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Abstract

We introduce SOFA (Stabilized Outlier-Free Attention), a drop-in replacement for the
softmax activation that tackles the attention-outlier problem when turning a text-only
LLM into a speech-text multi-modal model (SpeechLM). Our primary observation is that
outliers emerge from both multi-modal low-rank adaptation and post-training quantization of
transformer attention, degrading state-of-the-art SpeechLMs performance. To address these
issues, we leverage a pretrained language model as a foundation and replace the standard
softmax attention with SOFA which can be applied as a drop-in replacement of the vanilla
softmax. We propose a plug-in method that directly eliminates outliers without adjusting
pretraining weights and quantitatively measure the prevalence and impact of outliers in a
unified speech-text transformer. We evaluate two multi-modal adaptation strategies: full
fine-tuning on multi-modal data followed by post-training quantization, and apply LoRA
on SOFA equipped model (SOFA-LoRA adapter) which keeps the pretrained LLM frozen
without extra pre-training. The full fine-tuning route delivers strong, consistent gains
across all modalities (textLM, SpeechLM, ASR, TTS), whereas the SOFA-LoRA adapter
without touching any pretrained weights—surpasses the vanilla-LoRA adapter baseline and is
particularly effective on text-output tasks such as ASR, all while retaining full compatibility
with standard LLM checkpoints. Empirically, on the OPT-1.3b model, incorporating SOFA
into SpeechLM yields a 88% improvement in multi-modal low-rank adaptation and a 37%
improvement in post-training quantization.

1 Introduction
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Figure 1: Overview of the SpeechLM System. The model is trained with a next-token prediction objective over
a joint text and speech tokens vocabulary. Speech tokens are derived from continuous waveforms using a HuBERT
encoder and can be decoded back into audible speech. We train on a mixture of sequences: text-only, speech-only,
speech-to-text (ASR), and text-to-speech. Illustrated here is a TTS example, where special tokens "ST" (start of text)
and "GS" (generate speech) indicate the task and desired output modality.

Recent efforts to adapt text-only Large Language Models (LLMs) for speech-text applications (SpeechLM)
expose under attention-outlier problem: extreme values appears during low-rank multimodal adaptation
and become even more damaging after post-training quantization (Wei et al., 2023; Bondarenko et al.,
2023). These outliers slow convergence, destabilize training, and erase much of the accuracy promised by
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parameter-efficient tuning such as LoRA (Huang et al., 2024; Chhabra et al., 2025). We tackle the bottleneck
with Stabilized Outlier-Free Attention (SOFA), a drop-in replacement for the softmax activation that can be
applied to pretrained transformers without re-training. By neutralizing outliers at their source, SOFA lets a
text LLM adapt faster, survive 4-bit quantization, and surpass strong vanilla-softmax LoRA baselines on
ASR, TTS, and other SpeechLM tasks under the same compute budget.

SpeechLM leverages pretrained language models to enhance speech recognition and synthesis (Nguyen et al.,
2025), as in Figure 1. By employing a unified token space for both speech and text, it accommodates automatic
speech recognition (ASR), text-to-speech (TTS), speech generation (SpeechLM), and text generation (textLM)
tasks within a single framework (Maiti et al., 2024; Yang et al., 2024). This holistic design simplifies the
training pipeline and fosters knowledge sharing among diverse applications.

Despite these advances, significant challenges persist. Many SpeechLMs cannot directly generate speech; they
either only accept multi-modal inputs (Chu et al., 2023; Wang et al., 2023a; Gong et al., 2023; 2024) or require
fully fine-tuning the entire model to handle both text and speech outputs (Maiti et al., 2024; Yang et al.,
2024; Zhang et al., 2024; Défossez et al., 2024). Such large-scale full-model fine-tuning imposes substantial
computational overhead, limiting widespread adoption. Moreover, post-training quantization (Xiao et al.,
2023), a practical approach for deploying large models in resource-constrained settings, often suffers from
outliers inherited from pretrained LLMs or introduced by multimodal data, thus impairing accuracy and
diminishing the benefits of low-rank adaptation (Clark et al., 2019a; Kovaleva et al., 2019a; Zhao et al., 2024;
Huang et al., 2024; Crabbé et al., 2024).

