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ABSTRACT

Spatio-temporal (ST) prediction task like mobility forecasting is of great signif-
icance to traffic management and public safety. There is an increasing number
of works proposed for mobility forecasting problems recently, and they typically
focus on better extraction of the features from the spatial and temporal domains. Al-
though prior works show promising results on more accurate predictions, they still
suffer in characterising and separating the dynamic and static components, making
it difficult to make further improvements. Disentangled representation learning
separates the learnt latent representation into independent variables associated with
semantic factors (Duan et al., 2019). It offers a better separation of the spatial and
temporal features, which could improve the performance of mobility forecasting
models. In this work, we propose a VAE-based architecture for learning the disen-
tangled representation from real spatio-temporal data for mobility forecasting. Our
deep generative model learns a latent representation that (i) separates the temporal
dynamics of the data from the spatially varying component and generates effective
reconstructions; (ii) is able to achieve state-of-the-art performance across multiple
spatio-temporal datasets. Moreover, we investigate the effectiveness of our method
by eliminating the non-informative features from the learnt representations, and
the results show that models can benefit from this operation.

1 INTRODUCTION

Spatio-temporal prediction tasks like mobility forecasting are critically important for smart city
applications (Zheng et al., 2014). With the help of the rapid deployment of IoT (Internet of Things)
devices and sensors, massive amounts of saturated ST datasets are available, and many researchers
have put their efforts to improve the performance of ST prediction (Zhang et al., 2016; Wang et al.,
2018; Zonoozi et al., 2018; Jin et al., 2018; Yao et al., 2019b). A central problem in deep learning
for crowd flow prediction tasks is the extraction of features from both spatial and temporal domains.
Researchers first tried to extract the entangled spatio-temporal features directly from the data (Zhang
et al., 2016). Then, they tried to extract features from spatial and temporal domains separately. Wang
et al. (2018) and Zonoozi et al. (2018) proposed models that extract periodic representations or
short-term temporal features directly from the ST data using recurrent-based convolution operations
and find their effectiveness in producing more accurate predictions. Based on that, in STDN (Yao
et al., 2019b), the explicit extraction of the long-term periodic information was shown to also improve
the prediction.

Although the existing approaches appear to be powerful in terms of results and predictions, two major
challenges hinder these models: 1) Difficulty in characterising dynamic and spatial components.
Spatio-temporal correlation is more complex since it comprises dependencies from both the spatial
and temporal regions. Models like LDRSN (Tian et al., 2020) and RegionTrans (Wang et al., 2018)
are capturing temporal dependencies explicitly. However, their complicated structure makes it hard
to characterise and validate the effectiveness of their dynamic and spatial components. 2) Difficulty
in separating the extraction of spatial and temporal features. Except for the spatial and temporal
features from the most recent data, many approaches try to extract long-term/periodical features
to improve the performance. However, without an explicit separation mechanism, the extracted
long-term temporal dependencies introduce irrelevant noises to the predictor (factors do not vary
with time and are only relevant to the long-term sequence). The extent to how generative models can
model, extract and disentangle the spatial and temporal features in ST-raster data is an open problem.
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To address the above challenges, we introduce the disentangled representation learning to the mobility
forecasting task. Disentangled representation learning, which separates the learnt representation
into independent variables such that each variable relates to one semantic factor of sensory data
(Bengio et al., 2013), offers a solution for the problem mentioned above. For a spatio-temporal task
like mobility forecasting, an ideal disentangled representation should have the ability to separate
time-relevant components from the factors that don’t vary with time, which can help improve the
predictor’s performance.

Many prior works have explored disentangled representation learning for spatio-temporal data (Hsu
et al., 2017; Li & Mandt, 2018; Denton & Birodkar, 2017; Zhu et al., 2020). Most of them assume
that the features can be disentangled into two sets: a set of dynamic features that extract the temporal
correlations and a set of static features that describe factors that are constant through the input
sequence. However, since most of them focus on the movement of some predefined objects, their
assumption is inaccurate when applying to datasets for mobility forecasting. For example, a sudden
car accident might show no relationship to the temporal influence from the previous timestep and the
static traffic network structure. Therefore, there are still gaps in how to model the spatio-temporal
data using the disentangled representation learning method. To address this problem, we assume that
each timestep has its own temporal features and features that do not vary with time. By doing so, our
model can better formulate the spatio-temporal data, and we can achieve controlled data generation
frame by frame.

