i.*, “Pre-Training” (PT), “Fine-Tuning” (FT),
1015 and “End-to-End training from scratch” (E2E). The hyperparameters of KRLM-PT and KRLM-
1016 E2E are uniformly set to the values in Table 10. During the pre-training process, we mix the three
1017 transductive KGR datasets from Table 7 as the training corpus and train KRLM from scratch for 20
1018 epochs, each containing 10000 steps. In PT and E2E modes, except for the pre-trained parameters of
1019 Llama2-7b used for the backbone LLM of KRLM, the parameters of all other modules are randomly
1020 initialized using the nn.Linear() function of the Pytorch library. We allocate query triplets with batch
1021

1022

1023

1024 Table 7: Transductive KGR datasets used for model pre-training. “#Train”, “#Valid”, and “#Test”
1025 indicate the training, validation, and testing triplet numbers in each dataset, respectively.

Datasets	Entities	Relations	#Train	#Valid	#Test
FB15k-237 (Toutanova & Chen, 2015)	14541	237	272115	17535	20466
WN18RR (Dettmers et al., 2018)	40943	11	86835	3034	3134
CoDEx-M (Safavi & Koutra, 2020)	17050	51	185584	10310	10311

1026
1027 Table 8: IndE KGR datasets used for zero-shot and fine-tuning evaluation. “**Triplets**” represents
1028 the number of total triplets contained in a training/validation/testing graph. “**#Valid**” and “**#Test**”
1029 are the number of evaluation triplets in the validation and testing graph, respectively.

1030	Datasets	Relations	Training graph			Validation Graph			Testing Graph			Supervised SOTA
			Entities	Triplets	Entities	Triplets	#Valid	Entities	Triplets	#Test		
1031	FB-V1 (Teru et al., 2020)	180	1594	4245	1594	4245	489	1093	1993	411	A*Net (Zhu et al., 2022)	
1032	FB-V2 (Teru et al., 2020)	200	2608	9739	2608	9739	1166	1660	4145	947	NBFNet (Zhu et al., 2021)	
1033	FB-V3 (Teru et al., 2020)	215	3668	17986	3668	17986	2194	2501	7406	1731	NBFNet (Zhu et al., 2021)	
1034	FB-V4 (Teru et al., 2020)	219	4707	27203	4707	27203	3352	3051	11714	2840	A*Net (Zhu et al., 2022)	
1035	NELL-V1 (Teru et al., 2020)	14	3103	4687	3103	4687	414	225	833	201	RED-GNN (Zhang & Yao, 2022)	
1036	NELL-V2 (Teru et al., 2020)	88	2564	8219	2564	8219	922	2086	4586	935	RED-GNN (Zhang & Yao, 2022)	
1037	NELL-V3 (Teru et al., 2020)	142	4647	16393	4647	16393	1851	3566	8048	1620	RED-GNN (Zhang & Yao, 2022)	
1038	NELL-V4 (Teru et al., 2020)	76	2092	7546	2092	7546	876	2795	7073	1447	RED-GNN (Zhang & Yao, 2022)	
1039	WN-V1 (Teru et al., 2020)	9	2746	5410	2746	5410	630	922	1618	373	NBFNet (Zhu et al., 2021)	
1040	WN-V2 (Teru et al., 2020)	10	6954	15262	6954	15262	1838	2757	4011	852	NBFNet (Zhu et al., 2021)	
1041	WN-V3 (Teru et al., 2020)	11	12078	25901	12078	25901	3097	5084	6327	1143	NBFNet (Zhu et al., 2021)	
1042	WN-V4 (Teru et al., 2020)	9	3861	7940	3861	7940	934	7084	12334	2823	A*Net (Zhu et al., 2022)	

1041
1042 Table 9: IndER KGR datasets used for zero-shot and fine-tuning evaluation. “**Triplets**” represents
1043 the number of total triplets contained in a training/validation/testing graph. “**#Valid**” and “**#Test**”
1044 are the number of evaluation triplets in the validation and testing graph, respectively.

