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ABSTRACT

Inductive Knowledge Graph Reasoning (KGR) aims to discover facts in open-
domain KGs containing unknown entities and relations, which poses a challenge
for KGR models in comprehending uncertain KG components. Existing studies
have proposed Knowledge Graph Foundation Models (KGFMs) that learn struc-
tural invariances across KGs to handle this uncertainty. Recently, Large Lan-
guage Models (LLMs) have demonstrated strong capabilities for open-domain
knowledge reasoning. As a result, the latest research has focused on LLM-based
KGFMs that integrate LLM knowledge with KG context for inductive KGR. How-
ever, the intrinsic knowledge of LLMs may be overshadowed by sparse KG con-
text, leading to LLM knowledge distortion, which can cause irreversible damage
to model reasoning. Moreover, existing LLM-based KGR methods still struggle
to fully constrain generative hallucinations in LLMs, severely limiting the credi-
bility of reasoning results. To address these limitations, we propose a Knowledge
Reasoning Language Model (KRLM) that achieves unified coordination between
LLM knowledge and KG context throughout the KGR process. Specifically, we
design a Knowledge Reasoning Language (KRL) instruction format and a KRL
tokenizer to align LLM knowledge with KG representations. Then, we propose a
KRL attention layer that coordinates intrinsic LLM knowledge with additional KG
context through a dynamic knowledge memory mechanism. Finally, a structure-
aware next-entity predictor is proposed, which strictly constrains the reasoning
results within a trustworthy knowledge domain. Extensive experimental results
on 25 real-world inductive KGR datasets demonstrate the significant superiority
of the proposed KRLM! in both zero-shot reasoning and fine-tuning scenarios.

1 INTRODUCTION

Knowledge Graph Reasoning (KGR) ( , ; s ) is dedicated to uncovering
latent facts within KGs, offering mterpretable ev1dent1ary support for knowledge-driven applica-
tions ( , ; s ). Tradmonal KGR methods (e.g.,
rule-based ( , ) and embeddlng models (

, )) primarily reason facts within static closed-domain KGS makmg it dlfﬁcult for the
model to adapt to the evolution of real-world KGs. Therefore, existing studies develop inductive
KGR frameworks ( , ) to reason facts with entities and relations newly added to KGs.

The core of inductive KGR is to generalize the structural characteristics of training KGs to represent
unfamiliar entities and relations ( ; , ). However, the inherent domain
discrepancy across KGs leads to the 1nc0mpat1b1hty of structural characteristics during cross-KG de-
ployment ( , ), which limits the generalization of inductive KGR models. To cover
this challenge, recent research has proposed KG Foundation Models (KGFMs) ( , ;

, ) to capture the invariant representation of entities and rela-
tions across KGs In general, this invariance enables any entity or relation to be represented by its
relative structural context without relying on specific KG domains ( , ). This prop-
erty provides KGFMs with zero-shot learning capabilities, allowing them to handle open-domain
KGR effectively.
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Instruction with explicit sparse KG contexts KRL Instruction
Given the following knowledge: e e e e e e e e e e e e m m e — ——— — — = —
Strucufral <Shirley Henderson, film_actor, Trainspotting> : Instruction: Define the word format for a new language as <Type: Texl 1
Knowledge »<Smrley Henderson, award_nomination, Paul Reubens> | Description>. Given the following vocabulary:
<Shirley Henderson, educational_institution, Guildhall School of Music and Drama> . IWord Type  Textdescription Knowledge representation |
. O <Entity: Trainspotting> Entity ~ Trainspotting  [Entity Embedding] 1
2
Reasoning the new fact: <Trainspotting, film_genre, ?> G2 ! <Relation film_genre> Relation film_genre [Relation Embedding] 1
Please complete the next word *?" in the given sentence: 1
1 <Entity: Trainspotting><Relation: film_genre>? I
@r LLM g? L Structm'al
Distorting the reasoning thought of LLM Knowledge
Okay, let's see. The user provided some existing facts about Shirley Henderson and wants . % ‘
me to complete the fact about the film genre of Trainspotting KRL Tokenizer /
Now, thinking about the genre. Trainspotting is often categorized as a dark comedy in the! H X %? ‘
genre of drama. But I should verify that. Shirley Henderson graduated from Guildhall KRL Attention Layer N /
School of Music and Drama and performed in Trainspotting, so drama makes sense. o A A g? ‘
But the way some scenes are portrayed, like the infamous toilet scene, might have a Next: Entlty Predictor /

<Entity: Dark Comedy>(
pipeline (b) Overall architecture of KRLM

So the answer should be <Trainspotting, film_genre, Drama:

satirical or darkly comedic edge. However, the primary genn&usually listed as drama.
(a) Primary LLM-based KGF

Figure 1: (a) Current LLM-based KGFMs overlook the necessity of establishing compatibility be-
tween sparse KG contexts and intrinsic knowledge in LLMs, which leads to knowledge distortion
by LLMs. (b) Compared to explicit sparse KG context prompts, KRLM injects implicit knowledge
representations into the reasoning instructions and LLM parameters, providing a more flexible envi-
ronment for LLM to adapt to external knowledge.

Large Language Models (LLMs), pre-trained on large- scale textual corpora, have been demonstrated
to achieve disruptive success on KGR ( R s ;

, ), which is attributed to their ability to master non- natural languages (
s ; s ; s ; s ) (e.g., structural knowledge-aware
instructions ( ; , )) Leveraging this advantage, the latest studies
propose LLM-based KGFMS ( , ) to conduct inductive KGR

tasks. These methods, by utilizing the powerful context awareness and knowledge emergence (
, ) of LLMs, sufficiently capture implicit knowledge overlooked by primary KGFMs from
structural KG context, thereby significantly improving models on open-world fact reasoning.

Previous research on LLM-based KGFMs usually explicitly recasts incomplete facts as KG context-
aware instructions and conducts fact reasoning through LLM fine-tuning ( , ) or
prompt-based reasoning ( , ). Despite these accomplishments, existing LLM-based
KGFMs still suffer from significant knowledge distortion ( R ), i.e., the sparse contextual
evidence extracted from KGs may override the dense knowledge inherent in LLMs, which causes
irreversible damage to LLM reasoning. This issue primarily arises from the inadequate coordination
of the natural knowledge gap between KGs and LLMs, thereby hindering the generalizability of
LLM-based KGFMs across diverse KGR downstream tasks.

Figure 1(a) illustrates the knowledge distortion challenge in LLM-based KGFMs. In general, current
LLM-based KGFMs directly project sparse structural knowledge into a reasoning prompt, which
poses a latent risk of misleading LL.Ms by incomplete reasoning evidence. For example, LLM incor-
rectly regards “Guildhall School of Music and Drama”, the sole information related to “film_genre”,
as critical evidence. This toxic contextual association overrides the inherent knowledge of LLMs
(e.g., “dark comedy”), ultimately limiting model reasoning. In addition, although emergent knowl-
edge endows LLMs with adaptive capacity for open-world fact reasoning, this characteristic actually
increases the risk of generating out-of-scope hallucinations ( ; , ). This
result impacts the fairness and reliability of the model in evaluating across KGR tasks.

To address the aforementioned limitations, we propose a Knowledge Reasoning Language Model
(KRLM) to alleviate the knowledge distortion by coordinating the inherent knowledge of LLMs and
KGs throughout the entire KGR process. As shown in Figure 1(b), this knowledge coordination is
achieved through two aspects: reasoning instruction design and model fine-tuning. Specifically, we
first design a KRL-format instruction that aligns the intrinsic knowledge in LLMs (text description)
with the implicit knowledge representation through a vocabulary table. Next, we construct a KRL
tokenizer that converts entities and relations into unified KRL tokens, encapsulating both structural
and textual knowledge. We then propose a KRL attention layer that integrates the context within
KRL by coordinating the in-context learning module of a pre-trained LLM and a dynamic knowl-
edge memory mechanism. Finally, a structure-aware next-entity predictor is proposed to tightly
constrain the predicted facts to the given KG domain, ensuring the reliability and stability of the rea-
soning results. In addition, we adopt a collaborative training objective based on knowledge mutual
distillation ( s ; s ) to further coordinate different knowledge.

Our main contributions can be summarized as follows:



Under review as a conference paper at ICLR 2026

e This paper proposes a novel Knowledge Reasoning Language Model (KRLM) for extensive
KGR tasks. KRLM mitigates the knowledge distortion problem commonly faced by LLM-based
KGFMs in diverse downstream KGR tasks.

e We design a unified tokenizer for various representation encapsulation in KRL, which infinite
scalability of open-world entities/relations with constant-scale model parameter.

e We propose a KRL attention layer and a structure-aware next-entity predictor, which enables
LLMs to effectively coordinate pre-trained intrinsic knowledge with external structural knowl-
edge during the in-context learning process, ultimately allowing for reasoning with traceable
facts.

e Extensive experimental results on 28 datasets demonstrate that the proposed method exhibits
significant zero-shot learning and transfer capabilities in open-domain KGR scenarios.

2 RELATED WORK

In this section, we review the research roadmap of KGR, with a focus on comparing LLM-based
KGR models with our proposed KRLM on open-domain KGR.

