
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KNOWLEDGE REASONING LANGUAGE MODEL: UNI-
FYING KNOWLEDGE AND LANGUAGE FOR INDUCTIVE
KNOWLEDGE GRAPH REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Inductive Knowledge Graph Reasoning (KGR) aims to discover facts in open-
domain KGs containing unknown entities and relations, which poses a challenge
for KGR models in comprehending uncertain KG components. Existing studies
have proposed Knowledge Graph Foundation Models (KGFMs) that learn struc-
tural invariances across KGs to handle this uncertainty. Recently, Large Lan-
guage Models (LLMs) have demonstrated strong capabilities for open-domain
knowledge reasoning. As a result, the latest research has focused on LLM-based
KGFMs that integrate LLM knowledge with KG context for inductive KGR. How-
ever, the intrinsic knowledge of LLMs may be overshadowed by sparse KG con-
text, leading to LLM knowledge distortion, which can cause irreversible damage
to model reasoning. Moreover, existing LLM-based KGR methods still struggle
to fully constrain generative hallucinations in LLMs, severely limiting the credi-
bility of reasoning results. To address these limitations, we propose a Knowledge
Reasoning Language Model (KRLM) that achieves unified coordination between
LLM knowledge and KG context throughout the KGR process. Specifically, we
design a Knowledge Reasoning Language (KRL) instruction format and a KRL
tokenizer to align LLM knowledge with KG representations. Then, we propose a
KRL attention layer that coordinates intrinsic LLM knowledge with additional KG
context through a dynamic knowledge memory mechanism. Finally, a structure-
aware next-entity predictor is proposed, which strictly constrains the reasoning
results within a trustworthy knowledge domain. Extensive experimental results
on 25 real-world inductive KGR datasets demonstrate the significant superiority
of the proposed KRLM1 in both zero-shot reasoning and fine-tuning scenarios.

1 INTRODUCTION

Knowledge Graph Reasoning (KGR) (Ji et al., 2022; Liang et al., 2024) is dedicated to uncovering
latent facts within KGs, offering interpretable evidentiary support for knowledge-driven applica-
tions (Luo et al., 2024; Ding et al., 2024; Yani & Krisnadhi, 2021). Traditional KGR methods (e.g.,
rule-based (Das et al., 2018) and embedding models (Bordes et al., 2013; Sun et al., 2019; Zhuo
et al., 2025)) primarily reason facts within static closed-domain KGs, making it difficult for the
model to adapt to the evolution of real-world KGs. Therefore, existing studies develop inductive
KGR frameworks (Zhu et al., 2021) to reason facts with entities and relations newly added to KGs.

The core of inductive KGR is to generalize the structural characteristics of training KGs to represent
unfamiliar entities and relations (Zhu et al., 2021; Teru et al., 2020). However, the inherent domain
discrepancy across KGs leads to the incompatibility of structural characteristics during cross-KG de-
ployment (Galkin et al., 2024), which limits the generalization of inductive KGR models. To cover
this challenge, recent research has proposed KG Foundation Models (KGFMs) (Galkin et al., 2024;
Huang et al., 2025; Zhang et al., 2024c) to capture the invariant representation of entities and rela-
tions across KGs. In general, this invariance enables any entity or relation to be represented by its
relative structural context without relying on specific KG domains (Galkin et al., 2024). This prop-
erty provides KGFMs with zero-shot learning capabilities, allowing them to handle open-domain
KGR effectively.

1Our source codes are available at https://anonymous.4open.science/r/KRLM-EA36

1

https://anonymous.4open.science/r/KRLM-EA36

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Okay, let's see. The user provided some existing facts about Shirley Henderson and wants

me to complete the fact about the film genre of Trainspotting……

Now, thinking about the genre. Trainspotting is often categorized as a dark comedy in the

genre of drama. But I should verify that. Shirley Henderson graduated from Guildhall

School of Music and Drama and performed in Trainspotting, so drama makes sense.

But the way some scenes are portrayed, like the infamous toilet scene, might have a

satirical or darkly comedic edge. However, the primary genre is usually listed as drama.

So the answer should be <Trainspotting, film_genre, Drama>.

LLM

Instruction: Define the word format for a new language as <Type: Text

Description>. Given the following vocabulary:

Please complete the next word '?' in the given sentence:

<Entity: Trainspotting><Relation: film_genre>?

Word Type Text description Knowledge representation

<Entity: Trainspotting> Entity Trainspotting [Entity Embedding]

<Relation: film_genre> Relation film_genre [Relation Embedding]

Given the following knowledge :

<Shirley Henderson, film_actor, Trainspotting>

<Shirley Henderson, award_nomination, Paul Reubens>

<Shirley Henderson, educational_institution, Guildhall School of Music and Drama>

Reasoning the new fact: <Trainspotting, film_genre, ?>

KRL Attention Layer×N

Next-Entity Predictor

KRL Tokenizer

KRL Instruction

<Entity: Dark Comedy>

Structural

Knowledge

(a) Primary LLM-based KGFM pipeline

/

/

/

Structural

Knowledge

(b) Overall architecture of KRLM

Distorting the reasoning thought of LLM

Instruction with explicit sparse KG contexts

Figure 1: (a) Current LLM-based KGFMs overlook the necessity of establishing compatibility be-
tween sparse KG contexts and intrinsic knowledge in LLMs, which leads to knowledge distortion
by LLMs. (b) Compared to explicit sparse KG context prompts, KRLM injects implicit knowledge
representations into the reasoning instructions and LLM parameters, providing a more flexible envi-
ronment for LLM to adapt to external knowledge.

Large Language Models (LLMs), pre-trained on large-scale textual corpora, have been demonstrated
to achieve disruptive success on KGR (Chen et al., 2023; Wang et al., 2022; Zhang et al., 2024b;
Wang et al., 2024a), which is attributed to their ability to master non-natural languages (Bolhuis
et al., 2024; Han et al., 2024; Zhu et al., 2024a; Gao et al., 2024) (e.g., structural knowledge-aware
instructions (Kim et al., 2023; Wang et al., 2023)). Leveraging this advantage, the latest studies
propose LLM-based KGFMs (Guo et al., 2024; Wang et al., 2024b) to conduct inductive KGR
tasks. These methods, by utilizing the powerful context awareness and knowledge emergence (Pan
et al., 2024) of LLMs, sufficiently capture implicit knowledge overlooked by primary KGFMs from
structural KG context, thereby significantly improving models on open-world fact reasoning.

Previous research on LLM-based KGFMs usually explicitly recasts incomplete facts as KG context-
aware instructions and conducts fact reasoning through LLM fine-tuning (Guo et al., 2024) or
prompt-based reasoning (Wang et al., 2024b). Despite these accomplishments, existing LLM-based
KGFMs still suffer from significant knowledge distortion (Li et al., 2024), i.e., the sparse contextual
evidence extracted from KGs may override the dense knowledge inherent in LLMs, which causes
irreversible damage to LLM reasoning. This issue primarily arises from the inadequate coordination
of the natural knowledge gap between KGs and LLMs, thereby hindering the generalizability of
LLM-based KGFMs across diverse KGR downstream tasks.

Figure 1(a) illustrates the knowledge distortion challenge in LLM-based KGFMs. In general, current
LLM-based KGFMs directly project sparse structural knowledge into a reasoning prompt, which
poses a latent risk of misleading LLMs by incomplete reasoning evidence. For example, LLM incor-
rectly regards “Guildhall School of Music and Drama”, the sole information related to “film genre”,
as critical evidence. This toxic contextual association overrides the inherent knowledge of LLMs
(e.g., “dark comedy”), ultimately limiting model reasoning. In addition, although emergent knowl-
edge endows LLMs with adaptive capacity for open-world fact reasoning, this characteristic actually
increases the risk of generating out-of-scope hallucinations (Guo et al., 2024; Pan et al., 2024). This
result impacts the fairness and reliability of the model in evaluating across KGR tasks.

To address the aforementioned limitations, we propose a Knowledge Reasoning Language Model
(KRLM) to alleviate the knowledge distortion by coordinating the inherent knowledge of LLMs and
KGs throughout the entire KGR process. As shown in Figure 1(b), this knowledge coordination is
achieved through two aspects: reasoning instruction design and model fine-tuning. Specifically, we
first design a KRL-format instruction that aligns the intrinsic knowledge in LLMs (text description)
with the implicit knowledge representation through a vocabulary table. Next, we construct a KRL
tokenizer that converts entities and relations into unified KRL tokens, encapsulating both structural
and textual knowledge. We then propose a KRL attention layer that integrates the context within
KRL by coordinating the in-context learning module of a pre-trained LLM and a dynamic knowl-
edge memory mechanism. Finally, a structure-aware next-entity predictor is proposed to tightly
constrain the predicted facts to the given KG domain, ensuring the reliability and stability of the rea-
soning results. In addition, we adopt a collaborative training objective based on knowledge mutual
distillation (Zhang et al., 2018; Hu et al., 2023) to further coordinate different knowledge.

Our main contributions can be summarized as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• This paper proposes a novel Knowledge Reasoning Language Model (KRLM) for extensive
KGR tasks. KRLM mitigates the knowledge distortion problem commonly faced by LLM-based
KGFMs in diverse downstream KGR tasks.

• We design a unified tokenizer for various representation encapsulation in KRL, which infinite
scalability of open-world entities/relations with constant-scale model parameter.

• We propose a KRL attention layer and a structure-aware next-entity predictor, which enables
LLMs to effectively coordinate pre-trained intrinsic knowledge with external structural knowl-
edge during the in-context learning process, ultimately allowing for reasoning with traceable
facts.

• Extensive experimental results on 28 datasets demonstrate that the proposed method exhibits
significant zero-shot learning and transfer capabilities in open-domain KGR scenarios.

2 RELATED WORK

In this section, we review the research roadmap of KGR, with a focus on comparing LLM-based
KGR models with our proposed KRLM on open-domain KGR.

A review of KGR. KGR is mainly divided into transductive and inductive tasks. Traditional KGR
methods (Das et al., 2018; Trouillon et al., 2016; Yang et al., 2017) are dedicated to reason latent
facts in static KGs with finite sets of entity and relations. Nowadays, the dynamicity of real-world
KGs have led to the proposal of inductive KGR methods for reasoning unseen entities or relations
in facts. Previous inductive KGR methods (Zhu et al., 2021; Teru et al., 2020; Zhang & Yao, 2022;
Galkin et al., 2022) can only generalize facts with new entities while unsuitable for unfamiliar re-
lations. Consequently, several methods (Geng et al., 2023; Lee et al., 2023) take the relative onto-
logical interaction of relations as a starting point to learn the structural invariance of relations in a
KG, thereby improving the model’s recognition of unknown relations. However, the most severe
challenge faced by the featurization strategies of the above inductive KGR methods rely on spe-
cific domain features of KGs (e.g., node degree or structural attribute similarity), which cannot be
transferred to KGs in any domain. To address this challenge, Mikhail et al. (Galkin et al., 2024)
propose an concept called “knowledge graph foundation model”, which captures the structural
invariance of entities and relations cross KGs. Inspired by this, numerous KGFMs (Huang et al.,
2025; Cui et al., 2024; Zhang et al., 2024c) have been proposed in recent years, which have achieved
remarkable cross domain inductive KGR through zero-shot learning.

LLM-based KGR models. Unlike the above KGR models that solely focuses on KG structure,
LLMs can capture finer grained differences in KG context for distinguishing sub-KGs with similar
structures. Therefore, numerous studies have recently introduced LLMs to improve KGR models.
For example, CSProm-KG (Chen et al., 2023) and MKGL (Guo et al., 2024) use the prefix-tuning (Li
& Liang, 2021) and LoRA (Hu et al., 2022) technique, respectively, to transfer LLMs to KGR sce-
narios. KICGPT (Wei et al., 2023) and PROLINK (Wang et al., 2024b) utilize a large-small model
collaborative framework to integrate LLM planners and KG retrievers to achieve effective KGR.
Among then, MKGL and PROLINK sufficiently the emergent knowledge capability of LLMs (Pan
et al., 2024), which enables them to uncover more latent facts across open-domain KGs. This ad-
vantage makes them representative LLM-based KGFMs. However, given the natural representation
gaps between the inherent knowledge of LLMs and the structural knowledge of KGs, existing LLM-
based KGR methods typically face the problem of knowledge distortion, where sparse KG context
used for fact reasoning may interfere with LLM reasoning, which limits the performance of LLM-
based KGR models.

In contrast, the proposed KRLM comprehensively coordinates the inherent knowledge of LLMs and
the implicit knowledge representation of KGs from the perspectives of instruction construction and
model fine-tuning, overcoming the weakness of existing LLM-based KGFMs in unifying the internal
knowledge of LLM and the external KG representation, and improving the zero-shot learning ability
of LLM on cross-domain KGs during fine-tuning.

3 PRELIMINARIES

In this section, we introduce the background and main definitions related to this study.

Knowledge graphs and inductive knowledge graph reasoning. A knowledge graph is a multi-
relational directed graph with entities as nodes and relations as edges. Formally, a KG can be

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Entity GNN

…… …… ……
Input Tokens

KRL Attention layer

……

Output Tokens

…… …… …… ……

Relation GNN Entity GNN

Relation Embeddings

Entity Embeddings

Knowledge Encoder

Projection Head

PAA Module

Scoring Function

Relation

Embeddings

Next-entity Predictor

Input Tokens
Top-k Entity

Embeddings

WQ WK WVMQMV

×

×

×

||

× N layers

Knowledge Encoder

Next-entity Predictor

PAA Module

Hidden

State

R
el

a
ti

o
n

E
m

b
ed

d
in

g
s

T
o

p
-k

 E
n

ti
ty

E
m

b
ed

d
in

g
s

Feed Forward Network

Attention matrix

KRL Attention layer

H
id

d
e
n

 S
ta

te

Output Tokens

<Entity: Michael Jackson>

Embedding Table

<Relation: genre>

PAA(mean || std || min || max)

PAA Module

Query triplet: <Michael Jackson, genre, ?>

②

③

④

Scoring Function

Entity scores

T
ra

in
in

g
 o

b
je

ct
iv

es

Top-k

Entities

Entity scores ⑤

Instruction: Define the word format for a new language as <Type: Text Description>. Suppose you

are a linguistic expert who are learning this new language. Given the following vocabulary:

Please complete the next word '?' in the given sentence:

<Entity: Michael Jackson><Relation: genre>?