In this work, we proposed a VAE-based model to learn disentangled spatio-temporal representation.
Compared to the conventional methods for the ST prediction problem, our approach extracts the
entangled features first and then explicitly separates them into temporal variables and spatial variables
using disentangled representation learning method. This will force the model to keep the learnt
spatial/temporal features as mutually exclusive as possible. For applying disentangled representation
learning method to real ST data, we assume that each frame has its own spatial and temporal variables
and separate these two groups with auxiliary regularisation. It helps the model to formulate the
complicated spatio-temporal sequence. Our experimental results (see Section 4) show that the learnt
representations have a similar level of performance with the current state-of-the-art methods. Our key
contributions can be summarised as follows:

1. We propose a novel approach to learn disentangled spatio-temporal representations for
mobility forecasting tasks. The learnt representation is separated into two independent
groups: spatial and temporal factors.

2. We conducted several experiments on multiple spatio-temporal datasets and used the learnt
representation for mobility forecasting. Results show that our methods achieve state-of-the-
art performance compared to other baseline mobility forecasting methods.

3. We investigate the effectiveness of our methods under the ”Closeness, Period, Trend” scheme
and how to further improves the model’s performance by selecting the informative features
from the learnt representations.

2 RELATED WORK

Deep spatial-temporal networks for mobility forecasting: In order to make accurate traffic pre-
diction, many researchers have paid attention to capturing the spatio-temporal dependencies hidden
behind the traffic data. Besides the conventional methods like Seasonal ARIMA (Moreira-Matias
et al., 2013), deep learning methods are increasingly used in more and more works for mobility
forecasting.

ST-ResNet (Zhang et al., 2016) was proposed to capture the spatial dependencies through a stack
of residual convolution layers. It also stacks the frame from a near and a distant time period to
capture temporal dynamics. The goal of using the residual units is to overcome the gradient vanishing
problem, and the results show that capturing distant spatial features can improve the performance of
mobility forecasting. DeepSTN+ (Lin et al., 2019) proposed a ResPlus unit that is capable of capturing
long-range spatial correlations. Although they succeed in extracting distant spatial features, they lack
attention on capturing the temporal dependencies. To further explore the effectiveness of temporal
features, recurrent-based approaches were introduced to capture the temporal correlations. PCRN
(Zonoozi et al., 2018) was proposed, which first extract entangled spatio-temporal representation
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using a convolutional recurrent network (CRN) and then updating the periodic representations by
CRN’s hidden state. Attention-based LSTM methods are adopted by STDN (Yao et al., 2019b) and
ST-DCCNAL (Li et al., 2019), which try to capture long-term temporal dependencies. In summary,
our proposed method differs from other methods in the explicit separation of spatial and temporal
features using a disentangled representation mechanism.

Disentangled Representation Learning for Spatio-temporal data: Most prior works on the dis-
entangled representation learning problem are developed based on Variational Autoencoders (VAE)
(Kingma & Welling, 2013), which is an unsupervised generative learning method. β-VAE, proposed
by Higgins et al. (2016), forces the inference model to disentangle the latent representation by adding
a new hyperparameter β to create an information bottleneck on the prior. FactorVAE (Kim & Mnih,
2018) further breaking down the objective function and try to enhance disentanglement by penalising
the total correlation of the learnt representation. As for sequence modelling, a number of prior
publications have extended VAE to video and speech data (Fabius & Van Amersfoort, 2014; Chung
et al., 2015; Bayer & Osendorfer, 2014). These models, although being able to generate realistic
sequences, do not explicitly disentangle the representation of time-invariant and time-dependent
information. Thus it is inconvenient for these models to perform tasks such as controlled generation.
S3VAE (Zhu et al., 2020) is proposed to separate static and dynamic factors of sequential data.
Another approach proposed by (Li & Mandt, 2018) is also focusing on separating the dynamic factors
from static factors. Although they share a similar idea which uses an RNN-based architecture to
extract dynamic factors for each timestep, they use different prior setups. Each frame in (Li & Mandt,
2018) has its own content features while the time-invariant variables are shared by the whole sequence
in S3VAE. As for the spatial-temporal type of data like video, SV2P (Babaeizadeh et al., 2017) uses
the variational model to extract the time-invariant latent and make predictions for multiple frames.
Models like (Denton & Birodkar, 2017; Hsieh et al., 2018) try to factorise each frame into a stationary
part and a temporally dynamic component.

3 SPATIO-TEMPORAL VAE MODEL

3.1 SPATIO-TEMPORAL DATA

In this work, we will useD = {Xi}i=1:N to denote a spatio-temporal raster dataset that comprises N
i.i.d. sequences. Each X ≡ x1:T = {x1, x2, ..., xT } in that dataset denotes a sequence of raster data
with T frames. Since we focus on mobility forecasting tasks using grid-based spatial representations,
which all have the similar dimensionsH×W . Hence each frame xt ∈ RH×W represents the mobility
flow of a certain area at a given time interval t.