A review of KGR. KGR is mainly divided into transductlve and inductive tasks. Traditional KGR
methods ( s s ) are dedicated to reason latent
facts in static KGs with ﬁmte sets of entlty and relanons Nowadays the dynamicity of real-world
KGs have led to the proposal of inductive KGR methods for reasoning unseen entities or relations
in facts. Previous inductive KGR methods ( s ; R ;
, ) can only generalize facts with new entities while unsu1table for unfamiliar re-
lations. Consequently, several methods ( s ; , ) take the relative onto-
logical interaction of relations as a starting point to learn the structural invariance of relations in a
KG, thereby improving the model’s recognition of unknown relations. However, the most severe
challenge faced by the featurization strategies of the above inductive KGR methods rely on spe-
cific domain features of KGs (e.g., node degree or structural attribute similarity), which cannot be
transferred to KGs in any domain. To address this challenge, Mikhail et al. ( , )
propose an concept called “knowledge graph foundation model”, which captures the structural
invariance of entities and relations cross KGs. Inspired by this, numerous KGFMs ( ,
, ) have been proposed in recent years, which have achieved

remarkable Cross domam inductive KGR through zero-shot learning.

LLM-based KGR models. Unlike the above KGR models that solely focuses on KG structure,
LLMs can capture finer grained differences in KG context for distinguishing sub-KGs with similar
structures. Therefore, numerous studies have recently introduced LLMs to improve KGR models.

For example, CSProm-KG ( . ) and MKGL ( R ) use the prefix-tuning (
, ) and LoRA ( s ) technique, respectively, to transfer LLMs to KGR sce-
narios. KICGPT ( , ) and PROLINK ( , ) utilize a large-small model

collaborative framework to integrate LLM planners and KG retrievers to achieve effective KGR.
Among then, MKGL and PROLINK sufficiently the emergent knowledge capability of LLMs (

s ), which enables them to uncover more latent facts across open-domain KGs. This ad-
vantage makes them representative LLM-based KGFMs. However, given the natural representation
gaps between the inherent knowledge of LLMs and the structural knowledge of KGs, existing LLM-
based KGR methods typically face the problem of knowledge distortion, where sparse KG context
used for fact reasoning may interfere with LLM reasoning, which limits the performance of LLM-
based KGR models.

In contrast, the proposed KRLM comprehensively coordinates the inherent knowledge of LLMs and
the implicit knowledge representation of KGs from the perspectives of instruction construction and
model fine-tuning, overcoming the weakness of existing LLM-based KGFMs in unifying the internal
knowledge of LLM and the external KG representation, and improving the zero-shot learning ability
of LLM on cross-domain KGs during fine-tuning.

3 PRELIMINARIES
In this section, we introduce the background and main definitions related to this study.

Knowledge graphs and inductive knowledge graph reasoning. A knowledge graph is a multi-
relational directed graph with entities as nodes and relations as edges. Formally, a KG can be
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o Query triplet: <Michael Jackson, genre, ?>

Knowledge Encoder ~ ~~ @®KRL Instruction PAA Module
Relauon GNN Entity GNN | Instruction: Define the word format for a new language as <Type: Text Description>. Suppose you <Entity: Michael Jackson>  <Relation: genre>
| are a linguistic expert who are learning this new language. Given the following vocabulary: I -
h 1 Word Type Text description  Knowledge representation ¥ [ Embedding Table
P E> S 2O I <Entity: Michael Jackson>  Entity Michael Jackson  [Entity Embedding placeholder] ~g ~g
) 1 <Relation: genre> Relation  genre [Relation Embedding placeholder] (N[5 oo Oogon
1 Please complete the next word *?" in the given sentence: 1
____________________ ' : ;E:;gzseMlchae‘ Jackson><Relation: genre>? : [ PAAimean std [ min | maxi
[L__Relation Embeddings ] | 1 I <Entity: Michael Jackson><Relation: genre> | i i
E Entity Embeddings [P S ———— -%----------------
o - | @KRL Tokenizer KRL Attention layer
Scoring Function [ Z /
=, = 1 Knowledge Encoder ” PAA Module I | Eopbkci?my | Input Tokens |
4'4 Entity scorese=p 0. RIS
7]
£ Next-entity Predictor 28 My |]|M
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3 Projection Head | Relation ¥ g
' [[_PAAModule | Embeddings] | ((]= 0 um
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c 0 £ - TTRORA------ 00 - OO - MO
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= T Hidden E ] £2
® Entity scores state || —2 @ Next-entity Predictor 2 [ Output Tokens |

~~
<Entity: Artist>
[E] Frozen pre-trained parameters [1/[] word-level embedding of entity/relation 7711 [77] knowledge representation of entity/relation

Figure 2: Overall framework of KRLM. Given a query triplet, we first convert it to (1) a KRL
instruction that integrates inherent knowledge of LLMs and KGs and obtain its token embedding
sequence by (2) a KRL tokenizer. These tokens are then input into @ stacked KRL attention layers
for capturing the in-context hidden states within KRL. Next, (4) a next-entity predictor is used to
reason the entity word following KRL based on the last hidden state. (5) The training objective of
KRLM is to coordinate the inherent knowledge of LLM with structural knowledge representation.

represented as G = (€, R, T), where & = {e; } _,and R = {rj} , denote the sets of entities
and relations, respectively, and T = {< ep,r,e; > |en,er € E, 1 € ’R} is the set of triplets. Each
triplet represents a fact composed of a head entity ey, a tail entity e;, and a relation r that truly exists
between them. Given a KG Girain = (Etrain, Rerain, Ttrain) for training a KGR model, inductive
KGR tasks require the model to predict facts in an unobserved KG Giest = (Etest, Ritest, Ttest)s
WhGI'C Etest 7{ Etrain or Rtest # Rtrain~

Knowledge graph foundation models learn the structural invariance from KGs, which addresses
the domain shift between training and reasoning KGs in inductive KGR tasks. Typically, KGFMs
employ two Graph Neural Networks (GNN,. and GNN.) to build KG structure learning models (

, ). Given a query triplet < e, 74,7 >€ G, the overall framework of
KGFMS can be summarized as:

R=GNN,({lj—,-1}]_,,R",G,), E =GNN.({Ii_y -4}, R.G), (1)

where I is an assert function and 1 € R? is the embedding of ones. KGFMs first construct a
relational graph G, = (R, R*, T*) with R as a node set and R* as an edge set, where R* is the

relative structure patterns of R in G ( , , ) and R* € RIFIxd
represents the type embedding of relative structural patterns Afterwards, KGFMs use labeling
tricks ( , ) to obtain structurally invariant representations of all relations R € R/*¢,

Then, driven by 7, € R, the representation of r,, KGFMs summarize the structurally invariant
representations of all entities E € R’*¢. The detailed design of the relational graph and the KGFM
architecture are provided in Appendixs B.1 and B.2, respectively.

Knowledge reasoning language is a new language form that contains both the inherent corpus
knowledge in LLMs and the structural knowledge of KGs. As shown in Figure 2, a KRL instruc-
tion contains a global vocabulary that integrates the word-level forms, types, text descriptions, and
knowledge representations of entities and relations. This intuitive contextual comparison can assist
LLM understand unfamiliar elements in KRL instructions. When reasoning a fact, KRLM regards
the word-level forms of entities and relations as unique tokens and adds their indices into the LLM
tokenizer. Then, KRLM predicts a latent next word-level entity following the KRL instruction.
Refer Section 4 for processing details.

In addition, to alleviate the training costs may caused by the addition of word-level tokens for entities
and relations, we design a low-parametric method based on Principal Attribute Aggregation (PAA),
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which enhances the representational completeness of word-level tokens through multi-view attribute
aggregation functions ( , ) of pre-trained tokens, as detailed in Section 4.1.

4 KNOWLEDGE REASONING LANGUAGE MODEL

In this section, we elaborate on the proposed KRLM in detail, which consists of three main compo-
nents (Figure 2): a KRL tokenizer (Section 4.1) based on a knowledge encoder and a PAA module,
a in-context learning module composed of stacked KRL attention layers (Section 4.2), and a GNN-
based next-entity predictor(Section 4.3). In the following sections, we first provide the design of
each module. Then, we illustrate the training strategy of KRLM (Section 4.4).

4.1 KRL TOKENIZER

As shown in Figure 2, a KRL instruction contains different categories of tokens. For the general
tokens, we map them to the corresponding embeddings according to the pre-trained embedding
table within a LLM. The word-level embeddings and knowledge representations of entities/relations
in KRL are obtained by the PAA mechanism and the knowledge encoder, respectively.

The PAA mechanism is used to obtain word-level embeddings of entities and relations. Here, we
use an entity as a case to introduce the details of PAA.

Let < Entity: Text description > be the word-level format of an entity, we can obtain its textual
token embedding sequence {t1,%2,...,tr} = Emb(TKN(< Entity: Text description >)), where
TKN(-) and Emb(-) are the text tokenizer and token embedding table of a LLM, respectively. The
PAA mechanism aggregates the different attributes of these token embeddings (i.e., mean, max,
min, and std attributes ( R )) to obtain the word-level embedding of the entity w, =
PAA({tl, tg, T tL})Z

PAA({t1,t2,...,tL}) = (| attr({t1,t3, ..., t1 }) | Whusion, 2)

attr€ {mean, max,min,std }

where || is a column-wise concatenation operation, ¢;, € R is a F-dimensional token embedding
in Emb(-), 5 = t7 Waown» Waown € RF*? and Wrygion € RA4*? are two trainable weight matrices.
The PAA mechanism can construct new entity/relation word-level embeddings without restrictions
under fixed training parameters, which effectively saves memory costs and is beneficial for handling
unknown entities/relations in inductive KGR tasks.