1045	Datasets	Training graph			Validation Graph			Testing Graph			Supervised SOTA	
		Entities	Relations	Triplets	Entities	Relations	Triplets	#Valid	Entities	Relations	Triplets	
1046	FB-25 (Lee et al., 2023)	5190	163	91571	4097	216	17147	5716	4097	216	17147	5716 InGram (Lee et al., 2023)
1047	FB-50 (Lee et al., 2023)	5190	153	85375	4445	205	11636	3879	4445	205	11636	3879 InGram (Lee et al., 2023)
1048	FB-75 (Lee et al., 2023)	4659	134	62809	2792	186	9316	3106	2792	186	9316	3106 InGram (Lee et al., 2023)
1049	FB-100 (Lee et al., 2023)	4659	134	62809	2624	77	6987	2329	2624	77	6987	2329 InGram (Lee et al., 2023)
1050	WK-25 (Lee et al., 2023)	12659	47	41873	3228	74	3391	1130	3228	74	3391	1131 InGram (Lee et al., 2023)
1051	WK-50 (Lee et al., 2023)	12022	72	82481	9328	93	9672	3224	9328	93	9672	3225 InGram (Lee et al., 2023)
1052	WK-75 (Lee et al., 2023)	6853	52	28741	2722	65	3430	1143	2722	65	3430	1144 InGram (Lee et al., 2023)
1053	WK-100 (Lee et al., 2023)	9784	67	49875	12136	37	13487	4496	12136	37	13487	4496 InGram (Lee et al., 2023)
1054	NL-0 (Lee et al., 2023)	1814	134	7796	2026	112	2287	763	2026	112	2287	763 InGram (Lee et al., 2023)
1055	NL-25 (Lee et al., 2023)	4396	106	17578	2146	120	2230	743	2146	120	2230	744 InGram (Lee et al., 2023)
1056	NL-50 (Lee et al., 2023)	4396	106	17578	2335	119	2576	859	2335	119	2576	859 InGram (Lee et al., 2023)
1057	NL-75 (Lee et al., 2023)	2607	96	11058	1578	116	1818	606	1578	116	1818	607 InGram (Lee et al., 2023)
1058	NL-100 (Lee et al., 2023)	1258	55	7832	1709	53	2378	793	1709	53	2378	793 InGram (Lee et al., 2023)

1055 size of 4 per GPU for KRLM in each step. One batch of triplets only belongs to one training KG, and
1056 their sampling probability is proportional to the total number of triplets contained in that training
1057 KG.

1058 After pre-training KRLM, we obtain the best validation checkpoint of KRLM-PT for fine-tuning
1059 KRLM-FT on each dataset. The main training hyperparameters of KRLM-FT are the same as those
1060 in Table 10. However, to adapt the model to the vastly different number of training triplets in
1061 different datasets (ranging from a few thousand to nearly one hundred thousand), we set different
1062 training epoch values for different datasets shown in Table 11.

1063 When we train KRLM-E2E on a single transductive KGR dataset, the main hyperparameters of the
1064 model are the same as those in Table 10, but the training epochs are changed to 10. In each epoch,
1065 the model needs to learn all training triplets in the dataset.

J DETAILS EXPERIMENTAL RESULTS

J.1 DETAILS EXPERIMENTAL RESULTS ON INDUCTIVE DATASETS

1073 Tables 12 and 13 correspond to the detailed experimental results of each method in Table 1 on the
1074 IndE and IndER datasets, respectively.

1075 Obviously, the current supervised SOTA baselines can only achieve mediocre performance on almost
1076 all inductive datasets, which is attributed to their modeling limitations that make it difficult for
1077 them to capture sufficient transferable structure semantics of entities and relations. In addition,
1078 considering that these baselines ignore the knowledge structure invariance across KG domains, they
1079 lack of zero-shot reasoning ability across KGs. Therefore, we can only train them from scratch on
each dataset during evaluation, which increases the spatiotemporal overhead of model deployment.

1080

1081

1082 Table 10: Hyperparameters of KRLM used in pre-training and end-to-end training from scratch.

Module	Component	Parameter
Knowledge Encoder	Entity GNN $\text{GNN}_e(\cdot)$	Layer number $S = 6$ Hidden dim $d = 64$ Message function $\text{Mess}(\cdot) = \text{DistMult}$ Aggregation function $\text{Agg}(\cdot) = \text{Sum}$ Updating function $\text{Update}(\cdot) = \text{Linear}(128, 64)$
	Relation GNN $\text{GNN}_r(\cdot)$	Layer number $S = 6$ Hidden dim $d = 64$ Message function $\text{Mess}(\cdot) = \text{DistMult}$ Aggregation function $\text{Agg}(\cdot) = \text{Sum}$ Updating function $\text{Update}(\cdot) = \text{Linear}(128, 64)$
	Score function $\mathcal{S}_{\text{struct}}(\cdot)$	$\text{Linear}(128, 64)$ $\text{ReLU}(\cdot)$ $\text{Linear}(64, 1)$
KRL Attention Layer	Llama2-7b backbone	Layer number $N = 32$ Hidden dim $F = 4096$
	Mapping layer $\mathcal{F}_{\text{word}}(\cdot)$	$\text{Linear}(64, 4096)$
	Mapping layer $\mathcal{F}_{\text{struct}}(\cdot)$	$\text{Linear}(64, 4096)$
	Scale of knowledge memory	$\mathcal{K} = 50$
Next-entity Predictor	Knowledge Decoder $\text{GNN}_p(\cdot)$	Layer number $S = 6$ Hidden dim $d = 64$ Message function $\text{Mess}(\cdot) = \text{DistMult}$ Aggregation function $\text{Agg}(\cdot) = \text{Sum}$ Updating function $\text{Update}(\cdot) = \text{Linear}(128, 64)$
		$\text{Linear}(4096, 64)$
		$\text{Linear}(192, 64)$ $\text{ReLU}(\cdot)$ $\text{Linear}(64, 1)$
	Mapping layer $g(\cdot)$	
Training	Optimizer	AdamW
	Learning rate η	5e-4
	Batch size b	4 per GPU
	Training epochs	20
	Steps in each epoch	10000
	Number of negative samples	256
	KL weight λ	0.5

1109

1110

1111 Table 11: Training epochs and steps of KRLM-FT on different inductive datasets. For example, (3, 1112 all) means that we fine-tune KRLM on a dataset within 3 epochs and the model needs to learn all 1113 the triplets in the training KG.