3.2 SEPARATING SPATIAL FEATURES FROM TEMPORAL FEATURES

Many prior works have explored disentangled representation learning for spatio-temporal data.
Models like FHVAE (Hsu et al., 2017) tried to separate global variables from segment (dynamic)
variables for speech data. DSVAE (Li & Mandt, 2018), DRNET (Denton & Birodkar, 2017) and
S3VAE (Zhu et al., 2020) aim at the disentangled representation for video, which also factorised latent
variables into static and dynamic parts. However, current approaches for learning the disentangled
representation on sequence or spatio-temporal data like video assume that there is a fixed content or
object shared by all frames in the sequence since they are using video datasets like the Stochastic
Moving MNIST (Denton & Fergus, 2018) and Sprite (Li & Mandt, 2018). Sequences in these datasets
often comprise images describing the movement of a set of the same numbers or virtual avatars.
Under this context, static features describing this object can be extracted, and its performance can
be evaluated by the accuracy of a classification task. However, for most of the real spatio-temporal
datasets, the static features are not enough. For example, in a traffic flow dataset, in addition to
the fixed structure of the traffic network and the temporal influences, there might be some hotspot
suddenly emerges. At that specific time, the rise of those events shows no correlation to the temporal
features and the fixed content. Therefore, we assume that for each frame, data is generated based
on two sets of features: a set of temporal features which comprise the influence from the sequence
before it and a set of spatial features that describe the structure of the network and local events. In
this work, we propose a novel architecture that extracts mixed (entangled) feature maps for each
timestep in the input sequence and then separates them into temporal and spatial variables. It allows
us to analyse and controlled generate each frame separately.
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Figure 1: The framework of our proposed model. Each frame of a spatio-temporal sequence x1:T is
fed into the Image Encoder first to extract entangled high-level feature maps, which are then passed
through a temporal gated convolution layer to capture the time-varying variables (temporal features)
zTe1:T . Then the time-irrelevant variables (spatial features) zSpt for each frame xt is captured through
several convolutional blocks. In addition to the objective of the VAE, a Total Correlation regularizer is
used to encourage the disentanglement of the learnt representation. Reconstruction input is generated
for each frame based on the sampled latent from both domains.

The architecture of our method for spatio-temporal disentangled representation learning is illustrated
in Fig.1a. It consists of three major modules: (i) Image Encoder to yield initial feature maps from
the input spatio-temporal sequence. (ii) A Feature Separation module to separate the spatial and
temporal variables from the initially mixed feature maps. (iii) A Decoder to reconstruct the sequence
frame by frame based on their corresponding spatial and temporal variables.

The Image Encoder comprises several layers of CNN, and the feature maps are extracted from each
frame separately. The goal here is to yield some higher-level features for the next step. An Instance
Normalisation layer is used after each convolutional layer to improve the reconstruction results since
using batch normalisation might remove the instance-specific contrast information from the data,
which is useful in the later step (Ulyanov et al., 2016).

Intuitively, without any disentanglement constraints, the feature maps that come out of the Image
Encoder should be the entanglement of features from both spatial and temporal domain. Therefore,
the goal for the Feature Separation module is to separate them explicitly. For temporal features,
inspired by (Yu et al., 2017; Gehring et al., 2017), we use a Gated Convolutional structure to capture
temporal dynamics from the mixed feature maps. This temporal gated convolution layer contains two
1-D causal convolution layers. As Fig.1b shows, those 1-D convolution operations will be applied on
the time axis for each pixel of the feature maps, which means the capture of the temporal dynamics
from each mixed high-level feature. It is much easier to understand the usage of the Image Encoder
here since the 1-D convolutional operation on the high-level features map is definitely better for
separating the temporal dynamics than applying them on the individual pixel of the original input.

The Decoder module is used to reconstruct each frame xt by using their corresponding spatial
variables zSpt and temporal variables zTe1:t as input.

3.3 SPATIO-TEMPORAL VAE MODEL

Priors: In this work, we proposed a spatio-temporal variational autoencoder architecture to learn
disentangled representations from ST raster datasets. Our assumption for variational autoencoder is
that each input xt is generated from a corresponding latent representation zt which can be separated
into two disentangled subgroup: variables zSpt which contains the spatial (time-irrelevant) features
and the temporal (time-varying) features zTe1:t .