Response:

<Entity: Michael Jackson><Relation: genre>

KRL Instruction

Word Type Text description Knowledge representation

<Entity: Michael Jackson> Entity Michael Jackson [Entity Embedding placeholder]

<Relation: genre> Relation genre [Relation Embedding placeholder]

①

KRL Tokenizer

<Entity: Artist>

Frozen pre-trained parameters Word-level embedding of entity/relation/ Knowledge representation of entity/relation/

Figure 2: Overall framework of KRLM. Given a query triplet, we first convert it to 1 a KRL
instruction that integrates inherent knowledge of LLMs and KGs and obtain its token embedding
sequence by 2 a KRL tokenizer. These tokens are then input into 3 stacked KRL attention layers
for capturing the in-context hidden states within KRL. Next, 4 a next-entity predictor is used to
reason the entity word following KRL based on the last hidden state. 5 The training objective of
KRLM is to coordinate the inherent knowledge of LLM with structural knowledge representation.

represented as G = (E ,R, T), where E = {ei}Ii=1 and R = {rj}Jj=1 denote the sets of entities
and relations, respectively, and T = {< eh, r, et > |eh, et ∈ E , r ∈ R} is the set of triplets. Each
triplet represents a fact composed of a head entity eh, a tail entity et, and a relation r that truly exists
between them. Given a KG Gtrain = (Etrain,Rtrain, Ttrain) for training a KGR model, inductive
KGR tasks require the model to predict facts in an unobserved KG Gtest = (Etest,Rtest, Ttest),
where Etest 6= Etrain orRtest 6= Rtrain.

Knowledge graph foundation models learn the structural invariance from KGs, which addresses
the domain shift between training and reasoning KGs in inductive KGR tasks. Typically, KGFMs
employ two Graph Neural Networks (GNNr and GNNe) to build KG structure learning models (Zhu
et al., 2021; Teru et al., 2020). Given a query triplet < eh, rq, ? >∈ G, the overall framework of
KGFMs can be summarized as:

R = GNNr({Ij=q · 1d}Jj=1,R
∗,Gr), E = GNNe({Ii=h · rq}Ii=1,R,G), (1)

where I is an assert function and 1d ∈ Rd is the embedding of ones. KGFMs first construct a
relational graph Gr = (R,R∗, T ∗) with R as a node set and R∗ as an edge set, where R∗ is the
relative structure patterns of R in G (Galkin et al., 2024; Huang et al., 2025) and R∗ ∈ R|R∗|×d
represents the type embedding of relative structural patterns. Afterwards, KGFMs use labeling
tricks (Zhu et al., 2021) to obtain structurally invariant representations of all relations R ∈ RJ×d.
Then, driven by rq ∈ R, the representation of rq , KGFMs summarize the structurally invariant
representations of all entities E ∈ RI×d. The detailed design of the relational graph and the KGFM
architecture are provided in Appendixs C.1 and C.2, respectively.

Knowledge reasoning language is a new language form that contains both the inherent corpus
knowledge in LLMs and the structural knowledge of KGs. As shown in Figure 2, a KRL instruc-
tion contains a global vocabulary that integrates the word-level forms, types, text descriptions, and
knowledge representations of entities and relations. This intuitive contextual comparison can assist
LLM understand unfamiliar elements in KRL instructions. When reasoning a fact, KRLM regards
the word-level forms of entities and relations as unique tokens and adds their indices into the LLM
tokenizer. Then, KRLM predicts a latent next word-level entity following the KRL instruction.
Refer Section 4 for processing details.

In addition, to alleviate the training costs may caused by the addition of word-level tokens for entities
and relations, we design a low-parametric method based on Principal Attribute Aggregation (PAA),

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

which enhances the representational completeness of word-level tokens through multi-view attribute
aggregation functions (Guo et al., 2024) of pre-trained tokens, as detailed in Section 4.1.

4 KNOWLEDGE REASONING LANGUAGE MODEL

In this section, we elaborate on the proposed KRLM in detail, which consists of three main compo-
nents (Figure 2): a KRL tokenizer (Section 4.1) based on a knowledge encoder and a PAA module,
a in-context learning module composed of stacked KRL attention layers (Section 4.2), and a GNN-
based next-entity predictor(Section 4.3). In the following sections, we first provide the design of
each module. Then, we illustrate the training strategy of KRLM (Section 4.4).

4.1 KRL TOKENIZER

As shown in Figure 2, a KRL instruction contains different categories of tokens. For the general
tokens, we map them to the corresponding embeddings according to the pre-trained embedding
table within a LLM. The word-level embeddings and knowledge representations of entities/relations
in KRL are obtained by the PAA mechanism and the knowledge encoder, respectively.

The PAA mechanism is used to obtain word-level embeddings of entities and relations. Here, we
use an entity as a case to introduce the details of PAA.

Let <Entity: Text description> be the word-level format of an entity, we can obtain its textual
token embedding sequence {t1, t2, ..., tL} = Emb(TKN(< Entity: Text description >)), where
TKN(·) and Emb(·) are the text tokenizer and token embedding table of a LLM, respectively.
The PAA mechanism aggregates the different attributes of these token embeddings (i.e., mean,
max, min, and std attributes (Guo et al., 2024)) to obtain the word-level embedding of the entity
we = PAA({t1, t2, ..., tL}):

PAA({t1, t2, ..., tL}) =
[

||
attr∈{mean,max,min,std}

attr({t∗1, t∗2, ..., t∗L})
]
Wfusion, (2)

where || is a column-wise concatenation operation, tL ∈ RF is a F -dimensional token embedding
in Emb(·), t∗L = tLWdown, Wdown ∈ RF×d and Wfusion ∈ R4d×d are two trainable weight matrices.
The PAA mechanism can construct new entity/relation word-level embeddings without restrictions
under fixed training parameters, which effectively saves memory costs and is beneficial for handling
unknown entities/relations in inductive KGR tasks.

The knowledge encoder is a GNN-based KG structure learner that captures universal structural
representations of entities and relations. Given a query triplet < eh, rq, ? >∈ G, we construct a
knowledge encoder according to Eq. (1), where we can obtain E and R, the knowledge representa-
tions of all entities and relations, respectively, based on < eh, rq, ? >. In brief, GNNe and GNNr in
Eq. (1) are both designed to S-layer NBFNet (Zhu et al., 2021). The detailed design are provided in
Appendix C.2.

In addition, to inject relevant structural context in the KRL attention layer (Section 4.2), we construct
a MLP function Sstruct(·) : R2d → R1 to score the correlation between the structural knowledge of
entity ei ∈ E and the query triplet < eh, rq, ? >:

sc
(i)
struct = Sstruct([ei||rq]), ei ∈ E, rq ∈ R. (3)

The process of KRL tokenization is as follows: Given an input embeddings sequence of KRL
{weh ,wrq , eh, rq} ∪ {t1, t2, ..., tm}, where weh ,wrq ∈ Rd are the word-level embeddings of
eh and rq obtained by Eq. (2), eh, rq ∈ Rd are the knowledge representations of eh and rq ob-
tained by Eq. (1), respectively, and {t1, t2, ..., tm} ∈ Rm×F are the general text token embed-
dings of KRL containing the placeholders of {weh ,wrq , eh, rq}. We first unify {weh ,wrq , eh, rq}
into the dimension F that can be input into LLM and replace the corresponding placeholders in
{t1, t2, ..., tm}:

w̃eh = Fword(weh), w̃rq = Fword(wrq), ẽh = Fstruct(eh), r̃q = Fstruct(rq)

T = {t1,..., ta, w̃eh , ta+1, ..., tb, ẽh, tb+1, ..., tc, w̃rq , tc+1, ..., tz, r̃q, tz+1, ..., w̃eh , w̃rq},
(4)

where Fword(·),Fstruct(·) : Rd → RF are trainable linear layers that map word-level and knowledge
embeddings of entities and relations to the LLM-dimensional space. T ∈ Rm×F are the input
sequence with m embeddings.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 KRL ATTENTION LAYER

A KRL attention layer is an improvement on the standard LLM attention decoding module, which
deploys a knowledge memory mechanism to dynamically coordinate the LLM intrinsic knowledge
with the external KG representations in the in-context learning process. In this section, we elaborate
on the LLM attention decoding layer to introduce the knowledge memory mechanism.

The LLM attention decoding module performs preliminary contextual learning on textual tokens,
entity/relation word-level embeddings, and structural knowledge representations in KRL. To capture
the multi-view context of KRL, we first obtain T by Eq. (4) and then input it into a LLM attention
decoding module in the n-th KRL attention layer, where n ∈ [1, N]:

H(0) = T , H(n) = softmax(
H(n−1)W

(n)
Q [H(n−1)W

(n)
K]T

√
F

+Wmask)H
(n−1)W

(n)
V , (5)

where W
(n)
Q ,W

(n)
K ,W

(n)
V ∈ RF×F are frozen pre-trained weight matrices in the n-th layer.

Wmask ∈ Rm×m is a casual mask matrix with a lower triangle value of 0 and the rest being −∞.

The knowledge memory mechanism dynamically integrates structural knowledge contexts related
to the query triplet into Eq. (5). Specifically, we use Eq. (3) to obtain the knowledge representations

of top-K most relevant entity as a memory Emem = {ek|ek ∈ E [TopK({sc(i)struct}
I

i=1)], ek ∈ E} ∈
RK×d to guide the model learning richer KRL context, where TopK(·) obtains the indices of top-K
entities and E is obtained by Eq. (1). Overall, the n-th KRL attention layer can be represented as:

H(0) = T , A = softmax(
H(n−1)M

(n)
Q ET

mem||(H(n−1)W
(n)
Q [H(n−1)W

(n)
K]T +Wmask)√

F
),

H(n) = A[EmemM
(n)
V ||H

(n−1)W
(n)
V], n ∈ [1, N]

(6)

where M (n)
Q ∈ RF×d,M (n)

V ∈ Rd×F are trainable weight matrices in the n-th KRL attention layer.
In specific settings, H(n) needs to be further processed by a feed forward network of the corre-
sponding layer in a LLM before it can be input into the next KRL attention layer. More discussion
of the knowledge memory mechanism is attached in Appendix D.

4.3 NEXT-ENTITY PREDICTOR

In a standard LLM next-token predictor, the hidden state of the last instruction token is transformed
into a probability distribution over the candidate tokens by applying a projection head P . However,
the inherent token vocabulary of a LLM does not completely overlap with the entity vocabulary of a
KG, which can result in out-of-scope predictions and compromise the fairness of model evaluation.
To address this issue, we propose a next-entity predictor that adapts the projection head P to a
specific KG domain via a structural knowledge decoder. This approach constrains the reasoning
results strictly within the entity vocabulary. Moreover, the knowledge decoder enables KRLM to
further coordinate the inherent pre-trained knowledge in P with KG representation.

Mapping the projection head to word-level embeddings. We use the pre-trained projection head
P in the next-token predictor of a LLM as the mapping vocabulary for the word-level embeddings
of all entities. Given a word-level format <Entity: Text description> of an entity eh, we obtain its
mapping embedding ph similar to Eq. (2):

ph = PAA(P [TKN(< Entity: Text description >)]), (7)

where PAA(·) is a parameter-independent module that has the same structure as the one in Eq. (2).

Knowledge decoder. This module decodes the projection head P into the specific KG through the
structural constraints of ph, avoiding the prediction of out-of-scope KG domain. In specific, we
build GNNp, a S-layer entity GNN with the same structure as GNNe Eq. (1) to achieve this goal:

P̃ = GNNp({Ii=h · ph}Ii=1,R,G) (8)

where P̃ ∈ RI×d is the decoded projection matrix. R is the knowledge representation of relations
obtained by Eq. (1), which guides P̃ to perceive structural knowledge.

Next-entity prediction. Given word-level formats <Entity: Text description> and <Relation:
Text description> of an entity eh and a relation rq , respectively, we construct a MLP function

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

SKRLM(·) : R3d → R1 to predict next entity scores of a KRL ending with “<Entity: Text de-
scription><Relation: Text description>”:

sc
(i)
KRLM = SKRLM(

[
p̃i||rq||g(H(N)[m])

]
), (9)

where p̃i ∈ P̃ is the projection embedding of the entity ei; rq ∈ R is the knowledge embedding of
rq; H(N) ∈ Rm×F is the result of the N -layer KRL attention layer (Section 4.2), where m is the
length of an input KRL; H(N)[m] is the hidden state of the last token; and g(·) : RF → Rd is a
linear layer.

When reasoning the next entity, we average the results of two scoring functions (Eqs. (3) and (9)) to
obtain the final predicted scores of all candidate entities and regard the entity with the highest score
as the predicted result.

4.4 TRAINING AND REASONING

Given a query triplet q =< eh, rq, ? > with the ground truth et, the training objective is designed
as:

L =(1− λ)
[
− log (sc

(t)
KRLM) +

1

|Nneg(q)|
∑

en∈Nneg(q)

log (1− sc(n)
KRLM)

]
+ λKL(Pstruct||PKRLM)

︸ ︷︷ ︸
structural distillation

+ (1− λ)
[
− log (sc

(t)
struct) +

1

|Nneg(q)|
∑

en∈Nneg(q)

log (1− sc(n)
struct)

]
+ λKL(PKRLM||Pstruct)

︸ ︷︷ ︸
KRL distillation

,

(10)

where sc(t)struct and sc(t)KRLM are obtained by Eqs (3) and (9), respectively,Nneg(q) is a negative sample
set of the query triplet q, λ is a fixed weight used to balance the target loss and KL term, and
KL(P||Q) is used to calculate the KL divergence between distributions P andQ. Pstruct and PKRLM
are two predicted score distributions of positive and negative targets.