Datasets	KRLM-FT
FB V1	(3, all)
FB V2	(3, all)
FB V3	(5, all)
FB V4	(5, all)
NELL V1	(3, all)
NELL V2	(3, all)
NELL V3	(5, all)
NELL V4	(3, all)
WN V1	(3, all)
WN V2	(5, all)
WN V3	(5, all)
WN V4	(3, all)
FB-25	(10, all)
FB-50	(10, all)
FB-75	(10, all)
FB-100	(10, all)
NL-0	(3, all)
NL-25	(5, all)
NL-50	(5, all)
NL-75	(5, all)
NL-100	(3, all)
WK-25	(10, all)
WK-50	(10, all)
WK-75	(10, all)
WK-100	(10, all)

1134
 1135
 1136
 1137 Table 12: Detailed performance of each model on IndE datasets. “PT” and “FT” mean “pre-
 1138 training” and “fine-tuning”, respectively. Black bold indicates the best result.
 1139

Inductive Datasets	Supervised SOTA	ULTRA (PT)	ULTRA (FT)	MOTIF (PT)	MOTIF (FT)	TRIX (PT)	TRIX (FT)	MKG	PROLINK (Llama2-7b)	KRLM (PT)	KRLM (FT)
FB-V1	Hit@10	0.589	0.656	0.670	0.692	0.702	0.682	0.682	0.595	0.692	0.708 0.701
	MRR	0.457	0.498	0.509	0.503	0.53	0.515	0.515	0.475	0.498	0.537 0.541
FB-V2	Hit@10	0.672	0.700	0.710	0.716	0.744	0.730	0.730	0.681	0.745	0.748 0.752
	MRR	0.510	0.512	0.524	0.511	0.557	0.525	0.525	0.508	0.514	0.555 0.557
FB-V3	Hit@10	0.637	0.654	0.663	0.692	0.684	0.669	0.669	0.643	0.683	0.678 0.680
	MRR	0.476	0.491	0.504	0.500	0.519	0.501	0.501	0.486	0.485	0.514 0.522
FB-V4	Hit@10	0.645	0.677	0.684	0.677	0.695	0.687	0.687	0.645	0.676	0.690 0.699
	MRR	0.466	0.486	0.496	0.487	0.508	0.493	0.493	0.471	0.498	0.503 0.504
NELL-V1	Hit@10	0.866	0.913	0.878	0.871	0.873	0.898	0.899	0.886	0.883	0.887 0.916
	MRR	0.637	0.785	0.757	0.674	0.712	0.806	0.804	0.749	0.726	0.652 0.682
NELL-V2	Hit@10	0.601	0.707	0.761	0.769	0.765	0.768	0.764	0.767	0.787	0.773 0.791
	MRR	0.419	0.526	0.575	0.564	0.566	0.569	0.571	0.570	0.581	0.589 0.583
NELL-V3	Hit@10	0.594	0.702	0.755	0.724	0.764	0.743	0.759	0.759	0.762	0.766 0.768
	MRR	0.436	0.515	0.563	0.533	0.580	0.558	0.571	0.571	0.589	0.594 0.598
NELL-V4	Hit@10	0.556	0.712	0.733	0.711	0.740	0.765	0.772	0.769	0.769	0.739 0.772
	MRR	0.363	0.479	0.469	0.503	0.507	0.538	0.551	0.535	0.533	0.544 0.554
WN-V1	Hit@10	0.826	0.768	0.793	0.778	0.806	0.791	0.798	0.822	0.788	0.783 0.800
	MRR	0.741	0.648	0.685	0.682	0.703	0.699	0.705	0.746	0.644	0.705 0.711
WN-V2	Hit@10	0.798	0.765	0.779	0.771	0.781	0.781	0.780	0.799	0.777	0.782 0.799
	MRR	0.704	0.663	0.679	0.663	0.680	0.678	0.682	0.712	0.669	0.696 0.700
WN-V3	Hit@10	0.568	0.476	0.546	0.538	0.590	0.541	0.543	0.599	0.496	0.582 0.595
	MRR	0.452	0.376	0.411	0.420	0.466	0.418	0.425	0.456	0.388	0.447 0.469
WN-V4	Hit@10	0.743	0.705	0.720	0.718	0.733	0.723	0.722	0.741	0.733	0.723 0.738
	MRR	0.661	0.611	0.614	0.640	0.659	0.648	0.650	0.664	0.623	0.655 0.665

1158
 1159
 1160
 1161
 1162
 1163 Table 13: Detailed performance of each model on IndER datasets. “PT” and “FT” mean “pre-
 1164 training” and “fine-tuning”, respectively. Black bold indicates the best result. “-” indicates that a
 1165 model is not suitable for this KGR task.