On the one hand, since the spatial variables zSpt is considered time-irrelevant, therefore its prior is
defined as a standard Gaussian distribution zSpt ∼ N (0, 1) and the spatial variables for the whole
sequence can be formed as zSp1:T =

∏T
t=1 z

Sp
t . On the other hand, the prior of the temporal dynamic
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variables follow a sequential prior zTe1:t = zTet |zTe<t . The distribution of this sequential prior is defined
as zTet |zTe<t ∼ N

(
µt, diag

(
σ2
t

))
where

[
µt, σ

2
t

]
= φTe

(
zTe<t
)
. The mean µt and variance σ2

t are
parameters that are conditioned on all of its previous temporal variables zTe<t and can be parameterised
by the gated-convolution layer. Thelatent prior zt that combines both the spatial and temporal
variables is formed as:

p(zt) = p(zSpt )p(zTe1:t ) = p(zSpt )

T∏
t=1

p(zTet |zTe<t ) (1)

Generative model: For the generative model, we assume that the generation of each frame xt at
a given time t depends on the combination of its corresponding spatial variables zSpt and temporal
variables zTet . Therefore, the generation process for the single frame xt in the whole sequence x1:T
can be formed as:

pθ(xt, zt) = pθ(xt|zt)p(zt) = pθ(xt|zt)p
(
zSpt

) T∏
t=1

p
(
zTet |zTe<t

)
(2)

where θ are the parameters for the decoder.

Inference models: We use a deep structured model as an encoder to approximate the posterior
distribution, which can factorise the latent z into disentangled spatial and temporal components. The
amortised variational distribution is formed as:

qφ

(
zTe1:T , z

Sp
T |x1:T

)
=

T∏
t=1

qφ

(
zSpt |xt

) T∏
t=1

qφ
(
zTet |x<t

)
(3)

3.4 LOSS

In this work, the objective of our proposed method is defined as the combination of the VAE loss
and total correlation regularisation. It can be formulated as: L = LV AE + βLTC where β is the
hyperparameter for the TC regularisation. Theoretically, applying higher value on β will emphasise
the disentanglement of the learnt representation and lead to better separation of the spatial and
temporal variables. We estimate the objective based on FactorVAE’s approach (Kim & Mnih, 2018).

VAE Objective Function: The objective function of the our method is derived from the variational
lower bound (Evidence Lower Bound, ELBO) of the vanilla VAE (Kingma & Welling, 2013) and is
formed as follow:

LV AE(θ, φ;x1:T ) = Eqφ(zSp1:T ,z
Te
1:T |x1:T )

[

T∑
t=1

log pθ(xt|zSpt , zTet )]−
T∑
t=1

DKL(qφ(z
Sp
t |xt)||pθ(z

Sp
t ))

−
T∑
t=1

DKL(qφ(z
Te
t |x≤t)||pθ(zTet |zTe<t )) (4)

Note that S3VAE (Zhu et al., 2020) already propose a sequential VAE that consider the continuity of
dynamic variables, but it only assumes that there are a whole set of statice features share by the whole
sequence. In contrast, we model the temporal and spatial features for each time step independently,
resulting in detailed information for emergencies in mobility forecasting data.

Total Correlation Regularization: To encourage the overall disentanglement of the learnt represen-
tation, we introduced the Total Correlation (TC) among variables as a regularization term. It quantifies
the dependency among a set variables (Alfonso et al., 2010). Experimental results from β-TCVAE
(Chen et al., 2018) and FactorVAE (Kim & Mnih, 2018) show that, by amplifying the penalty on
this term, the dependence between the variables is reduced hence emphasising the disentanglement.
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In this work, we estimate the total correlation using the same approach like FactorVAE (Kim &
Mnih, 2018), i.e. by introducing a discriminator and using the independence testing trick and the
density-ratio trick to approximate the KL term in the above equation.

4 EXPERIMENTS

4.1 DATASET AND METRICS

In this work, we focus on learning disentangled representation of spatio-temporal raster data. There-
fore, we choose to conduct the experiments on the following three real-world urban flow datasets:

BikeNYC (Lin et al., 2019) is a bike usage data collected from New York City’s Citi Bike bicycle
sharing service, which records the trajectory of all shared bikes in the system. This work covers the
time period from 2014-04-01 to 2014-09-30.

TaxiNYC (Yao et al., 2019a) is a dataset that contains taxi in-out flow data taxi New York City,
created from the NYC-Taxi GPS data, which covers the period from 2015-01-01 to 2015-03-01.

TaxiBJ (Zhang et al., 2016) comprises the taxi in-out flow data that aggregate the taxi GPS position
in Beijing from 2013 to the year 2016. Although it span across 4 consecutive years, the data is not
continuous (covers the period: 2013-07-01 to 2013-10-30, 2014-05-01 to 2014-06-30, 2015-03-01 to
2015-06-30, and 2015-11-01 to 2016-04-10).