Attention outliers arise as a natural consequence of extending text-pretrained transformers to multi-modal
settings (e.g., text and speech modality) under parameter-efficient adaptation. Speech tokens differ from
text tokens in both statistical structure and semantic density. It often forms longer and more repetitive
sequences derived from clustered acoustic units rather than linguistic subwords (Hsu et al., 2021; Zhang et al.,
2024; Maiti et al., 2024). When injected into a text-pretrained attention space, this distributional mismatch
causes certain tokens to receive disproportionately large attention logits. Moreover, low-rank adaptation
methods such as LoRA constrain updates to a low-dimensional subspace, limiting the model’s ability to
smoothly redistribute attention mass across modalities (Hu et al., 2022; 2025; Huang et al., 2024). As a
result, adaptation pressure is often absorbed by a small subset of attention entries, producing extreme values.
These effects are further amplified by residual connections, which propagate early attention imbalances across
layers (Clark et al., 2019b; Kovaleva et al., 2019b).

To tackle these outliers, we simply swap the standard self-attention mechanism (Vaswani et al., 2017) with
SOFA, an outlier-free activation inspired by Hopfield methods (Hu et al., 2024a). This delivers two key
benefits. First, SOFA avoids the infinite-loss pitfalls that can occur when training outlier-handling layers
in large models (e.g., OPT-1.3b), leading to a more scalable and robust solution. Second, SOFA eliminates
the need to pretrain a specialized outlier-resistant model from scratch by seamlessly integrating a dedicated
stabilization module into an existing Large Language Model (LLM). This design preserves pretrained strengths
from vanilla LLMs while outl outlier mixing that could degrade fine-tuning and quantization. Empirically, our
method consistently outperforms standard transformer-based layers when combined with low-rank adaptation
techniques such as LoRA (Hu et al., 2022) and post-training quantization (Xiao et al., 2023).

Contributions. We propose a simple, Stabilized Outlier-Free Attention (SOFA), to eliminate outliers in
multi-modal speech-text transformers. Our key contributions are:

• First Quantitative Outlier Analysis. To our knowledge, we are the first to measure and characterize
activation and attention outliers in a unified SpeechLM system, revealing their impact on cross-modal
adaptation and quantization.

• Adapt to pretrained LLM with low-cost fine-tuning. We introduce SOFA, a new attention can be
adapted on to pretrained LLM, improving down-stream task performance when appling LoRA without
changing a lot model weight.

• Unified Adaptation and Efficiency Gains. We demonstrate that, across LoRA, QLoRA, and post-
training quantization on the OPT family (Zhang et al., 2022), SOFA delivers an 88% improvement in
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low-rank multi-modal adaptation and a 37% reduction in quantization degradation, all within the same
compute budget.

Q

KT

V
Stabilized Outlier-Free

Attention (SOFA)

Matrix
Multi

Matrix
Multi

Max-Shift
Stabilization

Softmax1
Activation

Attention Probabilities
Distribution

Stable
Distrbution

(a) SOFA Attention Mechanism.

Q

KT

V
Vanilla Self-Attention

Matrix
Multi

Matrix
Multi

Attention Probabilities
Distribution

Softmax
Activation

Extreme
Values

(b) Vanilla Attention Mechanism.

Figure 2: Comparison of Attention Mechanisms. (a) The Stabilized Outlier-Free Attention (SOFA) mechanism
introduces max-shift normalization and a specialized Softmax1 activation function to reduce outliers in multimodal
adaptation. (b) The vanilla attention mechanism, in contrast, often leads to significant output outliers during
adaptation.