Inductive Datasets	Supervised SOTA	ULTRA (PT)	ULTRA (FT)	MOTIF (PT)	MOTIF (FT)	TRIX (PT)	TRIX (FT)	MKG	PROLINK (Llama2-7b)	KRLM (PT)	KRLM (FT)
FB-25	Hit@10	0.371	0.640	0.635	0.640	0.635	0.650	0.650	-	0.648	0.658 0.640
	MRR	0.223	0.388	0.383	0.384	0.388	0.393	0.393	-	0.391	0.404 0.398
FB-50	Hit@10	0.325	0.543	0.538	0.546	0.544	0.547	0.547	-	0.549	0.541 0.552
	MRR	0.189	0.338	0.334	0.338	0.340	0.334	0.334	-	0.336	0.339 0.345
FB-75	Hit@10	0.218	0.604	0.598	0.614	0.607	0.611	0.611	-	0.616	0.618 0.620
	MRR	0.117	0.403	0.400	0.399	0.399	0.401	0.401	-	0.407	0.409 0.414
FB-100	Hit@10	0.271	0.642	0.643	0.628	0.642	0.635	0.633	-	0.635	0.647 0.655
	MRR	0.133	0.449	0.444	0.428	0.439	0.436	0.436	-	0.452	0.445 0.455
NL-0	Hit@10	0.506	0.523	0.551	0.497	0.556	0.549	0.549	-	0.550	0.587 0.591
	MRR	0.309	0.342	0.329	0.324	0.328	0.385	0.385	-	0.352	0.375 0.399
NL-25	Hit@10	0.464	0.569	0.596	0.498	0.580	0.589	0.589	-	0.589	0.586 0.596
	MRR	0.261	0.395	0.407	0.348	0.390	0.377	0.377	-	0.396	0.394 0.401
NL-50	Hit@10	0.453	0.570	0.595	0.532	0.573	0.548	0.555	-	0.579	0.588 0.598
	MRR	0.281	0.407	0.418	0.373	0.414	0.404	0.405	-	0.411	0.412 0.432
NL-75	Hit@10	0.501	0.547	0.570	0.512	0.548	0.525	0.525	-	0.552	0.535 0.559
	MRR	0.334	0.368	0.374	0.314	0.360	0.351	0.351	-	0.346	0.361 0.367
NL-100	Hit@10	0.431	0.651	0.684	0.647	0.682	0.676	0.691	-	0.684	0.667 0.688
	MRR	0.269	0.471	0.458	0.438	0.464	0.486	0.482	-	0.471	0.493 0.489
WK-25	Hit@10	0.169	0.532	0.535	0.493	0.505	0.496	0.493	-	0.539	0.509 0.550
	MRR	0.107	0.316	0.321	0.311	0.317	0.305	0.300	-	0.323	0.324 0.332
WK-50	Hit@10	0.362	0.324	0.280	0.314	0.304	0.313	0.313	-	0.286	0.306 0.328
	MRR	0.247	0.166	0.140	0.163	0.160	0.166	0.166	-	0.168	0.160 0.168
WK-75	Hit@10	0.135	0.537	0.53	0.540	0.535	0.513	0.513	-	0.535	0.540 0.538
	MRR	0.068	0.365	0.380	0.366	0.371	0.368	0.368	-	0.370	0.390 0.384
WK-100	Hit@10	0.309	0.286	0.286	0.282	0.284	0.299	0.299	-	0.283	0.320 0.313
	MRR	0.186	0.164	0.168	0.164	0.173	0.188	0.188	-	0.179	0.192 0.189

Figure 5: Comparison of our KRLM with more powerful GPT-4. Due to the interference of knowledge distortion, PROLINK using GPT-4 is also unable to effectively handle the inherent knowledge gap between LLMs and KGs. On the IndER datasets with a larger open-domain scope, this reasoning error is more pronounced.

ULTRA is a typical KGF that proposes a transferable KG reasoning framework driven by relation structure invariance. This approach endows ULTRA with the ability to recognize unfamiliar entities and relations in unseen KGs, thereby enabling reasoning of facts on out-of-domain KGs. Based on this advantage, ULTRA can even perform significantly better than supervised SOTA baselines in zero-shot reasoning configuration, *i.e.*, ULTRA (PT).

MOTIF and TRIX are improvements based on ULTRA. For example, MOTIF extends the four types of relation interactions in the relational graph to hyperedges within three hops (Huang et al., 2025), thereby expanding the structural context of the relations. TRIX iteratively propagates messages between interacting the entity GNN and the relational GNN, enabling the model to perceive more rigorous structural representations and alleviating ULTRA’s confusion problem with structurally similar heterogeneous triplets.