For disentangled representation learning, we use all of the data to train the feature separation module,
and for the mobility forecasting tasks, we use the same setup described in (Xue & Salim, 2021), i.e.,
the first 80% data is used for training the prediction model, and the rest 20% data is used for testing.
Besides, Min-Max normalization is adopted to transform the urban flow values into the range [0, 1]
for better training purpose. We evaluate the effectiveness of our models with two commonly used
metrics: the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE).

4.2 IMPLEMENTATION DETAILS
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Figure 2: Illustration of the ”Closeness, Period,
Trend” components and the actual architecture in
the mobility forecasting experiment.

To compare the performance of our model in
mobility forecasting with the current state-of-
the-art methods, we use the ”Closeness, Period,
Trend” scheme to form the input of our predic-
tion model. It is widely used in the urban flow
prediction area, where all three of them com-
prise a sequence of raster data. It designs a set
of unique input sequences, namely Closeness,
Period, and Trend, which correspond to the re-
cent time intervals, daily periodicity, and weekly
trend, respectively (Zhang et al., 2016). Those
three sequences are then fed as the input of their
models.

As shown in Figure 2, in this work, we use the
same setup used by VLUC-Net (Jiang et al.,
2019), where the Closeness sequence contains
the previous six steps before the prediction tar-
get; the Period is the sequence of the previous
day, and the Trend comprises data from the pre-
vious week. We first train our model to learn disentangled representation on the closeness, period
and trend sequences separately. Then the learnt representations are fused to train a Multi-Layer
perceptron (MLP) regressor to predict the next frame of the sequence. It should be noted that the
input of the MLP is not the actual features z, but the learnt µ and σ of the distribution. The logic of
doing this is because the sampling part will introduce uncertainty which has a huge impact on the
training.
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Table 1: Effectiveness Evaluation of Traffic In-Out Flow Prediction. Lower is better.

BikeNYC TaxiNYC TaxiBJ
RMSE MAE RMSE MAE RMSE MAE

HA 4.874 1.500 21.535 7.121 45.004 24.475
CNN 4.511 1.574 16.741 6.884 23.550 13.797

ConvLSTM 3.174 1.133 12.143 4.811 19.247 10.816
ST-ResNet(Zhang et al., 2016) 3.191 1.169 11.553 4.535 18.702 10.493
DMVST-Net(Yao et al., 2018) 3.521 1.287 13.605 4.928 20.389 11.832
DeepSTM+(Lin et al., 2019) 3.205 1.245 11.420 4.441 18.141 10.126

STDN(Yao et al., 2019a) 3.004 1.167 11.252 4.474 17.826 9.901
VLUC-Net(Jiang et al., 2019) 3.119 1.124 10.654 4.157 18.378 10.325

Without explicit
disentanglement 5.412 1.537 19.985 6.281 21.631 12.202

Spatial Only 3.584 1.285 14.640 4.812 21.111 12.435
Temporal Only 3.107 1.167 14.175 4.669 19.825 11.638

Ours 2.903 1.119 12.022 4.055 19.185 10.741

4.3 MOBILITY FORECASTING: COMPARISON AGAINST OTHER METHODS

In our experiments, we compare our method against the following mobility flow prediction methods:
Historical Average (HA); Convolutional Neural Network(CNN); Convolutional LSTM (ConvLSTM);
ST-ResNet(Zhang et al., 2016); DMVST(Yao et al., 2018); DeepSTN+(Lin et al., 2019); STDN(Yao
et al., 2019a); VLUC-Net(Jiang et al., 2019).

The overall evaluation results on effectiveness are summarised in Table 1 for TaxiBJ, TaxiNYC and
BikeNYC. The upper half of Table 1 shows the results of baseline methods on those datasets, and
the lower part shows the results of our proposed approach. The best result for each column is given
in bold, and methods except HA, CNN, and ConvLSTM are all the current state-of-the-art methods
in crowd flow prediction. In general, we can find that our method shows the best results on the
BikeNYC and TaxiNYC datasets and compatible performance on the TaxiBJ dataset.

Besides the crowd flow prediction with a full feature set, we also trained models with only spa-
tial/temporal features to see which set contributes more to the mobility forecasting. We find that
the prediction performance of the models trained on the temporal feature set leads those trained on
the spatial features by a relatively large margin. This shows that for the crowd flow prediction task,
the extraction of the temporal dependencies is important than the spatial dependencies, which also
coincides with the research direction in this area. It should also be noted that the models trained on
the temporal feature already show compatible results with the current state-of-the-art methods. The
is still room for improvement since the input of our method is the raw data alone with no context
information.