2 Related Work

Discrete Speech Representation. Recent advances in Self-Supervised Learning (SSL) for speech enables
the extraction of meaningful representations from raw audio. Models like HuBERT (Hsu et al., 2021) and
w2v-BERT (Chung et al., 2021) generate discrete speech tokens by clustering learned features, capturing the
linguistic content of speech. This transforms speech into pseudo-text, facilitating applications in speech-based
natural language understanding and generation. By clustering continuous features into discrete tokens
representing phonetic or sub-word units, these models improve the accuracy and efficiency of tasks such as
TTS (Hayashi and Watanabe, 2020), speech-to-speech translation (S2ST) (Lee et al., 2022), and ASR (Park
et al., 2019). In addition to SSL-derived units, another line of research utilizes neural audio codec-based
representations, such as Residual Vector Quantization (RVQ)-based codecs like EnCodec (Défossez et al.) or
SoundStream (Zeghidour et al., 2022). These codecs produce acoustic-level tokens optimized for high-fidelity
waveform reconstruction. While codec tokens often yield superior audio quality in generation tasks, they
typically result in much longer sequences and distinct statistical distributions compared to text, posing unique
challenges for unified speech–text modeling and quantization.

Speech and Text LMs. Joint modeling of speech and text has gained significant attention in recent
studies. LLM-initial approaches (Ao et al., 2022; Chen et al., 2022) proposed learning shared speech-text
representations with separate encoders and decoders, requiring alignment losses for multi-modal transfer.
Recent methods employ a single model for multiple tasks. For example, SpeechGPT (Zhang et al., 2023)
combines audio generation with textLMs, PolyVoice applies speechLM to S2ST (qian Dong et al., 2023),
SpiritLM (Nguyen et al., 2025) excels in speech and expressive speech generation, also adapted for related
speech tasks, and Voxtlm (Maiti et al., 2024) conducts speech/text generation along with ASR and TTS.
In these textless NLP and unified frameworks, discrete units serve as the key interface enabling speech
continuation and translation without explicit text supervision. We utilize textually pretrained OPT (Zhang
et al., 2022) for better initialization inspired by (Maiti et al., 2024; Hassid et al., 2024) and leverage different
speech tokens, ensuring reproducibility.

Low-Rank Adaptation and Post Training Quantization. Low-Rank Adaptation (Xin et al., 2024) and
Post Training Quantization (PTQ) (Gholami et al., 2022) are essential techniques for reducing the memory
footprint and latency of large foundation models (Bommasani et al., 2021), i.e. huge transformer-based
models. Those large foundation models play a crucial role not only in machine learning area but also in
a huge scientific area, such as (Zhou et al., 2025) for genomics, (Wang et al., 2023b; Wu et al., 2023) for
financial, and (Maiti et al., 2024) for speech. However, large foundation models are resource-intensive.
Low-Rank Adaptation and PTQ play crucial roles in deploying these large models on edge devices with
limited resources. Significant contributions are made in the area of low-rank adaptation (Dettmers et al.,
2024; Li et al., 2023; Hu et al., 2022) and PTQ (Zafrir et al., 2019; Dettmers et al., 2022). Despite significant
contributions to low-rank adaptation and PTQ, substantial challenges still remain. Recently, several studies
focus on mitigating the impact of outliers in model quantization (Bondarenko et al., 2024; Xiao et al., 2023).
Additionally, the outlier challenge also influences both pre-training (Hu et al., 2024a) and fine-tuning (Chen
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et al., 2024; Hu et al., 2025). However, none of these studies focus on low-rank adaptation. Our contribution
is orthogonal to the specific choice of speech tokenization; we analyze how existing discrete representations
interact with parameter-efficient fine-tuning. We specifically highlight how outlier activations can be amplified
in discrete-token-based pipelines and demonstrate that SOFA effectively stabilizes these representations
without modifying pretrained weights. To tackle this issue, we propose the Outlier-Free Layer to manage
outliers effectively during both the low-rank adaptation and quantization processes.