The knowledge encoder is a GNN-based KG structure learner that captures universal structural
representations of entities and relations. Given a query triplet < ey, 74,7 >€ G, we construct a
knowledge encoder according to Eq. (1), where we can obtain FE and R, the knowledge representa-
tions of all entities and relations, respectively, based on < ey, 74, 7 >. In brief, GNN. and GNN,. in
Eq. (1) are both designed to S-layer NBFNet ( , ). The detailed design are provided in
Appendix B.2.

In addition, to inject relevant structural context in the KRL attention layer (Section 4.2), we construct
a MLP function Sgue(-) : R2? — R! to score the correlation between the structural knowledge of
entity e; € £ and the query triplet < ey, rq, 7 >:

scine = Swa([€illrq]), e € B, r,€R. 3)

The process of KRL tokenization is as follows: Given an input embeddings sequence of KRL
{we,, wr,, en, g} U {t1,t2, ..., L}, where w,,,w,, € R? are the word-level embeddings of
en and 7, obtained by Eq. (2), es,r, € R? are the knowledge representations of e;, and r, ob-
tained by Eq. (1), respectively, and {¢1,¢2,....t,} € R™*F are the general text token embed-
dings of KRL containing the placeholders of {w., , w, ,ex,r,}. We first unify {we, , w, ,en, rq}
into the dimension F' that can be input into LLM and replace the corresponding placeholders in
{tl, t2, cey tm}l

'L’Eeh = word(weh), "-qu = word(qu)7 ey = ]:strucl(eh)7 ?q = ]:struct("‘q)

T = {t1,...,ta,’w5h,ta+1, ...,tb,eh,tb+1, ...,tc,’qu,thA, ..,,tz,Tq,terl, ...,weh,qu},

“

where Fyord (), Feruet(-) : RY — RE are trainable linear layers that map word-level and knowledge
embeddings of entities and relations to the LLM-dimensional space. T € R™*¥" are the input
sequence with m embeddings.
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4.2 KRL ATTENTION LAYER

A KRL attention layer is an improvement on the standard LLM attention decoding module, which
deploys a knowledge memory mechanism to dynamically coordinate the LLM intrinsic knowledge
with the external KG representations in the in-context learning process. In this section, we elaborate
on the LLM attention decoding layer to introduce the knowledge memory mechanism.

The LLM attention decoding module performs preliminary contextual learning on textual tokens,
entity/relation word-level embeddings, and structural knowledge representations in KRL. To capture
the multi-view context of KRL, we first obtain T' by Eq. (4) and then input it into a LLM attention
decoding module in the n-th KRL attention layer, where n € [1, N|:

H(n—l)ch’l) [H(H—I)WI(:-)}T
VF

where Wé?n), Wl((n), W‘(,n) € RF*F are frozen pre-trained weight matrices in the n-th layer.
Winask € R™*™ is a casual mask matrix with a lower triangle value of 0 and the rest being —oc.

v = T, o™ = softmax ( + Wmask)H(n_l)W\(/n)’ ®)

The knowledge memory mechanism dynamically integrates structural knowledge contexts related
to the query triplet into Eq. (5). Specifically, we use Eq. (3) to obtain the knowledge representations

N
of top-K most relevant entity as a memory Ep.n = {ex|ex € 5[T0pK({sc£fr)uct}i:1)}, e, € E} €
RX*4 to guide the model learning richer KRL context, where TopK((-) obtains the indices of top-A
entities and F is obtained by Eq. (1). Overall, the n-th KRL attention layer can be represented as:
H" D M) B |(H" VWG T DWET + Waas)
VF
H™ = AlEpen M| H™ VWM, n € 1, N]

H" =T, A = softmax( ),

(6

where M, an) € RFxd M ‘(/") € R?*F are trainable weight matrices in the n-th KRL attention layer.

In specific settings, H (™) needs to be further processed by a feed forward network of the corre-
sponding layer in a LLM before it can be input into the next KRL attention layer. More discussion
of the knowledge memory mechanism is attached in Appendix C.

4.3 NEXT-ENTITY PREDICTOR

In a standard LLM next-token predictor, the hidden state of the last instruction token is transformed
into a probability distribution over the candidate tokens by applying a projection head P. However,
the inherent token vocabulary of a LLM does not completely overlap with the entity vocabulary of a
KG, which can result in out-of-scope predictions and compromise the fairness of model evaluation.
To address this issue, we propose a next-entity predictor that adapts the projection head P to a
specific KG domain via a structural knowledge decoder. This approach constrains the reasoning
results strictly within the entity vocabulary. Moreover, the knowledge decoder enables KRLM to
further coordinate the inherent pre-trained knowledge in P with KG representation.

Mapping the projection head to word-level embeddings. We use the pre-trained projection head
P in the next-token predictor of a LLM as the mapping vocabulary for the word-level embeddings
of all entities. Given a word-level format ;Entity: Text description; of an entity e;, we obtain its
mapping embedding p;, similar to Eq. (2):

pr = PAA(P[TKN(< Entity: Text description >)]), @)
where PAA(+) is a parameter-independent module that has the same structure as the one in Eq. (2).

Knowledge decoder. This module decodes the projection head P into the specific KG through the
structural constraints of pj, avoiding the prediction of out-of-scope KG domain. In specific, we
build GNN,,, a S-layer entity GNN with the same structure as GNN, Eq. (1) to achieve this goal:

P =GNN,({Lich - pn}/_,, R, G) ®

where P € R7*? is the decoded projection matrix. R is the knowledge representation of relations
obtained by Eq. (1), which guides P to perceive structural knowledge.

Next-entity prediction. Given word-level formats ;Entity: Text description; and ;Relation: Text
description/ of an entity e, and a relation 4, respectively, we construct a MLP function Skrim(-) :
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R3¢ — R! to predict next entity scores of a KRL ending with “Entity: Text description; jRelation:
Text description;”:

sclin = Sxron( | Bil|rqllg(HN [m]) ]), ©)

where p; € P is the projection embedding of the entity e;; 7, € R is the knowledge embedding of
rq; H N) ¢ R™*F ig the result of the N -layer KRL attention layer (Section 4.2), where m is the

length of an input KRL; H (") [m] is the hidden state of the last token; and g() : R — R?is a
linear layer.

When reasoning the next entity, we average the results of two scoring functions (Egs. (3) and (9)) to
obtain the final predicted scores of all candidate entities and regard the entity with the highest score
as the predicted result.

4.4 TRAINING AND REASONING
Given a query triplet ¢ =< ey, rq, 7 > with the ground truth e, the training objective is designed
as:

1 n
L=(1-2) { — log (scgim) + o (@] > log(l SCI((R)LM):| + AKL(Pytruet || Pkrim)
" e E€Naeg ()

structural distillation

(10)

1
+<1—A>[—1og<sc§§1a>+| @] X s~ ;mm)]+AKL<PKRLM||PW>
nee en ENneg (4)
KRL distillation

where scgfr{lct and schM are obtained by Eqs (3) and (9), respectively, NVeg(q) is a negative sample

set of the query triplet g, A is a fixed weight used to balance the target loss and KL term, and
KL(P||Q) is used to calculate the KL divergence between distributions P and Q. Pyyuee and Prrim
are two predicted score distributions of positive and negative targets.

Inspired by the mutual knowledge distillation frameworks ( ; , ), Eq.
(10) consists of two parts: structural distillation and KRL distillation. Thls approach allows KRLM
to dynamically align textual context and structural knowledge in KRL during the training process,
thereby promoting the coordination of different modal knowledge in KRLM. The detailed training
algorithm and reasoning time complexity are provided in Appendixes D and E, respectively.

5 EXPERIMENTS

In this section, we demonstrate KRLM from the following research question: RQ1. Can KRLM ef-
fectively perform inductive KGR tasks on unseen KG under the zero-shot and fine-tuned conditions?
RQ2. Does the effectiveness of each module in KRLM be confirmed, including the knowledge en-
coder, the PAA module, KRL attention layers, the knowledge decoder, and the training approach?
RQ3. Is the hyperparameters set in KRLM effective?

5.1 DATASETS, BASELINES, AND EXPERIMENTAL SETTINGS

Datasets. To verify the ability of KRLM to reason facts on unseen KGs, we conduct evaluations on
28 datasets. According to the overlap level between the train KG and the test KG, these datasets can
be divided into the following three categories:

e 12 Inductive Entity (IndE) datasets from GralL ( s ): FB-V1, FB-V2, FB-V3,
FB-V4, NELL-V1, NELL-V2, NELL-V3, NELL-V4, WN-V1, WN-V2, WN-V3, and WN-V4.
e 13 Inductive Entity and Relation (IndER) datasets from InGram ( , ): FB-25,

FB-50, FB-75, FB-100, NL-0, NL-25, NL-50, NL-75, NL-100, WK-25, WK-50, WK-75, and
WK-100.

e Three Transductive datasets for pre-training: FB15k-237 ( , ),
WNISRR ( , ), CoDEx-M ( , ).
According to prev1ous studies ( ; ; , ), we pre-

train KRLM using three transductive datasets and conduct both zero- shot and fine-tuning evaluations
on IndE and IndER datasets. Detailed dataset descriptions and statistics are provided in Appendix F.
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Table 1: Average performance of each model on inductive datasets. “PT”, “FT”, and “E2E” mean
“pre-training”, “fine-tuning”, and “end-to-end training from scratch” respectively. Black bold and
underline indicate the best and second best results. “-”” indicates that a model is not suitable for the

KGR task, or the corresponding source does not have reproduction conditions.