Inspired by the mutual knowledge distillation frameworks (Zhang et al., 2018; Hu et al., 2023), Eq.
(10) consists of two parts: structural distillation and KRL distillation. This approach allows KRLM
to dynamically align textual context and structural knowledge in KRL during the training process,
thereby promoting the coordination of different modal knowledge in KRLM. The detailed training
algorithm and reasoning time complexity are provided in Appendixes F and G, respectively.

5 EXPERIMENTS

In this section, we demonstrate KRLM from the following research question: RQ1. Can KRLM ef-
fectively perform inductive KGR tasks on unseen KG under the zero-shot and fine-tuned conditions?
RQ2. Does the effectiveness of each module in KRLM be confirmed, including the knowledge en-
coder, the PAA module, KRL attention layers, the knowledge decoder, and the training approach?
RQ3. Is the hyperparameters set in KRLM effective?

5.1 DATASETS, BASELINES, AND EXPERIMENTAL SETTINGS

Datasets. To verify the ability of KRLM to reason facts on unseen KGs, we conduct evaluations on
28 datasets. According to the overlap level between the train KG and the test KG, these datasets can
be divided into the following three categories:

• 12 Inductive Entity (IndE) datasets from GraIL (Teru et al., 2020): FB-V1, FB-V2, FB-V3,
FB-V4, NELL-V1, NELL-V2, NELL-V3, NELL-V4, WN-V1, WN-V2, WN-V3, and WN-V4.

• 13 Inductive Entity and Relation (IndER) datasets from InGram (Lee et al., 2023): FB-25,
FB-50, FB-75, FB-100, NL-0, NL-25, NL-50, NL-75, NL-100, WK-25, WK-50, WK-75, and
WK-100.

• Three Transductive datasets for pre-training: FB15k-237 (Toutanova & Chen, 2015),
WN18RR (Dettmers et al., 2018), CoDEx-M (Safavi & Koutra, 2020).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Average performance of each model on inductive datasets. “PT”, “FT”, and “E2E” mean
“pre-training”, “fine-tuning”, and “end-to-end training from scratch” respectively. Black bold and
underline indicate the best and second best results. “-” indicates that a model is not suitable for the
KGR task, or the corresponding source does not have reproduction conditions.

Inductive
Datasets

Supervised
SOTA

ULTRA
(PT)

ULTRA
(FT)

MOTIF
(PT)

MOTIF
(FT)

TRIX
(PT)

TRIX
(FT) MKGL PROLINK

(Llama2-7b)
KRLM

(PT)
KRLM

(FT)
IndE

(12 datasets)
Hit@10 0.675 0.703 0.724 0.721 0.740 0.732 0.734 0.726 0.733 0.738 0.751
MRR 0.527 0.549 0.566 0.557 0.582 0.579 0.583 0.578 0.562 0.583 0.590

IndER
(13 datasets)

Hit@10 0.347 0.536 0.542 0.519 0.538 0.535 0.536 - 0.542 0.546 0.556
MRR 0.209 0.352 0.350 0.335 0.349 0.353 0.353 - 0.354 0.361 0.367

Transductive
Datasets

ULTRA
(PT)

MOTIF
(PT)

TRIX
(PT)

CSProm-KG
(BERT)

KICGPT
(GPT-3.5) GPT-4 KG-LLM

(Llama2-7b) MKGL PROLINK
(Llama2-7b)

KRLM
(PT)

KRLM
(E2E)

FB15k-237
Hit@10 0.564 0.550 0.559 0.538 0.554 0.565 - 0.591 - 0.554 0.568
MRR 0.368 0.357 0.366 0.358 0.412 0.420 - 0.410 - 0.381 0.394

WN18RR
Hit@10 0.614 0.628 0.611 0.678 0.641 - 0.503 0.656 - 0.610 0.659
MRR 0.480 0.529 0.514 0.575 0.549 - 0.427 0.552 - 0.506 0.552

CoDEx-M
Hit@10 0.525 0.517 0.521 - - - - - - 0.501 0.526
MRR 0.372 0.361 0.365 - - - - - - 0.349 0.367

According to previous studies (Galkin et al., 2024), we pre-train KRLM using three transductive
datasets and conduct both zero-shot and fine-tuning evaluations on IndE and IndER datasets. De-
tailed dataset descriptions and statistics are provided in Appendix H.

Baselines. We compare KRLM under three versions (“pre-training”, “fine-tuning”, and “end-to-
end training from scratch”) with three categories baselines that can handle inductive KGR tasks:
(1) State-of-the-art supervised models reported by ULTRA (Galkin et al., 2024). We collect their
detailed performance on each dataset in Appendix H. (2) KGFMs focusing on KG structural learn-
ing, including ULTRA (Galkin et al., 2024), MOTIF (Huang et al., 2025), and TRIX (Zhang et al.,
2024c). (3) Latest LLM-based models, including MKGL (Guo et al., 2024) and PROLINK (Wang
et al., 2024b). In addition, we introduce four LM-based KGR methods, CSProm-KG (Chen et al.,
2023), KICGPT (Wei et al., 2023), GPT-4 (Zhu et al., 2024b), and KG-LLM (Yao et al., 2025)
designed for end-to-end transductive KGR training/evaluation.

Evaluation settings. Based on previous work (Galkin et al., 2024), we adopt Mean Recurrent Rank
(MRR) and top-10 Hit rate (Hit@10) as evaluation metrics. For each test triplet < eh, rq, et >, a
model simultaneously predict head and tail entities, i.e. < eh, rq, ? > and < et,−rq, ? >, where
−rq is the inverse relation of rq . In the zero-shot evaluation, we use the pre-trained model with the
best validation checkpoint to obtain MRR and Hit@10 on each dataset. In the fine-tuning condition,
we further train the best validation checkpoint on each dataset for evaluation.

Implementation settings. We pre-train and fine-tune KRLM using 4 A100 (40GB) GPUs with
the batch size is 4 per GPU. The total training epochs is set to 20 for pre-training. The optimizer
is default to AdamW with a 5e-4 learning rate, a 1% warmup step setting and a 4-step gradient
accumulation. The more detailed settings of model hyperparameters are provided in Appendix I.

5.2 MAIN RESULTS (RQ1)

NELL-V1 WN-V1 WN-V2 NELL-V2 NELL-V4 NELL-V3 FB-V2 WN-V4 FB-V1 FB-V4 FB-V3 WN-V3

0.6

0.8

H
it@

10

IndE

KRLM fine-tune KRLM pre-train Supervised SOTA
NL-100 FB-100 FB-25 FB-75 NL-50 NL-25 NL-0 NL-75 FB-50 WK-25 WK-75 WK-50 WK-100

0.2

0.4

0.6

H
it@

10

IndER

Figure 3: Comparison of our KRLM with supervised SOTA base-
lines on every inductive dataset.

In this section, we report the
performance of KRLM on dif-
ferent KGR tasks and compare
it with the SOTA baselines
mentioned in Section 5.1.

Inductive KGR tasks. Ta-
ble 1 and Figure 3 show
the overall performance of
KRLM on inductive datasets
(the detailed experimental re-
sults are provided in Appendix J.1). Obviously, KGFM achieves the best average per-
formance in the fine-tuning scenario. Besides, KRLM outperforms 87% of the baselines
in zero-shot scenarios and even surpasses some fine-tuned KGFMs. This success can be attributed
to KRLM’s ability to leverage the pre-trained intrinsic knowledge of LLMs as an extension of the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

invariant knowledge representation in KGFMs, which enables the model to more effectively distin-
guish unfamiliar entities and relations in unknown KGs. Further experimental analysis of LLM-
based KGFMs reveals that MKGL fixes the number of the relation vocabulary, making it unsuitable
for the IndER task and limiting its generality. In contrast, the competitive PROLINK utilizes a LLM
to plan reasoning conditions and execute pre-trained ULTRA to reason facts. However, PROLINK
overlooks the incompatibility between sparse KG context and LLM inherent knowledge, leading to
knowledge distortion and slightly inferior performance on some datasets compared to KRLM. More
detailed analysis of KRLM are attached in the Appendixes J.1 and J.7.

Table 2: Hit@10 of each ablation variant. “E2E” means “end-to-
end training”. “KEn”, “KMe”, and “KDe” indicate the knowledge
encoder, knowledge memory, and knowledge decoder in KRLM,
respectively. “Atten” and “Mean” represent replacing the PAA
module with attentive pooling and mean pooling, respectively.
“KD” and “KL” is the KRL distillation and KL divergence part
in Eq. (14), respectively.

Datasets
KRLM Main Component PAA Module Loss
(E2E) -KEn -KMe -KDe Atten Mean -KD -KL -KD-KL

FB-V1 0.705 0.614 0.691 0.674 0.696 0.692 0.699 0.672 0.665
WN-V1 0.801 0.710 0.780 0.764 0.789 0.787 0.782 0.798 0.761

NL-0 0.591 0.537 0.583 0.570 0.588 0.584 0.554 0.533 0.535
NL-100 0.688 0.640 0.667 0.669 0.685 0.683 0.666 0.678 0.660

Transductive KGR tasks.
The transductive KGR per-
formance of KRLM and
baselines are provided in
Table 1. The results show
that there is no significant
positive correlation between
the KGR performance of a
model in the closed domain
(transductive) and the open
domain (inductive), which
may be related to the tendency
of a model to overfit during
training in closed domain
KGR scenarios.

5.3 ABLATION EXPERIMENTS (RQ2)
This section mainly discusses the effectiveness of various modules in KRLM. The designed ablation
variants and experimental results are shown in Table 2. Overall, the effectiveness of each ablation
variant is inferior to that of the complete KRLM, especially in some important structural knowledge
learning modules such as “KEn”, “KDe”, and “KD”. Appendix J.2 provides detailed experimental
settings and more results of ablation experiments.

5.4 PARAMETER ANALYSIS (RQ3)

10 30 50 60 70
Entity Memory Scale

0.60

0.65

0.70

0.75

0.80

H
it@

10

Top- Entity Memory

FB-V1
WN-V1
NL-0
NL-100

2 4 6 8
Layer Number S

0.6

0.7

0.8

H
it@

10

GNN Layer

FB-V1
WN-V1
NL-0
NL-100

Figure 4: Performance of KRLM with different hyperparameters.

This section discusses the influ-
ence of the main hyperparame-
ters in KRLM. As shown in Fig-
ure 4, the scale K of knowl-
edge memory in the KRL atten-
tion layer is set from 10 to 70.
When K is set to 50 or above,
there is no significant improve-
ment in model. Therefore, we
set K = 50 in the experiments.
In addition, to ensure the expression consistency of structured knowledge in the model, the layer
numbers for the three GNNs in KRLM is uniformly set to S. Figure 4 demonstrates that the model
is generally optimal when S = 6, and too few or too many layers may lead to underfitting or over-
smoothing of the GNN model. The detailed parameter analysis of λ in Eq. (10) is attached in
Appendix J.3.

6 CONCLUSION

This paper first discusses the knowledge distortion challenge faced by LLM-based KGFMs in in-
ductive KGR tasks, i.e., these models are difficult to coordinate internal knowledge of LLMs and
external KG context, where sparse KG context may override LLM’s internal knowledge, thereby
seriously damaging the credibility of reasoning results. Based on this, we propose a novel Knowl-
edge Reasoning Language Model (KRLM), which comprehensively enhances the inherent knowl-
edge collaboration between LLMs and KGs from four aspects: fine-tuning instruction construction,
in-context learning, next-token prediction, and model training. Extensive experiments confirm the
superiority of KRLM in terms of both end-to-end fine-tuning and zero-shot transfer scenarios. Ap-
pendix K provides the limitations of KRLM and possible future expansion directions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

We confirm that our work has been conducted in accordance with the ICLR Code of Ethics (https:
//iclr.cc/public/CodeOfEthics). The study does not involve human subjects, sensitive
personal data, or experiments that may cause harm to individuals or groups. The datasets used are
publicly available and no personally identifiable information is included. Our methodology and
findings are intended for academic purposes and do not pose foreseeable risks of misuse. We have
carefully considered issues of fairness, bias, and privacy, and to the best of our knowledge, our
research maintains integrity and complies with all applicable ethical standards.

8 REPRODUCIBILITY STATEMENT

We confirm that our study has reproducibility. Specifically, we have first submitted our desensitized
project on anonymous GitHub (https://anonymous.4open.science/r/KRLM-EA36).
The detailed pseudocode of the algorithm is provided in Appendix F. In addition, we provide
specific details of the experimental conclusions in the main text, including dataset partitioning
(Appendix H), hyperparameter settings (Appendix I), and ablation variant settings (Appendix J.2).

REFERENCES

Johan J. Bolhuis, Stephen Crain, Sandiway Fong, and Andrea Moro. Three Reasons Why AI Doesn’t
Model Human Language. Nature, 627(8004):489–489, 2024.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-Durán, Jason Weston, and Oksana Yakhnenko.
Translating Embeddings for Modeling Multi-relational Data. In NeurIPS, pp. 2787–2795. Curran
Associates, Inc., 2013.

Chen Chen, Yufei Wang, Aixin Sun, Bing Li, and Kwok-Yan Lam. Dipping PLMs Sauce: Bridging
Structure and Text for Effective Knowledge Graph Completion via Conditional Soft Prompting.
In Findings of ACL, pp. 11489–11503. Association for Computational Linguistics, 2023.

Yuanning Cui, Zequn Sun, and Wei Hu. A Prompt-Based Knowledge Graph Foundation Model for
Universal In-Context Reasoning. In NeurIPS, pp. 7095–7124. Curran Associates, Inc., 2024.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. Go for a Walk and Arrive at the Answer: Reasoning
Over Paths in Knowledge Bases using Reinforcement Learning. In ICLR. OpenReview.net, 2018.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2D
Knowledge Graph Embeddings. In AAAI, pp. 1811–1818. AAAI Press, 2018.