3 Methodology

This section introduces our apporach for integrating Stabilized Outlier-Free Attention (SOFA) into a SpeechLM
framework. By replacing the standard transformer attention mechanism with a stabilized, outlier-free variant,
we address the challenges posed by outliers during multi-modal low-rank adaptation and post-training
quantization. We begin by outlining the SpeechLM setup, then describe the outlier-free architecture and how
it integrates into SpeechLM, and finally provide theoretical justifications for our design.

3.1 SpeechLM Setup

Our goal is to model speech and text modalities within a unified framework. To achieve this, we convert
continuous speech signals into discrete tokens si ∈ Vsp via a speech tokenizer (e.g., a HuBERT-based model
with k-means clustering). These speech tokens are integrated with text tokens ti ∈ Vtxt to form a joint
vocabulary Vjoint = Vtxt ∪ Vsp. We train on a mixture of tasks (ASR, TTS, speech and text generation)
using subword models (e.g., BPE or SentencePiece) for both text and speech tokens. This shared vocabulary
allows the model to predict the next token directly, regardless of the modality. Concretely, we model the
probability of a text utterance T = (ti) as p(T ) =

∏
i p(ti | t1, · · · , ti−1), and similarly represent continuous

speech signals as discrete tokens S = (si), which are modeled in the same manner. The joint probability of
speech and text tokens J = (ji ∈ Vjoint) is expressed as p(J) =

∏
i p(ji | j1, · · · , ji−1). To handle multiple

tasks in a framework, we apply four special tokens indicating the start and generation modes for speech or
text, following (Maiti et al., 2024). For example, ASR sequences start with a “start of speech” token and use
“generate text” as the prediction target, whereas TTS sequences start with a “start of text” token and use
“generate speech” as the target. This unified autoregressive strategy simplifies handling ASR, TTS, speech
generation (speechLM), and text generation (textLM) tasks within one model.

Modality Fusion. The joint vocabulary Vjoint includes discrete speech tokens derived from clustered
HuBERT features (Hsu et al., 2021). We employ HiFi-GAN (Kong et al., 2020) trained on LJSpeech
(Ito., 2017) to synthesize speech waveforms from discrete tokens. We also apply SentencePiece (Kudo and
Richardson, 2018) across both text and speech tokens, which reduces sequence lengths and provides richer
contextual representations. During training, we use a teacher-forcing approach in an autoregressive manner.
At each timestep i, the model predicts the distribution p̂i = SpeechLM(j1, . . . , ji−1)., and we compute the
cross-entropy loss as:

LCE(pi, p̂i) = −
|Vjoint|∑

c=1
pi(c) log p̂i(c),

where pi is the ground-truth distribution over tokens. At inference, the model predicts new tokens ĵi

autoregressively, conditioned on the preceding context.

3.2 Outlier-Free Architecture

Modern multi-modal speech-text transformers often face severe outlier issues during both multi-modal
low-rank adaptation and post-training quantization. Our Stabilized Outlier-Free Attention (SOFA) directly
tackles these challenges, as illustrated in Figure 2.

Problem Setup. Consider an input sequence (speech and text) represented as a matrix X ∈ Rd×L, where d
is the feature dimension and L is the sequence length. This input is fed into standard transformer layers
composed of self-attention and feed-forward sub-layers.
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Figure 3: Attention Visualization in LoRA Fine-Tuning. Comparison of attention probability and output
for a multi-modal speech sample in OPT-350m. Heatmaps from the last hidden layers are scaled from 0 (blue) to 1
(red). The vanilla model distributes attention broadly, diluting focus, while SOFA sharpens attention on key tokens,
improving efficiency.