The above KGFMs only rely on the sparse structural semantics of KGs, which can easily make the model ignore deeper underlying knowledge. MKGL and PROLINK use the internal knowledge of LLM to extend the structural semantics of KGs, making the reasoning evidence space denser and thus improving the performance of the model. However, MKGL cannot be considered strictly a LLM-based KGF, as it requires a fixed number of relations based on specific KGs during modeling. Therefore, although MKGL can achieve the best results by training from scratch on some IndE KGR datasets (*e.g.*, WN-V2 and WN-V3), it cannot achieve zero-shot reasoning across KGs and is not suitable for the IndER KGR scenario.

PROLINK adopts a framework that combines large and small models. First, PROLINK uses Llama to plan reasoning paths, and then candidate reasoning paths are mapped to KG space through a pre-trained KGF (such as ULTRA). This approach achieves remarkable performance and generalization. However, PROLINK struggles to effectively address the inherent knowledge gap between LLMs and KGFMs, which makes it difficult for PROLINK to effectively overcome the limitations of knowledge distortion on model inference even when using GPT-4 (Figure 5).

In contrast, our proposed KRLM alleviates the LLM knowledge distortion problem caused by the inherent knowledge gap between LLM and KG by coordinating LLM internal knowledge and KG structured knowledge in various modules of LLM.

1242 J.2 DETAILS ABLATION ANALYSIS
12431244 Section 5.3 analyzes the effectiveness of various components of KRLM. To alleviate the time over-
1245 head caused by multiple pretraining from scratch on large-scale transductive datasets, our ablation
1246 experiments perform end-to-end training from scratch on several small inductive datasets (FB-V1,
1247 WN-V1, NL-0, and NL-100).1248 Table 2 provides 8 ablation variants, and the following are their design details:
1249

- 1250 • **-KEN.** This variant removes the knowledge encoder mentioned from Section 4.1. This encoder
1251 is an extremely important module in KRLM, which involves updating special token embeddings
1252 in subsequent KRL instructions (Eq. (4)), sampling knowledge memory in KRL attention layer
1253 (Eq. (6)), and applying relational knowledge representation in netx entity predictor ((Eqs. (8) and
1254 (9)). Therefore, in the absence of a knowledge encoder, we need to remove the knowledge rep-
1255 resentation token placeholders of entities and relations from KRL instructions, replace the KRL
1256 attention layer with the LoRA fine-tuning framework (referring to the LoRA parameter settings
1257 in MKGL (Guo et al., 2024)), remove the knowledge decoder from the next-entity predictor (Eq.
1258 (8)), replace \tilde{p}_i in Eq. (9) by p_i in Eq. (8), and remove the relation representation r_q from Eq.
1259 (9).
- 1260 • **-KMe.** This variant removes the knowledge memory mechanism from Section 4.2 and replaces
1261 the KRL attention layer with the LoRA fine-tuning framework (referring to the LoRA parameter
1262 settings in MKGL (Guo et al., 2024)).
- 1263 • **-KDe.** This variant removes the knowledge decoder from Section 4.3, replaces \tilde{p}_i in Eq. (9) by
1264 p_i in Eq. (7), and removes r_q from Eq. (9).
- 1265 • **Atten.** This variant replaces the PAA module in Eqs. (2) and (7) with the attention pooling
1266 method, which uses trainable attention weights to average the textual tokens of entities/relations.
- 1267 • **Mean.** This variant replaces the PAA module in Eqs. (2) and (7) with the mean pooling method,
1268 which directly averages the textual tokens of entities/relations.
- 1269 • **-KD.** This variant removes the KRL distillation module from Eq. (10) and only retains the
1270 structural distillation module.
- 1271 • **-KL.** This variant abandons the knowledge distillation function in Eq. (10), which only retains
1272 two cross-entropy losses and removes the calculation process of KL divergence.
- 1273 • **-KD-KL.** This variant simultaneously removes KRL distillation and KL divergence from Eq.
1274 (10), *i.e.*, only uses the simplest single cross-entropy loss.

1275 The results in Table 2 indicate that the knowledge encoder (“-KEN”) plays an important role in
1276 KRLM, as it introduces implicit structural context into LLM, which is more effective in driv-
1277 ing knowledge coordination between LLM and KG compared to the explicit knowledge injection
1278 method of existing LLM-based KGFMs (Wang et al., 2024b).1279 The role of a knowledge decoder is to strictly constrain the reasoning results of LLM so that they do
1280 not exceed the domain of a specific KG. Therefore, after removing the knowledge decoder (“-KDe”),
1281 the reasoning of KRLM degenerates into the next-token prediction mechanism of LLM, making it
1282 difficult for the model to perceive KG structural knowledge throughout the entire reasoning process,
1283 thereby limiting its performance.1284 The purpose of knowledge distillation in training loss is to coordinate the knowledge in LLMs and
1285 KGs from the response side of KRLM. Therefore, the variant “-KD-KL” using the simplest cross
1286 entropy loss cannot achieve this function, resulting in poor performance. Variants “-KD” and “-KL”
1287 use one-side distillation and double cross-entropy loss coordination methods, respectively, which
1288 makes it difficult for them to maximize the interoperability between different knowledge and limits
1289 their performance.1290 The remaining variants (“-KMe”, “Atten”, and “Mean”) mainly focus on the application of different
1291 modal knowledge in KRLM, with the significance of enhancing the knowledge context awareness
1292 of the hidden state of the last KRL token output by KRLM. Therefore, removing these modules also
1293 reduce the reasoning of KRLM, but the impact is not as significant as the variants analyzed above
1294 that focus on the coordination of LLM and KG knowledge.