Inductive Supervised ULTRA ULTRA  MOTIF ~ MOTIF TRIX ~TRIX .~ PROLINK KRLM KRLM
Datasets SOTA (PT) (FT) (PT) (FT)  (PT) (FT) (Llama2-7b) (PT) (FT)
IndE |Hit@10| 0675 0703 0.724 0.721 0740 0732 0734 0726 0733  0.738 0.751
(12 datasets)] MRR | 0527 0549 0.566 0.557 0582 0579 058 0578 0562  0.583 0.590
IndER |Hit@10| 0347 0536 0.542 0.519 0538 0535 0536 - 0542 0546 0.556
(13 datasets)] MRR | 0209 0352 0.350 0.335 0349 0353 0353 - 0354 0361 0.367
Transductive ULTRA MOTIF TRIX CSProm-KG KICGPT .~ KG-LLM . ~PROLINK KRLM KRLM
Datasets (PT) (PT) (PT)  (BERT) (GPI-3.5) (Llama2-7b) (Llama2-7b) (PT) (E2E)
Hit@10| 0564 0550 0.559 0.538 0.554  0.565 - 0.591 - 0.554  0.568

FBISk-237 mURR | 0368 0357 0366 0.358 0412 0.420 - 0.410 - 0381 0.394
Hit@10| 0614 0628 0611 0.678 0.641 - 0503 0.656 - 0.610 0.659

WNISRR |0 R [ 0480 0520 0514 0.575 0.549 - 0427 0552 - 0.506  0.552
Hit@10| 0525 0517 0521 - - - - - - 0.501 0526

CoDEXM oer T 0372 0361 0365 - - - - - - 0349 0.367

CLINNY3

Baselines. We compare KRLM under three versions (“pre-training”, “fine-tuning”, and ‘“‘end-to-
end training from scratch”) with three categories baselines that can handle inductive KGR tasks:

(1) State-of-the-art supervised models reported by ULTRA ( , ). We collect their

detailed performance on each dataset in Appendix F. (2) KGFMs focusing on KG structural learn-

ing, including ULTRA ( , ), MOTIF ( , ), and TRIX ( R
). (3) Latest LLM-based models, including MKGL ( , ) and PROLINK (

s ). In addition, we introduce four LM-based KGR methods, CSProm-KG ( s

), KICGPT ( , ), GPT-4 ( , ), and KG-LLM ( , )

designed for end-to-end transductive KGR training/evaluation.

Evaluation settings. Based on previous work ( , ), we adopt Mean Recurrent Rank
(MRR) and top-10 Hit rate (Hit@10) as evaluation metrics. For each test triplet < ej,r4,e; >, a
model simultaneously predict head and tail entities, i.e. < ex, 4,7 > and < e, —r¢, 7 >, where
—r4 is the inverse relation of r,. In the zero-shot evaluation, we use the pre-trained model with the
best validation checkpoint to obtain MRR and Hit@ 10 on each dataset. In the fine-tuning condition,
we further train the best validation checkpoint on each dataset for evaluation.

Implementation settings. We pre-train and fine-tune KRLM using 4 A100 (40GB) GPUs with
the batch size is 4 per GPU. The total training epochs is set to 20 for pre-training. The optimizer
is default to AdamW with a 5e-4 learning rate, a 1% warmup step setting and a 4-step gradient
accumulation. The more detailed settings of model hyperparameters are provided in Appendix G.

5.2 MAIN RESULTS (RQ1) IndE

In this section, we report the @
perfomlance Of KRLM On dlf— : NELL-VI  WN-VI  WN-V2 NELL-V2 NELL-V4 NELL-V3 FB-V2 WN-V4  FB-VI FB-V4 FB-V3  WN-V3
ferent KGR tasks and compare IndER

it with the SOTA baselines
mentioned in Section 5.1. LB mE LB EE R e M
Inductive KGR tasks. Ta- N TR0 RS TR NS N MO NS FRS0 WS W Wi we
ble 1 and Figure 3 show I KRLM fine-tune [ KRLM pre-train [ Supervised SOTA
the overall performance of
KRLM on inductive datasets
(the detailed experimental re-
sults are provided in Appendix H.1). Obviously, KGFM achieves the best average per-
formance in the fine-tuning scenario. Besides, KRLM outperforms 87% of the baselines
in zero-shot scenarios and even surpasses some fine-tuned KGFMs. This success can be attributed
to KRLM’s ability to leverage the pre-trained intrinsic knowledge of LLMs as an extension of the
invariant knowledge representation in KGFMs, which enables the model to more effectively distin-

Figure 3: Comparison of our KRLM with supervised SOTA base-
lines on every inductive dataset.
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guish unfamiliar entities and relations in unknown KGs. Further experimental analysis of LLM-
based KGFMs reveals that MKGL fixes the number of the relation vocabulary, making it unsuitable
for the IndER task and limiting its generality. In contrast, the competitive PROLINK utilizes a LLM
to plan reasoning conditions and execute pre-trained ULTRA to reason facts. However, PROLINK
overlooks the incompatibility between sparse KG context and LLM inherent knowledge, leading to
knowledge distortion and slightly inferior performance on some datasets compared to KRLM. More
detailed analysis of KRLM are attached in the Appendixes H.1 and H.4.

Transductive KGR tasks. . . . « " «
The transductive KGR per- Table 2: Hit@10 of each ablation variant. “E2E” means “end-to-

formance of KRLM and ¢nd training”. “KEn”, “KMe”, and “KDe” indicate the knowledge
baselines are provided in encoder, knowledge memory, and knowledge decoder in KRLM,
Table 1. The results show respectively. “Atten” and “Mean” represent replacing the PAA
that there is no significant module with attentive pooling and mean pooling, respectively.
positive correlation between “KD” and “KL” is the KRL distillation and KL divergence part

the KGR performance of a 1M EQ. (14), respectively.

model in the closed domain
. KRLM Main Component PAA Module Loss
(transductive) and the open  Datasets (E2E) | KEn -KMe -KDe | Atten Mean | KD KL -KDKL

domain (inductive), which 5570705 (0614 0.691 0674 | 069 0.692 | 0699 0672 0665
may be related to the tendency ~WN-vi | 0801 | 0.710 0.780 0.764 | 0.789 0.787 | 0.782 0.798 _ 0.761
of a model to overfit during NL-0 | 0591 | 0537 0583 0570 | 0588 0584 | 0554 0533  0.535
training in closed domain _NL-100 | 0.688 | 0640 0.667 0669 | 0685 0.683 | 0666 0.678 0.660

KGR scenarios.

5.3 ABLATION EXPERIMENTS (RQ2)

This section mainly discusses the effectiveness of various modules in KRLM. The designed ablation
variants and experimental results are shown in Table 2. Overall, the effectiveness of each ablation
variant is inferior to that of the complete KRLM, especially in some important structural knowledge
learning modules such as “KEn”, “KDe”, and “KD”. Appendix H.2 provides detailed experimental
settings and more results of ablation experiments.

5.4 PARAMETER ANALYSIS (RQ3)

This section discusses the influence of the main hyperparameters in KRLM. As shown in Figure 4,
the scale /C of knowledge memory in the KRL attention layer is set from 10 to 70. When K is
set to 50 or above, there is no significant improvement in model. Therefore, we set I = 50 in the
experiments. In addition, to ensure the expression consistency of structured knowledge in the model,

the layer numbers for the three Top-K Entity Memory GNN Layer

GNNs in KRLM is uniformly 0.80 0.8

set to S. Figure 4 demonstrates 0751

that the model is generally op- < 2074

timal when S = 6, and too %0'70'% \I§> //.; 2
few or too many layers may lead 0.651 AR 06 Ragiet

to underfitting or oversmoothing 0,601 vl ' A/A: e A———ah
of the GNN model. The de- 1“0 P/ S —— 5 3 p; 3
tailed parameter analysis of A Entity Memory Scale K Layer Number S

in Eq. (10) is attached in Ap- Figure 4: Performance of KRLM with different hyperparameters.
pendix H.3.

6 CONCLUSION

This paper first discusses the knowledge distortion challenge faced by LLM-based KGFMs in in-
ductive KGR tasks, i.e., these models are difficult to coordinate internal knowledge of LLMs and
external KG context, where sparse KG context may override LLM’s internal knowledge, thereby
seriously damaging the credibility of reasoning results. Based on this, we propose a novel Knowl-
edge Reasoning Language Model (KRLM), which comprehensively enhances the inherent knowl-
edge collaboration between LLMs and KGs from four aspects: fine-tuning instruction construction,
in-context learning, next-token prediction, and model training. Extensive experiments confirm the
superiority of KRLM in terms of both end-to-end fine-tuning and zero-shot transfer scenarios. Ap-
pendix [ provides the limitations of KRLM and possible future expansion directions.
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findings are intended for academic purposes and do not pose foreseeable risks of misuse. We have
carefully considered issues of fairness, bias, and privacy, and to the best of our knowledge, our
research maintains integrity and complies with all applicable ethical standards.

8 REPRODUCIBILITY STATEMENT

We confirm that our study has reproducibility. Specifically, we have first submitted our desensitized
project on anonymous GitHub (https://anonymous.4open.science/r/KRLM-EA36).
The detailed pseudocode of the algorithm is provided in Appendix D. In addition, we pro-
vide specific details of the experimental conclusions in the main text, including dataset par-
titioning (Appendix F), hyperparameter settings (Appendix G), and ablation variant settings
(Appendix H.2).
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A THE USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) solely as an editing assistant to improve the grammar, clarity,
and concision of the manuscript. All technical contributions, experimental design, data processing,
evaluation, and conclusions reported in the paper were authored and verified by the human authors.
LLM-suggested edits were reviewed and accepted or modified by the authors; no numerical results,
figures, or analyses were generated or approved solely by the LLM.

