Under review as a conference paper at ICLR 2026

KNOWLEDGE REASONING LANGUAGE MODEL: UNI-
FYING KNOWLEDGE AND LANGUAGE FOR INDUCTIVE
KNOWLEDGE GRAPH REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Inductive Knowledge Graph Reasoning (KGR) aims to discover facts in open-
domain KGs containing unknown entities and relations, which poses a challenge
for KGR models in comprehending uncertain KG components. Existing studies
have proposed Knowledge Graph Foundation Models (KGFMs) that learn struc-
tural invariances across KGs to handle this uncertainty. Recently, Large Lan-
guage Models (LLMs) have demonstrated strong capabilities for open-domain
knowledge reasoning. As a result, the latest research has focused on LLM-based
KGFMs that integrate LLM knowledge with KG context for inductive KGR. How-
ever, the intrinsic knowledge of LLMs may be overshadowed by sparse KG con-
text, leading to LLM knowledge distortion, which can cause irreversible damage
to model reasoning. Moreover, existing LLM-based KGR methods still struggle
to fully constrain generative hallucinations in LLMs, severely limiting the credi-
bility of reasoning results. To address these limitations, we propose a Knowledge
Reasoning Language Model (KRLM) that achieves unified coordination between
LLM knowledge and KG context throughout the KGR process. Specifically, we
design a Knowledge Reasoning Language (KRL) instruction format and a KRL
tokenizer to align LLM knowledge with KG representations. Then, we propose a
KRL attention layer that coordinates intrinsic LLM knowledge with additional KG
context through a dynamic knowledge memory mechanism. Finally, a structure-
aware next-entity predictor is proposed, which strictly constrains the reasoning
results within a trustworthy knowledge domain. Extensive experimental results
on 25 real-world inductive KGR datasets demonstrate the significant superiority
of the proposed KRLM! in both zero-shot reasoning and fine-tuning scenarios.

1 INTRODUCTION

Knowledge Graph Reasoning (KGR) (, ; s) is dedicated to uncovering
latent facts within KGs, offering mterpretable ev1dent1ary support for knowledge-driven applica-
tions (, ; s). Tradmonal KGR methods (e.g.,
rule-based (,) and embeddlng models (

,)) primarily reason facts within static closed-domain KGS makmg it dlfﬁcult for the
model to adapt to the evolution of real-world KGs. Therefore, existing studies develop inductive
KGR frameworks (,) to reason facts with entities and relations newly added to KGs.

The core of inductive KGR is to generalize the structural characteristics of training KGs to represent
unfamiliar entities and relations (; ,). However, the inherent domain
discrepancy across KGs leads to the 1nc0mpat1b1hty of structural characteristics during cross-KG de-
ployment (,), which limits the generalization of inductive KGR models. To cover
this challenge, recent research has proposed KG Foundation Models (KGFMs) (, ;

,) to capture the invariant representation of entities and rela-
tions across KGs In general, this invariance enables any entity or relation to be represented by its
relative structural context without relying on specific KG domains (,). This prop-
erty provides KGFMs with zero-shot learning capabilities, allowing them to handle open-domain
KGR effectively.

'Our source codes are available at ht tps: //anonymous . 4open.science/r/KRLM-EA36

https://anonymous.4open.science/r/KRLM-EA36

Under review as a conference paper at ICLR 2026

Instruction with explicit sparse KG contexts KRL Instruction
Given the following knowledge: e e e e e e e e e e e e m m e — ——— — — = —
Strucufral <Shirley Henderson, film_actor, Trainspotting> : Instruction: Define the word format for a new language as <Type: Texl 1
Knowledge »<Smrley Henderson, award_nomination, Paul Reubens> | Description>. Given the following vocabulary:
<Shirley Henderson, educational_institution, Guildhall School of Music and Drama> . IWord Type Textdescription Knowledge representation |
. O <Entity: Trainspotting> Entity ~ Trainspotting [Entity Embedding] 1
2
Reasoning the new fact: <Trainspotting, film_genre, ?> G2 ! <Relation film_genre> Relation film_genre [Relation Embedding] 1
Please complete the next word *?" in the given sentence: 1
1 <Entity: Trainspotting><Relation: film_genre>? I
@r LLM g? L Structm'al
Distorting the reasoning thought of LLM Knowledge
Okay, let's see. The user provided some existing facts about Shirley Henderson and wants . % ‘
me to complete the fact about the film genre of Trainspotting KRL Tokenizer /
Now, thinking about the genre. Trainspotting is often categorized as a dark comedy in the! H X %? ‘
genre of drama. But I should verify that. Shirley Henderson graduated from Guildhall KRL Attention Layer N /
School of Music and Drama and performed in Trainspotting, so drama makes sense. o A A g? ‘
But the way some scenes are portrayed, like the infamous toilet scene, might have a Next: Entlty Predictor /

<Entity: Dark Comedy>(
pipeline (b) Overall architecture of KRLM

So the answer should be <Trainspotting, film_genre, Drama:

satirical or darkly comedic edge. However, the primary genn&usually listed as drama.
(a) Primary LLM-based KGF

Figure 1: (a) Current LLM-based KGFMs overlook the necessity of establishing compatibility be-
tween sparse KG contexts and intrinsic knowledge in LLMs, which leads to knowledge distortion
by LLMs. (b) Compared to explicit sparse KG context prompts, KRLM injects implicit knowledge
representations into the reasoning instructions and LLM parameters, providing a more flexible envi-
ronment for LLM to adapt to external knowledge.

Large Language Models (LLMs), pre-trained on large- scale textual corpora, have been demonstrated
to achieve disruptive success on KGR (R s ;

,), which is attributed to their ability to master non- natural languages (
s ; s ; s ; s) (e.g., structural knowledge-aware
instructions (; ,)) Leveraging this advantage, the latest studies
propose LLM-based KGFMS (,) to conduct inductive KGR

tasks. These methods, by utilizing the powerful context awareness and knowledge emergence (
,) of LLMs, sufficiently capture implicit knowledge overlooked by primary KGFMs from
structural KG context, thereby significantly improving models on open-world fact reasoning.

Previous research on LLM-based KGFMs usually explicitly recasts incomplete facts as KG context-
aware instructions and conducts fact reasoning through LLM fine-tuning (,) or
prompt-based reasoning (,). Despite these accomplishments, existing LLM-based
KGFMs still suffer from significant knowledge distortion (R), i.e., the sparse contextual
evidence extracted from KGs may override the dense knowledge inherent in LLMs, which causes
irreversible damage to LLM reasoning. This issue primarily arises from the inadequate coordination
of the natural knowledge gap between KGs and LLMs, thereby hindering the generalizability of
LLM-based KGFMs across diverse KGR downstream tasks.

Figure 1(a) illustrates the knowledge distortion challenge in LLM-based KGFMs. In general, current
LLM-based KGFMs directly project sparse structural knowledge into a reasoning prompt, which
poses a latent risk of misleading LL.Ms by incomplete reasoning evidence. For example, LLM incor-
rectly regards “Guildhall School of Music and Drama”, the sole information related to “film_genre”,
as critical evidence. This toxic contextual association overrides the inherent knowledge of LLMs
(e.g., “dark comedy”), ultimately limiting model reasoning. In addition, although emergent knowl-
edge endows LLMs with adaptive capacity for open-world fact reasoning, this characteristic actually
increases the risk of generating out-of-scope hallucinations (; ,). This
result impacts the fairness and reliability of the model in evaluating across KGR tasks.

To address the aforementioned limitations, we propose a Knowledge Reasoning Language Model
(KRLM) to alleviate the knowledge distortion by coordinating the inherent knowledge of LLMs and
KGs throughout the entire KGR process. As shown in Figure 1(b), this knowledge coordination is
achieved through two aspects: reasoning instruction design and model fine-tuning. Specifically, we
first design a KRL-format instruction that aligns the intrinsic knowledge in LLMs (text description)
with the implicit knowledge representation through a vocabulary table. Next, we construct a KRL
tokenizer that converts entities and relations into unified KRL tokens, encapsulating both structural
and textual knowledge. We then propose a KRL attention layer that integrates the context within
KRL by coordinating the in-context learning module of a pre-trained LLM and a dynamic knowl-
edge memory mechanism. Finally, a structure-aware next-entity predictor is proposed to tightly
constrain the predicted facts to the given KG domain, ensuring the reliability and stability of the rea-
soning results. In addition, we adopt a collaborative training objective based on knowledge mutual
distillation (s ; s) to further coordinate different knowledge.

Our main contributions can be summarized as follows:

Under review as a conference paper at ICLR 2026

e This paper proposes a novel Knowledge Reasoning Language Model (KRLM) for extensive
KGR tasks. KRLM mitigates the knowledge distortion problem commonly faced by LLM-based
KGFMs in diverse downstream KGR tasks.

e We design a unified tokenizer for various representation encapsulation in KRL, which infinite
scalability of open-world entities/relations with constant-scale model parameter.

e We propose a KRL attention layer and a structure-aware next-entity predictor, which enables
LLMs to effectively coordinate pre-trained intrinsic knowledge with external structural knowl-
edge during the in-context learning process, ultimately allowing for reasoning with traceable
facts.

e Extensive experimental results on 28 datasets demonstrate that the proposed method exhibits
significant zero-shot learning and transfer capabilities in open-domain KGR scenarios.

2 RELATED WORK

In this section, we review the research roadmap of KGR, with a focus on comparing LLM-based
KGR models with our proposed KRLM on open-domain KGR.

A review of KGR. KGR is mainly divided into transductlve and inductive tasks. Traditional KGR
methods (s s) are dedicated to reason latent
facts in static KGs with ﬁmte sets of entlty and relanons Nowadays the dynamicity of real-world
KGs have led to the proposal of inductive KGR methods for reasoning unseen entities or relations
in facts. Previous inductive KGR methods (s ; R ;
,) can only generalize facts with new entities while unsu1table for unfamiliar re-
lations. Consequently, several methods (s ; ,) take the relative onto-
logical interaction of relations as a starting point to learn the structural invariance of relations in a
KG, thereby improving the model’s recognition of unknown relations. However, the most severe
challenge faced by the featurization strategies of the above inductive KGR methods rely on spe-
cific domain features of KGs (e.g., node degree or structural attribute similarity), which cannot be
transferred to KGs in any domain. To address this challenge, Mikhail et al. (,)
propose an concept called “knowledge graph foundation model”, which captures the structural
invariance of entities and relations cross KGs. Inspired by this, numerous KGFMs (,
,) have been proposed in recent years, which have achieved

remarkable Cross domam inductive KGR through zero-shot learning.

LLM-based KGR models. Unlike the above KGR models that solely focuses on KG structure,
LLMs can capture finer grained differences in KG context for distinguishing sub-KGs with similar
structures. Therefore, numerous studies have recently introduced LLMs to improve KGR models.

For example, CSProm-KG (.) and MKGL (R) use the prefix-tuning (
,) and LoRA (s) technique, respectively, to transfer LLMs to KGR sce-
narios. KICGPT (,) and PROLINK (,) utilize a large-small model

collaborative framework to integrate LLM planners and KG retrievers to achieve effective KGR.
Among then, MKGL and PROLINK sufficiently the emergent knowledge capability of LLMs (

s), which enables them to uncover more latent facts across open-domain KGs. This ad-
vantage makes them representative LLM-based KGFMs. However, given the natural representation
gaps between the inherent knowledge of LLMs and the structural knowledge of KGs, existing LLM-
based KGR methods typically face the problem of knowledge distortion, where sparse KG context
used for fact reasoning may interfere with LLM reasoning, which limits the performance of LLM-
based KGR models.

In contrast, the proposed KRLM comprehensively coordinates the inherent knowledge of LLMs and
the implicit knowledge representation of KGs from the perspectives of instruction construction and
model fine-tuning, overcoming the weakness of existing LLM-based KGFMs in unifying the internal
knowledge of LLM and the external KG representation, and improving the zero-shot learning ability
of LLM on cross-domain KGs during fine-tuning.