Motivating Example. Studies Clark et al. (2019a); Kovaleva et al. (2019a); Hu et al. (2024a) show that
certain tokens with little information (e.g., punctuation) may receive disproportionately high attention
weights, creating “outliers” that skew distributions. In a multi-modal context, these outliers often become
more pronounced, worsening performance degradation during fine-tuning and quantization (Crabbé et al.,
2024). We use this observation as a starting point by considering the following attention mechanism:

Output = Residual(Softmax(XWqXWT
k /
√

d)XWv + X). (3.1)
As shown in (Hu et al., 2024a), if the attention input X already holds sufficient information, the attention
mechanism within the residual connection should ideally act as an identity transform, producing near-zero
attention weights (Softmax(QKT)V). In such cases, tokens with high values in V should receive near-zero
attention probabilities, as determined by Softmax(QKT). However, the classic Softmax function normalizes
probabilities in a way that disproportionately amplifies the attention probabilities assigned to low-value
tokens. This broadens the distribution of attention scores and introduces outliers that degrade the model’s
performance. Additionally, integrating speech and text — two modalities with inherently different statistical
properties — can further skew attention distributions.

Our Approach: Stabilized Outlier-Free Attention (SOFA). We propose SOFA as a attention mechanism
to mitigate outlier effects in large-scale transformer models. Drawing on memory-associated activations
(Miller, 2023; Hu et al., 2024a), SOFA replaces the standard softmax with an operation called Softmax1,
which specifically reduces the disproportionate influence of extreme values. The key steps are:

S ← S −max(S), (3.2)

Softmax1(S) = exp(S)
1 +

∑L
i=1 exp(Si)

, (3.3)

The first step, S ← S − max(S), constitutes our stabilized layer. By subtracting the largest element of
S, often called a “max-shift”, we avoid numerical overflow and normalize outlier values before applying
Softmax1. Similar to the stabilized method in (Dao et al., 2022), this design ensures that extremely large
logits are brought to a manageable range, thereby curbing outlier formation in the attention weights. Although
Softmax1 mitigates outliers, it can introduce gradient instabilities in larger models (Alman and Song, 2024).
Our stabilized layer (the max-shift) addresses this by keeping values within a stable numeric range, which
preserves consistent against exploding gradients during fine-tuning or quantization (Hu et al., 2025; Jiang
et al., 2023). Figure 3 illustrates how SOFA reshapes attention distributions during fine-tuning. We compare a
vanilla transformer to one using SOFA by color-coding final hidden representations (red for higher values, blue
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for lower). The vanilla model’s attention is scattered accross many tokens, leading to inefficient computation
and degraded performance.

3.3 Integrating SOFA into SpeechLM

We incorporate SOFA into a SpeechLM framework to effectively manage both speech and text modalities.
This integration aim to leverage pretrained LLM parameters and supports robust post-training quantization,
but it presents two main challenges:

Multi-modal Adaptation. Extending a text-only LLM to multi-modal tasks is nontrivial because speech
tokens greatly expand the vocabulary Vjoint and typically increase sequence lengths fivefold. Together with
preexisting outliers, these changes complicate typical parameter-efficient training or quantization. SOFA
addresses this with the Softmax1 function (Equation (3.3)) to avoid outliers emerging, stabilizing attention
distributions under increased vocabulary sizes and multi-modal data. This makes fine-tuning with LoRA
or performing post-training quantization (e.g., SmoothQuant) more feasible, reducing the computational
overhead of full-model tuning (Maiti et al., 2024; Nguyen et al., 2025) while improving final performance.

Stabilized Outlier-Free Adaptation. Simply substituting softmax-based attention with SOFA can create
parameter mismatches, since the original weights were tuned for a vanilla softmax function. Our stabilized
layer in Equation (3.2) ensures consistent gradients, allowing direct initialization from off-the-shelf LLM
parameters—no specialized outlier-free pretraining is necessary. As a result, SpeechLM equipped with SOFA
achieves stable and efficient adaptation to new tasks and modalities, demonstrating substantial gains in both
ASR and TTS compared to vanilla transformer-based SpeechLM systems.

In practice, the SOFA-LoRA adapter preserves the original language capabilities of the underlying LLM,
inherits SOFA’s robustness to activation outliers, and adds only a tiny fraction of trainable parameters.
Applied to SpeechLM, this configuration consistently outperforms the vanilla transformer baseline on both
ASR and TTS benchmarks while tuning no more than two percent of the total model parameters, confirming
that SOFA integrates with modern low-rank adaptation techniques.