B MODELING DETAILS OF KGFMS

B.1 RELATIONAL GRAPH CONSTRUCTION

Unlike a typical KG G = (£, R, T ), arelational graph is used to describe the relative states between
relations. According to the design of ULTRA ( ), the relative state of relations
in a relational graph is related to the entity attributes they share. For example, given two triplets
< hy,r1,t1 > and < e, rg,t; >, r1 and ro share the same tail entity ¢, so the relative state from
r1 to 19 is “tail-to-tail” (¢2t). According to this setting, we can map G into four relational sub-graphs
that only contain a single relative state: Gpar = (R, {rfo:}s Trog)s Gnon = Ry {riant Tron)-
Gion = (R, {rion}ts Tion)> and Guae = (R, {riy }, Tyse), where rho,, 170, 7o), and 745, indicate
four relative states “head-to-tail”’, “head-to-head”, “tail-to-head”, and “tail-to-tail”, respectively.

Finally, we can obtain the relational graph G, = (R, R*, T*) in Eq. (1) by integrating Gnot, Gron.,
Gion, and Gyay, where R = {1}y, 750y, 7o, 2} and T = Ty U T, U T3, U Ty

B.2 KGFM ARCHITECTURE

As shown in Eq. (1), KGFM contain two structure learning modules (GNN, and GNN,.) for entities
and relations. Given a query triplet < ej,, 74,7 >€ G and P = Li—g- 1%, we first design a S-layer
GNN model GNN,. for learning the invariance of the relational structure according to Eq. (1):

vy = o(Update([r{"™ || Agg(Mess(r;" ™", #)lr; € No, (r), " € RY))), s€[LS], (D
where Mess(+) is a non-parametric DistMult message function ( ), Agg(+) represents
the sum aggregation operation, Update(-) : R2¢ — R is a trainable linear layer, and o (-) is a ReLU
activation function. G, is a relational graph defined in Eq. (1). The edges in G, are directed as
“head-to-tail”, “tail-to-head”, “head-to-head”, and “tail-to-tail” based on the shared entities (either
the head entity or tail entity) between the two relations in G ( ) (The detailed
design are provided in Appendix B.1). Therefore, the edge embeddings are set to a trainable matrix
R* € R**9 to model the relative structures between two relations.

J
According to Eq. (11), we obtain the knowledge representation of relations R = {rJ(-S) }j: . Simi-
(0)

larly, let e, = I;— - R[q], we construct a S-layer GNN model GNN, for entity structure learning:

e{”) = o(Update([e{" " ||Agg(Mess(e!" ", f)(r))|e; € Ng(en), ™ € R))), s €[1,S], (12)

where f(*) : R® — R is a non-linear function composed of a two-layer MLP with a relu function,
which can transform the structural embeddings of relations into representations that adapt to the
learning of entity structures in each layer of GNN.. Finally, we obtain the knowledge representation

. ()]
of entities E = {e;”’},_, by Eq. (12).
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C DIisScUSSION OF THE KRL ATTENTION LAYER

This section elaborates on the effectiveness of the KRL attention mechanism from the perspective
of the last token in the KRL instruction. Overall, we hope that the hidden state of the last token in
KRL can simultaneously contain textual and structural knowledge contexts in KRL, which provide
a prerequisite for subsequent next-entity prediction.

Let the hidden state sequence of tokens obtained by the n-1 th KRL attention layer is H(~1) =
{hgn_l), hg”_l), ceny R _1)}. According to Eq. (5), without introducing the dynamic knowledge
memory, the hidden state of the last token obtained by the n-th KRL attention layer is:

exp (< hﬁ:fil)Wg); hgnil)Wén) >)

m
hiy) = Zaihﬁ"‘”W‘(f), ;= - ;
— ’ (n=1)yx7(n) . 3 (n—1) yx7(n) 13)
=1 VF Y exp (< by VWEYsRTTYWY )
j=1
where < -;- > is an inner product operation. Eq. (13) can be seen as in-context learning of tokens
within a KRL instruction (including textual tokens and structural knowledge representations), where
«; represents the scaling degree of contextual semantics for the last token.

However, the independent structural knowledge representation of the entity and relation in a KRL
instruction is too thin compared to the widely existing textual tokens, which can easily cause the
model to undervalue critical KG context when learning KRL instructions. To address this issue, we
propose a dynamic knowledge memory mechanism that injects extral KG structural context related
to the entity and relation in KRL into the in-context learning process in a KRL attention layer. Let
{ ek}szl be a knowledge memory containing top-/C entity embeddings obtained by Egs. (1) and (3).
According to Eq. (6), we can reconstruct Eq. (13) into Eq. (14):

m K
R\ = Zaihﬁn‘”W“,“ + ZﬁkekM\(/n>7

i=1 k=1
exp (< hin P WERTTIW )

R, (n—1) g (m). 3 (n—1) g7 (n) S (n—1) p p(n) ’
\/F[]gl exp (< hm Wi h; Wi >)+ kgl exp (< hm 'My"s er >)] (14)
5 exp (< hs:_l)M(m; e, >)
=

m I :
\/F[El exp (< hﬁ,’f‘l’Wé{‘); h;n_l)WI(;L) >) + 21 exp (< hg;l_l)Mé");ez >)]
j= =

By utilizing additional KG context, Eq. (14) coordinates the influence of LLM internal knowledge

and external KG context on hg}'f ) through semantic space scaling and translation. In specific, Eq.
(14) utilizes the knowledge memory to scale the contextual importance coefficient a; of each token
in KRL, which alleviates the contextual impact of large-scale textual tokens on rare entity/relation
structural representations in KRL. In addition, the knowledge memory contributes an effective se-

K
mantic translation as an independent parameter term Y . Srer M. (”), which enhances the perception
k=1
)

of structural knowledge context by hg,? and thus assists in subsequent next-entity prediction.

D TRAINING ALGORITHM

Algorithm 1 provides a complete pre-training process for KRLM. In each training round, the head
entity ej, and relation 7, in a query triplet are firstly transformed into structural knowledge represen-
tations (e, and r,) and word-level embeddings (w., and w, ) using Egs. (1) and (2), respectively,
and ultimately integrated into a KRL instruction (Steps 6-7). Next, we select top-/C entities related
to the query triplet (Step 8) and input them together with the KRL instruction into the stacked KRL
attention layers for in-context learning. Then, we extract the hidden state of the last KRL token
and calculate the predicted score of the next entity of the KRL instruction (Steps 9-11). Finally, the
training loss is calculated according the predicted scores, which is used to optimize the trainable
parameters in KRLM.
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Algorithm 1 Pre-training framework of KRLM

Input: Query triplet set 7,; KG G; relational graph G,.; trainable model parameters ©; learning rate
7); max training step s; batch size b.
Output: Optimized parameters ©.
1. step=0
2: for step < s do
3 Obtain 7, C 7T, that contains b randomly selected query triplets
4 Etotal =0
5: for < ep,rq,7>in 7 do
6.
7
8

Obtain ey, 4 according to Eq. (1) and obtain w,, , w,., according to Eq. (2)
Construct the KRL token embedding sequence T" by Eq. (4)
Select top-K entity embedding related to < ey, 14,7 > by Eq. (3)

9: Obtain H™) by Eq. (6) and extract the hidden state H (™) [m] of the last KRL token

10: Mapping the projection head in LLM to the KG domain by Egs. (7) and (8)
11: Obtain the predicted entity score according to Eq. (9)

12: Calculate the loss £ using Eq. (10)

13: ACtotal — ﬁtotal + L

14: end for

15: Optimize © using L, With the Adam gradient descent method

16: step < step + 1

17: end for

18: return ©

Table 3: Transductive KGR datasets used for model pre-training. “#Train”, “#Valid”, and “#Test”
indicate the training, validation, and testing triplet numbers in each dataset, respectively.

Datasets Entities Relations #Train #Valid #Test

FB15k-237 ( ) 14541 237 272115 17535 20466
WNI18RR ( ) 40943 11 86835 3034 3134
CoDEx-M ( ) 17050 51 185584 10310 10311

E COMPUTATIONAL COMPLEXITY

The reasoning time complexity of KRLM can be analyzed from two parts. From the perspective
of the knowledge encoder and decoder, the time complexity is upper-bounded by the entity GNN
(GNN,(-) and GNN,,(+)), as the number of nodes |R| involved in GNN,.(-) is much smaller than
the number of KG entities || that GNN,(-) and GNN,(-) need to handle. For an entity GNN, the
reasoning time complexity of each layer is usually linearly related to the number of edges

( ); ( ) O(|€|d + |R|d?). Therefore, for a S-layer entity GNN, its overall
time complexity is O(S(|€|d + |R|d?)).

the reasoning time complexity in LLM is concentrated in the KRL attention layer. Set the token
length of a KRL instruction and the scale of the knowledge memory to be m and K, respectively,
the reasoning time complexity in KRL attention layer can be divided into the self-attention matrix
calculation in LLM attention decodeing module (O(m? F')) and the knowledge memory (O(mkd)),
and the final attentive pooling operation (O(m(m+C) F')), where F' and d are the hidden dimensions
of LLM and GNN,(-), respectively. Because m > K, the total complexity of a N-layer KRL
attention module can be represented as O(Nm(m + K)F).