3 PRELIMINARIES
In this section, we introduce the background and main definitions related to this study.

Knowledge graphs and inductive knowledge graph reasoning. A knowledge graph is a multi-
relational directed graph with entities as nodes and relations as edges. Formally, a KG can be

Under review as a conference paper at ICLR 2026

o Query triplet: <Michael Jackson, genre, ?>

Knowledge Encoder ~ ~~ @®KRL Instruction PAA Module
Relauon GNN Entity GNN | Instruction: Define the word format for a new language as <Type: Text Description>. Suppose you <Entity: Michael Jackson> <Relation: genre>
| are a linguistic expert who are learning this new language. Given the following vocabulary: I -
h 1 Word Type Text description Knowledge representation ¥ [Embedding Table
P E> S 2O I <Entity: Michael Jackson> Entity Michael Jackson [Entity Embedding placeholder] ~g ~g
) 1 <Relation: genre> Relation genre [Relation Embedding placeholder] (N[5 oo Oogon
1 Please complete the next word *?" in the given sentence: 1
____________________ ' : ;E:;gzseMlchae‘ Jackson><Relation: genre>? : [PAAimean std [min | maxi
[L__Relation Embeddings] | 1 I <Entity: Michael Jackson><Relation: genre> | i i
E Entity Embeddings [P S ———— -%----------------
o - | @KRL Tokenizer KRL Attention layer
Scoring Function [Z /
=, = 1 Knowledge Encoder ” PAA Module I | Eopbkci?my | Input Tokens |
4'4 Entity scorese=p 0. RIS
7]
£ Next-entity Predictor 28 My |]|M
= i}
3 Projection Head | Relation ¥ g
' [[_PAAModule | Embeddings] | ((]= 0 um
o I £ 13 @ KRL Attention Iayer Attention matrix
=2} -
< [Entity GNN [1f B e T Qutput Toker:)
c 0 £ - TTRORA------ 00 - OO - MO
3 [Y N N N N e N L | L e T
= T Hidden E] £2
® Entity scores state || —2 @ Next-entity Predictor 2 [Output Tokens |

~~
<Entity: Artist>
[E] Frozen pre-trained parameters [1/[] word-level embedding of entity/relation 7711 [77] knowledge representation of entity/relation

Figure 2: Overall framework of KRLM. Given a query triplet, we first convert it to (1) a KRL
instruction that integrates inherent knowledge of LLMs and KGs and obtain its token embedding
sequence by (2) a KRL tokenizer. These tokens are then input into @ stacked KRL attention layers
for capturing the in-context hidden states within KRL. Next, (4) a next-entity predictor is used to
reason the entity word following KRL based on the last hidden state. (5) The training objective of
KRLM is to coordinate the inherent knowledge of LLM with structural knowledge representation.

represented as G = (€, R, T), where & = {e; } _,and R = {rj} , denote the sets of entities
and relations, respectively, and T = {< ep,r,e; > |en,er € E, 1 € ’R} is the set of triplets. Each
triplet represents a fact composed of a head entity ey, a tail entity e;, and a relation r that truly exists
between them. Given a KG Girain = (Etrain, Rerain, Ttrain) for training a KGR model, inductive
KGR tasks require the model to predict facts in an unobserved KG Giest = (Etest, Ritest, Ttest)s
WhGI'C Etest 7{ Etrain or Rtest # Rtrain~

Knowledge graph foundation models learn the structural invariance from KGs, which addresses
the domain shift between training and reasoning KGs in inductive KGR tasks. Typically, KGFMs
employ two Graph Neural Networks (GNN,. and GNN.) to build KG structure learning models (

,). Given a query triplet < e, 74,7 >€ G, the overall framework of
KGFMS can be summarized as:

R=GNN,({lj—,-1}]_,,R",G,), E =GNN.({Ii_y -4}, R.G), (1)

where I is an assert function and 1 € R? is the embedding of ones. KGFMs first construct a
relational graph G, = (R, R*, T*) with R as a node set and R* as an edge set, where R* is the

relative structure patterns of R in G (, ,) and R* € RIFIxd
represents the type embedding of relative structural patterns Afterwards, KGFMs use labeling
tricks (,) to obtain structurally invariant representations of all relations R € R/*¢,

Then, driven by 7, € R, the representation of r,, KGFMs summarize the structurally invariant
representations of all entities E € R’*¢. The detailed design of the relational graph and the KGFM
architecture are provided in Appendixs C.1 and C.2, respectively.

Knowledge reasoning language is a new language form that contains both the inherent corpus
knowledge in LLMs and the structural knowledge of KGs. As shown in Figure 2, a KRL instruc-
tion contains a global vocabulary that integrates the word-level forms, types, text descriptions, and
knowledge representations of entities and relations. This intuitive contextual comparison can assist
LLM understand unfamiliar elements in KRL instructions. When reasoning a fact, KRLM regards
the word-level forms of entities and relations as unique tokens and adds their indices into the LLM
tokenizer. Then, KRLM predicts a latent next word-level entity following the KRL instruction.
Refer Section 4 for processing details.

In addition, to alleviate the training costs may caused by the addition of word-level tokens for entities
and relations, we design a low-parametric method based on Principal Attribute Aggregation (PAA),

Under review as a conference paper at ICLR 2026

which enhances the representational completeness of word-level tokens through multi-view attribute
aggregation functions (,) of pre-trained tokens, as detailed in Section 4.1.

4 KNOWLEDGE REASONING LANGUAGE MODEL

In this section, we elaborate on the proposed KRLM in detail, which consists of three main compo-
nents (Figure 2): a KRL tokenizer (Section 4.1) based on a knowledge encoder and a PAA module,
a in-context learning module composed of stacked KRL attention layers (Section 4.2), and a GNN-
based next-entity predictor(Section 4.3). In the following sections, we first provide the design of
each module. Then, we illustrate the training strategy of KRLM (Section 4.4).

4.1 KRL TOKENIZER

As shown in Figure 2, a KRL instruction contains different categories of tokens. For the general
tokens, we map them to the corresponding embeddings according to the pre-trained embedding
table within a LLM. The word-level embeddings and knowledge representations of entities/relations
in KRL are obtained by the PAA mechanism and the knowledge encoder, respectively.

The PAA mechanism is used to obtain word-level embeddings of entities and relations. Here, we
use an entity as a case to introduce the details of PAA.

Let <Entity: Text description> be the word-level format of an entity, we can obtain its textual
token embedding sequence {t1,%2,...,tr} = Emb(TKN(< Entity: Text description >)), where
TKN(:) and Emb(-) are the text tokenizer and token embedding table of a LLM, respectively.
The PAA mechanism aggregates the different attributes of these token embeddings (i.e., mean,
max, min, and std attributes (,)) to obtain the word-level embedding of the entity
W, = PAA({tl,tQ, ...,tL})Z

PAA({t1,t2,...,tL}) = (| attr({t1, t3, ..., t1 }) | Whusion, 2)

attr€ {mean, max,min,std }

where || is a column-wise concatenation operation, ¢;, € R is a F-dimensional token embedding
in Emb(-), 5 = t7 Wiown» Waown € RF*? and Wrygion € R44*? are two trainable weight matrices.
The PAA mechanism can construct new entity/relation word-level embeddings without restrictions
under fixed training parameters, which effectively saves memory costs and is beneficial for handling
unknown entities/relations in inductive KGR tasks.

The knowledge encoder is a GNN-based KG structure learner that captures universal structural
representations of entities and relations. Given a query triplet < ey, 74,7 >€ G, we construct a
knowledge encoder according to Eq. (1), where we can obtain E and R, the knowledge representa-
tions of all entities and relations, respectively, based on < ey, 74, 7 >. In brief, GNN. and GNN,. in
Eq. (1) are both designed to S-layer NBFNet (,). The detailed design are provided in
Appendix C.2.

In addition, to inject relevant structural context in the KRL attention layer (Section 4.2), we construct
a MLP function Sgue(-) : R2? — R! to score the correlation between the structural knowledge of
entity e; € £ and the query triplet < ey, rq, 7 >:

scine = Swa([eillrq]), e € E, r,€R. 3)

The process of KRL tokenization is as follows: Given an input embeddings sequence of KRL
{we, , wr,, en, g} U {t1,t2, ..., 1}, where w,,,w,, € R? are the word-level embeddings of
en and 7, obtained by Eq. (2), es,r, € R? are the knowledge representations of e;, and r, ob-
tained by Eq. (1), respectively, and {¢1,¢2,....t,} € R™*F are the general text token embed-
dings of KRL containing the placeholders of {w., , w, ,ex,r,}. We first unify {we, , w, ,en, rq}
into the dimension F' that can be input into LLM and replace the corresponding placeholders in
{tl, t2, cey tm}l

'L’Eeh = word(weh), "-qu = word(qu)7 ey =]:strucl(eh)7 ?q =]:struct("‘q)

T = {t1,...,ta,’w5h,ta+1, ...,tb,eh,tb+1, ...,tc,’qu,thA, ..,,tz,Tq,terl, ...,weh,qu},

“

where Fyord (), Feruet(-) : RY — RE are trainable linear layers that map word-level and knowledge
embeddings of entities and relations to the LLM-dimensional space. T € R™*¥" are the input
sequence with m embeddings.

Under review as a conference paper at ICLR 2026

4.2 KRL ATTENTION LAYER

A KRL attention layer is an improvement on the standard LLM attention decoding module, which
deploys a knowledge memory mechanism to dynamically coordinate the LLM intrinsic knowledge
with the external KG representations in the in-context learning process. In this section, we elaborate
on the LLM attention decoding layer to introduce the knowledge memory mechanism.

The LLM attention decoding module performs preliminary contextual learning on textual tokens,
entity/relation word-level embeddings, and structural knowledge representations in KRL. To capture
the multi-view context of KRL, we first obtain T' by Eq. (4) and then input it into a LLM attention
decoding module in the n-th KRL attention layer, where n € [1, N|:

H(n—l)ch’l) [H(H—I)WI(:-)}T
VF

where Wé?n), Wl((n), W‘(,n) € RF*F are frozen pre-trained weight matrices in the n-th layer.
Winask € R™*™ is a casual mask matrix with a lower triangle value of 0 and the rest being —oc.

v = T, o™ = softmax (+ Wmask)H(n_l)W\(/n)’ ®)

The knowledge memory mechanism dynamically integrates structural knowledge contexts related
to the query triplet into Eq. (5). Specifically, we use Eq. (3) to obtain the knowledge representations

N
of top-K most relevant entity as a memory Ep.n = {ex|ex € 5[T0pK({sc£fr)uct}i:1)}, e, € E} €
RX*4 to guide the model learning richer KRL context, where TopK((-) obtains the indices of top-A
entities and F is obtained by Eq. (1). Overall, the n-th KRL attention layer can be represented as:

HO Y ME) BL|(HO WS H DWW+ W))
JE ’ (6)
H'"™ = A[Epn M ||[H" VW] 0 € [1,N]

H" =T, A = softmax(

where M, an) € RFxd M ‘(/") € R?*F are trainable weight matrices in the n-th KRL attention layer.

In specific settings, H (™) needs to be further processed by a feed forward network of the corre-
sponding layer in a LLM before it can be input into the next KRL attention layer. More discussion
of the knowledge memory mechanism is attached in Appendix D.

4.3 NEXT-ENTITY PREDICTOR

In a standard LLM next-token predictor, the hidden state of the last instruction token is transformed
into a probability distribution over the candidate tokens by applying a projection head P. However,
the inherent token vocabulary of a LLM does not completely overlap with the entity vocabulary of a
KG, which can result in out-of-scope predictions and compromise the fairness of model evaluation.
To address this issue, we propose a next-entity predictor that adapts the projection head P to a
specific KG domain via a structural knowledge decoder. This approach constrains the reasoning
results strictly within the entity vocabulary. Moreover, the knowledge decoder enables KRLM to
further coordinate the inherent pre-trained knowledge in P with KG representation.

Mapping the projection head to word-level embeddings. We use the pre-trained projection head
P in the next-token predictor of a LLM as the mapping vocabulary for the word-level embeddings
of all entities. Given a word-level format <Entity: Text description> of an entity e;, we obtain its
mapping embedding p;, similar to Eq. (2):

pr = PAA(P[TKN(< Entity: Text description >)]), @)
where PAA(+) is a parameter-independent module that has the same structure as the one in Eq. (2).

Knowledge decoder. This module decodes the projection head P into the specific KG through the
structural constraints of pj, avoiding the prediction of out-of-scope KG domain. In specific, we
build GNN,,, a S-layer entity GNN with the same structure as GNN, Eq. (1) to achieve this goal:

P =GNN,({Lich - pn}/_,, R, G) ®

where P € R'*? is the decoded projection matrix. R is the knowledge representation of relations
obtained by Eq. (1), which guides P to perceive structural knowledge.

Next-entity prediction. Given word-level formats <Entity: Text description> and <Relation:
Text description> of an entity e; and a relation r,, respectively, we construct a MLP function

Under review as a conference paper at ICLR 2026

Skrim(-) @ R3% — R! to predict next entity scores of a KRL ending with “<Entity: Text de-
scription><Relation: Text description>"":

sclin = Sxron (| Billrqllg(H N [m])]), ©)

where p; € P is the projection embedding of the entity e;; 7, € R is the knowledge embedding of
rq; H) ¢ R™*F ig the result of the N -layer KRL attention layer (Section 4.2), where m is the

length of an input KRL; H (") [m] is the hidden state of the last token; and g(-) : RF — R?is a
linear layer.

When reasoning the next entity, we average the results of two scoring functions (Egs. (3) and (9)) to
obtain the final predicted scores of all candidate entities and regard the entity with the highest score
as the predicted result.

4.4 TRAINING AND REASONING

Given a query triplet ¢ =< e, 74,7 > with the ground truth e;, the training objective is designed
as:

1 n
c=<1—A>[—1og<sc§£LM> o] 2 los(sc;,&m}+AKL<7>stmmH7>KRLM>
e en ENneg(7)

structural distillation

(10)

1
+ (1 -)‘) [- IOg (chltrzlcl) + |N (q)| Z IOg (1 s(lrucl):| +)‘KL(PKRLM”PNTULL)
MBI e €Neg (0)
KRL distillation

where scgfrlct and sc,(f}ZLM are obtained by Eqs (3) and (9), respectively, Meq(¢) is a negative sample

set of the query triplet ¢, A is a fixed weight used to balance the target loss and KL term, and
KL(P||Q) is used to calculate the KL divergence between distributions P and Q. Pgyuer and Pxrim
are two predicted score distributions of positive and negative targets.