Wentao Ding, Jinmao Li, Liangchuan Luo, and Yuzhong Qu. Enhancing Complex Question Answer-
ing over Knowledge Graphs through Evidence Pattern Retrieval. In ACM WWW, pp. 2106–2115.
ACM, 2024.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and
Tat-Seng Chua. AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models.
In ICLR. OpenReview.net, 2025.

Mikhail Galkin, Etienne G. Denis, Jiapeng Wu, and William L. Hamilton. NodePiece: Composi-
tional and Parameter-Efficient Representations of Large Knowledge Graphs. In ICLR. OpenRe-
view.net, 2022.

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards Foundation
Models for Knowledge Graph Reasoning. In ICLR. OpenReview.net, 2024.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation. Proc. VLDB
Endow., 17(5):1132–1145, 2024.

10

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/public/CodeOfEthics
https://anonymous.4open.science/r/KRLM-EA36

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuxia Geng, Jiaoyan Chen, Jeff Z. Pan, Mingyang Chen, Song Jiang, Wen Zhang, and Huajun
Chen. Relational Message Passing for Fully Inductive Knowledge Graph Completion. In ICDE,
pp. 1221–1233. IEEE, 2023.

Lingbing Guo, Zhongpu Bo, Zhuo Chen, Yichi Zhang, Jiaoyan Chen, Yarong Lan, Mengshu Sun,
Zhiqiang Zhang, Yangyifei Luo, Qian Li, Qiang Zhang, Wen Zhang, and Huajun Chen. MKGL:
Mastery of a Three-Word Language. In NeurIPS, volume 37, pp. 140509–140534. Curran Asso-
ciates, Inc., 2024.

Hojae Han, Jaejin Kim, Jaeseok Yoo, Youngwon Lee, and Seung-won Hwang. ArchCode: Incor-
porating Software Requirements in Code Generation with Large Language Models. In ACL, pp.
13520–13552. Association for Computational Linguistics, 2024.

Chengming Hu, Xuan Li, Dan Liu, Haolun Wu, Xi Chen, Ju Wang, and Xue Liu. Teacher-
Student Architecture for Knowledge Distillation: A Survey. arXiv preprint arXiv:2308.04268,
arXiv:2308.04268, 2023.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In ICLR. OpenRe-
view.net, 2022.

Xingyue Huang, Pablo Barceló, Michael M. Bronstein, İsmail İlkan Ceylan, Mikhail Galkin, Juan L
Reutter, and Miguel Romero Orth. How Expressive are Knowledge Graph Foundation Models?
arXiv preprint, arXiv:2502.13339, 2025.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A Survey on Knowledge
Graphs: Representation, Acquisition, and Applications. IEEE TNNLS, 33(2):494–514, 2022.

Jiho Kim, Yeonsu Kwon, Yohan Jo, and Edward Choi. KG-GPT: A General Framework for Rea-
soning on Knowledge Graphs Using Large Language Models. In Findings of EMNLP, pp. 9410–
9421. Association for Computational Linguistics, 2023.

Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang. InGram: Inductive Knowledge Graph
Embedding via Relation Graphs. In ICML, volume 202, pp. 18796–18809. PMLR, 2023.

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In
ACL, pp. 4582–4597. Association for Computational Linguistics, 2021.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, Xi Chen, and Huajun Chen. Unveiling the
Pitfalls of Knowledge Editing for Large Language Models. In ICLR. OpenReview.net, 2024.

Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang Zhou, Xinwang
Liu, Fuchun Sun, and Kunlun He. A Survey of Knowledge Graph Reasoning on Graph Types:
Static, Dynamic, and Multi-Modal. IEEE TPAMI, 46(12):9456–9478, 2024.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on Graphs: Faithful
and Interpretable Large Language Model Reasoning. In ICLR. OpenReview.net, 2024.

Xin Lv, Xu Han, Lei Hou, Juanzi Li, Zhiyuan Liu, Wei Zhang, Yichi Zhang, Hao Kong, and Suhui
Wu. Dynamic anticipation and completion for multi-hop reasoning over sparse knowledge graph.
In EMNLP, pp. 5694–5703. Association for Computational Linguistics, 2020.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-
Editing Memory in a Transformer. In ICLR. OpenReview.net, 2023.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying Large
Language Models and Knowledge Graphs: A Roadmap. IEEE TKDE, 36(7):3580–3599, 2024.

Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph Completion Bench-
mark. In EMNLP, pp. 8328–8350. Association for Computational Linguistics, 2020.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge Graph Embedding
by Relational Rotation in Complex Space. In ICLR. OpenReview.net, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive Relation Prediction by
Subgraph Reasoning. In ICML, volume 119, pp. 9448–9457. PMLR, 2020.

Kristina Toutanova and Danqi Chen. Observed Versus Latent Features for Knowledge Base and Text
Inference. In Workshop on CVSC, pp. 57–66. ACL, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex Embeddings for Simple Link Prediction. In ICML, volume 48 of JMLR Workshop and
Conference Proceedings, pp. 2071–2080. JMLR.org, 2016.

Jiapu Wang, Kai Sun, Linhao Luo, Wei Wei, Yongli Hu, Alan Wee-Chung Liew, Shirui Pan, and
Baocai Yin. Large language models-guided dynamic adaptation for temporal knowledge graph
reasoning. In NeurIPS, pp. 8384–8410. Curran Associates, Inc., 2024a.

Kai Wang, Yuwei Xu, Zhiyong Wu, and Siqiang Luo. LLM as Prompter: Low-resource Inductive
Reasoning on Arbitrary Knowledge Graphs. In Findings of ACL, pp. 3742–3759. Association for
Computational Linguistics, 2024b.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu. SimKGC: Simple Contrastive Knowledge
Graph Completion with Pre-trained Language Models. In ACL, pp. 4281–4294. Association for
Computational Linguistics, 2022.

Siyuan Wang, Zhongyu Wei, Meng Han, Zhihao Fan, Haijun Shan, Qi Zhang, and Xuanjing Huang.
Query Structure Modeling for Inductive Logical Reasoning Over Knowledge Graphs. In ACL,
pp. 4706–4718. Association for Computational Linguistics, 2023.

Yanbin Wei, Qiushi Huang, Yu Zhang, and James T. Kwok. KICGPT: Large Language Model with
Knowledge in Context for Knowledge Graph Completion. In Findings of EMNLP, pp. 8667–8683.
Association for Computational Linguistics, 2023.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding Entities and
Relations for Learning and Inference in Knowledge Bases. In ICLR. OpenReview.net, 2015.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable Learning of Logical Rules for Knowl-
edge Base Reasoning. In NeurIPS, pp. 2319–2328. Curran Associates, Inc., 2017.

Mohammad Yani and Adila Alfa Krisnadhi. Challenges, Techniques, and Trends of Simple Knowl-
edge Graph Question Answering: A Survey. Inf., 12(7):271, 2021.

Liang Yao, Jiazhen Peng, Chengsheng Mao, and Yuan Luo. Exploring Large Language Models for
Knowledge Graph Completion. In ICASSP, pp. 1–5. IEEE, 2025.

Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou,
Xi Chen, and Huajun Chen. InstructEdit: Instruction-Based Knowledge Editing for Large Lan-
guage Models. In IJCAI, pp. 6633–6641. ijcai.org, 2024a.

Yichi Zhang, Zhuo Chen, Lingbing Guo, Yajing Xu, Wen Zhang, and Huajun Chen. Making Large
Language Models Perform Better in Knowledge Graph Completion. In ACM MM, pp. 233–242.
ACM, 2024b.

Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep Mutual Learning. In
CVPR, pp. 4320–4328. Computer Vision Foundation / IEEE Computer Society, 2018.

Yongqi Zhang and Quanming Yao. Knowledge Graph Reasoning with Relational Digraph. In ACM
WWW, pp. 912–924. ACM, 2022.

Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, and Bruno Ribeiro. TRIX: A More Expres-
sive Model for Zero-shot Domain Transfer in Knowledge Graphs. In LoG Conference. OpenRe-
view.net, 2024c.

Yuqi Zhu, Jia Li, Ge Li, Yunfei Zhao, Jia Li, Zhi Jin, and Hong Mei. Hot or Cold? Adaptive
Temperature Sampling for Code Generation with Large Language Models. In AAAI, pp. 437–
445. AAAI Press, 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi Yao, Shumin Deng, Huajun
Chen, and Ningyu Zhang. LLMs for Knowledge Graph Construction and Reasoning: Recent
Capabilities and Future Opportunities. World Wide Web (WWW), 27(5):58, 2024b.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, and Jian Tang. Neural Bellman-Ford
Networks: A General Graph Neural Network Framework for Link Prediction. In NeurIPS, pp.
29476–29490. Curran Associates, Inc., 2021.

Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-Symbolic Models for Log-
ical Queries on Knowledge Graphs. In ICML, volume 162 of Proceedings of Machine Learning
Research, pp. 27454–27478. PMLR, 2022.

Xingrui Zhuo, Jiapu Wang, Gongqing Wu, Shirui Pan, and Xindong Wu. Effective instruction
parsing plugin for complex logical query answering on knowledge graphs. In ACM WWW, pp.
4780–4792. ACM, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) solely as an editing assistant to improve the grammar, clarity,
and concision of the manuscript. All technical contributions, experimental design, data processing,
evaluation, and conclusions reported in the paper were authored and verified by the human authors.
LLM-suggested edits were reviewed and accepted or modified by the authors; no numerical results,
figures, or analyses were generated or approved solely by the LLM.

B DESIGN DETAILS OF KRL INSTRUCTIONS

Given a query triplet (h, r, ?), we first provide its schema of a KRL instruction below:

Schema of the KRL Instruction

Instruction: Define the word format for a new language as <Type: Text Description>. Suppose you
are a linguistic expert who are learning this new language. Given the following vocabulary:

Word|Type|Text description|Knowledge representation
<Entity: name of h>|Entity|description of h|[KG embedding of h]
<Relation: name of r>|Relation|description of r|[KG embedding of r]

Please complete the next word ’?’ in the given sentence:
<Entity: name of h><Relation: name of r>?

Response:<Entity: name of h><Relation: name of r>

A KRL instruction consists of three types of tokens: word-level embeddings, KG embeddings, and
LLM-pretrained tokens.

• Word-level embeddings refer to the principal attribute aggregation result of the text strings of
entities and relations after looking up the LLM pretrained token table (refer to Eq. (2)). Given
an entity h expressed as the string “<Entity: name of h>”, we feed this string into the LLM’s
tokenizer to obtain an embedding sequence [t1, t2, ..., tn] ∈ Rn×F . We then apply four pooling
operations, mean, std, max, and min, to obtain tmean, tstd, tmax, tmin ∈ RF . A trainable MLP
layer encodes the concatenation of these pooled vectors into a representation of dimension F ,
which serves as the word-level embedding of h, denoted as <Entity: name of h>. This design
avoids expanding the LLM’s pretrained embedding table to accommodate new entities, thereby
improving the model’s scalability and generalization ability.
• The KG embeddings are obtained from a GNN-based KG reasoning model. To enable zero-

shot generalization on unseen KGs, we adopt ULTRA (Galkin et al., 2024), a GNN-based KG
foundation model, to produce structural embeddings for entities and relations. These embeddings
are then projected through a trainable MLP layer to match the LLM hidden dimension F and
injected into the KRL instruction as [KG embedding of h] and [KG embedding of r].
• LLM pretrained tokens. These are standard tokens in the KRL instruction that fall outside the

above two categories and are directly provided by the pretrained LLM.

Because of the vocabulary table mapping the word-level tokens, KG embeddings, and LLM pre-
trained tokens, the KRL instruction is more concise explicit KG-context prompts, resulting in an
average length of only 118.75±5.14 in the 28 KG datasets.

C MODELING DETAILS OF KGFMS

C.1 RELATIONAL GRAPH CONSTRUCTION

Unlike a typical KG G = (E ,R, T), a relational graph is used to describe the relative states between
relations. According to the design of ULTRA (Galkin et al., 2024), the relative state of relations
in a relational graph is related to the entity attributes they share. For example, given two triplets

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

< h1, r1, t1 > and < e2, r2, t1 >, r1 and r2 share the same tail entity t1, so the relative state from
r1 to r2 is “tail-to-tail” (t2t). According to this setting, we can map G into four relational sub-graphs
that only contain a single relative state: Gh2t = (R, {r∗h2t}, T ∗h2t), Gh2h = (R, {r∗h2h}, T ∗h2h),
Gt2h = (R, {r∗t2h}, T ∗t2h), and Gt2t = (R, {r∗t2t}, T ∗t2t), where r∗h2t, r

∗
h2h, r∗t2h, and r∗t2t indicate

four relative states “head-to-tail”, “head-to-head”, “tail-to-head”, and “tail-to-tail”, respectively.

Finally, we can obtain the relational graph Gr = (R,R∗, T ∗) in Eq. (1) by integrating Gh2t, Gh2h,
Gt2h, and Gt2t, whereR∗ = {r∗h2t, r∗h2h, r∗t2h, r∗t2t} and T ∗ = T ∗h2t ∪ T ∗h2h ∪ T ∗t2h ∪ T ∗t2t.