3.4 Theoretical Justifications

Building on the theoretical advantages of the outlier-free transformer reported by (Hu et al., 2024a), we
provide two additional justifications for applying LoRA to the outlier-free transformer.

Expressiveness. We emphasize that our design choices offer strong expressive guarantee for model expressive-
ness; specifically, Low-Rank Adaptation with Softmax1 enhances the model’s expressiveness, as demonstrated
in Luo et al. (2025, Theorem A.2).

Training Efficiency. We find that the attention weights are concentrated on significant tokens, enabling less
training time cost during fine-tuning compared to the vanilla version. We provide a theoretical justification
for why we observe improved LoRA training efficiency.
Proposition 3.1 (Fast LoRA Requires Proper Normalization (Informal Version of Proposition B.1)). Let
X ∈ Rd×L be the input sequence, and let r denote the rank of the LoRA adapters for a pretrained transformer
model. Sub-quadratic time-efficient LoRA training up to a precision of ϵ = O((log L)−4) is achievable if the
following conditions hold: (i) long sequence setting with d = O(log L), (ii) mild rank r < d, and (iii) proper
normalization of the input and model weights.
Remark 3.1. Our outlier-free layer ensures proper normalization of the model weights. Our stabilization
technique ensures proper normalization of the model input.

We defer detailed theoretical justifications to Appendix B.

4 Experimental Studies

In this section, we present experiments to assess the effectiveness of our proposed framework, benchmarking
it against state-of-the-art methods from (Maiti et al., 2024).
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Table 1: Comparing SOFA with Vanilla Transformer in a Post-Training Quantization (PTQ) setting.
We conduct experiments across three quantization methods (SmoothQuant, AffineQuant, OmniQuant, SpQR) on a
low bit weight and activation quantization setting – weight 4 bits and activation 4 bits (W4A4). Evaluation metrics
include Text PPL, SpeechLM PPL, ASR WER, and TTS CER. We assess the average performance drop across these
four tasks post-quantization. Results show SOFA consistently outperforms vanilla transformer, exhibiting smaller
performance drops when applying low bit quantization methods, demonstrating its superior efficiency in PTQ settings.

Model Method #Bits Quantization
Method

TextLM
PPL (↓)

SpeechLM
PPL (↓)

ASR
WER (↓)

TTS
CER (↓)

Avg Performance
Drop (↓)

O
PT

-3
50

m Vanilla

W16/A16 - 13.13 43.10 8.42 17.56 -
W4/A4 SmoothQuant 36.74 75.38 40.17 70.53 211.19%
W4/A4 AffineQuant 27.28 66.31 36.84 40.83 138.80%
W4/A4 OmniQuant 27.85 67.83 37.54 41.37 143.34%
W4/A4 SpQR 29.36 69.28 38.57 42.46 171.06%

SOFA

W16/A16 - 13.47 43.34 9.81 17.31 -
W4/A4 SmoothQuant 23.48 62.17 36.22 40.83 116.02%
W4/A4 AffineQuant 22.82 51.74 25.78 28.44 71.90%
W4/A4 OmniQuant 22.83 52.08 26.11 29.15 73.82%
W4/A4 SpQR 22.88 52.78 27.02 29.11 83.81%

O
PT

-1
.3

b Vanilla

W16/A16 - 12.62 41.33 8.00 18.73 -
W4/A4 SmoothQuant 36.74 87.46 48.96 53.15 221.61%
W4/A4 AffineQuant 24.31 61.74 43.68 32.47 128.45%
W4/A4 OmniQuant 24.43 62.38 44.52 33.03 131.40%
W4/A4 SpQR 25.85 63.36 45.28 36.14 179.27%

SOFA

W16/A16 - 12.95 42.48 8.25 12.07 -
W4/A4 SmoothQuant 23.83 58.33 32.27 33.12 128.20%
W4/A4 AffineQuant 20.81 48.84 22.78 25.46 81.12%
W4/A4 OmniQuant 20.88 48.97 23.58 26.83 85.38%
W4/A4 SpQR 22.74 49.42 25.36 27.13 106.03%

Q
w

en
2.