4.4 ABLATION STUDY

To explore the effectiveness of each module in the ”Closeness, Period, Trend” scheme, we perform
an ablation study consider different configurations of the input sequences. The detailed configuration
and their corresponding results are summarised in Table 2. The left half of the table shows the
sequences used for each setup. By discarding extracted features from some sequences in the scheme,
we are able to evaluate their effectiveness in regrading the mobility forecasting task. Since the quality
of the learnt disentangled representation is sensitive to the choice of hyperparameters (Duan et al.,
2019), we trained multiple feature separation modules with different hyperparameters. The mean and
standard deviation of each configuration on all three datasets are presented in the right half of Table 2.

We can first find that the performance of models using period or trend sequence alone is poor, and
sometimes adding those extra information does not help the mobility forecasting task. On average,
the configuration that achieves the best results for all three datasets is not configuration C6. Although
the features from the trend sequence improve the results for the BikeNYC dataset by a tiny margin,
introducing the middle/long-term data worsens the performance for both the TaxiNYC and TaxiBJ
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Table 2: Seven different configurations of the input sequences and their corresponding RMSE and
MAE results. It should be noted that C6 is the widely-used setup of the current state-of-the-art
mobility forecasting models

Configuration BikeNYC TaxiNYC TaxiBJ
Closeness Period Trend RMSE MAE RMSE MAE RMSE MAE

C0 3 7 7
3.660
±1.88

1.209
±0.45

14.323
±1.31

4.670
±0.35

22.035
±6.87

14.078
±3.57

C1 7 3 7
5.924
±2.12

1.658
±0.61

25.364
±2.06

7.268
±0.45

35.222
±3.72

21.785
±2.24

C2 7 7 3
4.217
±2.17

1.361
±0.53

22.387
±2.58

6.841
±0.70

42.361
±2.93

25.967
±1.85

C3 3 3 7
3.707
±2.43

1.222
±0.54

14.431
±1.60

4.704
±0.44

22.140
±6.76

14.182
±3.52

C4 3 7 3
3.558
±1.77

1.198
±0.44

17.020
±2.38

5.281
±0.56

22.585
±7.21

14.434
±3.66

C5 7 3 3
4.406
±1.92

1.388
±0.49

22.634
±2.34

6.692
±0.54

36.454
±3.24

22.492
±1.92

C6 3 3 3
3.601
±2.10

1.210
±0.50

16.677
±2.29

5.173
±0.52

22.504
±6.97

14.388
±3.52

datasets. One of the reasons might relate to the size of the representation. Although there might be
some information that can contribute to the prediction, using all three sequences tripling the dimension
of the input and let the noise offset the potential benefit. Besides, we can find out that the variance
results are high for all three datasets, which agree with the assumption that the quality of the learnt
representation regarding the mobility forecasting task is sensitive to the choice of hyperparameters.

4.5 INFORMATIVE FEATURES

Given the thought that the dimension of MLP’s input might be too large and the learnt representations
from the previous section, we want to investigate whether we can find the ”informative” features from
the learnt representations. And for those ”normal” representations (contains valuable information but
does not achieve the best results), will the models benefit when we exclude those ”non-informative”
features from their input. In our work, we define the ”informative” features using the definition from
Unsupervised Disentanglement Ranking (UDR)(Duan et al., 2019): A latent dimension is treated as
an ”informative” feature if it learns a latent posterior that diverges from the prior.

IKL(a) =

{
1 KL(qφ(za|x)||p(za)) > 0.001
0 otherwise

(5)

where a is the index of the variable. We use a smaller threshold here since the number of features
is larger than the UDR (Duan et al., 2019). To avoid the influence from random noise, we test the
performance of mobility forecasting on all representations that we get from the previous section, and
the results are summarised in Figure 3a.

First, it should be noted that there exist representations that do not contain any informative features.
As shown in the figure, those ”poorly-learnt” representations perform a lot worse compared to the
ones with informative features. That proves that a ”well-disentangled, well-learnt” representation can
contribute to the downstream task, at least for the mobility forecasting task. To prove the necessity of
the filtering operation (remove the ”non-informative” features), we first decrease the representation
size and train the feature separation module to extract representations. The results show that when
the size is below a certain threshold, all representations with smaller sizes will not contain any
informative features. And the ones containing informative features will always have some space.
That indicates the necessity of the filtering operation since we still haven’t found a solution to learn
disentangled representation that only contains informative features.

Another thing that we want to investigate is whether the models can benefit when removing those
non-informative features from their input. Therefore, we train those MLPs with only the informative
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(a) Results of different configurations for representation contain/not contain informative features.