Figure 6: (a) Comparison of different approaches for obtaining predicted scores. (b) Experiments on the proportion of distillation terms in Eq. (9).

In addition to the ablation experiments in Section 5.3, we also compare the impact of different prediction score acquisition methods on the final reasoning of the model. Figure 6(a) shows three methods for obtaining prediction scores. Our KRLM uses a combination of Eqs. (3) and (9), i.e. $\frac{S_{KRLM}(\cdot) + S_{struct}(\cdot)}{2}$, to obtain the final prediction scores. $S_{KRLM}(\cdot)$ and $S_{struct}(\cdot)$ represent obtaining the final predicted scores of entities using only Eqs. (9) and (3), respectively. Obviously, using a single scoring function can lower the final prediction results of the model. The main reason may be that although we use knowledge mutual distillation in Eq. (10) to align the predicted distributions of KRLM and the knowledge encoder, they still have a preference for their respective modal knowledge. Therefore, to fully integrate the model’s expected ratings of entities in different modalities, we use simple average aggregation to achieve effective prediction.

J.3 ANALYSIS OF THE WEIGHT OF KNOWLEDGE DISTILLATION

Figure 6(b) provides the performance of KRLM for different values of λ in Eq. (10). Although the influence of the weight of KL divergence term on model training is not emphasized in relevant literature (Zhang et al., 2018), our experiment still demonstrates the importance of balancing target loss and KL divergence. Therefore, in practical implementation, we uniformly set $\lambda = 0.5$.

J.4 ANALYSIS ON SPARSE KG REASONING

As shown in Tables 7, 8, and 9, among all the datasets involved in the experiment, FB15k237 had the highest graph density (1.29×10^{-3}), while the graph density of the other inductive datasets was concentrated between 10^{-4} and 10^{-5} . Tables 12 and 13 show the Hits@10 and MRR of each method on 25 inductive datasets, where our KRLM achieves SOTA on most of them, demonstrating KRLM’s inference advantage on sparse KGs.

In addition, we collect three sparse KG datasets (Lv et al., 2020) derived from FB15k237 (FB15k237_10, FB15k237_20, and FB15k237_50), and conduct further zero-shot sparse-KG reasoning experiments with KRLM on these datasets. The detailed results are presented in Table 14.

Overall, existing KGFM models perform significantly better than supervised SOTA KG reasoning models on sparse KGs, but they do not show clear advantages on dense ones. We attribute this to the relational GNN module in KGFM (Eq. (1)), which is able to induce more generalizable structural semantics from the KG and thus provides additional information for reasoning over sparse KGs. After injecting the inherent knowledge of LLMs, LLM-based KGFM can further supply dense semantic support to sparse KGs, leading to additional performance gains.

J.5 QUANTITATIVE EVALUATION OF KNOWLEDGE DISTORTION

We begin by defining the evaluation metric for knowledge distortion, namely the Distortion Rate (DR).

1350

1351 Table 14: Detailed performance of each model on sparse KG datasets. “PT” means a model is
1352 pre-trained by the three transductive dataset show in Table 7. Black bold indicates the best result.

Datasets (density)	Supervised SOTA	ULTRA (PT)	MOTIF (PT)	TRIX (PT)	MKG L	PROLINK (Llama2-7b)	KRLM (PT)
FB15k237_10 (2.11×10^{-4})	Hit@10	0.337	0.398	0.384	0.393	-	0.383
	MRR	0.219	0.248	0.236	0.246	-	0.238
FB15k237_20 (3.14×10^{-4})	Hit@10	0.391	0.436	0.422	0.430	-	0.404
	MRR	0.247	0.272	0.259	0.269	-	0.262
FB15k237_50 (6.79×10^{-4})	Hit@10	0.458	0.526	0.508	0.521	-	0.529
	MRR	0.293	0.324	0.312	0.321	-	0.324
FB15k237 (1.29×10^{-3})	Hit@10	0.599	0.564	0.550	0.559	0.591	-
	MRR	0.415	0.368	0.357	0.366	0.410	-

1362

1363

1364 Table 15: Detailed performance of each model on sparse KG datasets for knowledge distortion.
1365 “PT” means a model is pre-trained by the three transductive dataset show in Table 7. Black bold
1366 indicates the best result.