Inspired by the mutual knowledge distillation frameworks (; ,), Eq.
(10) consists of two parts: structural distillation and KRL distillation. ThlS approach allows KRLM
to dynamically align textual context and structural knowledge in KRL during the training process,
thereby promoting the coordination of different modal knowledge in KRLM. The detailed training
algorithm and reasoning time complexity are provided in Appendixes F and G, respectively.

5 EXPERIMENTS

In this section, we demonstrate KRLM from the following research question: RQ1. Can KRLM ef-
fectively perform inductive KGR tasks on unseen KG under the zero-shot and fine-tuned conditions?
RQ2. Does the effectiveness of each module in KRLM be confirmed, including the knowledge en-
coder, the PAA module, KRL attention layers, the knowledge decoder, and the training approach?
RQ3. Is the hyperparameters set in KRLM effective?

5.1 DATASETS, BASELINES, AND EXPERIMENTAL SETTINGS

Datasets. To verify the ability of KRLM to reason facts on unseen KGs, we conduct evaluations on
28 datasets. According to the overlap level between the train KG and the test KG, these datasets can
be divided into the following three categories:

e 12 Inductive Entity (IndE) datasets from GralL (s): FB-V1, FB-V2, FB-V3,
FB-V4, NELL-V1, NELL-V2, NELL-V3, NELL-V4, WN-V1, WN-V2, WN-V3, and WN-V4,
e 13 Inductive Entity and Relation (IndER) datasets from InGram (,): FB-25,

FB-50, FB-75, FB-100, NL-0, NL-25, NL-50, NL-75, NL-100, WK-25, WK-50, WK-75, and
WK-100.

e Three Transductive datasets for pre-training: FBI15k-237 (,),
WNI8RR (,), CoDEx-M (,).

Under review as a conference paper at ICLR 2026

Table 1: Average performance of each model on inductive datasets. “PT”, “FT”, and “E2E” mean
“pre-training”, “fine-tuning”, and “end-to-end training from scratch” respectively. Black bold and
underline indicate the best and second best results. “-”” indicates that a model is not suitable for the

KGR task, or the corresponding source does not have reproduction conditions.

Inductive Supervised ULTRA ULTRA MOTIF MOTIF TRIX TRIX .~ PROLINK KRLM KRLM
Datasets SOTA (PT) (FT) (PT) (FT) (PT) (FD) (Llama2-7b) (PT) _ (FT)
IndE [Hit@10] 0675 0703 0.724 __ 0.721 0740 0732 0734 0726 0733 0.738_ 0.751
(12 datasets)| MRR | 0527 0549 0566 0557 0582 0579 0583 0578 0562 0583 0590
IndER |[Hit@10] 0347 0536 0542 0519 0538 0535 0.536 - 0542 0546 0.556
(13 datasets)| MRR | 0209 03520350 __ 0335 0349 0353 0353 - 0354 0361 0.367
Transductive | ULTRA MOTIF TRIX CSProm-KG KICGPT ..~ " KG-LLM -~ PROLINK KRLM KRLM
Datasets (PT) __(PT) (PT) _ (BERT) (GPT3.5) (Llama2-7b) (Llama2-7b) (PT) (E2E)
FBlSk.37 @0 0564 0550 0559 0538 0554 0.565 - 0.591 - 0554 0.568
MRR | 0368 0357 0366 __ 0358 0412 0.420 - 0410 - 03810394

WNISRR |BL@I0[0614 0628 0611 0.678 0.641 - 0503 0.656 - 0610 0.659
MRR | 0480 0529 0514 0575 0549 - 0427 0552 - 0506 0.552

Hit@10] 0525 0517 0.521 - - - - - - 0501 0.526

CoDEx-M —yer—T0372 0361 0365 - - - - - - 0349 0.367
According to previous studies (,), we pre-train KRLM using three transductive

datasets and conduct both zero-shot and fine-tuning evaluations on IndE and IndER datasets. De-
tailed dataset descriptions and statistics are provided in Appendix H.

9%

Baselines. We compare KRLM under three versions (“pre-training”, “fine-tuning”, and ‘“‘end-to-
end training from scratch”) with three categories baselines that can handle inductive KGR tasks:

(1) State-of-the-art supervised models reported by ULTRA (s). We collect their

detailed performance on each dataset in Appendix H. (2) KGFMs focusing on KG structural learn-

ing, including ULTRA (,), MOTIF (,), and TRIX (R
). (3) Latest LLM-based models, including MKGL (s) and PROLINK (

s). In addition, we introduce four LM-based KGR methods, CSProm-KG (R

), KICGPT (,), GPT-4 (,), and KG-LLM (,)

designed for end-to-end transductive KGR training/evaluation.

Evaluation settings. Based on previous work (s), we adopt Mean Recurrent Rank
(MRR) and top-10 Hit rate (Hit@10) as evaluation metrics. For each test triplet < ej,rq,e; >, a
model simultaneously predict head and tail entities, i.e. < ep,7q,7 > and < e, —rq, 7 >, where
—14 is the inverse relation of . In the zero-shot evaluation, we use the pre-trained model with the
best validation checkpoint to obtain MRR and Hit@ 10 on each dataset. In the fine-tuning condition,
we further train the best validation checkpoint on each dataset for evaluation.

Implementation settings. We pre-train and fine-tune KRLM using 4 A100 (40GB) GPUs with
the batch size is 4 per GPU. The total training epochs is set to 20 for pre-training. The optimizer
is default to AdamW with a 5e-4 learning rate, a 1% warmup step setting and a 4-step gradient
accumulation. The more detailed settings of model hyperparameters are provided in Appendix I.

5.2 MAIN RESULTS (RQ1) IndE

In this section, we report the &
performance of KRLM on dif- ~
ferent KGR tasks and compare
it with the SOTA baselines
mentioned in Section 5.1. LN mE LB EE R iR
Inductive KGR tasks. Ta- N AW FRRSTRTS NS ML NRO WL FRS0 W WETS WESt wielm
ble 1 and Figure 3 show I KRLM fine-tune [KRLM pre-train I Supervised SOTA
the overall performance of
KRLM on inductive datasets
(the detailed experimental re-
sults are provided in Appendix J.1). Obviouslyy, KGFM achieves the best average per-
formance in the fine-tuning scenario. Besides, KRLM outperforms 87% of the baselines
in zero-shot scenarios and even surpasses some fine-tuned KGFMs. This success can be attributed
to KRLM’s ability to leverage the pre-trained intrinsic knowledge of LLMs as an extension of the

NELL-VI WN-VI ~ WN-V2 NELL-V2 NELL-V4 NELL-V3 FB-V2 WN-V4 FB-VI FB-V4 FB-V3 WN-V3

Hit@10

Figure 3: Comparison of our KRLM with supervised SOTA base-
lines on every inductive dataset.

Under review as a conference paper at ICLR 2026

invariant knowledge representation in KGFMs, which enables the model to more effectively distin-
guish unfamiliar entities and relations in unknown KGs. Further experimental analysis of LLM-
based KGFMs reveals that MKGL fixes the number of the relation vocabulary, making it unsuitable
for the IndER task and limiting its generality. In contrast, the competitive PROLINK utilizes a LLM
to plan reasoning conditions and execute pre-trained ULTRA to reason facts. However, PROLINK
overlooks the incompatibility between sparse KG context and LLM inherent knowledge, leading to
knowledge distortion and slightly inferior performance on some datasets compared to KRLM. More
detailed analysis of KRLM are attached in the Appendixes J.1 and J.7.

Transductive KGR tasks.) . .
The transductive KGR per- Table 2: Hit@10 of each ablation variant. “E2E” means “end-to-

formance of KRLM and e¢nd training”. “KEn”, “KMe”, and “KDe” indicate the knowledge
baselines are provided in encoder, knowledge memory, and knowledge decoder in KRLM,
Table 1. The results show respectively. “Atten” and “Mean” represent replacing the PAA
that there is no significant module with attentive pooling and mean pooling, respectively.
positive correlation between “KD” and “KL” is the KRL distillation and KL divergence part

the KGR performance of a 1MEQ. (14), respectively.
model in the closed domain
(transductive) and the open Datasets

KRLM Main Component PAA Module Loss

)) X X (E2E) | KEn -KMe -KDe | Atten Mean | -KD KL -KD-KL
domain (inductive), which 5570705 0614 0.691 0674 | 069 0.692 | 0699 0672 0665
may be related to the tendency ~WN-vi | 0.801 | 0.710 0.780 0.764 | 0.789 0.787 | 0.782 0.798 _ 0.761
of a model to overfit during NL-0 | 0591 | 0537 0583 0570 | 0588 0584 | 0554 0533 0.535
training in closed domain _NL-100 | 0.688 | 0640 0.667 0.669 | 0.685 (0.683 | 0.666 0678 0660

KGR scenarios.

5.3 ABLATION EXPERIMENTS (RQ2)

This section mainly discusses the effectiveness of various modules in KRLM. The designed ablation
variants and experimental results are shown in Table 2. Overall, the effectiveness of each ablation
variant is inferior to that of the complete KRLM, especially in some important structural knowledge
learning modules such as “KEn”, “KDe”, and “KD”. Appendix J.2 provides detailed experimental
settings and more results of ablation experiments.

5.4 PARAMETER ANALYSIS (RQ3)

This section discusses the influ- Top-K Entity Memory GNN Layer

ence of the main hyperparame- *%] 081

ters in KRLM. As shown in Fig- 0.75 1

ure 4, the scale K of knowl- S,/ ~ e e ——e/Z07] ﬁ
edge memory in the KRL atten- = D = I

tion layer is set from 10 to 70. 0631 P 061 -t

When K is set to 50 or above, 0.601 P S— 43 W

there is no significant improve- 0 30 50 60 70 2 4 6 8
ment in model. Therefore, we Entity Memory Scale K Layer Number S

set K = 50 in the experiments. Figure 4: Performance of KRLM with different hyperparameters.

In addition, to ensure the expression consistency of structured knowledge in the model, the layer
numbers for the three GNNs in KRLM is uniformly set to .S. Figure 4 demonstrates that the model
is generally optimal when S = 6, and too few or too many layers may lead to underfitting or over-
smoothing of the GNN model. The detailed parameter analysis of A in Eq. (10) is attached in
Appendix J.3.

6 CONCLUSION

This paper first discusses the knowledge distortion challenge faced by LLM-based KGFMs in in-
ductive KGR tasks, i.e., these models are difficult to coordinate internal knowledge of LLMs and
external KG context, where sparse KG context may override LLM’s internal knowledge, thereby
seriously damaging the credibility of reasoning results. Based on this, we propose a novel Knowl-
edge Reasoning Language Model (KRLM), which comprehensively enhances the inherent knowl-
edge collaboration between LLMs and KGs from four aspects: fine-tuning instruction construction,
in-context learning, next-token prediction, and model training. Extensive experiments confirm the
superiority of KRLM in terms of both end-to-end fine-tuning and zero-shot transfer scenarios. Ap-
pendix K provides the limitations of KRLM and possible future expansion directions.

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

‘We confirm that our work has been conducted in accordance with the ICLR Code of Ethics (https:
//iclr.cc/public/CodeOfEthics). The study does not involve human subjects, sensitive
personal data, or experiments that may cause harm to individuals or groups. The datasets used are
publicly available and no personally identifiable information is included. Our methodology and
findings are intended for academic purposes and do not pose foreseeable risks of misuse. We have
carefully considered issues of fairness, bias, and privacy, and to the best of our knowledge, our
research maintains integrity and complies with all applicable ethical standards.

8 REPRODUCIBILITY STATEMENT

We confirm that our study has reproducibility. Specifically, we have first submitted our desensitized
project on anonymous GitHub (https://anonymous.4open.science/r/KRLM-EA36).
The detailed pseudocode of the algorithm is provided in Appendix F. In addition, we provide
specific details of the experimental conclusions in the main text, including dataset partitioning
(Appendix H), hyperparameter settings (Appendix I), and ablation variant settings (Appendix J.2).

REFERENCES

Johan J. Bolhuis, Stephen Crain, Sandiway Fong, and Andrea Moro. Three Reasons Why Al Doesn’t
Model Human Language. Nature, 627(8004):489—489, 2024.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating Embeddings for Modeling Multi-relational Data. In NeurIPS, pp. 2787-2795. Curran
Associates, Inc., 2013.

Chen Chen, Yufei Wang, Aixin Sun, Bing Li, and Kwok-Yan Lam. Dipping PLMs Sauce: Bridging
Structure and Text for Effective Knowledge Graph Completion via Conditional Soft Prompting.
In Findings of ACL, pp. 11489—-11503. Association for Computational Linguistics, 2023.

Yuanning Cui, Zequn Sun, and Wei Hu. A Prompt-Based Knowledge Graph Foundation Model for
Universal In-Context Reasoning. In NeurIPS, pp. 7095-7124. Curran Associates, Inc., 2024.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. Go for a Walk and Arrive at the Answer: Reasoning
Over Paths in Knowledge Bases using Reinforcement Learning. In /CLR. OpenReview.net, 2018.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2D
Knowledge Graph Embeddings. In AAAI pp. 1811-1818. AAAI Press, 2018.