C.2 KGFM ARCHITECTURE

As shown in Eq. (1), KGFM contain two structure learning modules (GNNe and GNNr) for entities
and relations. Given a query triplet < eh, rq, ? >∈ G and r

(0)
j = Ij=q · 1d, we first design a S-layer

GNN model GNNr for learning the invariance of the relational structure according to Eq. (1):

r(s)
q = σ(Update([r(s−1)

q ||Agg(Mess(r(s−1)
j , r∗)|rj ∈ NGr (rq), r

∗ ∈ R∗)])), s ∈ [1, S], (11)

where Mess(·) is a non-parametric DistMult message function (Yang et al., 2015), Agg(·) represents
the sum aggregation operation, Update(·) : R2d → Rd is a trainable linear layer, and σ(·) is a ReLU
activation function. Gr is a relational graph defined in Eq. (1). The edges in Gr are directed as
“head-to-tail”, “tail-to-head”, “head-to-head”, and “tail-to-tail” based on the shared entities (either
the head entity or tail entity) between the two relations in G (Galkin et al., 2024) (The detailed
design are provided in Appendix C.1). Therefore, the edge embeddings are set to a trainable matrix
R∗ ∈ R4×d to model the relative structures between two relations.

According to Eq. (11), we obtain the knowledge representation of relations R = {r(S)j }
J

j=1
. Simi-

larly, let e(0)i = Ii=h ·R[q], we construct a S-layer GNN model GNNe for entity structure learning:

e
(s)
h = σ(Update([e(s−1)

h ||Agg(Mess(e(s−1)
i , f (s)(r))|ei ∈ NG(eh), r ∈ R)])), s ∈ [1, S], (12)

where f (s) : Rd → Rd is a non-linear function composed of a two-layer MLP with a relu function,
which can transform the structural embeddings of relations into representations that adapt to the
learning of entity structures in each layer of GNNe. Finally, we obtain the knowledge representation

of entities E = {e(S)i }
I

i=1 by Eq. (12).

D DISCUSSION OF THE KRL ATTENTION LAYER

This section elaborates on the effectiveness of the KRL attention mechanism from the perspective
of the last token in the KRL instruction. Overall, we hope that the hidden state of the last token in
KRL can simultaneously contain textual and structural knowledge contexts in KRL, which provide
a prerequisite for subsequent next-entity prediction.

Let the hidden state sequence of tokens obtained by the n-1 th KRL attention layer is H(n−1) =

{h(n−1)
1 ,h

(n−1)
2 , ...,h

(n−1)
m }. According to Eq. (5), without introducing the dynamic knowledge

memory, the hidden state of the last token obtained by the n-th KRL attention layer is:

h(n)
m =

m∑
i=1

αih
(n−1)
i W

(n)
V , αi =

exp (< h
(n−1)
m W

(n)
Q ;h

(n−1)
i W

(n)
K >)

√
F

m∑
j=1

exp (< h
(n−1)
m W

(n)
Q ;h

(n−1)
j W

(n)
K >)

, (13)

where < ·; · > is an inner product operation. Eq. (13) can be seen as in-context learning of tokens
within a KRL instruction (including textual tokens and structural knowledge representations), where
αi represents the scaling degree of contextual semantics for the last token.

However, the independent structural knowledge representation of the entity and relation in a KRL
instruction is too thin compared to the widely existing textual tokens, which can easily cause the
model to undervalue critical KG context when learning KRL instructions. To address this issue, we
propose a dynamic knowledge memory mechanism that injects extral KG structural context related
to the entity and relation in KRL into the in-context learning process in a KRL attention layer. Let

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

{ek}Kk=1 be a knowledge memory containing top-K entity embeddings obtained by Eqs. (1) and (3).
According to Eq. (6), we can reconstruct Eq. (13) into Eq. (14):

h(n)
m =

m∑
i=1

αih
(n−1)
i W

(n)
V +

K∑
k=1

βkekM
(n)
V ,

αi =
exp (< h

(n−1)
m W

(n)
Q ;h

(n−1)
i W

(n)
K >)

√
F [

m∑
j=1

exp (< h
(n−1)
m W

(n)
Q ;h

(n−1)
j W

(n)
K >) +

K∑
k=1

exp (< h
(n−1)
m M

(n)
Q ; ek >)]

,

βk =
exp (< h

(n−1)
m M

(n)
Q ; ek >)

√
F [

m∑
j=1

exp (< h
(n−1)
m W

(n)
Q ;h

(n−1)
j W

(n)
K >) +

K∑
z=1

exp (< h
(n−1)
m M

(n)
Q ; ez >)]

.

(14)

By utilizing additional KG context, Eq. (14) coordinates the influence of LLM internal knowledge
and external KG context on h

(n)
m through semantic space scaling and translation. In specific, Eq.

(14) utilizes the knowledge memory to scale the contextual importance coefficient αi of each token
in KRL, which alleviates the contextual impact of large-scale textual tokens on rare entity/relation
structural representations in KRL. In addition, the knowledge memory contributes an effective se-

mantic translation as an independent parameter term
K∑
k=1

βkekM
(n)
V , which enhances the perception

of structural knowledge context by h
(n)
m and thus assists in subsequent next-entity prediction.

E DISCUSSION OF THE NEXT-ENTITY PREDICTOR

The next-entity predictor uses the hidden state of the last token (<Relation: name of r>) in the KRL
instruction to predict the word-level token (<Entity: name of h>) of the target entity. This converts
KG reasoning into an LLM-style next-token prediction, i.e., next-entity prediction. This design
avoids the risk of generating out-of-scope entities commonly observed in existing LLM-based KGR
models. The structural constraints of our approach are reflected in two aspects:

(I) Entity-space constraint: Most prior LLM-based KGR methods inherit the LLM’s next-token
prediction mechanism, generating entities as sequences of vocabulary tokens. Since the LLM vo-
cabulary (e.g., Llama2-7B has 32k tokens) is typically much larger than the number of entities in
a KG benchmark and an entity name may require multiple tokens, LLMs may generate the textual
name of an entity that falls outside the gold entity set. (This does not necessarily mean the generated
entity is factually wrong, but it makes evaluation unfair.)

To address this, KRLM aggregates the MLP head P ∈ R4096×32000 in the next-token predictor of
Llama2-7b into a compressed one P ∈ R4096×|E| whose size matches the KG’s entity set E . The
hidden state of the last KRL token is then compared with this compressed MLP head to select the
top-1 target entity. This guarantees that predictions always lie within the entity set and therefore
remain evaluable.

(II) Structural context constraint: Under the entity-space constraint, the compressed MLP head
stores each target entity’s word-level embedding, allowing basic in-domain entity prediction. How-
ever, we further want the MLP head to incorporate the KG structural context of a given query triplet
(h, r, ?) to assist in model prediction.

Consequently, as described in Eq. (8) in our paper, we feed the word-level embedding of the head
entity h into NBFNet (Zhu et al., 2021), a GNN-based KG encoder, to propagate messages over
the KG and obtain contextual embeddings for all entities. These embeddings form an h-specific
MLP head, which is then used for predicting the target entity. To verify its effectiveness, we include
the “-KDe” ablation in Table 2 in our paper, which demonstrates that adding structural-context
constraint significantly outperforms using only entity-space constraint.

F TRAINING ALGORITHM

Algorithm 1 provides a complete pre-training process for KRLM. In each training round, the head
entity eh and relation rq in a query triplet are firstly transformed into structural knowledge represen-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 Pre-training framework of KRLM
Input: Query triplet set Tq; KG G; relational graph Gr; trainable model parameters Θ; learning rate
η; max training step s; batch size b.
Output: Optimized parameters Θ.

1: step = 0
2: for step < s do
3: Obtain T ∗q ⊆ Tq that contains b randomly selected query triplets
4: Ltotal = 0
5: for < eh, rq, ? > in T ∗q do
6: Obtain eh, rq according to Eq. (1) and obtain weh ,wrq according to Eq. (2)
7: Construct the KRL token embedding sequence T by Eq. (4)
8: Select top-K entity embedding related to < eh, rq, ? > by Eq. (3)
9: Obtain H(N) by Eq. (6) and extract the hidden state H(N)[m] of the last KRL token

10: Mapping the projection head in LLM to the KG domain by Eqs. (7) and (8)
11: Obtain the predicted entity score according to Eq. (9)
12: Calculate the loss L using Eq. (10)
13: Ltotal ← Ltotal + L
14: end for
15: Optimize Θ using Ltotal with the Adam gradient descent method
16: step← step+ 1

17: end for
18: return Θ

Table 3: Comparison of training costs between KRLM and MKGL.
Model

(Llama2-7b as backbone) Trainable parameters Training time per epoch

MKGL 18 M (16.78 M for LoRA) 1 h 8 min / 4 X A100 GPU

KRLM (Ours) 18.49 M
(16.78 M for the KRL attention layer) 1 h 20 min / 4 X A100 GPU

tations (eh and rq) and word-level embeddings (weh and wrq) using Eqs. (1) and (2), respectively,
and ultimately integrated into a KRL instruction (Steps 6-7). Next, we select top-K entities related
to the query triplet (Step 8) and input them together with the KRL instruction into the stacked KRL
attention layers for in-context learning. Then, we extract the hidden state of the last KRL token
and calculate the predicted score of the next entity of the KRL instruction (Steps 9-11). Finally, the
training loss is calculated according the predicted scores, which is used to optimize the trainable
parameters in KRLM.

G COMPUTATIONAL COMPLEXITY

G.1 TRAINING COST

We calculated the trainable parameters of MKGL and our KRLM, as well as the training time on the
FB15k237 dataset with a uniform batch of 4 per GPU. The statistical results are shown in Table 3.

KRLM requires embedding GNN in the tokenizer and next-token predictor of LLM, which slightly
increases the parameters. However, it is consistent with MKGL in the main fine-tuning parameters
of LLM (KRL attention layer V.S. LoRA). To ensure generalization, KRLM requires additional cost
to construct a relational graph for real-time perturbed KGs in each batch, resulting in a training time
of about 12 minutes longer per epoch than MKGL.

Although KRLM incurs additional training costs, it offers substantially stronger generalization com-
pared to MKGL. Specifically, KRLM requires only a single pre-training phase on a large-scale KG,
after which it can perform training-free zero-shot reasoning on entirely new KGs (refer to KRLM
(PT) in Tables 1, 12, and 13 in our submitted paper). In contrast, MKGL is not a fully generalizable
KGFM in the strict sense. While it can effectively recognize unseen entities within each inductive

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: TFLOPs, memory footprint, and wall-clock time of KRLM for pre-training and fine-tuning.
Metrics Pre-training

(3 transductive dataset) Fine-tuning (FB V1) Fine-tuning (FB25)

TFLOPs of forward propagation 3.3436±0.4540 3.2755±0.5208 3.3312±0.4859
Training Memory footprint 36.12 GB 32.57 GB 32.67 GB

Wall-clock time 3h10m per epoch×20 epochs 7m28s per epoch×3 epochs 12m13s per epoch×10 epochs

dataset, it cannot transfer zero-shot across different inductive datasets. Consequently, MKGL must
be retrained for every new dataset, which significantly increases its deployment overhead.

Table 4 shows the TFLOPs, memory footprint, and wall-clock time of KRLM for pre-training and
fine-tuning under the condition of batch size = 4 per GPU × 4 GPUs.

During training, there is natural step-to-step variability in both the number of input tokens. To
obtain a stable and representative estimate, we compute the average forward TFLOPs over 100 steps.
(Backward propagation and optimizer updates theoretically introduce an additional 2-3 × TFLOPs).
For fine-tuning efficiency, we further include results on the largest inductive dataset (FB25) and
the smallest inductive dataset (FB-V1) to provide an upper-lower bound range of computational
overhead.

G.2 INFERENCE COMPLEXITY

The inference complexity of KRLM can be analyzed from two parts. From the perspective of the
knowledge encoder and decoder, the time complexity is upper-bounded by the entity GNN (GNNe(·)
and GNNp(·)), as the number of nodes |R| involved in GNNr(·) is much smaller than the number
of KG entities |E| that GNNe(·) and GNNp(·) need to handle. For an entity GNN, the reasoning
time complexity of each layer is usually linearly related to the number of edges (triplets) (Galkin
et al., 2024; Zhu et al., 2021) O(|T |d + |E|d2). Therefore, for a S-layer entity GNN, its overall
time complexity is O(S(|T |d + |E|d2)). Furthermore, thanks to the efficient relational messaging
kernel implemented by the Pytorch-geometric library, the complexity of an entity GNN is optimized
to O(S|E|d) that is linear with the number of nodes, which has been applied to the related ULTRA-
like KGFMs (Galkin et al., 2024; Huang et al., 2025; Zhang et al., 2024c).

the reasoning time complexity in LLM is concentrated in the KRL attention layer. Set the token
length of a KRL instruction and the scale of the knowledge memory to be m and K, respectively,
the reasoning time complexity in KRL attention layer can be divided into the self-attention matrix
calculation in LLM attention decodeing module (O(m2F)) and the knowledge memory (O(mKd)),
and the final attentive pooling operation (O(m(m+K)F)), where F and d are the hidden dimensions
of LLM and GNNe(·), respectively. Because m � K, the total complexity of a N -layer KRL
attention module can be represented as O(Nm(m+K)F).
To visually demonstrate the inference latency of KRLM, we selected two datasets with the highest
(FB15k237) and lowest (NELL-V1) graph densities within our experimental scope as benchmarks
and included MKGL and PROLINK, the latest LLM-based KGFMs, as comparative baselines. Ta-
ble 5 reports the inference time of both LLM-based (KRLM, MKGL, PROLINK) and ULTRA-like
(ULTRA, MOTIF, TRXI) KGFMs. For consistency, we set the test batch size to 16 and used Llama-
2-7b as the backbone for all LLM-based KGFMs, conducting experiments on a single NVIDIA
A100 GPU.

ULTRA-like KGFMs require loading the entire KG as the source for inference, while LLM-based
KGFMs follow the ULTRA+LLM hybrid framework. Consequently, all publicly accessible KGFMs
we used are inevitably affected by the scale of the underlying KG. In addition, since the original
PROLINK paper does not release data-processing scripts for FB15k237, we only counted its infer-
ence time on NELL-V1.