FB15k237_10 testing triplets under different background KGs	ULTRA (PT)	PROLINK (Llama2-7b as backbone LLM)	KRLM (PT)
FB15k237_10	Hit@10	0.398	0.383
	MRR	0.248	0.238
	DR	471.42	612.78
FB15k237	Hit@10	0.668	0.668
	MRR	0.469	0.471

1373

1374

1375 DR is used to measure the misjudgment rate of the model before and after changes in KG structure,
1376 reflecting the model’s ability to autonomously coordinate with KG context. For a query triplet
1377 $q = (h, r, ?) \in \mathcal{T}$, let t be the ground truth. Suppose the model assigns a ranking score $s_1^{(q)}$ to t on a
1378 clean KG and a score $s_2^{(q)}$ on a noisy KG. If $s_2^{(q)} > s_1^{(q)}$, the distortion rate for this query is recorded
1379 as $s_2^{(q)} - s_1^{(q)}$. The overall DR of the model on the noisy KG is given by $\frac{\sum_{q \in \mathcal{T}} \max(0, s_2^{(q)} - s_1^{(q)})}{|\mathcal{T}|}$, with
1380 lower values indicating better performance.

1381 According to Appendix J.4, we use FB15k237_10 (Lv et al., 2020) as a sparse dataset extracted
1382 from FB15k237. Then, we test the query triplets of FB15k237_10 using the background KGs of
1383 FB15k237 and FB15k237_10, respectively. Table 14 reports the performance of structural learning-
1384 based (ULTRA) and LLM-based (PROLINK) KGFMs under the pre-trained setting.

1385 Evidently, sparse KGs significantly constrain the reasoning of models due to the limited contextual
1386 evidence they can provide, leading to failures on query triplets that would otherwise be manageable.
1387 In this scenario, the structural learning capability of GNN modules becomes particularly crucial,
1388 enabling ULTRA and KRLM to capture implicit structural contexts in sparse KGs and thereby mit-
1389 iate reasoning errors. In contrast, PROLINK’s explicit prompt-based contextual learning mech-
1390 anism struggles to extract information highly relevant to the ground truth from the limited number of
1391 available KG paths.

1392

1393

J.6 ADAPTIVE ANALYSIS ON DIFFERENT LLM BACKBONES

1394

1395

We select Llama-2-7b-chat-hf as the backbone in our KRLM to ensure consistency with LLM-based
1396 baselines, thereby allowing us to more clearly demonstrate the effectiveness of our proposed method.

1397

1398

1399

1400

1401

1402

1403

To verify the adaptability of the proposed components, we additionally select Mistral-7B-Instruct-
1404 v3.0 and Llama-3.1-8B-Instruct as alternative LLM backbones to examine the generality of the
1405 knowledge coordination mechanism in our KRLM. We conduct end-to-end training from scratch on
1406 four lightweight inductive datasets. The Hit@10 results of all models are summarized in Table 16.
1407 The results show that our knowledge coordination mechanism is broadly applicable across different
1408 LLM backbones, and it consistently yields improvements over most LLM-based KGFMs.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Table 16: Hit@10 of KRLM under different LLM backbones.

Dataset	Supervised SOTA	ULTRA	MKGGL (Llama-2-7b)	PROLINK (Llama-2-7b)	KRLM (Llama-2-7b)	KRLM (Mistral-7b)	KRLM (Llama-3.1-8b)
FB-V1	0.589	0.670	0.595	0.692	0.705	0.696	0.708
WN-V1	0.826	0.793	0.822	0.788	0.801	0.805	0.808
NL-0	0.506	0.551	-	0.550	0.591	0.585	0.595
NL-100	0.431	0.684	-	0.684	0.688	0.692	0.689

Query triplet: <Entity: Shirley Ann Russell>, <Relation: inverse of contains>, ?

Ground truth: <Entity: Louisiana>

Top-1 Prediction: <Entity: Louisiana>

<Entity: Louisiana> is in the knowledge memory

(a) KRLM hits ground truth. KRLM can mine potential correct results from knowledge memory

Query triplet: <Entity:Parlophone>, <Relation: artist>, ?

Ground truth: <Entity: Duran Duran >

Top-1 Prediction: <Entity: Mike Mogis>

Prediction ranking of ground truth: 33

<Entity: Duran Duran> is not in the knowledge memory

<Entity: Mike Mogis> is in the knowledge memory

(b) KRLM did not hit ground truth. When the correct result is not in knowledge memory, KRLM attempts to aggregate the context of ground truth from other candidate entities

Figure 7: Visualization of the attention weights over 50 candidate entities in the knowledge memory within a KRL attention layer, illustrating cases where KRLM reasoning succeeds and fails, respectively. (a) KRLM assigns the highest attention weights to the potential answers it finds in the knowledge memory. (b) If the memory lacks potential answers, KRLM attempt to aggregate a broader set of candidate entities to obtain the knowledge context of the ground-truth.