F DATASETS

To verify the ability of KRLM to reason facts on unseen KGs, we conduct evaluations on 28 datasets.
According to the overlap level between train KG Girain = (Etrain, Rirain, Ttrain) and test KG
Grest = (Etests Riest, Trest ), these datasets can be divided into the following three categories:

e Inductive Entity (IndE) datasets that s # Eprain a0d Riest = Rirain, including 12 datasets

from GralL ( , ): FB-V1, FB-V2, FB-V3, FB-V4, NELL-V1, NELL-V2, NELL-
V3, NELL-V4, WN-V1, WN-V2, WN-V3, and WN-V4.
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Table 4: IndE KGR datasets used for zero-shot and fine-tuning evaluation. “Triplets” represents
the number of total triplets contained in a training/validation/testing graph. “#Valid” and “#Test”

are the number of evaluation triplets in the validation and testing graph, respectively.
Training graph  Validation Graph Testing Graph

D . Supervised
atasets Relations e " e " " . "
Entities Triplets Entities Triplets #Valid Entities Triplets #Test SOTA
FB-V1 ( ) 180 1594 4245 1594 4245 489 1093 1993 411 A*Net ( )
FB-V2 ( ) 200 2608 9739 2608 9739 1166 1660 4145 947 NBFNet ( )
FB-V3 ( ) 215 3668 17986 3668 17986 2194 2501 7406 1731 NBFNet ( )
FB-V4 ( ) 219 4707 27203 4707 27203 3352 3051 11714 2840 A*Net ( )
NELL-V1 ( ) 14 3103 4687 3103 4687 414 225 833 201 RED-GNN ( )
NELL-V2 ( ) 88 2564 8219 2564 8219 922 2086 4586 935 RED-GNN ( )
NELL-V3 ( ) 142 4647 16393 4647 16393 1851 3566 8048 1620 RED-GNN ( )
NELL-V4 ( ) 76 2092 7546 2092 7546 876 2795 7073 1447 RED-GNN ( )
WN-V1 ( ) 9 2746 5410 2746 5410 630 922 1618 373 NBFNet ( )
WN-V2 ( ) 10 6954 15262 6954 15262 1838 2757 4011 852 NBFNet ( )
WN-V3 ( ) 11 12078 25901 12078 25901 3097 5084 6327 1143 NBFNet ( )
WN-V4 ( ) 9 3861 7940 3861 7940 934 7084 12334 2823 A*Net ( )

Table 5: IndER KGR datasets used for zero-shot and fine-tuning evaluation. “Triplets” represents
the number of total triplets contained in a training/validation/testing graph. “#Valid” and “#Test”
are the number of evaluation triplets in the validation and testing graph, respectively.

Datascts Training graph Validation Graph Testing Graph Supervised
Entities Relations Triplets Entities Relations Triplets #Valid Entities Relations Triplets #Test SOTA
FB-25 ( ) 5190 163 91571 4097 216 17147 5716 4097 216 17147 5716 InGram ( )
FB-50 ( ) 5190 153 85375 4445 205 11636 3879 4445 205 11636 3879 InGram ( )
FB-75 ( ) 4659 134 62809 2792 186 9316 3106 2792 186 9316 3106 InGram ( )
FB-100 ( ) 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329 InGram ( )
WK-25 ( ) 12659 47 41873 3228 74 3391 1130 3228 74 3391 1131 InGram ( )
WK-50 ( ) 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225 InGram ( )
WK-75 ( ) 6853 52 28741 2722 65 3430 1143 2722 65 3430 1144 InGram ( )
WK-100 ( ) 9784 67 49875 12136 37 13487 4496 12136 37 13487 4496 InGram ( )
NL-0 ( ) 1814 134 7796 2026 112 2287 763 2026 112 2287 763 InGram ( )
NL-25 ( ) 4396 106 17578 2146 120 2230 743 2146 120 2230 744 InGram ( )
NL-50 ( ) 4396 106 17578 2335 119 2576 859 2335 119 2576 859 InGram ( )
NL-75 ( ) 2607 96 11058 1578 116 1818 606 1578 116 1818 607 InGram ( )
NL-100 ( ) 1258 55 7832 1709 53 2378 793 1709 53 2378 793 InGram ( )

e Inductive Entity and Relation (IndER) datasets that E;cst # Etrain a0d Riest # Rirain, includ-
ing 13 datasets from InGram ( R ): FB-25, FB-50, FB-75, FB-100, NL-0, NL-25,
NL-50, NL-75, NL-100, WK-25, WK-50, WK-75, and WK-100.

e Transductive datasets for pre-training that .ot = Eirgin and Riest = Rirain: FB15k-
237 ( , ), WNI8RR ( , ), CoDEx-M ( ,
).

These dataset are used to evaluate the model in zero-shot/fine-tuning scenarios. Tables (3), (4),
and (5) provide detailed elemental statistics for these datasets. In addition, in response to the
“Supervised SOTA” methds in Section 5.2, we provide the supervised KGR models that achieved
the best performance for each dataset in Tables (4) and (5).

G EXPERIMENTAL HYPERPARAMETER SETTINGS

In Section 5.2, we evaluate three forms of KRLM, e.i., “Pre-Training” (PT), “Fine-Tuning” (FT),
and “End-to-End training from scratch” (E2E). The hyperparameters of KRLM-PT and KRLM-
E2E are uniformly set to the values in Table 6. During the pre-training process, we mix the three
transductive KGR datasets from Table 3 as the training corpus and train KRLM from scratch for
20 epochs, each containing 10000 steps. We allocate query triplets with batch size of 4 per GPU
for KRLM in each step. One batch of triplets only belongs to one training KG, and their sampling
probability is proportional to the total number of triplets contained in that training KG.

After pre-training KRLM, we obtain the best validation checkpoint of KRLM-PT for fine-tuning
KRLM-FT on each dataset. The main training hyperparameters of KRLM-FT are the same as those
in Table 6. However, to adapt the model to the vastly different number of training triplets in different
datasets (ranging from a few thousand to nearly one hundred thousand), we set different training
epoch values for different datasets shown in Table 7.

16



Under review as a conference paper at ICLR 2026

Table 6: Hyperperameters of KRLM used in pre-training and end-to-end training from scratch.
Module Component Parameter

Layer number S = 6

Hidden dim d = 64
Message function Mess(-) = DistMult
Aggregation function Agg(-) = Sum

Layer number S = 6

Hidden dim d = 64
Message function Mess(-) = DistMult
Aggregation function Agg(-) = Sum

Linear(128, 64)
Score function Suct (+) ReLU(+)
Linear(64, 1)

Layer number N = 32
Hidden dim F' = 4096

Entity GNN GNN, (+)

Knowledge Encoder Relation GNN GNN7()

Llama2-7b backbone

KRL Attention Layer Mapp‘i"g layer Fwora(-) L?near(64, 4096)
Mapping layer Foe(*) Linear(64, 4096)
Scale of knowledge memory K =50

Layer number S = 6

Hidden dim d = 64
Message function Mess(-) = DistMult
Aggregation function Agg(+) = Sum

Knowledge Decoder GNNy, (-)

Next-entity Predictor Mapping layer g(-) Linear(4096, 64)
Linear(192, 64)
Score function Skrim () ReLU(+)
Linear(64, 1)
Optimizer AdamW
Learning rate n Se-4
Batch size b 4 per GPU
- Training epochs 20
Training Steps in each epoch 10000
Number of negative samples 256
KL weight A 0.5

Table 7: Training epochs and steps of KRLM-FT on different inductive datasets. For example, (3,
all) means that we fine-tune KRLM on a dataset within 3 epochs and the model needs to learn all
the triplets in the training KG.

Datasets KRLM-FT
FB VI (3, all)
FB V2 (3, all)
FB V3 (5, all)
FB V4 (5, all)

NELL V1 (3, all)

NELL V2 (3, all)

NELL V3 (5, all)

NELL V4 (3, all)
WN V1 (3, all)
WN V2 (5, all)
WN V3 (5, all)
WN V4 (3, all)
FB-25 (10, all)
FB-50 (10, all)
FB-75 (10, all)
FB-100 (10, all)

NL-0 (3, all)
NL-25 (5, all)
NL-50 (5, all)
NL-75 (5, all)

NL-100 (3, all)
WK-25 (10, all)
WK-50 (10, all)
WK-75 (10, all)

WK-100 (10, all)
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Table 8: Detailed performance of each model on IndE datasets. “PT” and “FT” mean “pre-training”
and “fine-tuning”, respectively. Black bold indicates the best result.