Table 5 reports the detailed inference costs, including inference time (seconds per batch) and GPU
memory consumption. Existing KGFMs exhibit sensitivity to the KG size. For KRLM and MKGL,
their inference time differs by approximately one second between FB15k237 and NELL-V1, which
are acceptable to humans. However, PROLINK needs a long prompt to guide Llama2-7b to generate
the potential target entity types of a query according to the relational context, which leads to it
needing to spend a longer inference time and larger memory on small-scale NELL-V1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Inference time and GPU memory consumption of KRLM and baselines.
Dataset KRLM (Ours) MKGL PROLINK ULTRA MOTIF TRIX

FB15k237 2.23±0.03
[30.11GB]

1.98±0.04
[27.75GB] - 0.14±0.01

[2.6GB]
0.25±0.01
[2.63GB]

0.22±0.01
[2.6GB]

NELL-V1 1.18±0.07
[29.32GB]

0.99±0.06
[26.82GB]

4.35±0.04
[36.42GB]

0.01±0.00
[2.5GB]

0.02±0.00
[2.5GB]

0.01±0.00
[2.5GB]

Table 6: Inference time of each in KRLM.
Dataset KRL tokenizer KRL attention layers Knowledge decoder

FB15k237 1.2413±0.0179 1.1206±0.2408 0.0961±0.0200
NELL-V1 0.0293±0.0019 1.0554±0.0535 0.0862±0.0047

In addition, we have also counted the inference time of each component in KRLM Table 6. We
found that the main module that affects the inference latency of KRLM on different scales of KGs
is the KRL tokenizer, because it contains an ULTRA module, which needs to read the complete KG
for structural context learning of entities and relations.

H DATASETS

To verify the ability of KRLM to reason facts on unseen KGs, we conduct evaluations on 28 datasets.
According to the overlap level between train KG Gtrain = (Etrain,Rtrain, Ttrain) and test KG
Gtest = (Etest,Rtest, Ttest), these datasets can be divided into the following three categories:

• Inductive Entity (IndE) datasets that Etest 6= Etrain and Rtest = Rtrain, including 12 datasets
from GraIL (Teru et al., 2020): FB-V1, FB-V2, FB-V3, FB-V4, NELL-V1, NELL-V2, NELL-
V3, NELL-V4, WN-V1, WN-V2, WN-V3, and WN-V4.

• Inductive Entity and Relation (IndER) datasets that Etest 6= Etrain andRtest 6= Rtrain, includ-
ing 13 datasets from InGram (Lee et al., 2023): FB-25, FB-50, FB-75, FB-100, NL-0, NL-25,
NL-50, NL-75, NL-100, WK-25, WK-50, WK-75, and WK-100.

• Transductive datasets for pre-training that Etest = Etrain and Rtest = Rtrain: FB15k-
237 (Toutanova & Chen, 2015), WN18RR (Dettmers et al., 2018), CoDEx-M (Safavi & Koutra,
2020).

These dataset are used to evaluate the model in zero-shot/fine-tuning scenarios. Tables (7), (8),
and (9) provide detailed elemental statistics for these datasets. In addition, in response to the
“Supervised SOTA” methds in Section 5.2, we provide the supervised KGR models that achieved
the best performance for each dataset in Tables (8) and (9).

I EXPERIMENTAL HYPERPARAMETER SETTINGS

In Section 5.2, we evaluate three forms of KRLM, e.i., “Pre-Training” (PT), “Fine-Tuning” (FT),
and “End-to-End training from scratch” (E2E). The hyperparameters of KRLM-PT and KRLM-
E2E are uniformly set to the values in Table 10. During the pre-training process, we mix the three
transductive KGR datasets from Table 7 as the training corpus and train KRLM from scratch for 20
epochs, each containing 10000 steps. In PT and E2E modes, except for the pre-trained parameters of
Llama2-7b used for the backbone LLM of KRLM, the parameters of all other modules are randomly
initialized using the nn.Linear() function of the Pytorch library. We allocate query triplets with batch

Table 7: Transductive KGR datasets used for model pre-training. “#Train”, “#Valid”, and “#Test”
indicate the training, validation, and testing triplet numbers in each dataset, respectively.

Datasets Entities Relations #Train #Valid #Test
FB15k-237 (Toutanova & Chen, 2015) 14541 237 272115 17535 20466

WN18RR (Dettmers et al., 2018) 40943 11 86835 3034 3134
CoDEx-M (Safavi & Koutra, 2020) 17050 51 185584 10310 10311

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: IndE KGR datasets used for zero-shot and fine-tuning evaluation. “Triplets” represents
the number of total triplets contained in a training/validation/testing graph. “#Valid” and “#Test”
are the number of evaluation triplets in the validation and testing graph, respectively.

Datasets Relations
Training graph Validation Graph Testing Graph Supervised

SOTAEntities Triplets Entities Triplets #Valid Entities Triplets #Test
FB-V1 (Teru et al., 2020) 180 1594 4245 1594 4245 489 1093 1993 411 A*Net (Zhu et al., 2022)
FB-V2 (Teru et al., 2020) 200 2608 9739 2608 9739 1166 1660 4145 947 NBFNet (Zhu et al., 2021)
FB-V3 (Teru et al., 2020) 215 3668 17986 3668 17986 2194 2501 7406 1731 NBFNet (Zhu et al., 2021)
FB-V4 (Teru et al., 2020) 219 4707 27203 4707 27203 3352 3051 11714 2840 A*Net (Zhu et al., 2022)

NELL-V1 (Teru et al., 2020) 14 3103 4687 3103 4687 414 225 833 201 RED-GNN (Zhang & Yao, 2022)
NELL-V2 (Teru et al., 2020) 88 2564 8219 2564 8219 922 2086 4586 935 RED-GNN (Zhang & Yao, 2022)
NELL-V3 (Teru et al., 2020) 142 4647 16393 4647 16393 1851 3566 8048 1620 RED-GNN (Zhang & Yao, 2022)
NELL-V4 (Teru et al., 2020) 76 2092 7546 2092 7546 876 2795 7073 1447 RED-GNN (Zhang & Yao, 2022)
WN-V1 (Teru et al., 2020) 9 2746 5410 2746 5410 630 922 1618 373 NBFNet (Zhu et al., 2021)
WN-V2 (Teru et al., 2020) 10 6954 15262 6954 15262 1838 2757 4011 852 NBFNet (Zhu et al., 2021)
WN-V3 (Teru et al., 2020) 11 12078 25901 12078 25901 3097 5084 6327 1143 NBFNet (Zhu et al., 2021)
WN-V4 (Teru et al., 2020) 9 3861 7940 3861 7940 934 7084 12334 2823 A*Net (Zhu et al., 2022)

Table 9: IndER KGR datasets used for zero-shot and fine-tuning evaluation. “Triplets” represents
the number of total triplets contained in a training/validation/testing graph. “#Valid” and “#Test”
are the number of evaluation triplets in the validation and testing graph, respectively.

Datasets
Training graph Validation Graph Testing Graph Supervised

SOTAEntities Relations Triplets Entities Relations Triplets #Valid Entities Relations Triplets #Test
FB-25 (Lee et al., 2023) 5190 163 91571 4097 216 17147 5716 4097 216 17147 5716 InGram (Lee et al., 2023)
FB-50 (Lee et al., 2023) 5190 153 85375 4445 205 11636 3879 4445 205 11636 3879 InGram (Lee et al., 2023)
FB-75 (Lee et al., 2023) 4659 134 62809 2792 186 9316 3106 2792 186 9316 3106 InGram (Lee et al., 2023)

FB-100 (Lee et al., 2023) 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329 InGram (Lee et al., 2023)
WK-25 (Lee et al., 2023) 12659 47 41873 3228 74 3391 1130 3228 74 3391 1131 InGram (Lee et al., 2023)
WK-50 (Lee et al., 2023) 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225 InGram (Lee et al., 2023)
WK-75 (Lee et al., 2023) 6853 52 28741 2722 65 3430 1143 2722 65 3430 1144 InGram (Lee et al., 2023)

WK-100 (Lee et al., 2023) 9784 67 49875 12136 37 13487 4496 12136 37 13487 4496 InGram (Lee et al., 2023)
NL-0 (Lee et al., 2023) 1814 134 7796 2026 112 2287 763 2026 112 2287 763 InGram (Lee et al., 2023)
NL-25 (Lee et al., 2023) 4396 106 17578 2146 120 2230 743 2146 120 2230 744 InGram (Lee et al., 2023)
NL-50 (Lee et al., 2023) 4396 106 17578 2335 119 2576 859 2335 119 2576 859 InGram (Lee et al., 2023)
NL-75 (Lee et al., 2023) 2607 96 11058 1578 116 1818 606 1578 116 1818 607 InGram (Lee et al., 2023)

NL-100 (Lee et al., 2023) 1258 55 7832 1709 53 2378 793 1709 53 2378 793 InGram (Lee et al., 2023)

size of 4 per GPU for KRLM in each step. One batch of triplets only belongs to one training KG, and
their sampling probability is proportional to the total number of triplets contained in that training
KG.

After pre-training KRLM, we obtain the best validation checkpoint of KRLM-PT for fine-tuning
KRLM-FT on each dataset. The main training hyperparameters of KRLM-FT are the same as those
in Table 10. However, to adapt the model to the vastly different number of training triplets in
different datasets (ranging from a few thousand to nearly one hundred thousand), we set different
training epoch values for different datasets shown in Table 11.

When we train KRLM-E2E on a single transductive KGR dataset, the main hyperparameters of the
model are the same as those in Table 10, but the training epochs are changed to 10. In each epoch,
the model needs to learn all training triplets in the dataset.

J DETAILS EXPERIMENTAL RESULTS

J.1 DETAILS EXPERIMENTAL RESULTS ON INDUCTIVE DATASETS

Tables 12 and 13 correspond to the detailed experimental results of each method in Table 1 on the
IndE and IndER datasets, respectively.

Obviously, the current supervised SOTA baselines can only achieve mediocre performance on almost
all inductive datasets, which is attributed to their modeling limitations that make it difficult for
them to capture sufficient transferable structure semantics of entities and relations. In addition,
considering that these baselines ignore the knowledge structure invariance cross KG domains, they
lack of zero-shot reasoning ability across KGs. Therefore, we can only train them from scratch on
each dataset during evaluation, which increases the spatiotemporal overhead of model deployment.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10: Hyperperameters of KRLM used in pre-training and end-to-end training from scratch.
Module Component Parameter

Knowledge Encoder

Entity GNN GNNe(·)

Layer number S = 6

Hidden dim d = 64

Message function Mess(·) = DistMult
Aggregation function Agg(·) = Sum

Updating function Update(·) = Linear(128, 64)

Relation GNN GNNr(·)

Layer number S = 6

Hidden dim d = 64

Message function Mess(·) = DistMult
Aggregation function Agg(·) = Sum

Updating function Update(·) = Linear(128, 64)

Score function Sstruct(·)
Linear(128, 64)

ReLU(·)
Linear(64, 1)

KRL Attention Layer

Llama2-7b backbone
Layer numberN = 32

Hidden dim F = 4096

Mapping layer Fword(·) Linear(64, 4096)
Mapping layer Fstruct(·) Linear(64, 4096)

Scale of knowledge memory K = 50

Next-entity Predictor

Knowledge Decoder GNNp(·)

Layer number S = 6

Hidden dim d = 64

Message function Mess(·) = DistMult
Aggregation function Agg(·) = Sum

Updating function Update(·) = Linear(128, 64)
Mapping layer g(·) Linear(4096, 64)

Score function SKRLM(·)
Linear(192, 64)

ReLU(·)
Linear(64, 1)

Training

Optimizer AdamW
Learning rate η 5e-4

Batch size b 4 per GPU
Training epochs 20

Steps in each epoch 10000
Number of negative samples 256

KL weight λ 0.5

Table 11: Training epochs and steps of KRLM-FT on different inductive datasets. For example, (3,
all) means that we fine-tune KRLM on a dataset within 3 epochs and the model needs to learn all
the triplets in the training KG.

Datasets KRLM-FT
FB V1 (3, all)
FB V2 (3, all)
FB V3 (5, all)
FB V4 (5, all)

NELL V1 (3, all)
NELL V2 (3, all)
NELL V3 (5, all)
NELL V4 (3, all)
WN V1 (3, all)
WN V2 (5, all)
WN V3 (5, all)
WN V4 (3, all)
FB-25 (10, all)
FB-50 (10, all)
FB-75 (10, all)

FB-100 (10, all)
NL-0 (3, all)

NL-25 (5, all)
NL-50 (5, all)
NL-75 (5, all)
NL-100 (3, all)
WK-25 (10, all)
WK-50 (10, all)
WK-75 (10, all)
WK-100 (10, all)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Detailed performance of each model on IndE datasets. “PT” and “FT” mean “pre-
training” and “fine-tuning”, respectively. Black bold indicates the best result.