Wentao Ding, Jinmao Li, Liangchuan Luo, and Yuzhong Qu. Enhancing Complex Question Answer-
ing over Knowledge Graphs through Evidence Pattern Retrieval. In ACM WWW, pp. 2106-2115.
ACM, 2024.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and
Tat-Seng Chua. AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models.
In ICLR. OpenReview.net, 2025.

Mikhail Galkin, Etienne G. Denis, Jiapeng Wu, and William L. Hamilton. NodePiece: Composi-
tional and Parameter-Efficient Representations of Large Knowledge Graphs. In /CLR. OpenRe-
view.net, 2022.

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards Foundation
Models for Knowledge Graph Reasoning. In /CLR. OpenReview.net, 2024.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.

Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation. Proc. VLDB
Endow., 17(5):1132-1145, 2024.

10

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/public/CodeOfEthics
https://anonymous.4open.science/r/KRLM-EA36

Under review as a conference paper at ICLR 2026

Yuxia Geng, Jiaoyan Chen, Jeff Z. Pan, Mingyang Chen, Song Jiang, Wen Zhang, and Huajun
Chen. Relational Message Passing for Fully Inductive Knowledge Graph Completion. In ICDE,
pp. 1221-1233. IEEE, 2023.

Lingbing Guo, Zhongpu Bo, Zhuo Chen, Yichi Zhang, Jiaoyan Chen, Yarong Lan, Mengshu Sun,
Zhiqgiang Zhang, Yangyifei Luo, Qian Li, Qiang Zhang, Wen Zhang, and Huajun Chen. MKGL.:
Mastery of a Three-Word Language. In NeurIPS, volume 37, pp. 140509-140534. Curran Asso-
ciates, Inc., 2024.

Hojae Han, Jaejin Kim, Jaeseok Yoo, Youngwon Lee, and Seung-won Hwang. ArchCode: Incor-
porating Software Requirements in Code Generation with Large Language Models. In ACL, pp.
13520-13552. Association for Computational Linguistics, 2024.

Chengming Hu, Xuan Li, Dan Liu, Haolun Wu, Xi Chen, Ju Wang, and Xue Liu. Teacher-
Student Architecture for Knowledge Distillation: A Survey. arXiv preprint arXiv:2308.04268,
arXiv:2308.04268, 2023.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In ICLR. OpenRe-
view.net, 2022.

Xingyue Huang, Pablo Barceld, Michael M. Bronstein, Ismail ilkan Ceylan, Mikhail Galkin, Juan L
Reutter, and Miguel Romero Orth. How Expressive are Knowledge Graph Foundation Models?
arXiv preprint, arXiv:2502.13339, 2025.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A Survey on Knowledge
Graphs: Representation, Acquisition, and Applications. IEEE TNNLS, 33(2):494-514, 2022.

Jiho Kim, Yeonsu Kwon, Yohan Jo, and Edward Choi. KG-GPT: A General Framework for Rea-
soning on Knowledge Graphs Using Large Language Models. In Findings of EMNLP, pp. 9410—
9421. Association for Computational Linguistics, 2023.

Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang. InGram: Inductive Knowledge Graph
Embedding via Relation Graphs. In ICML, volume 202, pp. 18796-18809. PMLR, 2023.

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In
ACL, pp. 4582-4597. Association for Computational Linguistics, 2021.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, Xi Chen, and Huajun Chen. Unveiling the
Pitfalls of Knowledge Editing for Large Language Models. In ICLR. OpenReview.net, 2024.

Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang Zhou, Xinwang
Liu, Fuchun Sun, and Kunlun He. A Survey of Knowledge Graph Reasoning on Graph Types:
Static, Dynamic, and Multi-Modal. IEEE TPAMI, 46(12):9456-9478, 2024.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on Graphs: Faithful
and Interpretable Large Language Model Reasoning. In ICLR. OpenReview.net, 2024.

Xin Lv, Xu Han, Lei Hou, Juanzi Li, Zhiyuan Liu, Wei Zhang, Yichi Zhang, Hao Kong, and Suhui
Wu. Dynamic anticipation and completion for multi-hop reasoning over sparse knowledge graph.
In EMNLP, pp. 5694-5703. Association for Computational Linguistics, 2020.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-
Editing Memory in a Transformer. In /ICLR. OpenReview.net, 2023.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying Large
Language Models and Knowledge Graphs: A Roadmap. /IEEE TKDE, 36(7):3580-3599, 2024.

Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph Completion Bench-
mark. In EMNLP, pp. 8328-8350. Association for Computational Linguistics, 2020.

Zhiging Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge Graph Embedding
by Relational Rotation in Complex Space. In ICLR. OpenReview.net, 2019.

11

Under review as a conference paper at ICLR 2026

Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive Relation Prediction by
Subgraph Reasoning. In ICML, volume 119, pp. 9448-9457. PMLR, 2020.

Kristina Toutanova and Danqi Chen. Observed Versus Latent Features for Knowledge Base and Text
Inference. In Workshop on CVSC, pp. 57-66. ACL, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard. Com-
plex Embeddings for Simple Link Prediction. In ICML, volume 48 of JMLR Workshop and
Conference Proceedings, pp. 2071-2080. IMLR.org, 2016.

Jiapu Wang, Kai Sun, Linhao Luo, Wei Wei, Yongli Hu, Alan Wee-Chung Liew, Shirui Pan, and
Baocai Yin. Large language models-guided dynamic adaptation for temporal knowledge graph
reasoning. In NeurIPS, pp. 8384-8410. Curran Associates, Inc., 2024a.

Kai Wang, Yuwei Xu, Zhiyong Wu, and Sigiang Luo. LLM as Prompter: Low-resource Inductive
Reasoning on Arbitrary Knowledge Graphs. In Findings of ACL, pp. 3742-3759. Association for
Computational Linguistics, 2024b.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu. SimKGC: Simple Contrastive Knowledge
Graph Completion with Pre-trained Language Models. In ACL, pp. 4281-4294. Association for
Computational Linguistics, 2022.

Siyuan Wang, Zhongyu Wei, Meng Han, Zhihao Fan, Haijun Shan, Qi Zhang, and Xuanjing Huang.
Query Structure Modeling for Inductive Logical Reasoning Over Knowledge Graphs. In ACL,
pp- 4706-4718. Association for Computational Linguistics, 2023.

Yanbin Wei, Qiushi Huang, Yu Zhang, and James T. Kwok. KICGPT: Large Language Model with
Knowledge in Context for Knowledge Graph Completion. In Findings of EMNLP, pp. 8667-8683.
Association for Computational Linguistics, 2023.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding Entities and
Relations for Learning and Inference in Knowledge Bases. In /CLR. OpenReview.net, 2015.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable Learning of Logical Rules for Knowl-
edge Base Reasoning. In NeurIPS, pp. 2319-2328. Curran Associates, Inc., 2017.

Mohammad Yani and Adila Alfa Krisnadhi. Challenges, Techniques, and Trends of Simple Knowl-
edge Graph Question Answering: A Survey. Inf., 12(7):271, 2021.

Liang Yao, Jiazhen Peng, Chengsheng Mao, and Yuan Luo. Exploring Large Language Models for
Knowledge Graph Completion. In ICASSP, pp. 1-5. IEEE, 2025.

Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou,
Xi Chen, and Huajun Chen. InstructEdit: Instruction-Based Knowledge Editing for Large Lan-
guage Models. In IJCAI, pp. 6633—-6641. ijcai.org, 2024a.

Yichi Zhang, Zhuo Chen, Lingbing Guo, Yajing Xu, Wen Zhang, and Huajun Chen. Making Large
Language Models Perform Better in Knowledge Graph Completion. In ACM MM, pp. 233-242.
ACM, 2024b.

Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep Mutual Learning. In
CVPR, pp. 4320-4328. Computer Vision Foundation / IEEE Computer Society, 2018.

Yongqi Zhang and Quanming Yao. Knowledge Graph Reasoning with Relational Digraph. In ACM
WWW, pp. 912-924. ACM, 2022.

Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, and Bruno Ribeiro. TRIX: A More Expres-
sive Model for Zero-shot Domain Transfer in Knowledge Graphs. In LoG Conference. OpenRe-
view.net, 2024c.

Yuqi Zhu, Jia Li, Ge Li, Yunfei Zhao, Jia Li, Zhi Jin, and Hong Mei. Hot or Cold? Adaptive
Temperature Sampling for Code Generation with Large Language Models. In AAAI, pp. 437-
445. AAAI Press, 2024a.

12

Under review as a conference paper at ICLR 2026

Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi Yao, Shumin Deng, Huajun
Chen, and Ningyu Zhang. LLMs for Knowledge Graph Construction and Reasoning: Recent
Capabilities and Future Opportunities. World Wide Web (WWW), 27(5):58, 2024b.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, and Jian Tang. Neural Bellman-Ford
Networks: A General Graph Neural Network Framework for Link Prediction. In NeurlPS, pp.
29476-29490. Curran Associates, Inc., 2021.

Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-Symbolic Models for Log-
ical Queries on Knowledge Graphs. In ICML, volume 162 of Proceedings of Machine Learning
Research, pp. 27454-27478. PMLR, 2022.

Xingrui Zhuo, Jiapu Wang, Gongqging Wu, Shirui Pan, and Xindong Wu. Effective instruction
parsing plugin for complex logical query answering on knowledge graphs. In ACM WWW, pp.
4780-4792. ACM, 2025.

13

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) solely as an editing assistant to improve the grammar, clarity,
and concision of the manuscript. All technical contributions, experimental design, data processing,
evaluation, and conclusions reported in the paper were authored and verified by the human authors.
LLM-suggested edits were reviewed and accepted or modified by the authors; no numerical results,
figures, or analyses were generated or approved solely by the LLM.

B DESIGN DETAILS OF KRL INSTRUCTIONS

Given a query triplet (h,r,?), we first provide its schema of a KRL instruction below:

Schema of the KRL Instruction

Instruction: Define the word format for a new language as <Type: Text Description>. Suppose you
are a linguistic expert who are learning this new language. Given the following vocabulary:

Word|Type|Text description| Knowledge representation
<Entity: name of h>|Entity|description of h|[KG embedding of k]
<Relation: name of r>|Relation|description of 7|[KG embedding of r]

Please complete the next word °?” in the given sentence:
<Entity: name of h><Relation: name of r>?

Response: <Entity: name of h><Relation: name of r>

\. .

A KRL instruction consists of three types of tokens: word-level embeddings, KG embeddings, and
LLM-pretrained tokens.

e Word-level embeddings refer to the principal attribute aggregation result of the text strings of
entities and relations after looking up the LLM pretrained token table (refer to Eq. (2)). Given
an entity h expressed as the string “<Entity: name of h>", we feed this string into the LLM’s
tokenizer to obtain an embedding sequence [t1,to, ..., t,,] € R"*F. We then apply four pooling
operations, mean, std, max, and min, to obtain t,,cqn, tstds tmazs tmin € R A trainable MLP
layer encodes the concatenation of these pooled vectors into a representation of dimension F',
which serves as the word-level embedding of &, denoted as <Entity: name of h>. This design
avoids expanding the LLM’s pretrained embedding table to accommodate new entities, thereby
improving the model’s scalability and generalization ability.

e The KG embeddings are obtained from a GNN-based KG reasoning model. To enable zero-
shot generalization on unseen KGs, we adopt ULTRA (Galkin et al., 2024), a GNN-based KG
foundation model, to produce structural embeddings for entities and relations. These embeddings
are then projected through a trainable MLP layer to match the LLM hidden dimension /' and
injected into the KRL instruction as [KG embedding of ~] and [KG embedding of r].

e LLM pretrained tokens. These are standard tokens in the KRL instruction that fall outside the
above two categories and are directly provided by the pretrained LLM.

Because of the vocabulary table mapping the word-level tokens, KG embeddings, and LLM pre-

trained tokens, the KRL instruction is more concise explicit KG-context prompts, resulting in an
average length of only 118.75+5.14 in the 28 KG datasets.

C MODELING DETAILS OF KGFMSs

C.1 RELATIONAL GRAPH CONSTRUCTION
Unlike a typical KG G = (£, R, T), arelational graph is used to describe the relative states between

relations. According to the design of ULTRA (Galkin et al., 2024), the relative state of relations
in a relational graph is related to the entity attributes they share. For example, given two triplets

14

Under review as a conference paper at ICLR 2026

< hi,r1,t1 > and < eg, 79,1 >, 71 and ro share the same tail entity 1, so the relative state from
71 to 1o 18 “fail-to-tail” (12t). According to this setting, we can map G into four relational sub-graphs
that only contain a sirigle relative state: ghgt* = (73, {r;‘m},ﬁ:‘gt), g*hzh = (R, {r;‘@h}., ,}*Qh),
Gion = (.R, {riant: Tion), and' Giot = (R, {rja}> 7?2;)’ where 75, Th2ns Tt2n and 77y, %ndlcate
four relative states “head-to-tail”’, “head-to-head”, “tail-to-head”, and “tail-to-tail”, respectively.