(b) Improvements of different configurations after only using informative features as input.

Figure 3: The boxplot of RMSE and MAE results for different representations (learnt with different
hyperparameters).

features and calculate the difference in performance and summarised the results in Figure 3b. It is
worth noted that the MLPs have the same structure except the first layer due to the reducing amount
of input features.

In summary, for the BikeNYC and TaxiNYC datasets, we can find out that, although the MLP that
trained with the best representation does not get performance improvement, the majority of the MLPs
that trained with ”normal” representations show better results after removing the ”non-informative”
features. As for the TaxiBJ dataset, there is a slight drop in performance but only with a tiny margin.
The reason for that might be due to the different sizes and data distribution of TaxiBJ. The overall
grid size for TaxiBJ is larger than the other two datasets, and the Cumulative Distribution Function
(CDF) shows that it contains more large values in the dataset, which might lead to different behaviour
when we are removing the ”non-informative” features. More details can be found in the Appendix.

5 CONCLUSION

Spatio-temporal (ST) prediction tasks like mobility forecasting have attracted significant attention
since they greatly influence traffic management and public safety. We introduce the disentangled
representation learning method and modify it to fit spatio-temporal data. The experimental evaluation
results show that our method can achieve state-of-the-art performance and is able to extract desirable
spatial/temporal features. Moreover, we investigate the effectiveness of recent/middle/long-term
temporal features and find that sometimes our method can achieve state-of-the-art results without
long-term temporal features. Finally, we also demonstrated that a well-learnt representation shows
better results in mobility forecasting tasks and removing the non-informative features from the input
of downstream models sometimes can also boost performance. Hence, we hope that our method can
contribute to the mobility forecasting task by introducing the disentangled representation learning
mechanism. One future direction of this work is forcing the model to learn a more compact represen-
tation that only contains ”informative” features. A better mechanism to separate the spatial/temporal
features and link them to real semantics is also needed to be investigated.
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A APPENDIX

A.1 THE CUMULATIVE DISTRIBUTION FUNCTION (CDF) OF THE DATASETS

The Cumulative Distribution Function (CDF) of all three datasets is shown in Figure 4. We can
find that the TaxiBJ dataset contains more data with larger values, therefore shows a different data
distribution comparing to the other two datasets.

Figure 4: The Cumulative Distribution Function of all three datasets.

A.2 VAE LOSS DECOMPOSITION AND TOTAL CORRELATION REGULARISER

Variational Autoencoder (VAE) is a generative model that tries to approximate a posterior distribution
pθ(z|x) by a neural network component qφ(z|x). The generative part means that in this model, the
data x is considered generated by some random process modelled as pθ(z)pθ(x|z). And we optimize
θ to θ∗ by maximizing the marginal likelihood:

log pθ(x) = DKL(qφ(z|x)||pθ(z|x)) + LV AE(θ, φ;x) (6)

Due to the intractability of the posterior distribution, it is not likely to calculate the marginal likelihood
directly. However, the author provided a variational lower bound (Evidence Lower Bound, ELBO),
which can be optimized using stochastic gradient descent:

L(θ, φ;x) = −DKL(qφ(z|x)||pθ(x)) + Eqφ(z|x)[log pθ(x|z)] (7)

The second part in Eq. 7 represents the reconstruction loss, and by minimising this term, it forces
the model to generate reliable reconstructions of the input and the synthesis data with better quality.
The first term is a regularisation term which can be further tear down for the purpose of better
disentanglement on the latent representation.

β-VAE (Higgins et al., 2016) is the first model for introducing the disentanglement. By adding a
hyper-parameter β for penalising the Kullback-Liebler divergence term harder, the representation
tends to become disentangled, and the reason behind it is quite straight forward if we decompose that
term into the following form (Kim & Mnih, 2018):

DKL(qφ(z|x)||pθ(z|x)) = I(x, z) +DKL(qφ(z)||p(z)) (8)

The first term describes the mutual information between the input and its latent representation while
the second term pushes the distribution of the latent towards the Gaussian prior thus emerging the
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disentanglement. Although the hyperparameter β emphasises, it suppresses the model’s ability to
produce a high-quality reconstruction. To address that limitation, the disentanglement term in Eq. 8
is further decomposed into the following form(Chen et al., 2018):

DKL(qφ(z)||p(z)) = DKL

q(z)||∏
j=1

q(zj)

+
∑
d

DKL(qφ(zj)||p(zj)) (9)

where z ∈ Rd and the original ELBO is structured as:

L(θ, φ;x) = Eqφ(z|x)[log pθ(x|z)]− I(x, z)

−DKL

q(z)||∏
j=1

q(zj)

−∑
d

DKL(qφ(zj)||p(zj)) (10)

Not like β-VAE, FactorVAE(Kim & Mnih, 2018) and β-TCVAE(Chen et al., 2018) introduce the
hyperparameter in front of the first term in Eq. 9 which is referred to as the total correlation (TC)
(Chen et al., 2018). By amplifying the penalty on this term, the dependence between the variables is
reduced hence emphasising the disentanglement. The second term in Eq. 9 is defined as dimension-
wise KL divergence, which puts constraints on the generated latent code z and pushes them towards
their predefined Gaussian prior (Li et al., 2020).