Inductive
Datasets

Supervised
SOTA

ULTRA
(PT)

ULTRA
(FT)

MOTIF
(PT)

MOTIF
(FT)

TRIX
(PT)

TRIX
(FT) MKGL PROLINK

(Llama2-7b)
KRLM

(PT)
KRLM

(FT)

FB-V1
Hit@10 0.589 0.656 0.670 0.692 0.702 0.682 0.682 0.595 0.692 0.708 0.701
MRR 0.457 0.498 0.509 0.503 0.53 0.515 0.515 0.475 0.498 0.537 0.541

FB-V2
Hit@10 0.672 0.700 0.710 0.716 0.744 0.730 0.730 0.681 0.745 0.748 0.752
MRR 0.510 0.512 0.524 0.511 0.557 0.525 0.525 0.508 0.514 0.555 0.557

FB-V3
Hit@10 0.637 0.654 0.663 0.692 0.684 0.669 0.669 0.643 0.683 0.678 0.680
MRR 0.476 0.491 0.504 0.500 0.519 0.501 0.501 0.486 0.485 0.514 0.522

FB-V4
Hit@10 0.645 0.677 0.684 0.677 0.695 0.687 0.687 0.645 0.676 0.690 0.699
MRR 0.466 0.486 0.496 0.487 0.508 0.493 0.493 0.471 0.498 0.503 0.504

NELL-V1
Hit@10 0.866 0.913 0.878 0.871 0.873 0.898 0.899 0.886 0.883 0.887 0.916
MRR 0.637 0.785 0.757 0.674 0.712 0.806 0.804 0.749 0.726 0.652 0.682

NELL-V2
Hit@10 0.601 0.707 0.761 0.769 0.765 0.768 0.764 0.767 0.787 0.773 0.791
MRR 0.419 0.526 0.575 0.564 0.566 0.569 0.571 0.570 0.581 0.589 0.583

NELL-V3
Hit@10 0.594 0.702 0.755 0.724 0.764 0.743 0.759 0.759 0.762 0.766 0.768
MRR 0.436 0.515 0.563 0.533 0.580 0.558 0.571 0.571 0.589 0.594 0.598

NELL-V4
Hit@10 0.556 0.712 0.733 0.711 0.740 0.765 0.772 0.769 0.769 0.739 0.772
MRR 0.363 0.479 0.469 0.503 0.507 0.538 0.551 0.535 0.533 0.544 0.554

WN-V1
Hit@10 0.826 0.768 0.793 0.778 0.806 0.791 0.798 0.822 0.788 0.783 0.800
MRR 0.741 0.648 0.685 0.682 0.703 0.699 0.705 0.746 0.644 0.705 0.711

WN-V2
Hit@10 0.798 0.765 0.779 0.771 0.781 0.781 0.780 0.799 0.777 0.782 0.799
MRR 0.704 0.663 0.679 0.663 0.680 0.678 0.682 0.712 0.669 0.696 0.700

WN-V3
Hit@10 0.568 0.476 0.546 0.538 0.590 0.541 0.543 0.599 0.496 0.582 0.595
MRR 0.452 0.376 0.411 0.420 0.466 0.418 0.425 0.456 0.388 0.447 0.469

WN-V4
Hit@10 0.743 0.705 0.720 0.718 0.733 0.723 0.722 0.741 0.733 0.723 0.738
MRR 0.661 0.611 0.614 0.640 0.659 0.648 0.650 0.664 0.623 0.655 0.665

Table 13: Detailed performance of each model on IndER datasets. “PT” and “FT” mean “pre-
training” and “fine-tuning”, respectively. Black bold indicates the best result. “-” indicates that a
model is not suitable for this KGR task.

Inductive
Datasets

Supervised
SOTA

ULTRA
(PT)

ULTRA
(FT)

MOTIF
(PT)

MOTIF
(FT)

TRIX
(PT)

TRIX
(FT) MKGL PROLINK

(Llama2-7b)
KRLM

(PT)
KRLM

(FT)

FB-25
Hit@10 0.371 0.640 0.635 0.640 0.635 0.650 0.650 - 0.648 0.658 0.640
MRR 0.223 0.388 0.383 0.384 0.388 0.393 0.393 - 0.391 0.404 0.398

FB-50
Hit@10 0.325 0.543 0.538 0.546 0.544 0.547 0.547 - 0.549 0.541 0.552
MRR 0.189 0.338 0.334 0.338 0.340 0.334 0.334 - 0.336 0.339 0.345

FB-75
Hit@10 0.218 0.604 0.598 0.614 0.607 0.611 0.611 - 0.616 0.618 0.620
MRR 0.117 0.403 0.400 0.399 0.399 0.401 0.401 - 0.407 0.409 0.414

FB-100
Hit@10 0.271 0.642 0.643 0.628 0.642 0.635 0.633 - 0.635 0.647 0.655
MRR 0.133 0.449 0.444 0.428 0.439 0.436 0.436 - 0.452 0.445 0.455

NL-0
Hit@10 0.506 0.523 0.551 0.497 0.556 0.549 0.549 - 0.550 0.587 0.591
MRR 0.309 0.342 0.329 0.324 0.328 0.385 0.385 - 0.352 0.375 0.399

NL-25
Hit@10 0.464 0.569 0.596 0.498 0.580 0.589 0.589 - 0.589 0.586 0.596
MRR 0.261 0.395 0.407 0.348 0.390 0.377 0.377 - 0.396 0.394 0.401

NL-50
Hit@10 0.453 0.570 0.595 0.532 0.573 0.548 0.555 - 0.579 0.588 0.598
MRR 0.281 0.407 0.418 0.373 0.414 0.404 0.405 - 0.411 0.412 0.432

NL-75
Hit@10 0.501 0.547 0.570 0.512 0.548 0.525 0.525 - 0.552 0.535 0.559
MRR 0.334 0.368 0.374 0.314 0.360 0.351 0.351 - 0.346 0.361 0.367

NL-100
Hit@10 0.431 0.651 0.684 0.647 0.682 0.676 0.691 - 0.684 0.667 0.688
MRR 0.269 0.471 0.458 0.438 0.464 0.486 0.482 - 0.471 0.493 0.489

WK-25
Hit@10 0.169 0.532 0.535 0.493 0.505 0.496 0.493 - 0.539 0.509 0.550
MRR 0.107 0.316 0.321 0.311 0.317 0.305 0.300 - 0.323 0.324 0.332

WK-50
Hit@10 0.362 0.324 0.280 0.314 0.304 0.313 0.313 - 0.286 0.306 0.328
MRR 0.247 0.166 0.140 0.163 0.160 0.166 0.166 - 0.168 0.160 0.168

WK-75
Hit@10 0.135 0.537 0.53 0.540 0.535 0.513 0.513 - 0.535 0.540 0.538
MRR 0.068 0.365 0.380 0.366 0.371 0.368 0.368 - 0.370 0.390 0.384

WK-100
Hit@10 0.309 0.286 0.286 0.282 0.284 0.299 0.299 - 0.283 0.320 0.313
MRR 0.186 0.164 0.168 0.164 0.173 0.188 0.188 - 0.179 0.192 0.189

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

FB-V1 FB-V2 FB-V3 FB-V4 NELL-V1 NELL-V2 NELL-V3 NELL-V4 WN-V1 WN-V2 WN-V3 WN-V4

0.4

0.6

M
R

R

IndE

FB-V1 FB-V2 FB-V3 FB-V4 NELL-V1 NELL-V2 NELL-V3 NELL-V4 WN-V1 WN-V2 WN-V3 WN-V4

0.6

0.7

0.8

0.9

H
it@

10

IndE

KRLM fine-tune KRLM pre-train PROLINK (GPT-4) Supervised SOTA

FB-25 FB-50 FB-75 FB-100 NL-0 NL-25 NL-50 NL-75 NL-100 WK-25 WK-50 WK-75 WK-100
0.0

0.2

0.4

M
R

R

IndER

FB-25 FB-50 FB-75 FB-100 NL-0 NL-25 NL-50 NL-75 NL-100 WK-25 WK-50 WK-75 WK-100

0.2

0.4

0.6

H
it@

10

IndER

Figure 5: Comparison of our KRLM with more powerful GPT-4. Due to the interference of knowl-
edge distortion, PROLINK using GPT-4 is also unable to effectively handle the inherent knowledge
gap between LLMs and KGs. On the IndER datasets with a larger open-domain scope, this reason-
ing error is more pronounced.

ULTRA is a typical KGFM that proposes a transferable KG reasoning framework driven by relation
structure invariance. This approach endows ULTRA with the ability to recognize unfamiliar entities
and relations in unseen KGs, thereby enabling reasoning of facts on out-of-domain KGs. Based on
this advantage, ULTRA can even perform significantly better than supervised SOTA baselines in
zero-shot reasoning configuration, i.e., ULTRA (PT).

MOTIF and TRIX are improvements based on ULTRA. For example, MOTIF extends the four types
of relation interactions in the relational graph to hyperedges within three hops (Huang et al., 2025),
thereby expanding the structural context of the relations. TRIX iteratively propagates messages
between interacting the entity GNN and the relational GNN, enabling the model to perceive more
rigorous structural representations and alleviating ULTRA’s confusion problem with structurally
similar heterogeneous triplets.

The above KGFMs only rely on the sparse structural semantics of KGs, which can easily make the
model ignore deeper underlying knowledge. MKGL and PROLINK use the internal knowledge of
LLM to extend the structural semantics of KGs, making the reasoning evidence space denser and
thus improving the performance of the model. However, MKGL cannot be considered strictly a
LLM-based KGFM, as it requires a fixed number of relations based on specific KGs during model-
ing. Therefore, although MKGL can achieve the best results by training from scratch on some IndE
KGR datasets (e.g., WN-V2 and WN-V3), it cannot achieve zero-shot reasoning across KGs and is
not suitable for the IndER KGR scenario.

PROLINK adopts a framework that combines large and small models. First, PROLINK uses Llama
to plan reasoning paths, and then candidate reasoning paths are mapped to KG space through a
pre-trained KGFM (such as ULTRA). This apporach achieves remarkable performance and gener-
alization. However, PROLINK struggles to effectively address the inherent knowledge gap between
LLMs and KGFMs, which makes it difficult for PROLINK to effectively overcome the limitations
of knowledge distortion on model inference even when using GPT-4 (Figure 5).

In contrast, our proposed KRLM alleviates the LLM knowledge distortion problem caused by the
inherent knowledge gap between LLM and KG by coordinating LLM internal knowledge and KG
structured knowledge in various modules of LLM.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

J.2 DETAILS ABLATION ANALYSIS

Section 5.3 analyzes the effectiveness of various components of KRLM. To alleviate the time over-
head caused by multiple pretraining from scratch on large-scale transductive datasets, our ablation
experiments perform end-to-end training from scratch on several small inductive datasets (FB-V1,
WN-V1, NL-0, and NL-100).

Table 2 provides 8 ablation variants, and the following are their design details:

• -KEn. This variant removes the knowledge encoder mentioned from Section 4.1. This encoder
is an extremely important module in KRLM, which involves updating special token embeddings
in subsequent KRL instructions (Eq. (4)), sampling knowledge memory in KRL attention layer
(Eq. (6)), and applying relational knowledge representation in netx entity predictor ((Eqs. (8) and
(9)). Therefore, in the absence of a knowledge encoder, we need to remove the knowledge rep-
resentation token placeholders of entities and relations from KRL instructions, replace the KRL
attention layer with the LoRA fine-tuning framework (referring to the LoRA parameter settings
in MKGL (Guo et al., 2024)), remove the knowledge decoder from the next-entity predictor (Eq.
(8)), replace p̃i in Eq. (9) by pi in Eq. (8), and remove the relation representation rq from Eq.
(9).

• -KMe. This variant removes the knowledge memory mechanism from Section 4.2 and replaces
the KRL attention layer with the LoRA fine-tuning framework (referring to the LoRA parameter
settings in MKGL (Guo et al., 2024)).

• -KDe. This variant removes the knowledge decoder from Section 4.3, replaces p̃i in Eq. (9) by
pi in Eq. (7), and removes rq from Eq. (9).

• Atten. This variant replaces the PAA module in Eqs. (2) and (7) with the attention pooling
method, which uses trainable attention weights to average the textual tokens of entities/relations.

• Mean. This variant replaces the PAA module in Eqs. (2) and (7) with the mean pooling method,
which directly averages the textual tokens of entities/relations.

• -KD. This variant removes the KRL distillation module from Eq. (10) and only retains the
structural distillation module.

• -KL. This variant abandons the knowledge distillation function in Eq. (10), which only retains
two cross-entropy losses and removes the calculation process of KL divergence.

• -KD-KL. This variant simultaneously removes KRL distillation and KL divergence from Eq.
(10), i.e., only uses the simplest single cross-entropy loss.

The results in Table 2 indicate that the knowledge encoder (“-KEn”) plays an important role in
KRLM, as it introduces implicit structural context into LLM, which is more effective in driv-
ing knowledge coordination between LLM and KG compared to the explicit knowledge injection
method of existing LLM-based KGFMs (Wang et al., 2024b).

The role of a knowledge decoder is to strictly constrain the reasoning results of LLM so that they do
not exceed the domain of a specific KG. Therefore, after removing the knowledge decoder (“-KDe”),
the reasoning of KRLM degenerates into the next-token prediction mechanism of LLM, making it
difficult for the model to perceive KG structural knowledge throughout the entire reasoning process,
thereby limiting its performance.

The purpose of knowledge distillation in training loss is to coordinate the knowledge in LLMs and
KGs from the response side of KRLM. Therefore, the variant “-KD-KL” using the simplest cross
entropy loss cannot achieve this function, resulting in poor performance. Variants “-KD” and “-KL”
use one-side distillation and double cross-entropy loss coordination methods, respectively, which
makes it difficult for them to maximize the interoperability between different knowledge and limits
their performance.

The remaining variants (“-KMe”, “Atten”, and “Mean”) mainly focus on the application of different
modal knowledge in KRLM, with the significance of enhancing the knowledge context awareness
of the hidden state of the last KRL token output by KRLM. Therefore, removing these modules also
reduce the reasoning of KRLM, but the impact is not as significant as the variants analyzed above
that focus on the coordination of LLM and KG knowledge.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

FB-V1 WN-V1 NL0 NL100

Dataset

0.60

0.65

0.70

0.75

0.80

H
it@

10

(a) Composition of Predicted Scores
(KRLM() + struct())/2

struct()
KRLM()

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Value of

0.55

0.60

0.65

0.70

0.75

0.80

H
it@

10

(b) KL Divergence Weight

FB-V1
WN-V1
NL-0
NL-100

Figure 6: (a) Comparison of different approaches for obtaining predicted scores. (b) Experiments
on the proportion of distillation terms in Eq. (9).