Finally, we can obtain the relational graph G, = (R, R*, T*) in Eq. (1) by integrating Gnot, Gron.,
Gian» and Grop, where R = {rjio;, 7oy, T, Tiac) and T = Ty, U Tyl U Ty U Ty

C.2 KGFM ARCHITECTURE

As shown in Eq. (1), KGFM contain two structure learning modules (GNN, and GNN,.) for entities

and relations. Given a query triplet < ey, 74,7 >€ G and P = Li—g- 1%, we first design a S-layer
GNN model GNN,. for learning the invariance of the relational structure according to Eq. (1):

r$ = o(Update([r{"V||Agg(Mess(r* ™" r*)|r; € Ng, (rg), 7" € R*)])), s€[1,8], (1)

where Mess(-) is a non-parametric DistMult message function (,), Agg(-) represents
the sum aggregation operation, Update(-) : R2? — R is a trainable linear layer, and o(-) is a ReLU
activation function. G, is a relational graph defined in Eq. (1). The edges in G, are directed as
“head-to-tail”, “tail-to-head”, “head-to-head”, and “tail-to-tail” based on the shared entities (either
the head entity or tail entity) between the two relations in G (,) (The detailed
design are provided in Appendix C.1). Therefore, the edge embeddings are set to a trainable matrix
R* ¢ R**? to model the relative structures between two relations.

J
According to Eq. (11), we obtain the knowledge representation of relations R = {rj(-s) }j: . Simi-

larly, let ego) = I;—;, - R|q], we construct a S-layer GNN model GNN, for entity structure learning:
e} = o(Update([ef V|| Agg(Mess(el"), f)(r))e; € Ng(en),r € R)))), s €[1,5], (12)

where () : R? — R? is a non-linear function composed of a two-layer MLP with a relu function,
which can transform the structural embeddings of relations into representations that adapt to the
learning of entity structures in each layer of GNN,. Finally, we obtain the knowledge representation

i ()11
of entities E = {e;”’},_, by Eq. (12).

D DiscusSION OF THE KRL ATTENTION LAYER

This section elaborates on the effectiveness of the KRL attention mechanism from the perspective
of the last token in the KRL instruction. Overall, we hope that the hidden state of the last token in
KRL can simultaneously contain textual and structural knowledge contexts in KRL, which provide
a prerequisite for subsequent next-entity prediction.

Let the hidden state sequence of tokens obtained by the n-1 th KRL attention layer is H ("~ =

(h"D RY RS TYY. According to Eq. (5), without introducing the dynamic knowledge
memory, the hidden state of the last token obtained by the n-th KRL attention layer is:

m (n=1) g7 ()., p (n=1) gy (n)
v — Za-h("_l)W‘(/n) o — exp (< hm "W, h; Wi >) 5
m it) i ™)
= VE Y exp (< i VWS RTTIW) (13
j=1

where < -;- > is an inner product operation. Eq. (13) can be seen as in-context learning of tokens
within a KRL instruction (including textual tokens and structural knowledge representations), where
«; represents the scaling degree of contextual semantics for the last token.

However, the independent structural knowledge representation of the entity and relation in a KRL
instruction is too thin compared to the widely existing textual tokens, which can easily cause the
model to undervalue critical KG context when learning KRL instructions. To address this issue, we
propose a dynamic knowledge memory mechanism that injects extral KG structural context related
to the entity and relation in KRL into the in-context learning process in a KRL attention layer. Let

15

Under review as a conference paper at ICLR 2026

{ek}szl be a knowledge memory containing top-/C entity embeddings obtained by Egs. (1) and (3).
According to Eq. (6), we can reconstruct Eq. (13) into Eq. (14):

m K
hG) =3 aih"IW + 3 Bren MY,

=1 k=1

exp (< i VWS R IW >)

“= U 1 1 K 1 ’
VE[Y exp (< iy "WERTTIW Sy 4 3 exp (< bl VMG e >)) (14
j=1 k=1
n—1 n
B — exp (< hn)Méz);ek >)

m K '
\/f[Z exp (< hgg_l)Wén);h;"_l)W,((") >)+ > exp(< hﬁ,’f—l)Mé");ez >)]

Jj=1 z=1
By utilizing additional KG context, Eq. (14) coordinates the influence of LLM internal knowledge

and external KG context on hgﬁ) through semantic space scaling and translation. In specific, Eq.
(14) utilizes the knowledge memory to scale the contextual importance coefficient a; of each token
in KRL, which alleviates the contextual impact of large-scale textual tokens on rare entity/relation
structural representations in KRL. In addition, the knowledge memory contributes an effective se-

K
mantic translation as an independent parameter term » . (e M. ‘(,n), which enhances the perception
k=1

of structural knowledge context by hg,?) and thus assists in subsequent next-entity prediction.

E DISCUSSION OF THE NEXT-ENTITY PREDICTOR

The next-entity predictor uses the hidden state of the last token (<Relation: name of r>) in the KRL
instruction to predict the word-level token (<Entity: name of h>) of the target entity. This converts
KG reasoning into an LLM-style next-token prediction, i.e., next-entity prediction. This design
avoids the risk of generating out-of-scope entities commonly observed in existing LLM-based KGR
models. The structural constraints of our approach are reflected in two aspects:

(I) Entity-space constraint: Most prior LLM-based KGR methods inherit the LLM’s next-token
prediction mechanism, generating entities as sequences of vocabulary tokens. Since the LLM vo-
cabulary (e.g., Llama2-7B has 32k tokens) is typically much larger than the number of entities in
a KG benchmark and an entity name may require multiple tokens, LLMs may generate the textual
name of an entity that falls outside the gold entity set. (This does not necessarily mean the generated
entity is factually wrong, but it makes evaluation unfair.)

To address this, KRLM aggregates the MLP head P € R*096%32000 i the next-token predictor of
Llama2-7b into a compressed one P € R*096%I€l whose size matches the KG’s entity set £. The
hidden state of the last KRL token is then compared with this compressed MLP head to select the
top-1 target entity. This guarantees that predictions always lie within the entity set and therefore
remain evaluable.

(II) Structural context constraint: Under the entity-space constraint, the compressed MLP head
stores each target entity’s word-level embedding, allowing basic in-domain entity prediction. How-
ever, we further want the MLP head to incorporate the KG structural context of a given query triplet
(h,r,7) to assist in model prediction.

Consequently, as described in Eq. (8) in our paper, we feed the word-level embedding of the head
entity h into NBFNet (,), a GNN-based KG encoder, to propagate messages over
the KG and obtain contextual embeddings for all entities. These embeddings form an h-specific
MLP head, which is then used for predicting the target entity. To verify its effectiveness, we include
the “~-KDe” ablation in Table 2 in our paper, which demonstrates that adding structural-context
constraint significantly outperforms using only entity-space constraint.

F TRAINING ALGORITHM

Algorithm 1 provides a complete pre-training process for KRLM. In each training round, the head
entity ej, and relation r, in a query triplet are firstly transformed into structural knowledge represen-

16

Under review as a conference paper at ICLR 2026

Algorithm 1 Pre-training framework of KRLM

Input: Query triplet set 7,; KG G; relational graph G,.; trainable model parameters ©; learning rate
7); max training step s; batch size b.
Output: Optimized parameters ©.
1. step=0
2: for step < s do
3 Obtain 7, C 7T, that contains b randomly selected query triplets
4 Etotal =0
5: for < ep,rq,7>in 7 do
6.
7
8

Obtain ey, 4 according to Eq. (1) and obtain w,, , w,., according to Eq. (2)
Construct the KRL token embedding sequence T" by Eq. (4)
Select top-K entity embedding related to < ey, 14,7 > by Eq. (3)

9: Obtain H™) by Eq. (6) and extract the hidden state H (™) [m] of the last KRL token

10: Mapping the projection head in LLM to the KG domain by Egs. (7) and (8)
11: Obtain the predicted entity score according to Eq. (9)

12: Calculate the loss £ using Eq. (10)

13: ‘Ctotal — ﬁtotal + L

14: end for

15: Optimize © using L, With the Adam gradient descent method

16: step < step + 1

17: end for

18: return ©

Table 3: Comparison of training costs between KRLM and MKGL.

(LlamaZ-%(;(lell)ackbone) Trainable parameters Training time per epoch
MKGL 18 M (16.78 M for LoRA) 1 h 8 min/4 X A100 GPU
KRLM (Ours) 18.49 M 1 h 20 min /4 X A100 GPU

(16.78 M for the KRL attention layer)

tations (e, and 7,) and word-level embeddings (w.,, and w,) using Egs. (1) and (2), respectively,
and ultimately integrated into a KRL instruction (Steps 6-7). Next, we select top-/C entities related
to the query triplet (Step 8) and input them together with the KRL instruction into the stacked KRL
attention layers for in-context learning. Then, we extract the hidden state of the last KRL token
and calculate the predicted score of the next entity of the KRL instruction (Steps 9-11). Finally, the
training loss is calculated according the predicted scores, which is used to optimize the trainable
parameters in KRLM.

G COMPUTATIONAL COMPLEXITY

G.1 TRAINING COST

We calculated the trainable parameters of MKGL and our KRLM, as well as the training time on the
FB15k237 dataset with a uniform batch of 4 per GPU. The statistical results are shown in Table 3.

KRLM requires embedding GNN in the tokenizer and next-token predictor of LLM, which slightly
increases the parameters. However, it is consistent with MKGL in the main fine-tuning parameters
of LLM (KRL attention layer V.S. LoRA). To ensure generalization, KRLM requires additional cost
to construct a relational graph for real-time perturbed KGs in each batch, resulting in a training time
of about 12 minutes longer per epoch than MKGL.

Although KRLM incurs additional training costs, it offers substantially stronger generalization com-
pared to MKGL. Specifically, KRLM requires only a single pre-training phase on a large-scale KG,
after which it can perform training-free zero-shot reasoning on entirely new KGs (refer to KRLM
(PT) in Tables 1, 12, and 13 in our submitted paper). In contrast, MKGL is not a fully generalizable
KGFM in the strict sense. While it can effectively recognize unseen entities within each inductive

17

Under review as a conference paper at ICLR 2026

Table 4: TFLOPs, memory footprint, and wall-clock time of KRLM for pre-training and fine-tuning.

Pre-training

Metrics (3 transductive dataset) Fine-tuning (FB V1) Fine-tuning (FB25)
TFLOPs of forward propagation 3.34364-0.4540 3.275540.5208 3.331240.4859
Training Memory footprint 36.12 GB 32.57 GB 32.67 GB
Wall-clock time 3h10m per epochx 20 epochs ~ 7m28s per epoch x 3 epochs 12m13s per epoch x 10 epochs

dataset, it cannot transfer zero-shot across different inductive datasets. Consequently, MKGL must
be retrained for every new dataset, which significantly increases its deployment overhead.

Table 4 shows the TFLOPs, memory footprint, and wall-clock time of KRLM for pre-training and
fine-tuning under the condition of batch_size = 4 per GPU x 4 GPUs.

During training, there is natural step-to-step variability in both the number of input tokens. To
obtain a stable and representative estimate, we compute the average forward TFLOPs over 100 steps.
(Backward propagation and optimizer updates theoretically introduce an additional 2-3 x TFLOPs).
For fine-tuning efficiency, we further include results on the largest inductive dataset (FB25) and
the smallest inductive dataset (FB-V1) to provide an upper-lower bound range of computational
overhead.

G.2 INFERENCE COMPLEXITY

The inference complexity of KRLM can be analyzed from two parts. From the perspective of the
knowledge encoder and decoder, the time complexity is upper-bounded by the entity GNN (GNN,(-)
and GNN,,(+)), as the number of nodes |R| involved in GNN,.(-) is much smaller than the number
of KG entities |£| that GNN,(-) and GNN,,(-) need to handle. For an entity GNN, the reasoning
time complex1ty of each layer is usually hnearly related to the number of edges (triplets) (

,) O(|T|d + |€|d?). Therefore, for a S-layer entity GNN, its overall
time complex1ty is O(S(|T|d + |£]d?)). Furthermore, thanks to the efficient relational messaging
kernel implemented by the Pytorch-geometric library, the complexity of an entity GNN is optimized
to O(S|€|d) that is linear with the number of nodes, Wthh has been applied to the related ULTRA-
like KGFMs (, ; , ; ,).

the reasoning time complexity in LLM is concentrated in the KRL attention layer. Set the token
length of a KRL instruction and the scale of the knowledge memory to be m and K, respectively,
the reasoning time complexity in KRL attention layer can be divided into the self-attention matrix
calculation in LLM attention decodeing module (O(m?F)) and the knowledge memory (O(mkd)),
and the final attentive pooling operation (O (m(m+X)F')), where F' and d are the hidden dimensions
of LLM and GNN, (), respectively. Because m >> K, the total complexity of a N-layer KRL
attention module can be represented as O(Nm(m + K)F).

To visually demonstrate the inference latency of KRLM, we selected two datasets with the highest
(FB15k237) and lowest (NELL-V1) graph densities within our experimental scope as benchmarks
and included MKGL and PROLINK, the latest LLM-based KGFMs, as comparative baselines. Ta-
ble 5 reports the inference time of both LLM-based (KRLM, MKGL, PROLINK) and ULTRA-like
(ULTRA, MOTIF, TRXI) KGFMs. For consistency, we set the test batch size to 16 and used Llama-
2-7b as the backbone for all LLM-based KGFMs, conducting experiments on a single NVIDIA
A100 GPU.

ULTRA-like KGFMs require loading the entire KG as the source for inference, while LLM-based
KGFMs follow the ULTRA+LLM hybrid framework. Consequently, all publicly accessible KGFMs
we used are inevitably affected by the scale of the underlying KG. In addition, since the original
PROLINK paper does not release data-processing scripts for FB15k237, we only counted its infer-
ence time on NELL-V1.