J.7 CASE STUDY AND ERROR ANALYSIS

This section further analyzes the reasoning mechanism of KRLM from the perspectives of error analysis and case study.

Let's begin with a visual case study. Figure 7 shows the attention weights of candidate entities within the knowledge memory in a KRL attention layer under correct/incorrect reasoning scenarios. Intuitively, when the knowledge memory contains the ground truth entity (included in the top-50 entities selected by Eq. (3)), KRLM tends to highlight its attention weight (shown in Figure 7(a)), even though it is not given the highest score by Eq. (3) among the top-50 entities. This means that KRLM does not rely solely on the scoring mechanism of Eq. (3), it can further filter information in the knowledge memory based on more complex in-context learning in subsequent modules.

In contrast, if the knowledge memory lacks the ground truth, KRLM automatically broadens its attention to include additional candidate entities. As shown in Figure 7(b), this yields far more high-attention weights than in Figure 7(a). By expanding its focus, the model gathers as much reasoning evidence as possible from a wider knowledge context. Although KRLM still fails to infer the ground truth correctly in Figure 7(b), it nonetheless boosts the ranking of the ground truth dramatically (from beyond 50th place to 33rd place).

Furthermore, we explore the universality of the above phenomenon based on the case study in Figure 7. We classify all triplets into two groups, “#Easy” and “#Hard”, depending on whether their ground-truth entities are present in the knowledge memory. Table 10 presents the performance of KRLM for each group. Obviously, KRLM tends to correctly reason for “#Easy” triplets in the vast majority of cases, while the Hit@10 of reasoning for “#Hard” triplets tends to approach 1%, which

1458
 1459 Table 17: Reasoning results of KRLM (PT) for different categories of query triplets in each dataset.
 1460 “#Easy” means that the ground truth of a triplet is collected into the knowledge memory, while
 1461 “#Hard” means the opposite.

Datasets	Hit@10		MRR	
	#Easy	#Hard	#Easy	#Hard
FB-V1	0.857	0.007	0.658	0.010
FB-V2	0.888	0.074	0.660	0.022
FB-V3	0.892	0.009	0.674	0.011
FB-V4	0.878	0.016	0.639	0.013
NELL-V1	0.876	0.950	0.832	0.701
NELL-V2	0.866	0.047	0.661	0.022
NELL-V3	0.887	0.179	0.699	0.084
NELL-V4	0.842	0.057	0.635	0.018
WN-V1	0.932	0.000	0.827	0.003
WN-V2	0.923	0.008	0.816	0.005
WN-V3	0.850	0.004	0.650	0.006
WN-V4	0.924	0.001	0.829	0.003
FB-25	0.835	0.022	0.515	0.018
FB-50	0.776	0.024	0.490	0.018
FB-75	0.827	0.070	0.564	0.028
FB-100	0.856	0.068	0.598	0.027
NL-0	0.758	0.022	0.502	0.027
NL-25	0.763	0.292	0.536	0.087
NL-50	0.801	0.016	0.565	0.020
NL-75	0.715	0.010	0.465	0.010
NL-100	0.867	0.031	0.607	0.019
WK-25	0.778	0.005	0.491	0.016
WK-50	0.631	0.003	0.338	0.006
WK-75	0.839	0.044	0.621	0.023
WK-100	0.688	0.006	0.427	0.007

1484 is also the main source of errors made by KRLM. The above analysis indirectly reflects the impact
 1485 of candidate entity recall methods in the knowledge memory on KRLM reasoning.
 1486

K LIMITATIONS AND FUTURE WORK

1490 KRLM provides a novel modeling paradigm for existing LLM-based KGR research, which involves
 1491 injecting KG representations into LLM components in different forms. However, the limitations
 1492 of KRLM in terms of reasoning cost hinder its application in a wider range of knowledge-based
 1493 reasoning environments (see [Appendix G](#) for analysis of reasoning complexity).

1494 In the future, we plan to inject KG context into LLMs from the perspective of knowledge editing
 1495 ([Meng et al., 2023](#); [Zhang et al., 2024a](#); [Fang et al., 2025](#)) such as the null-space projection ([Fang](#)
 1496 [et al., 2025](#)), this method only requires minimal computational overhead. In addition, as knowledge
 1497 editing directly affects the parameter-level knowledge in LLMs, it has the potential to make KG
 1498 context and LLM internal knowledge self-consistent.

1499 Another way to alleviate the compute bottleneck is to use [ULTRA](#) ([Galkin et al., 2024](#)) as a relation
 1500 tokenizer and employ a smaller LLM, fine-tuned to treat relation embeddings as atomic tokens, as a
 1501 rule generator. The generated candidate KG rules can then be processed using a neuro-symbolic em-
 1502 bedding model for lightweight fuzzy-logical reasoning. This method can enhance the interpretability
 1503 of the model while optimizing inference time.

1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511