The total correlation is intractable since the prior contains mixtures with a large number of components.
However, FactorVAE introduces a discriminator to approximate the the density ratio that arises in
the TC term. In the training session, the model extract representations of two batch of input and
then send them to the discriminator. The second batch of extracted representation will be randomly
permuted and the goal for the discriminator is to identify whether its input is from q(z) or not. The
discriminator and the VAE are trained jointly for getting accurate estimation.

A.3 THE IMPLEMENTATION DETAIL OF OUR PROPOSED METHOD

Table 3: The detailed structure of our proposed method

Parameters

Dataset Modules Layer in channel out channel kernel size

BikeNYC/
TaxiNYC

ImageEncoder
Conv2d 2 4 4x4
Conv2d 4 8 4x4
Conv2d 8 16 4x4

Feature
Separation

Module

Conv2d 6 6 3x3
Temporal

Gated-Conv 6 6 3

Conv2d 6 6 3x3
Conv2d 6 6 3x3

Decoder
ConvTranspose2d 8 16 4x4
ConvTranspose2d 4 8 4x4
ConvTranspose2d 2 4 4x4

Discriminator

Linear 256 500 ReLU
Linear 500 500 ReLU
Linear 500 500 ReLU
Linear 500 2 ReLU

A.4 EXAMINING THE LEARNT REPRESENTATIONS

Quantitative evaluation of the learnt representations: We summarise the results in Table 4. As
one can see, our approach consistently shows superior performance across all datasets in both the
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disentanglement and reconstruction. This verifies the necessity of extracting time-irrelevant features
for each time step, which can capture the unconventional changes in the ST raster data very well.

Table 4: Quantitative performance comparison on BikeNYC, TaxiNYC and TaxiBJ datasets.

BikeNYC TaxiNYC TaxiBJ
MMD 0.858 0.918 0.354
KLD 0.108 0.131 8.305

Original add -1 add 1 0.0

0.8
z

add -1 add 1 -0.1

0.1
Difference

add -2

add -2 add 2

add 2

Spatial Features Temporal Features

Network Structure

Local Hotspot

Figure 5: Spatiotemporal data generation controlled by fixing the spatial/temporal variable and
modifying the other variable set. The top row shows the synthesis image with changed features, while
the images on the second row show the difference between the original image and their corresponding
synthetic images.

Generating Attributed Spatio-temporal data: We visualise the spatio-temporal data generated by
our method to validate what types of information are extracted by the spatial/temporal features. The
generated images are shown in Figure 5, and the original input is placed on the top left corner. The
remaining of the top row shows the reconstructed spatiotemporal data with one group of features fixed
(spatial/temporal) while making changes to the other set of variables. The difference between images
on the first row and the original input is calculated and visualised in the second row since those
residual images show the impact on the reconstructed data when changing the latent representations.

The temporal features, as shown in the right half of Figure 5, do not focus on the spatial structure
of the data. They capture the temporal influences that flow through the sequence. When we
are adding negative/positive values to temporal features, the model tends to amplify/weaken the
temporal dependencies as we can see that the areas with non-zero values on the previous timestep are
enhanced/reduced on this timestep. On the contrary, the spatial features contain more than the static
structure of the transportation network. As shown in the left half of Figure 5, when adding/subtracting
values to the spatial features, not only the flow of the major roads are amplified/weakened, some
hotspot events also emerge across the whole city. The results above demonstrate that verify the
necessity of the disentangling design of our approach, which can capture and separate the spatial and
temporal features very well.

A.5 REPRESENTATION SWAPPING

Besides the temporal, we also perform the representation swapping to show the ability of our proposed
method to generate synthetic spatiotemporal data. Suppose two real sequences are given for spatial
information and temporal information, denoted as Xs and Xt. The synthetic spatiotemporal data are
expected to preserve the spatial structure in Xs and the temporal dependencies in Xt. The qualitative
comparisons are shown in Figure 6
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Figure 6: Spatiotemporal data generation controlled by swapping the spatail/temporal features
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