Table 5 reports the detailed inference costs, including inference time (seconds per batch) and GPU
memory consumption. Existing KGFMs exhibit sensitivity to the KG size. For KRLM and MKGL,
their inference time differs by approximately one second between FB15k237 and NELL-V 1, which
are acceptable to humans. However, PROLINK needs a long prompt to guide Llama2-7b to generate
the potential target entity types of a query according to the relational context, which leads to it
needing to spend a longer inference time and larger memory on small-scale NELL-V1.

18

Under review as a conference paper at ICLR 2026

Table 5: Inference time and GPU memory consumption of KRLM and baselines.
Dataset KRLM (Ours) MKGL PROLINK ULTRA MOTIF TRIX

FB15k237 2.23+0.03 1.98+0.04 0.14+0.01 0.25+0.01 0.22+0.01
[30.11GB] [27.75GB]) [2.6GB] [2.63GB] [2.6GB]
NELL-V1 1.18+0.07 0.99+£0.06 4.35+0.04 0.01+x0.00 0.02+0.00 0.01+0.00

[29.32GB] [26.82GB] [36.42GB] [2.5GB] [2.5GB] [2.5GB]

Table 6: Inference time of each in KRL.M.
Dataset KRL tokenizer KRL attention layers Knowledge decoder

FB15k237 1.2413+0.0179 1.1206+0.2408 0.0961+0.0200
NELL-V1 0.0293+0.0019 1.0554+0.0535 0.0862+0.0047

In addition, we have also counted the inference time of each component in KRLM Table 6. We
found that the main module that affects the inference latency of KRLM on different scales of KGs
is the KRL tokenizer, because it contains an ULTRA module, which needs to read the complete KG
for structural context learning of entities and relations.

H DATASETS

To verify the ability of KRLM to reason facts on unseen KGs, we conduct evaluations on 28 datasets.
According to the overlap level between train KG Girain = (Etrain, Rirain, Terain) and test KG
Grest = (Etests Riest, Trest)> these datasets can be divided into the following three categories:

e Inductive Entity (IndE) datasets that s # Eprain a0d Riest = Rirain, including 12 datasets
from GralL (,): FB-V1, FB-V2, FB-V3, FB-V4, NELL-V1, NELL-V2, NELL-
V3, NELL-V4, WN-V1, WN-V2, WN-V3, and WN-V4.

e Inductive Entity and Relation (IndER) datasets that &5y # Eprain and Ricst # Rirain, includ-
ing 13 datasets from InGram (s): FB-25, FB-50, FB-75, FB-100, NL-0, NL-25,
NL-50, NL-75, NL-100, WK-25, WK-50, WK-75, and WK-100.

e Transductive datasets for pre-training that st = Etrain and Ricst = Rirain: FB15k-
237 (,), WN18RR (,), CoDEx-M (,

).

These dataset are used to evaluate the model in zero-shot/fine-tuning scenarios. Tables (7), (8),
and (9) provide detailed elemental statistics for these datasets. In addition, in response to the
“Supervised SOTA” methds in Section 5.2, we provide the supervised KGR models that achieved
the best performance for each dataset in Tables (8) and (9).

I EXPERIMENTAL HYPERPARAMETER SETTINGS

In Section 5.2, we evaluate three forms of KRLM, e.i., “Pre-Training” (PT), “Fine-Tuning” (FT),
and “End-to-End training from scratch” (E2E). The hyperparameters of KRLM-PT and KRLM-
E2E are uniformly set to the values in Table 10. During the pre-training process, we mix the three
transductive KGR datasets from Table 7 as the training corpus and train KRLM from scratch for 20
epochs, each containing 10000 steps. In PT and E2E modes, except for the pre-trained parameters of
Llama2-7b used for the backbone LLM of KRLM, the parameters of all other modules are randomly
initialized using the nn.Linear() function of the Pytorch library. We allocate query triplets with batch

Table 7: Transductive KGR datasets used for model pre-training. “#Train”, “#Valid”, and “#Test”
indicate the training, validation, and testing triplet numbers in each dataset, respectively.

Datasets Entities Relations #Train #Valid #Test

FB15k-237 (s) 14541 237 272115 17535 20466
WNI18RR (s) 40943 11 86835 3034 3134
CoDEx-M (s) 17050 51 185584 10310 10311

19

Under review as a conference paper at ICLR 2026

Table 8: IndE KGR datasets used for zero-shot and fine-tuning evaluation. “Triplets” represents
the number of total triplets contained in a training/validation/testing graph. “#Valid” and “#Test”

are the number of evaluation triplets in the validation and testing graph, respectively.
Training graph Validation Graph Testing Graph

D . Supervised
atasets Relations e " e " " . "
Entities Triplets Entities Triplets #Valid Entities Triplets #Test SOTA
FB-V1 () 180 1594 4245 1594 4245 489 1093 1993 411 A*Net (s)
FB-V2 () 200 2608 9739 2608 9739 1166 1660 4145 947 NBFNet (S)
FB-V3 (s) 215 3668 17986 3668 17986 2194 2501 7406 1731 NBFNet (s)
FB-V4 (s) 219 4707 27203 4707 27203 3352 3051 11714 2840 A*Net (s)
NELL-V1 () 14 3103 4687 3103 4687 414 225 833 201 RED-GNN ()
NELL-V2 (s) 88 2564 8219 2564 8219 922 2086 4586 935 RED-GNN (s)
NELL-V3 (S) 142 4647 16393 4647 16393 1851 3566 8048 1620 RED-GNN (s)
NELL-V4 (s) 76 2092 7546 2092 7546 876 2795 7073 1447 RED-GNN (s)
WN-V1 (s) 9 2746 5410 2746 5410 630 922 1618 373 NBFNet (s)
WN-V2 (s) 10 6954 15262 6954 15262 1838 2757 4011 852 NBFNet (s)
WN-V3 (s) 11 12078 25901 12078 25901 3097 5084 6327 1143 NBFNet (S)
WN-V4 (5) 9 3861 7940 3861 7940 934 7084 12334 2823 A*Net (5)

Table 9: IndER KGR datasets used for zero-shot and fine-tuning evaluation. “Triplets” represents
the number of total triplets contained in a training/validation/testing graph. “#Valid” and ‘“#Test”
are the number of evaluation triplets in the validation and testing graph, respectively.

Training graph Validation Graph Testing Graph

Supervised
Datasets
Entities Relations Triplets Entities Relations Triplets #Valid Entities Relations Triplets #Test SOTA
FB-25 (s) 5190 163 91571 4097 216 17147 5716 4097 216 17147 5716 InGram ()
FB-50 (s) 5190 153 85375 4445 205 11636 3879 4445 205 11636 3879 InGram ()
FB-75 (s) 4659 134 62809 2792 186 9316 3106 2792 186 9316 3106 InGram ()
FB-100 () 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329 InGram ()
WK-25 () 12659 47 41873 3228 74 3391 1130 3228 74 3391 1131 InGram ()
WK-50 () 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225 InGram ()
WK-75 (s) 6853 52 28741 2722 65 3430 1143 2722 65 3430 1144 InGram ()
WK-100 (s) 9784 67 49875 12136 37 13487 4496 12136 37 13487 4496 InGram ()
NL-0 (s) 1814 134 7796 2026 112 2287 763 2026 112 2287 763 InGram ()
NL-25 (s) 4396 106 17578 2146 120 2230 743 2146 120 2230 744 InGram ()
NL-50 (s) 4396 106 17578 2335 119 2576 859 2335 119 2576 859 InGram ()
NL-75 (s) 2607 96 11058 1578 116 1818 606 1578 116 1818 607 InGram ()
NL-100 (s) 1258 55 7832 1709 53 2378 793 1709 53 2378 793 InGram ()

size of 4 per GPU for KRLM in each step. One batch of triplets only belongs to one training KG, and
their sampling probability is proportional to the total number of triplets contained in that training
KG.

After pre-training KRLM, we obtain the best validation checkpoint of KRLM-PT for fine-tuning
KRLM-FT on each dataset. The main training hyperparameters of KRLM-FT are the same as those
in Table 10. However, to adapt the model to the vastly different number of training triplets in
different datasets (ranging from a few thousand to nearly one hundred thousand), we set different
training epoch values for different datasets shown in Table 11.

When we train KRLM-E2E on a single transductive KGR dataset, the main hyperparameters of the
model are the same as those in Table 10, but the training epochs are changed to 10. In each epoch,
the model needs to learn all training triplets in the dataset.

J DETAILS EXPERIMENTAL RESULTS

J.1 DETAILS EXPERIMENTAL RESULTS ON INDUCTIVE DATASETS

Tables 12 and 13 correspond to the detailed experimental results of each method in Table 1 on the
IndE and IndER datasets, respectively.

Obviously, the current supervised SOTA baselines can only achieve mediocre performance on almost
all inductive datasets, which is attributed to their modeling limitations that make it difficult for
them to capture sufficient transferable structure semantics of entities and relations. In addition,
considering that these baselines ignore the knowledge structure invariance cross KG domains, they
lack of zero-shot reasoning ability across KGs. Therefore, we can only train them from scratch on
each dataset during evaluation, which increases the spatiotemporal overhead of model deployment.

20

Under review as a conference paper at ICLR 2026

Table 10: Hyperperameters of KRLM used in pre-training and end-to-end training from scratch.
Module Component Parameter
Layer number S = 6
Hidden dim d = 64
Entity GNN GNN. () Message function Mess(-) = DistMult
Aggregation function Agg(-) = Sum
Updating function Update(-) = Linear(128, 64)
Layer number S = 6
Hidden dim d = 64
Relation GNN GNN,. (-) Message function Mess(-) = DistMult
Aggregation function Agg(-) = Sum
Updating function Update(-) = Linear(128, 64)
Linear(128, 64)
Score function Sgue (+) ReLU(-)
Linear(64, 1)
Layer number N = 32
Hidden dim F' = 4096

Knowledge Encoder

Llama2-7b backbone

KRL Attention Layer | V12PP ing layer 7 word (+) Linear (64, 4096)
Mapping layer Fyc(-) Linear(64, 4096)
Scale of knowledge memory K =50

Layer number S = 6

Hidden dim d = 64

Knowledge Decoder GNN,, (-) Message function Mess(-) = DistMult
Aggregation function Agg(-) = Sum

Updating function Update(-) = Linear(128, 64)

Next-entity Predictor Mapping layer g(-) Linear(4096, 64)
Linear(192, 64)
Score function Sgrim () ReLU(+)
Linear(64, 1)
Optimizer AdamW
Learning rate Se-4
Batch size b 4 per GPU
- Training epochs 20
Training Steps in each epoch 10000
Number of negative samples 256
KL weight A 0.5

Table 11: Training epochs and steps of KRLM-FT on different inductive datasets. For example, (3,
all) means that we fine-tune KRLM on a dataset within 3 epochs and the model needs to learn all
the triplets in the training KG.

Datasets KRLM-FT
FB VI 3, alD)
FB V2 (3, all)
FB V3 (5, all)
FB V4 (5, all)

NELL V1 (3, all)

NELL V2 (3, all)

NELL V3 (5, all)

NELL V4 (3, all)
WN V1 (3, all)
WN V2 (5, all)
WN V3 (5, all)
WN V4 (3, all)
FB-25 (10, all)
FB-50 (10, all)
FB-75 (10, all)
FB-100 (10, all)
NL-0 (3, all)
NL-25 (5, all)
NL-50 (5, all)
NL-75 (5, all)
NL-100 (3, all)
WK-25 (10, all)
WK-50 (10, all)
WK-75 (10, all)

WK-100 (10, all)

21

Under review as a conference paper at ICLR 2026

Table 12: Detailed performance of each model on IndE datasets. “PT” and “FT” mean “pre-
training” and “fine-tuning”, respectively. Black bold indicates the best result.