In addition to the ablation experiments in Section 5.3, we also compare the impact of different
prediction score acquisition methods on the final reasoning of the model. Figure 6(a) shows three
methods for obtaining prediction scores. Our KRLM uses a combination of Eqs. (3) and (9), i.e.
SKRLM(·)+Sstruct(·)

2 , to obtain the final prediction scores. SKRLM(·) and Sstruct(·) represent obtaining the
final predicted scores of entities using only Eqs. (9) and (3), respectively. Obviously, using a single
scoring function can lower the final prediction results of the model. The main reason may be that
although we use knowledge mutual distillation in Eq. (10) to align the predicted distributions of
KRLM and the knowledge encoder, they still have a preference for their respective modal knowl-
edge. Therefore, to fully integrate the model’s expected ratings of entities in different modalities,
we use simple average aggregation to achieve effective prediction.

J.3 ANALYSIS OF THE WEIGHT OF KNOWLEDGE DISTILLATION

Figure 6(b) provides the performance of KRLM for different values of λ in Eq. (10). Although
the influence of the weight of KL divergence term on model training is not emphasized in relevant
literature (Zhang et al., 2018), our experiment still demonstrates the importance of balancing target
loss and KL divergence. Therefore, in practical implementation, we uniformly set λ = 0.5.

J.4 ANALYSIS ON SPARSE KG REASONING

As shown in Tables 7, 8, and 9, among all the datasets involved in the experiment, FB15k237 had
the highest graph density (1.29 × 10−3), while the graph density of the other inductive datasets
was concentrated between 10−4 and 10−5. Tables 12 and 13 show the Hits@10 and MRR of each
method on 25 inductive datasets, where our KRLM achieves SOTA on most of them, demonstrating
KRLM’s inference advantage on sparse KGs.

In addition, we collect three sparse KG datasets (Lv et al., 2020) derived from FB15k237
(FB15k237 10, FB15k237 20, and FB15k237 50), and conduct further zero-shot sparse-KG rea-
soning experiments with KRLM on these datasets. The detailed results are presented in Table 14.

Overall, existing KGFM models perform significantly better than supervised SOTA KG reasoning
models on sparse KGs, but they do not show clear advantages on dense ones. We attribute this to the
relational GNN module in KGFM (Eq. (1)), which is able to induce more generalizable structural
semantics from the KG and thus provides additional information for reasoning over sparse KGs.
After injecting the inherent knowledge of LLMs, LLM-based KGFMs can further supply dense
semantic support to sparse KGs, leading to additional performance gains.

J.5 QUANTITATIVE EVALUATION OF KNOWLEDGE DISTORTION

We begin by defining the evaluation metric for knowledge distortion, namely the Distortion Rate
(DR).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 14: Detailed performance of each model on sparse KG datasets. “PT” means a model is
pre-trained by the three transductive dataset show in Table 7. Black bold indicates the best result.

Datasets
(density)

Supervised
SOTA

ULTRA
(PT)

MOTIF
(PT)

TRIX
(PT) MKGL PROLINK

(Llama2-7b)
KRLM

(PT)
FB15k237 10
(2.11× 10−4)

Hit@10 0.337 0.398 0.384 0.393 - 0.383 0.409
MRR 0.219 0.248 0.236 0.246 - 0.238 0.243

FB15k237 20
(3.14× 10−4)

Hit@10 0.391 0.436 0.422 0.430 - 0.404 0.424
MRR 0.247 0.272 0.259 0.269 - 0.262 0.269

FB15k237 50
(6.79× 10−4)

Hit@10 0.458 0.526 0.508 0.521 - 0.529 0.526
MRR 0.293 0.324 0.312 0.321 - 0.324 0.328

FB15k237
(1.29× 10−3)

Hit@10 0.599 0.564 0.550 0.559 0.591 - 0.554
MRR 0.415 0.368 0.357 0.366 0.410 - 0.381

Table 15: Detailed performance of each model on sparse KG datasets for knowledge distortion.
“PT” means a model is pre-trained by the three transductive dataset show in Table 7. Black bold
indicates the best result.

FB15k237 10 testing triplets
under different background KGs

ULTRA
(PT)

PROLINK
(Llama2-7b as backbone LLM)

KRLM
(PT)

FB15k237 10
Hit@10 0.398 0.383 0.409
MRR 0.248 0.238 0.243
DR 471.42 612.78 297.01

FB15k237
Hit@10 0.668 0.668 0.665
MRR 0.469 0.471 0.479

DR is used to measure the misjudgment rate of the model before and after changes in KG structure,
reflecting the model’s ability to autonomously coordinate with KG context. For a query triplet
q = (h, r, ?) ∈ T , let t be the ground truth. Suppose the model assigns a ranking score s(q)1 to t on a
clean KG and a score s(q)2 on a noisy KG. If s(q)2 > s

(q)
1 , the distortion rate for this query is recorded

as s(q)2 − s
(q)
1 . The overall DR of the model on the noisy KG is given by

∑
q∈T max(0,s

(q)
2 −s

(q)
1)

|T | , with
lower values indicating better performance.

According to Appendix J.4, we use FB15k237 10 (Lv et al., 2020) as a sparse dataset extracted
from FB15k237. Then, we test the query triplets of FB15k237 10 using the background KGs of
FB15k237 and FB15k237 10, respectively. Table 14 reports the performance of structural learning-
based (ULTRA) and LLM-based (PROLINK) KGFMs under the pre-trained setting.

Evidently, sparse KGs significantly constrain the reasoning of models due to the limited contextual
evidence they can provide, leading to failures on query triplets that would otherwise be manageable.
In this scenario, the structural learning capability of GNN modules becomes particularly crucial,
enabling ULTRA and KRLM to capture implicit structural contexts in sparse KGs and thereby mit-
igate reasoning errors. In contrast, PROLINK’s explicit prompt-based contextual learning mecha-
nism struggles to extract information highly relevant to the ground truth from the limited number of
available KG paths.

J.6 ADAPTIVE ANALYSIS ON DIFFERENT LLM BACKBONES

We select Llama-2-7b-chat-hf as the backbone in our KRLM to ensure consistency with LLM-based
baselines, thereby allowing us to more clearly demonstrate the effectiveness of our proposed method.

To verify the adaptability of the proposed components, we additionally select Mistral-7B-Instruct-
v3.0 and Llama-3.1-8B-Instruct as alternative LLM backbones to examine the generality of the
knowledge coordination mechanism in our KRLM. We conduct end-to-end training from scratch on
four lightweight inductive datasets. The Hit@10 results of all models are summarized in Table 16.
The results show that our knowledge coordination mechanism is broadly applicable across different
LLM backbones, and it consistently yields improvements over most LLM-based KGFMs.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 16: Hit@10 of KRLM under different LLM backbones.
Dataset Supervised

SOTA ULTRA MKGL
(Llama-2-7b)

PROLINK
(Llama-2-7b)

KRLM
(Llama-2-7b)

KRLM
(Mistral-7b)

KRLM
(Llama-3.1-8b)

FB-V1 0.589 0.670 0.595 0.692 0.705 0.696 0.708
WN-V1 0.826 0.793 0.822 0.788 0.801 0.805 0.808

NL-0 0.506 0.551 - 0.550 0.591 0.585 0.595
NL-100 0.431 0.684 - 0.684 0.688 0.692 0.689

0 1 0 2 0 3 0 4 0

0.0030 0.0028 0.0026 0.0024 0.0022 0.0020 0.0018 0.0016

0 1 0 2 0 3 0 4 0

Query triplet: <Entity: Shirley Ann Russell>, <Relation: inverse of contains>, ?

Ground truth: <Entity: Louisiana>

Top-1 Prediction: <Entity: Louisiana>
<Entity: Louisiana> is in the knowledge memory

<Entity: Duran Duran> is not in the knowledge memory

Query triplet: <Entity:Parlophone>, <Relation: artist>, ?

Ground truth: <Entity: Duran Duran >

Top-1 Prediction: <Entity: Mike Mogis>

Prediction ranking of ground truth: 33
<Entity: Mike Mogis> is in the knowledge memory

(a) KRLM hits ground truth. KRLM can mine potential correct results from knowledge memory

(b) KRLM did not hit ground truth. When the correct result is not in knowledge memory, KRLM

attempts to aggregate the context of ground truth from other candidate entities

Figure 7: Visualization of the attention weights over 50 candidate entities in the knowledge mem-
ory within a KRL attention layer, illustrating cases where KRLM reasoning succeeds and fails,
respectively. (a) KRLM assigns the highest attention weights to the potential answers it finds in
the knowledge memory. (b) If the memory lacks potential answers, KRLM attempt to aggregate a
broader set of candidate entities to obtain the knowledge context of the ground-truth.

J.7 CASE STUDY AND ERROR ANALYSIS

This section further analyzes the reasoning mechanism of KRLM from the perspectives of error
analysis and case study.

Let’s begin with a visual case study. Figure 7 shows the attention weights of candidate entities
within the knowledge memory in a KRL attention layer under correct/incorrect reasoning scenarios.
Intuitively, when the knowledge memory contains the ground truth entity (included in the top-50
entities selected by Eq. (3)), KRLM tends to highlight its attention weight (shown in Figure 7(a)),
even though it is not given the highest score by Eq. (3) among the top-50 entities. This means that
KRLM does not rely solely on the scoring mechanism of Eq. (3), it can further filter information in
the knowledge memory based on more complex in-context learning in subsequent modules.

In contrast, if the knowledge memory lacks the ground truth, KRLM automatically broadens its
attention to include additional candidate entities. As shown in Figure 7(b), this yields far more high-
attention weights than in Figure 7(a). By expanding its focus, the model gathers as much reasoning
evidence as possible from a wider knowledge context. Although KRLM still fails to infer the ground
truth correctly in Figure 7(b), it nonetheless boosts the ranking of the ground truth dramatically (from
beyond 50th place to 33rd place).

Furthermore, we explore the universality of the above phenomenon based on the case study in Fig-
ure 7. We classify all triplets into two groups, “#Easy” and “#Hard”, depending on whether their
ground-truth entities are present in the knowledge memory. Table 10 presents the performance of
KRLM for each group. Obviously, KRLM tends to correctly reason for “#Easy” triplets in the vast
majority of cases, while the Hit@10 of reasoning for “#Hard” triplets tends to approach 1%, which

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 17: Reasoning results of KRLM (PT) for different categories of query triplets in each dataset.
“#Easy” means that the ground truth of a triplet is collected into the knowledge memory, while
“#Hard” means the opposite.

Datasets Hit@10 MRR
#Easy #Hard #Easy #Hard

FB-V1 0.857 0.007 0.658 0.010
FB-V2 0.888 0.074 0.660 0.022
FB-V3 0.892 0.009 0.674 0.011
FB-V4 0.878 0.016 0.639 0.013

NELL-V1 0.876 0.950 0.832 0.701
NELL-V2 0.866 0.047 0.661 0.022
NELL-V3 0.887 0.179 0.699 0.084
NELL-V4 0.842 0.057 0.635 0.018
WN-V1 0.932 0.000 0.827 0.003
WN-V2 0.923 0.008 0.816 0.005
WN-V3 0.850 0.004 0.650 0.006
WN-V4 0.924 0.001 0.829 0.003
FB-25 0.835 0.022 0.515 0.018
FB-50 0.776 0.024 0.490 0.018
FB-75 0.827 0.070 0.564 0.028

FB-100 0.856 0.068 0.598 0.027
NL-0 0.758 0.022 0.502 0.027
NL-25 0.763 0.292 0.536 0.087
NL-50 0.801 0.016 0.565 0.020
NL-75 0.715 0.010 0.465 0.010

NL-100 0.867 0.031 0.607 0.019
WK-25 0.778 0.005 0.491 0.016
WK-50 0.631 0.003 0.338 0.006
WK-75 0.839 0.044 0.621 0.023

WK-100 0.688 0.006 0.427 0.007

is also the main source of errors made by KRLM. The above analysis indirectly reflects the impact
of candidate entity recall methods in the knowledge memory on KRLM reasoning.

K LIMITATIONS AND FUTURE WORK

KRLM provides a novel modeling paradigm for existing LLM-based KGR research, which involves
injecting KG representations into LLM components in different forms. However, the limitations
of KRLM in terms of reasoning cost hinder its application in a wider range of knowledge-based
reasoning environments (see Appendix G for analysis of reasoning complexity).

In the future, we plan to inject KG context into LLMs from the perspective of knowledge edit-
ing (Meng et al., 2023; Zhang et al., 2024a; Fang et al., 2025) such as the null-space projection (Fang
et al., 2025), this method only requires minimal computational overhead. In addition, as knowledge
editing directly affects the parameter-level knowledge in LLMs, it has the potential to make KG
context and LLM internal knowledge self-consistent.

Another way to alleviate the compute bottleneck is to use ULTRA (Galkin et al., 2024) as a relation
tokenizer and employ a smaller LLM, fine-tuned to treat relation embeddings as atomic tokens, as a
rule generator. The generated candidate KG rules can then be processed using a neuro-symbolic em-
bedding model for lightweight fuzzy-logical reasoning. This method can enhance the interpretability
of the model while optimizing inference time.

28

	Introduction
	Related Work
	Preliminaries
	Knowledge Reasoning Language Model
	KRL Tokenizer
	KRL Attention Layer
	Next-Entity Predictor
	Training and Reasoning

	Experiments
	Datasets, Baselines, and Experimental Settings
	Main Results (RQ1)
	Ablation Experiments (RQ2)
	Parameter Analysis (RQ3)

	Conclusion
	Ethics statement
	Reproducibility statement
	The Use of Large Language Models
	Design Details of KRL Instructions
	Modeling Details of KGFMs
	Relational Graph Construction
	KGFM Architecture

	Discussion of the KRL Attention Layer
	Discussion of the Next-entity Predictor
	Training Algorithm
	Computational Complexity
	Training Cost
	Inference Complexity

	Datasets
	Experimental Hyperparameter Settings
	Details Experimental Results
	Details Experimental Results on Inductive Datasets
	Details Ablation Analysis
	Analysis of the Weight of Knowledge Distillation
	Analysis on Sparse KG Reasoning
	Quantitative Evaluation of Knowledge Distortion
	Adaptive Analysis on Different LLM backbones
	Case Study and Error Analysis

	Limitations and Future Work