Tnductive Supervised ULTRA ULTRA MOTIF MOTIF TRIX TRIX -~ PROLINK | KRLM KRLM
Datasets SOTA  (PT) (FT) (PT) (FT) (PT) (FT) (Llama2-7h) | (PT)  (FT)
Hit@10| 0589 0656 0670 0692 0702 0682 0682 0595 0.692 0708 0.701

FB-VI =NRR | 0457 0498 0509 0503 053 0515 0515 0475 0.498 0537 0541
Ht@l10| 0672 0700 0710 0716 0744 0730 0730 0.681 0.745 0748 0752

FB-V2 —RR | 0510 0512 0524 0511 0557 0525 0525 0508 0514 0555 0.557
Hit@10|  0.637 0654 0663  0.692 0684 0669 0669 0643 0.683 0678 0.680

FB-V3 —RR | 0476 0491 0304 0500 0510 0501 0501 0486 0485 0514 0522
Hu@10| 0645 0677 0684 0677 0695 0687 0687 0645 0676 0690 0.699

FB-V4 —NRR | 0466 0486 0496 0487 0508 0493 0493 0471 0.498 0503 0504
Hi@l0| 0866 0913 0878 0871 0873 0.898 0899 0.886 0.883 0887 0916

NELL-VI —rR 0637 0785 0757 0674 0712 0.806 0804 0.749 0.726 0652 0.682
Hit@10 | 0.601 0707 0761 0769 0765 0.768 0764 0.767 0.787 0773 0.791

NELL-V2 —RR [ 0419 0526 0575 0564 0566 0560 0571 0570 0581 0589 0583
Hu@10| 0594 0702 0755 0724 0764 0743 0759 0759 0762 0766 0.768

NELL-V3 = GRr 043 0515 0563 0533 0580 0558 0571 0571 0.589 0594 0.598
Hu@l0| 0556 0712 0733 0711 0740 0765 0.772 0.769 0.769 0739 0.772
NELL-V4 I oRR | 0363 0479 0460 0503 0307 0538 0551 0535 0533 0544 0554
Hit@10| 0826 0768 0793 0778 0806 0.791 0798 0822 0.788 0783 0.800

WN-VI R | 0741 0648 0685 0682 0703 0699 0705 0.746 0.644 0705 0.711
Hit@10| 0798 0765 0779 0771 0781 0781 0.780 0.799 0777 0782 0.799

WN-V2 —JRR | 0704 0663 0679 0665 0680 0678 0682 0712 0.660 0696 0.700
Hit@10| 0568 0476 0546 0538 0590 0.541 0543 0.599 049 0582 0595

WN-V3 SRR | 0452 0376 0411 0420 0466 0418 0425 0436 0388 0447 0.469
Hi@l0| 0743 0705 0720 0718 0733 0723 0722 0741 0.733 0723 0738

WN-V4 —NRR | 0.661 0611 0614 0640 0659 0648 0650 0.664 0623 0655 0.665

When we train KRLM-E2E on a single transductive KGR dataset, the main hyperparameters of the
model are the same as those in Table 6, but the training epochs are changed to 10. In each epoch,
the model needs to learn all training triplets in the dataset.

H DETAILS EXPERIMENTAL RESULTS

H.1 DETAILS EXPERIMENTAL RESULTS ON INDUCTIVE DATASETS

Tables 8 and 9 correspond to the detailed experimental results of each method in Table 1 on the IndE
and IndER datasets, respectively.

Obviously, the current supervised SOTA baselines can only achieve mediocre performance on almost
all inductive datasets, which is attributed to their modeling limitations that make it difficult for
them to capture sufficient transferable structure semantics of entities and relations. In addition,
considering that these baselines ignore the knowledge structure invariance cross KG domains, they
lack of zero-shot reasoning ability across KGs. Therefore, we can only train them from scratch on
each dataset during evaluation, which increases the spatiotemporal overhead of model deployment.

ULTRA is a typical KGFM that proposes a transferable KG reasoning framework driven by relation
structure invariance. This approach endows ULTRA with the ability to recognize unfamiliar entities
and relations in unseen KGs, thereby enabling reasoning of facts on out-of-domain KGs. Based on
this advantage, ULTRA can even perform significantly better than supervised SOTA baselines in
zero-shot reasoning configuration, i.e., ULTRA (PT).

MOTIF and TRIX are improvements based on ULTRA. For example, MOTIF extends the four types
of relation interactions in the relational graph to hyperedges within three hops ( ),
thereby expanding the structural context of the relations. TRIX iteratively propagates messages
between interacting the entity GNN and the relational GNN, enabling the model to perceive more
rigorous structural representations and alleviating ULTRA’s confusion problem with structurally
similar heterogeneous triplets.

The above KGFMs only rely on the sparse structural semantics of KGs, which can easily make the
model ignore deeper underlying knowledge. MKGL and PROLINK use the internal knowledge of
LLM to extend the structural semantics of KGs, making the reasoning evidence space denser and
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Table 9: Detailed performance of each model on IndER datasets. “PT” and “FT” mean “pre-
training” and “fine-tuning”, respectively. Black bold indicates the best result. “-” indicates that a
model is not suitable for this KGR task.

Inductive Supervised ULTRA ULTRA MOTIF MOTIF TRIX TRIX -~ PROLINK | KRLM KRLM
Datasets SOTA  (PT) (FT) (PT) (FT) (PT) (FT) (Llama2-7b) | (PT)  (FT)
Hit@i0 | 0371 0640 0635 0640 0635 0650 0650 - 0.648 0658 0640
FB-25 —NRR | 0223 0388 0383 0384 0388 0395 0393 - 0301 0404 0398
Hit@i0| 0325 0543 0538 0546 0544 0547 0547 - 0.549 0541 0552
FB-50 —NRR | 0.180 0338 0334 0338 0340 0334 0334 - 0336 0339 0345
Hit@l0| 0218 0604 0598 0614 0607 0611 0611 - 0616 0618 0.620
FB-75 —MRR | 0.117 0403 0400 0399 0399 0401 0401 - 0.407 0400 0.414
Hit@l0| 0271 0642 0643 0628 0642 0635 0633 - 0.635 0647 0655
FB-100 R [ 0.133 0440 0444 0428 0439 0436 0436 - 0452 0445 0455
Hit@i0| 0506 0523 0551 0497 0556 0549 0549 - 0550 0587 0591
NL-0 —FRR [ 0309 0342 0329 0324 0328 0385 0385 - 0352 0375 0399
Hit@10| 0464 0560 039 0498 0580 0580 0589 - 0.589 0586 059
NL-25 —VRR [ 0261 0395 0407 0348 0390 0377 0377 - 0396 0394 0.401
Hit@10| 0453 0570 0595 0532 0573 0548 0555 - 0579 0583 0.598
NL-50 —RR 0281 0407 0418 0373 0414 0404 0405 - 0411 0412 0432
Hit@10 | 0.501 0547 0570 0512 0548 0525 0525 - 0552 0535 0559
NL-75 "VRR | 0334 0368 0374 0314 0360 0351 0351 - 0.346 0361 0367
Hit@i0| 0431 0651 0684 0647 0682 0676 0691 - 0.684 0667 0688
NL-100 R 0.260 0471 0458 0438 0464 0486 0482 - 0.471 0493 0489
Hit@10| 0.60 0532 0535 0493 0505 0496 0493 - 0539 0509 0550
WK-25 —RR | 0.107 0316 0321 0311 037 0305 0300 - 0323 0324 0332
Hit@l0| 0362 0324 0280 0314 0304 0313 0313 - 0.286 0306 0328
WK-S0 —URR | 0247 0.166  0.140 0.163 _0.160 0.166 0.166 - 0.168 0.160  0.168
Hit@i0| 0.35 0537 053 0540 0535 0513 0513 - 0.535 0540 0538
WK-75 —§RR | 0068 0365 0380 0366 0371 0368 0368 - 0370 0390 0384
Hit@10| 0300 0286 0286 0282 0284 0299 0299 - 0.283 0320 0313
WK-I00 —RR [ 0.186  0.164  0.168  0.164 0.173 0188 0.188 - 0.179 0.192  0.189
IndE
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Figure 5: Comparison of our KRLM with more powerful GPT-4. Due to the interference of knowl-
edge distortion, PROLINK using GPT-4 is also unable to effectively handle the inherent knowledge
gap between LLMs and KGs. On the IndER datasets with a larger open-domain scope, this reason-
ing error is more pronounced.

thus improving the performance of the model. However, MKGL cannot be considered strictly a
LLM-based KGFM, as it requires a fixed number of relations based on specific KGs during model-
ing. Therefore, although MKGL can achieve the best results by training from scratch on some IndE
KGR datasets (e.g., WN-V2 and WN-V3), it cannot achieve zero-shot reasoning across KGs and is
not suitable for the IndER KGR scenario.

19



Under review as a conference paper at ICLR 2026

PROLINK adopts a framework that combines large and small models. First, PROLINK uses Llama
to plan reasoning paths, and then candidate reasoning paths are mapped to KG space through a
pre-trained KGFM (such as ULTRA). This apporach achieves remarkable performance and gener-
alization. However, PROLINK struggles to effectively address the inherent knowledge gap between
LLMs and KGFMs, which makes it difficult for PROLINK to effectively overcome the limitations
of knowledge distortion on model inference even when using GPT-4 (Figure 5).

In contrast, our proposed KRLM alleviates the LLM knowledge distortion problem caused by the
inherent knowledge gap between LLM and KG by coordinating LLM internal knowledge and KG
structured knowledge in various modules of LLM.

H.2 DETAILS ABLATION ANALYSIS

Section 5.3 analyzes the effectiveness of various components of KRLM. To alleviate the time over-
head caused by multiple pretraining from scratch on large-scale transductive datasets, our ablation
experiments perform end-to-end training from scratch on several small inductive datasets (FB-V1,
WN-V1, NL-0, and NL-100).