Tnductive Supervised ULTRA ULTRA MOTIF MOTIF TRIX TRIX -~ PROLINK | KRLM KRLM
Datasets SOTA (PT) (FT) (PT) (FT) (PT) (FT) (Llama2-7b) | (PT) (FT)
Hi@10| 03589 0656 0670 0692 0702 0682 0682 0595 0.692 0708 0.701

FB-VI —URR | 0457 0498 0500 0503 053 0515 0515 0475 0.498 0537 0.541
Ht@l0| 0672 0700 0710 0716 0744 0730 0730 0.681 0.745 0748 0752

FB-V2 —RR | 0510 0512 0524 0511 0357 0525 0525 0508 0514 0555 0.557
Hi@10| 0637 0654 0663 0.692 0634 0660 0660 0643 0.683 0678 0.680

FB-V3 —\RR | 0476 0491 0504 0500 0510 0501 050 0486 0.485 0514 0522
Hu@10| 0645 0677 0684 0677 0695 0687 0687 0645 0676 0690 0.699

FB-V4 —GRR | 0466 0486 0496 0487 0508 0493 0493 0471 0498 0503 0.504
Hit@10| 0866 0913 0878 0871 0873 0898 0899 0.886 0.883 0887 0916

NELL-VI —rR 0637 0785 0757 0674 0712 0.806 0804 0.749 0.726 0652 0.682
Hit@10| 0.601 0707 0761 0769 0765 0.768 0764 0.767 0.787 0773 0.791

NELL-V2 =GRR 0419 0526 0575 0564 0566 0560 0571 0570 0581 0589 0.583
Hu@10| 0594 0702 0755 0724 0764 0743 0759 0759 0762 0766 0.768

NELL-V3 =GR | 04% 0515 0563 0533 0580 0358 0571 0571 0.580 0594 0598
Ht@l0| 0556 0712 0733 0711 0740 0765 0.772 0.769 0.769 0739 0772

NELL-V4 = oRR | 0363 0479 0460 0503 0507 0538 0551 0535 0533 0544 0554
Hit@l0| 0826 0768 0793 0778 0806 0.791 0798 0822 0.788 0783 0.800

WN-VI —RR [0.741 0648 0685 0682 0703 0699 0705 0.746 0644 0705 0711
Hu@l0| 0798 0765 0779 0771 0781 0781 0780 0.799 0777 0782 0.799

WN-V2 —NRR | 0704 0663 0679 0665 0680 0678 0682 0712 0.669 0696 0.700
Hi@10| 0568 0476 0546 0538 0590 0541 0543 0.599 049 0582 0595

WN-V3 SRR | 0452 0376 0411 0420 0466 0418 0425 0436 0388 0447 0.469
Ht@l0| 0743 0705 0720 0718 0.733 0.723 0722 0741 0.733 0723 0.738

WN-V4 —RR | 0.661 0611 0614 0640 0659 0638 0650 0664 0623 0655 0.665

Table 13: Detailed performance of each model on IndER datasets. “PT” and “FT” mean “pre-
training” and “fine-tuning”, respectively. Black bold indicates the best result. “-” indicates that a
model is not suitable for this KGR task.

Inductive Supervised ULTRA ULTRA MOTIF MOTIF TRIX TRIX -~ PROLINK | KRLM KRLM
Datasets SOTA (PT) (FT) (PT) (FT) (PT) (FT) (Llama2-7b) | (PT) (FT)
Hit@i0] 0371 0640 0635 0640 0635 0650 0650 - 0.648 0658 0.640

FB-25 —\RR [0223 0388 0383 0384 0388 0393 0393 - 0391 0.404 0393
Hit@10 | 0325 0543 0538 0546 0544 0547 0547 - 0.549 0541 0552

FB-50 —GRR | 0.89 0338 0334 0338 0340 033 033 - 0336 0339 0345
Hit@i0| 0218 0604 0598 0614 0607 0611 0611 - 0.616 0618 0.620

FB-75 —VRR [0.117 0403 0400 0399 0399 0401 0401 - 0.407 0409 0414
Hit@i0| 0271 0642 0643 0628 0642 0635 0633 - 0.635 0647 0.655
FB-100 R 0.133 0449 0444 0428 0439 0436 0436 - 0452 0445 0.455
Hit@10| 0506 0523 0551 0497 0556 0549 0549 - 0.550 0587 0591

NL-0 —GRR 0300 0342 0329 0324 0328 0385 0385 - 0352 0375 0399
Hit@i0| 0464 0560 0596 0498 0580 0580 0589 - 0.580 0586 059
NL-25 —{RR [0261 0395 0407 0348 0300 0377 0377 - 0396 0394 0401
Hit@i0| 0453 0570 0595 0532 0573 0548 0555 - 0579 0588 0598
NL-50 —RR T 0.281 0407 0418 0373 0414 0404 0405 - 0411 0412 0.432
Hit@10] 0.501 0547 0570 0512 0548 0525 0525 - 0552 0535 0559
NL-75 SRR [0334 0368 0374 0314 0360 0351 0351 - 0346 0361 0367
Hit@10| 0431 0651 0684 0647 0682 0676 0.691 - 0.684 0.667 0688

NL-100 R 0260 0471 0438 0438 0464 048 0482 - 0471 0493 0489
Hit@io| 0.60 0532 0535 0493 0505 0496 0493 - 0.539 0509 0550
WK-25 —NRR | 0.107 0316 0321 0311 0317 0305 0300 - 0323 0324 0332
Hit@i0| 0362 0324 0280 0314 0304 0313 0313 - 0.286 0306 0328
WKS0 —VRR | 0247 0.166 0.140 0.163 _0.160 0.166 0.166 - 0.168 0.160 0.168
Hit@10| 0.135 0537 053 0540 0535 0513 0513 - 0.535 0540 0538

WK-75 —MRR | 0.068 0365 0380 0366 0371 0363 0368 - 0370 0390 0334
Hit@10| 0300 0286 0286 0282 0284 0299 0299 - 0.283 0320 0313

WK-I00 —RR T 0.186 0164 0.168 0164 0173 0188 0.188 - 0179 0192 0.189

22

Under review as a conference paper at ICLR 2026

IndE

MRR

FB-V1 FB-V2

NELL-V1 NELL-V2 NELL-V3 NELL-V4 WN-V1 WN-V2 WN-V3 ‘WN-V4

IndE

208

FB-V1 FB-V2 NELL-V2 NELL-V3 NELL-V4 WN-VI1

IndER

WN-V3 WN-V4

FB-25 FB-50 FB-75 FB-100 - NL-25 NL-50 NL-75 NL-100 WK-25 WK-50 WK-75 WK-100

IndER

FB-25 FB-50 FB-75 FB-100 NL-0 NL-25 NL-50 NL-75 NL-100 WK-25 WK-50 WK-75 WK-100
I KRLM fine-tune [KRLM pre-train [N PROLINK (GPT-4) I Supervised SOTA

Figure 5: Comparison of our KRLM with more powerful GPT-4. Due to the interference of knowl-
edge distortion, PROLINK using GPT-4 is also unable to effectively handle the inherent knowledge
gap between LLMs and KGs. On the IndER datasets with a larger open-domain scope, this reason-
ing error is more pronounced.

ULTRA is a typical KGFM that proposes a transferable KG reasoning framework driven by relation
structure invariance. This approach endows ULTRA with the ability to recognize unfamiliar entities
and relations in unseen KGs, thereby enabling reasoning of facts on out-of-domain KGs. Based on
this advantage, ULTRA can even perform significantly better than supervised SOTA baselines in
zero-shot reasoning configuration, i.e., ULTRA (PT).

MOTIF and TRIX are improvements based on ULTRA. For example, MOTIF extends the four types
of relation interactions in the relational graph to hyperedges within three hops (Huang et al., 2025),
thereby expanding the structural context of the relations. TRIX iteratively propagates messages
between interacting the entity GNN and the relational GNN, enabling the model to perceive more
rigorous structural representations and alleviating ULTRA’s confusion problem with structurally
similar heterogeneous triplets.

The above KGFMs only rely on the sparse structural semantics of KGs, which can easily make the
model ignore deeper underlying knowledge. MKGL and PROLINK use the internal knowledge of
LLM to extend the structural semantics of KGs, making the reasoning evidence space denser and
thus improving the performance of the model. However, MKGL cannot be considered strictly a
LLM-based KGFM, as it requires a fixed number of relations based on specific KGs during model-
ing. Therefore, although MKGL can achieve the best results by training from scratch on some IndE
KGR datasets (e.g., WN-V2 and WN-V3), it cannot achieve zero-shot reasoning across KGs and is
not suitable for the IndER KGR scenario.

PROLINK adopts a framework that combines large and small models. First, PROLINK uses Llama
to plan reasoning paths, and then candidate reasoning paths are mapped to KG space through a
pre-trained KGFM (such as ULTRA). This apporach achieves remarkable performance and gener-
alization. However, PROLINK struggles to effectively address the inherent knowledge gap between
LLMs and KGFMs, which makes it difficult for PROLINK to effectively overcome the limitations
of knowledge distortion on model inference even when using GPT-4 (Figure 5).

In contrast, our proposed KRLM alleviates the LLM knowledge distortion problem caused by the
inherent knowledge gap between LLM and KG by coordinating LLM internal knowledge and KG
structured knowledge in various modules of LLM.

23

Under review as a conference paper at ICLR 2026

J.2 DETAILS ABLATION ANALYSIS

Section 5.3 analyzes the effectiveness of various components of KRLM. To alleviate the time over-
head caused by multiple pretraining from scratch on large-scale transductive datasets, our ablation
experiments perform end-to-end training from scratch on several small inductive datasets (FB-V1,
WN-V1, NL-0, and NL-100).

Table 2 provides 8 ablation variants, and the following are their design details:

e -KEn. This variant removes the knowledge encoder mentioned from Section 4.1. This encoder
is an extremely important module in KRLM, which involves updating special token embeddings
in subsequent KRL instructions (Eq. (4)), sampling knowledge memory in KRL attention layer
(Eq. (6)), and applying relational knowledge representation in netx entity predictor ((Egs. (8) and
(9)). Therefore, in the absence of a knowledge encoder, we need to remove the knowledge rep-
resentation token placeholders of entities and relations from KRL instructions, replace the KRL
attention layer with the LoRA fine-tuning framework (referring to the LoRA parameter settings
in MKGL (,)), remove the knowledge decoder from the next-entity predictor (Eq.
(8)), replace p; in Eq. (9) by p; in Eq. (8), and remove the relation representation r, from Eq.
9).

e -KMe. This variant removes the knowledge memory mechanism from Section 4.2 and replaces
the KRL attention layer with the LoRA fine-tuning framework (referring to the LoORA parameter
settings in MKGL (,).

e -KDe. This variant removes the knowledge decoder from Section 4.3, replaces p; in Eq. (9) by
p; in Eq. (7), and removes r, from Eq. (9).

e Atten. This variant replaces the PAA module in Egs. (2) and (7) with the attention pooling
method, which uses trainable attention weights to average the textual tokens of entities/relations.

e Mean. This variant replaces the PAA module in Egs. (2) and (7) with the mean pooling method,
which directly averages the textual tokens of entities/relations.

e -KD. This variant removes the KRL distillation module from Eq. (10) and only retains the
structural distillation module.

e -KL. This variant abandons the knowledge distillation function in Eq. (10), which only retains
two cross-entropy losses and removes the calculation process of KL divergence.

e -KD-KL. This variant simultaneously removes KRL distillation and KL divergence from Eq.
(10), i.e., only uses the simplest single cross-entropy loss.

The results in Table 2 indicate that the knowledge encoder (“-KEn”) plays an important role in
KRLM, as it introduces implicit structural context into LLM, which is more effective in driv-
ing knowledge coordination between LLLM and KG compared to the explicit knowledge injection
method of existing LLM-based KGFMs (,).

The role of a knowledge decoder is to strictly constrain the reasoning results of LLM so that they do
not exceed the domain of a specific KG. Therefore, after removing the knowledge decoder (“-KDe”),
the reasoning of KRLM degenerates into the next-token prediction mechanism of LLM, making it
difficult for the model to perceive KG structural knowledge throughout the entire reasoning process,
thereby limiting its performance.

The purpose of knowledge distillation in training loss is to coordinate the knowledge in LLMs and
KGs from the response side of KRLM. Therefore, the variant “-KD-KL” using the simplest cross
entropy loss cannot achieve this function, resulting in poor performance. Variants “-KD” and “-KL”
use one-side distillation and double cross-entropy loss coordination methods, respectively, which
makes it difficult for them to maximize the interoperability between different knowledge and limits
their performance.

The remaining variants (“-KMe”, “Atten”, and “Mean”) mainly focus on the application of different
modal knowledge in KRLM, with the significance of enhancing the knowledge context awareness
of the hidden state of the last KRL token output by KRLM. Therefore, removing these modules also
reduce the reasoning of KRLM, but the impact is not as significant as the variants analyzed above
that focus on the coordination of LLM and KG knowledge.

24

Under review as a conference paper at ICLR 2026

(a) Composition of Predicted Scores (b) KL Divergence Weight

0.80 B
B (Skrim() + Sstruce())/2 0.80

3 Sstruct(*)
B Skrim(®) 0.75 1

0.75 4

= 0.70 = 070
) 2 oo
= 0.65 1 2 -@— FB.VI
0.60 WN-V1
o6 " == NL-0
' 0.55 ¢ NL-100
T T T T T T T T T
FB-V1 WN-V1 NLO NL100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Dataset Value of A

Figure 6: (a) Comparison of different approaches for obtaining predicted scores. (b) Experiments
on the proportion of distillation terms in Eq. (9).

In addition to the ablation experiments in Section 5.3, we also compare the impact of different
prediction score acquisition methods on the final reasoning of the model. Figure 6(a) shows three

methods for obtaining prediction scores. Our KRLM uses a combination of Egs. (3) and (9), i.e.

M, to obtain the final prediction scores. Skrpm(+) and Sgyuct(+) represent obtaining the

final predicted scores of entities using only Eqgs. (9) and (3), respectively. Obviously, using a single
scoring function can lower the final prediction results of the model. The main reason may be that
although we use knowledge mutual distillation in Eq. (10) to align the predicted distributions of
KRLM and the knowledge encoder, they still have a preference for their respective modal knowl-
edge. Therefore, to fully integrate the model’s expected ratings of entities in different modalities,
we use simple average aggregation to achieve effective prediction.

J.3 ANALYSIS OF THE WEIGHT OF KNOWLEDGE DISTILLATION

Figure 6(b) provides the performance of KRLM for different values of A in Eq. (10). Although
the influence of the weight of KL divergence term on model training is not emphasized in relevant
literature (Zhang et al., 2018), our experiment still demonstrates the importance of balancing target
loss and KL divergence. Therefore, in practical implementation, we uniformly set A = 0.5.

J.4 ANALYSIS ON SPARSE KG REASONING

As shown in Tables 7, 8, and 9, among all the datasets involved in the experiment, FB15k237 had
the highest graph density (1.29 x 10~%), while the graph density of the other inductive datasets
was concentrated between 10~% and 10~°. Tables 12 and 13 show the Hits@ 10 and MRR of each
method on 25 inductive datasets, where our KRLM achieves SOTA on most of them, demonstrating
KRLM'’s inference advantage on sparse KGs.

In addition, we collect three sparse KG datasets (Lv et al.,, 2020) derived from FBI15k237
(FB15k237_10, FB15k237_20, and FB15k237_50), and conduct further zero-shot sparse-KG rea-
soning experiments with KRLM on these datasets. The detailed results are presented in Table 14.

Overall, existing KGFM models perform significantly better than supervised SOTA KG reasoning
models on sparse KGs, but they do not show clear advantages on dense ones. We attribute this to the
relational GNN module in KGFM (Eq. (1)), which is able to induce more generalizable structural
semantics from the KG and thus provides additional information for reasoning over sparse KGs.
After injecting the inherent knowledge of LLMs, LLM-based KGFMs can further supply dense
semantic support to sparse KGs, leading to additional performance gains.

J.5 QUANTITATIVE EVALUATION OF KNOWLEDGE DISTORTION

We begin by defining the evaluation metric for knowledge distortion, namely the Distortion Rate
(DR).

25

Under review as a conference paper at ICLR 2026

Table 14: Detailed performance of each model on sparse KG datasets. “PT” means a model is
pre-trained by the three transductive dataset show in Table 7. Black bold indicates the best result.

Datasets Supervised ULTRA MOTIF TRIX MKGL PROLINK | KRLM
(density) SOTA PT) PrT) (PT) (Llama2-7b) | (PT)
FB15k237_10 | Hit@10 0.337 0.398 0.384 0.393 - 0.383 0.409
(2.11 x 107%) | MRR 0.219 0.248 0.236 0.246 - 0.238 0.243
FB15k237_20 | Hit@10 0.391 0.436 0.422 0430 - 0.404 0.424
(3.14 x 107%)| MRR 0.247 0.272 0.259 0.269 - 0.262 0.269
FB15k237_50 | Hit@10 0.458 0.526 0.508 0.521 - 0.529 0.526
(6.79 x 107%)| MRR 0.293 0.324 0.312 0.321 - 0.324 0.328
FB15k237 |Hit@10 0.599 0.564 0.550 0.559 0.591 - 0.554
(1.29 x 107%)| MRR 0.415 0.368 0.357 0.366 0.410 - 0.381

Table 15: Detailed performance of each model on sparse KG datasets for knowledge distortion.
“PT” means a model is pre-trained by the three transductive dataset show in Table 7. Black bold
indicates the best result.

FB15k237_10 testing triplets ULTRA PROLINK KRLM
under different background KGs (PT) (Llama2-7b as backbone LLM) (PT)
Hit@10 0.398 0.383 0.409
FB15k237_10 MRR 0.248 0.238 0.243
DR 471.42 612.78 297.01
Hit@10 0.668 0.668 0.665
FBI15k237 MRR 0.469 0.471 0.479

DR is used to measure the misjudgment rate of the model before and after changes in KG structure,
reflecting the model’s ability to autonomously coordinate with KG context. For a query triplet

g = (h,r,?7) € T,lett be the ground truth. Suppose the model assigns a ranking score sg(n totona

clean KG and a score sgq) on a noisy KG. If sgq) > sgq), the distortion rate for this query is recorded

max (":(q) —S(q) .
as 557 — s{%_ The overall DR of the model on the noisy KG is given by Zqer \39(2 %) with

lower values indicating better performance.

According to Appendix J.4, we use FB15k237_10 (,) as a sparse dataset extracted
from FB15k237. Then, we test the query triplets of FB15k237_10 using the background KGs of
FB15k237 and FB15k237_10, respectively. Table 14 reports the performance of structural learning-
based (ULTRA) and LLM-based (PROLINK) KGFMs under the pre-trained setting.

Evidently, sparse KGs significantly constrain the reasoning of models due to the limited contextual
evidence they can provide, leading to failures on query triplets that would otherwise be manageable.
In this scenario, the structural learning capability of GNN modules becomes particularly crucial,
enabling ULTRA and KRLM to capture implicit structural contexts in sparse KGs and thereby mit-
igate reasoning errors. In contrast, PROLINK’s explicit prompt-based contextual learning mecha-
nism struggles to extract information highly relevant to the ground truth from the limited number of
available KG paths.

J.6 ADAPTIVE ANALYSIS ON DIFFERENT LLM BACKBONES

We select Llama-2-7b-chat-hf as the backbone in our KRLM to ensure consistency with LLM-based
baselines, thereby allowing us to more clearly demonstrate the effectiveness of our proposed method.

To verify the adaptability of the proposed components, we additionally select Mistral-7B-Instruct-
v3.0 and Llama-3.1-8B-Instruct as alternative LLM backbones to examine the generality of the
knowledge coordination mechanism in our KRLM. We conduct end-to-end training from scratch on
four lightweight inductive datasets. The Hit@ 10 results of all models are summarized in Table 16.
The results show that our knowledge coordination mechanism is broadly applicable across different
LLM backbones, and it consistently yields improvements over most LLM-based KGFM:s.

26

Under review as a conference paper at ICLR 2026

Table 16: Hit@10 of KRLM under different LLLM backbones.

Dataset Supervised ULTRA MKGL PROLINK KRLM KRLM KRLM
SOTA (Llama-2-7b) (Llama-2-7b) |(Llama-2-7b) (Mistral-7b) (Llama-3.1-8b)

FB-V1 0.589 0.670 0.595 0.692 0.705 0.696 0.708

WN-V1 0.826 0.793 0.822 0.788 0.801 0.805 0.808

NL-0 0.506 0.551 - 0.550 0.591 0.585 0.595

NL-100| 0.431 0.684 - 0.684 0.688 0.692 0.689

Query triplet: <Entity: Shirley Ann Russell>, <Relation: inverse of contains>, ?
Ground truth: <Entity: Louisiana>

Top-1 Prediction: <Entity: Louisiana>
- <Entity: Louisiana> is in the knowledge memory

1 1 1 1 . I
0 10 20 30 40

(a) KRLM hits ground truth. KRLM can mine potential correct results from knowledge memory

Query triplet: <Entity:Parlophone>, <Relation: artist>, ?
Ground truth: <Entity: Duran Duran >
Top-1 Prediction: <Entity: Mike Mogis>
Prediction ranking of ground truth: 33

<Entity: Duran Duran> is not in the knowledge memory <Entity: Mike Mogis> is in the knowledge memory
C N I T = el — I)
0 10 20 30 40

(b) KRLM did not hit ground truth. When the correct result is not in knowledge memory, KRLM
attempts to aggregate the context of ground truth from other candidate entities

0.0030 0.0028 0.0026 0.0024 0.0022 0.0020 0.0018 0.0016

Figure 7: Visualization of the attention weights over 50 candidate entities in the knowledge mem-
ory within a KRL attention layer, illustrating cases where KRLM reasoning succeeds and fails,
respectively. (a) KRLM assigns the highest attention weights to the potential answers it finds in
the knowledge memory. (b) If the memory lacks potential answers, KRLM attempt to aggregate a
broader set of candidate entities to obtain the knowledge context of the ground-truth.

J.7 CASE STUDY AND ERROR ANALYSIS

This section further analyzes the reasoning mechanism of KRLM from the perspectives of error
analysis and case study.

Let’s begin with a visual case study. Figure 7 shows the attention weights of candidate entities
within the knowledge memory in a KRL attention layer under correct/incorrect reasoning scenarios.
Intuitively, when the knowledge memory contains the ground truth entity (included in the top-50
entities selected by Eq. (3)), KRLM tends to highlight its attention weight (shown in Figure 7(a)),
even though it is not given the highest score by Eq. (3) among the top-50 entities. This means that
KRLM does not rely solely on the scoring mechanism of Eq. (3), it can further filter information in
the knowledge memory based on more complex in-context learning in subsequent modules.

In contrast, if the knowledge memory lacks the ground truth, KRLM automatically broadens its
attention to include additional candidate entities. As shown in Figure 7(b), this yields far more high-
attention weights than in Figure 7(a). By expanding its focus, the model gathers as much reasoning
evidence as possible from a wider knowledge context. Although KRLM still fails to infer the ground
truth correctly in Figure 7(b), it nonetheless boosts the ranking of the ground truth dramatically (from
beyond 50th place to 33rd place).

Furthermore, we explore the universality of the above phenomenon based on the case study in Fig-
ure 7. We classify all triplets into two groups, “#Easy” and “#Hard”, depending on whether their
ground-truth entities are present in the knowledge memory. Table 10 presents the performance of
KRLM for each group. Obviously, KRLM tends to correctly reason for “#Easy” triplets in the vast
majority of cases, while the Hit@ 10 of reasoning for “#Hard” triplets tends to approach 1%, which

27

Under review as a conference paper at ICLR 2026

Table 17: Reasoning results of KRLM (PT) for different categories of query triplets in each dataset.
“#Easy” means that the ground truth of a triplet is collected into the knowledge memory, while
“#Hard” means the opposite.

Hit@10 MRR
Datasets #Easy #Hard #Easy #Hard
FB-VI 0.857 0.007 0.658 0.010
FB-V2 0.888 0.074 0.660 0.022
FB-V3 0.892 0.009 0.674 0.011
FB-V4 0.878 0.016 0.639 0.013
NELL-V1 0.876 0.950 0.832 0.701
NELL-V2 0.866 0.047 0.661 0.022
NELL-V3 0.887 0.179 0.699 0.084
NELL-V4 0.842 0.057 0.635 0.018
WN-VI 0.932 0.000 0.827 0.003
WN-V2 0.923 0.008 0.816 0.005
WN-V3 0.850 0.004 0.650 0.006
WN-V4 0.924 0.001 0.829 0.003
FB-25 0.835 0.022 0.515 0.018
FB-50 0.776 0.024 0.490 0.018
FB-75 0.827 0.070 0.564 0.028
FB-100 0.856 0.068 0.598 0.027
NL-0 0.758 0.022 0.502 0.027
NL-25 0.763 0.292 0.536 0.087
NL-50 0.801 0.016 0.565 0.020
NL-75 0.715 0.010 0.465 0.010
NL-100 0.867 0.031 0.607 0.019
WK-25 0.778 0.005 0.491 0.016
WK-50 0.631 0.003 0.338 0.006
WK-75 0.839 0.044 0.621 0.023
WK-100 0.688 0.006 0.427 0.007

is also the main source of errors made by KRLM. The above analysis indirectly reflects the impact
of candidate entity recall methods in the knowledge memory on KRLM reasoning.

K LIMITATIONS AND FUTURE WORK

KRLM provides a novel modeling paradigm for existing LLM-based KGR research, which involves
injecting KG representations into LLM components in different forms. However, the limitations
of KRLM in terms of reasoning cost hinder its application in a wider range of knowledge-based
reasoning environments (see Appendix G for analysis of reasoning complexity).

In the future, we plan to inject KG context into LLMs from the perspective of knowledge edit-
ing (,) such as the null-space projection (

,), thls method only requ1res mlnlmal computatlonal overhead. In addition, as knowledge
editing directly affects the parameter-level knowledge in LLMs, it has the potential to make KG
context and LLM internal knowledge self-consistent.

Another way to alleviate the compute bottleneck is to use ULTRA (,) as a relation
tokenizer and employ a smaller LLM, fine-tuned to treat relation embeddings as atomic tokens, as a
rule generator. The generated candidate KG rules can then be processed using a neuro-symbolic em-
bedding model for lightweight fuzzy-logical reasoning. This method can enhance the interpretability
of the model while optimizing inference time.

28

	Introduction
	Related Work
	Preliminaries
	Knowledge Reasoning Language Model
	KRL Tokenizer
	KRL Attention Layer
	Next-Entity Predictor
	Training and Reasoning

	Experiments
	Datasets, Baselines, and Experimental Settings
	Main Results (RQ1)
	Ablation Experiments (RQ2)
	Parameter Analysis (RQ3)

	Conclusion
	Ethics statement
	Reproducibility statement
	The Use of Large Language Models
	Design Details of KRL Instructions
	Modeling Details of KGFMs
	Relational Graph Construction
	KGFM Architecture

	Discussion of the KRL Attention Layer
	Discussion of the Next-entity Predictor
	Training Algorithm
	Computational Complexity
	Training Cost
	Inference Complexity

	Datasets
	Experimental Hyperparameter Settings
	Details Experimental Results
	Details Experimental Results on Inductive Datasets
	Details Ablation Analysis
	Analysis of the Weight of Knowledge Distillation
	Analysis on Sparse KG Reasoning
	Quantitative Evaluation of Knowledge Distortion
	Adaptive Analysis on Different LLM backbones
	Case Study and Error Analysis

	Limitations and Future Work