Table 2 provides 8 ablation variants, and the following are their design details:

e -KEn. This variant removes the knowledge encoder mentioned from Section 4.1. This encoder
is an extremely important module in KRLM, which involves updating special token embeddings
in subsequent KRL instructions (Eq. (4)), sampling knowledge memory in KRL attention layer
(Eq. (6)), and applying relational knowledge representation in netx entity predictor ((Egs. (8) and
(9)). Therefore, in the absence of a knowledge encoder, we need to remove the knowledge rep-
resentation token placeholders of entities and relations from KRL instructions, replace the KRL
attention layer with the LoRA fine-tuning framework (referring to the LoRA parameter settings
in MKGL ( )), remove the knowledge decoder from the next-entity predictor (Eq.
(8)), replace p; in Eq. (9) by p; in Eq. (8), and remove the relation representation r, from Eq.
9).

e -KMe. This variant removes the knowledge memory mechanism from Section 4.2 and replaces
the KRL attention layer with the LoRA fine-tuning framework (referring to the LoRA parameter
settings in MKGL ( ).

e -KDe. This variant removes the knowledge decoder from Section 4.3, replaces p; in Eq. (9) by
p; in Eq. (8), and removes 7, from Eq. (9).

e Atten. This variant replaces the PAA module in Egs. (2) and (7) with the attention pooling
method, which uses trainable attention weights to average the textual tokens of entities/relations.

e Mean. This variant replaces the PAA module in Egs. (2) and (7) with the mean pooling method,
which directly averages the textual tokens of entities/relations.

e -KD. This variant removes the KRL distillation module from Eq. (10) and only retains the
structural distillation module.

e -KL. This variant abandons the knowledge distillation function in Eq. (10), which only retains
two cross-entropy losses and removes the calculation process of KL divergence.

e -KD-KL. This variant simultaneously removes KRL distillation and KL divergence from Eq.
(10), i.e., only uses the simplest single cross-entropy loss.

The results in Table 2 indicate that the knowledge encoder (“-KEn”) plays an important role in
KRLM, as it introduces implicit structural context into LLM, which is more effective in driv-
ing knowledge coordination between LLM and KG compared to the explicit knowledge injection
method of existing LLM-based KGFMs ( ).

The role of a knowledge decoder is to strictly constrain the reasoning results of LLM so that they do
not exceed the domain of a specific KG. Therefore, after removing the knowledge decoder (“-KDe”),
the reasoning of KRLM degenerates into the next-token prediction mechanism of LLM, making it
difficult for the model to perceive KG structural knowledge throughout the entire reasoning process,
thereby limiting its performance.

The purpose of knowledge distillation in training loss is to coordinate the knowledge in LLMs and
KGs from the response side of KRLM. Therefore, the variant “-KD-KL” using the simplest cross
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Figure 6: (a) Comparison of different approaches for obtaining predicted scores. (b) Experiments
on the proportion of distillation terms in Eq. (9).

entropy loss cannot achieve this function, resulting in poor performance. Variants “-KD” and “-KL”
use one-side distillation and double cross-entropy loss coordination methods, respectively, which
makes it difficult for them to maximize the interoperability between different knowledge and limits
their performance.

The remaining variants (“-KMe”, “Atten”, and “Mean”) mainly focus on the application of different
modal knowledge in KRLM, with the significance of enhancing the knowledge context awareness
of the hidden state of the last KRL token output by KRLM. Therefore, removing these modules also
reduce the reasoning of KRLM, but the impact is not as significant as the variants analyzed above
that focus on the coordination of LLM and KG knowledge.

In addition to the ablation experiments in Section 5.3, we also compare the impact of different
prediction score acquisition methods on the final reasoning of the model. Figure 6(a) shows three

methods for obtaining prediction scores. Our KRLM uses a combination of Eqs. (3) and (9), i.e.

w to obtain the final prediction scores. Skrpm(+) and Sgyuct(+) represent obtaining the

final predicted scores of entities using only Eqgs. (9) and (3), respectively. Obviously, using a single
scoring function can lower the final prediction results of the model. The main reason may be that
although we use knowledge mutual distillation in Eq. (10) to align the predicted distributions of
KRLM and the knowledge encoder, they still have a preference for their respective modal knowl-
edge. Therefore, to fully integrate the model’s expected ratings of entities in different modalities,
we use simple average aggregation to achieve effective prediction.

H.3 ANALYSIS OF THE WEIGHT OF KNOWLEDGE DISTILLATION

Figure 6(b) provides the performance of KRLM for different values of A in Eq. (10). Although
the influence of the weight of KL divergence term on model training is not emphasized in relevant
literature Zhang et al. (2018), our experiment still demonstrates the importance of balancing target
loss and KL divergence. Therefore, in practical implementation, we uniformly set A = 0.5.

H.4 CASE STUDY AND ERROR ANALYSIS

This section further analyzes the reasoning mechanism of KRLM from the perspectives of error
analysis and case study.

Let’s begin with a visual case study. Figure 7 shows the attention weights of candidate entities
within the knowledge memory in a KRL attention layer under correct/incorrect reasoning scenarios.
Intuitively, when the knowledge memory contains the ground truth entity (included in the top-50
entities selected by Eq. (3)), KRLM tends to highlight its attention weight (shown in Figure 7(a)),
even though it is not given the highest score by Eq. (3) among the top-50 entities. This means that
KRLM does not rely solely on the scoring mechanism of Eq. (3), it can further filter information in
the knowledge memory based on more complex in-context learning in subsequent modules.
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Query triplet: <Entity: Shirley Ann Russell>, <Relation: inverse of contains>, ?
Ground truth: <Entity: Louisiana>

Top-1 Prediction: <Entity: Louisiana>
-~ <Entity: Louisiana> is in the knowledge memory

1 1 1 1
0 10 20 30 40

(a) KRLM hits ground truth. KRLM can mine potential correct results from knowledge memory

Query triplet: <Entity:Parlophone>, <Relation: artist>, ?
Ground truth: <Entity: Duran Duran >
Top-1 Prediction: <Entity: Mike Mogis>
Prediction ranking of ground truth: 33

<Entity: Duran Duran> is not in the knowledge memory <Entity: Mike_Mogis> is in the knowledge memory
N I TN | il — I B
0 10 20 30 40

(b) KRLM did not hit ground truth. When the correct result is not in knowledge memory, KRLM
attempts to aggregate the context of ground truth from other candidate entities

0.0030 0.0028 0.0026 0.0024 0.0022 0.0020 0.0018 0.0016

Figure 7: Visualization of the attention weights over 50 candidate entities in the knowledge mem-
ory within a KRL attention layer, illustrating cases where KRLM reasoning succeeds and fails,
respectively. (a) KRLM assigns the highest attention weights to the potential answers it finds in
the knowledge memory. (b) If the memory lacks potential answers, KRLM attempt to aggregate a
broader set of candidate entities to obtain the knowledge context of the ground-truth.

Table 10: Reasoning results of KRLM (PT) for different categories of query triplets in each dataset.
“#Easy” means that the ground truth of a triplet is collected into the knowledge memory, while
“#Hard” means the opposite.

Hit@10 MRR

Datasets #Easy #Hard #Easy #Hard
FB-V1 0.857 0.007 0.658 0.010
FB-V2 0.888 0.074 0.660 0.022
FB-V3 0.892 0.009 0.674 0.011
FB-V4 0.878 0.016 0.639 0.013

NELL-V1 0.876 0.950 0.832 0.701

NELL-V2 0.866 0.047 0.661 0.022

NELL-V3 0.887 0.179 0.699 0.084

NELL-V4 0.842 0.057 0.635 0.018
WN-VI 0.932 0.000 0.827 0.003
WN-V2 0.923 0.008 0.816 0.005
WN-V3 0.850 0.004 0.650 0.006
WN-V4 0.924 0.001 0.829 0.003
FB-25 0.835 0.022 0.515 0.018
FB-50 0.776 0.024 0.490 0.018
FB-75 0.827 0.070 0.564 0.028
FB-100 0.856 0.068 0.598 0.027
NL-0 0.758 0.022 0.502 0.027
NL-25 0.763 0.292 0.536 0.087
NL-50 0.801 0.016 0.565 0.020
NL-75 0.715 0.010 0.465 0.010
NL-100 0.867 0.031 0.607 0.019
WK-25 0.778 0.005 0.491 0.016
WK-50 0.631 0.003 0.338 0.006
WK-75 0.839 0.044 0.621 0.023

WK-100 0.688 0.006 0.427 0.007

In contrast, if the knowledge memory lacks the ground truth, KRLM automatically broadens its
attention to include additional candidate entities. As shown in Figure 7(b), this yields far more high-
attention weights than in Figure 7(a). By expanding its focus, the model gathers as much reasoning
evidence as possible from a wider knowledge context. Although KRLM still fails to infer the ground
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truth correctly in Figure 7(b), it nonetheless boosts the ranking of the ground truth dramatically (from
beyond 50th place to 33rd place).

Furthermore, we explore the universality of the above phenomenon based on the case study in Fig-
ure 7. We classify all triplets into two groups, “#Easy” and “#Hard”, depending on whether their
ground-truth entities are present in the knowledge memory. Table 10 presents the performance of
KRLM for each group. Obviously, KRLM tends to correctly reason for “#Easy” triplets in the vast
majority of cases, while the Hit@ 10 of reasoning for “#Hard” triplets tends to approach 1%, which
is also the main source of errors made by KRLM. The above analysis indirectly reflects the impact
of candidate entity recall methods in the knowledge memory on KRLM reasoning.

I LIMITATIONS AND FUTURE WORK

KRLM provides a novel modeling paradigm for existing LLM-based KGR research, which involves
injecting KG representations into LLM components in different forms. However, the limitations
of KRLM in terms of reasoning cost hinder its application in a wider range of knowledge-based
reasoning environments (see Appendix E for analysis of reasoning complexity). In the future, we
plan to inject KG context into LLMs from the perspective of knowledge editing ( );

( ); ( ) such as the null-space projection ( ), this
method only requires minimal computational overhead. In addition, as knowledge editing directly
affects the parameter-level knowledge in LLMs, it has the potential to make KG context and LLM
internal knowledge self-consistent.
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