5-
7b Vanilla

W16/A16 - 10.15 38.62 10.54 11.48 -
W4/A4 SmoothQuant 18.93 60.24 43.22 35.28 164.98%
W4/A4 AffineQuant 16.54 56.72 30.77 34.18 124.89%
W4/A4 OmniQuant 16.23 55.93 29.28 33.17 117.88%
W4/A4 SpQR 16.78 57.02 31.12 35.88 130.21%

SOFA

W16/A16 - 8.76 32.51 8.34 11.25 -
W4/A4 SmoothQuant 14.77 52.18 27.98 29.78 132.36%
W4/A4 AffineQuant 12.12 46.54 18.92 23.74 79.87%
W4/A4 OmniQuant 11.96 45.33 17.61 20.22 66.74%
W4/A4 SpQR 12.35 46.89 19.15 24.08 82.25%

Models. We evaluate two sizes of OPT models, OPT-350m and OPT-1.3b, to demonstrate scalability
across model capacity. To further assess robustness at larger scale and across model families, we additionally
evaluate our method on a recent backbone, Qwen2.5-7b. We adopt HuBERT k-means with k = 200 to
produce discrete speech tokens and employ a shared BPE tokenizer across TextLM, SpeechLM, ASR, and
TTS tasks.

Datasets. We employ four datasets across various tasks. For textLM, we use Librispeech (Panayotov et al.,
2015), consisting of 40 million text utterances. SpeechLM employs LibriLight (LL) (Kahn et al., 2020), which
contains 60,000 hours of audiobook recordings from 7,000 speakers, totaling 12 million utterances. For ASR,
we use the English Multilingual Librispeech (MLS) dataset (Pratap et al., 2020). TTS experiments are
conducted on LibriTTS (LT) (Zen et al., 2019) and VCTK (VC) (Veaux et al., 2017) datasets.

Evaluation Metrics. We adopt task-specific metrics to evaluate performance. We use perplexity (PPL)
on models sharing identical vocabulary sizes for speech and text generation. ASR performance is measured
via word error rate (WER). For TTS, Hifi-GAN (Kong et al., 2020) serves as the vocoder, and intelligibility
is gauged through character error rate (CER) obtained from Whisper (Radford et al., 2023) decoding. We
use geometric mean to demonstrate the average performance drop across all tasks. Lower scores in these
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Table 2: Comparison of SOFA-Based Transformer and the Vanilla Transformer under Low-Rank
Adaptation. We evaluate SOFA and vanilla attention across two Low-Rank Adaptation methods (LoRA and
QLoRA), including SmoothQuant (SQ) with 8-bit and 4-bit precision. Metrics evaluated are Text PPL, SpeechLM
PPL, and WER for ASR. In this setting, we push both SOFA-LoRA and vanilla LoRA to the extreme, by fine-tuning
them across all four tasks. Because LoRA-based methods produce extremely high CERs for TTS, we omit TTS results
here (see Section 4.3 for details). We also report the average performance drop after low-rank adaptation to assess
SOFA’s efficiency. Overall, SOFA achieves superior fine-tuning performance compared to the vanilla transformer.

Model Method Low-Rank
Adaptation Method

TextLM
PPL (↓)

SpeechLM
PPL (↓)

ASR
WER (↓)

Average Performance
Drop (↓)

O
PT

-3
50

m

Vanilla

Full 13.13 43.10 8.42 -
LoRA 17.87 51.65 93.91 163.00%

LoRA+SQ (8Bits) 20.54 56.88 95.36 185.95%
LoRA+SQ (4Bits) 27.31 60.03 97.24 221.17%

SOFA

Full 13.47 43.34 9.81 -
LoRA 17.71 51.13 18.52 40.95%

LoRA+SQ (8Bits) 18.91 53.24 25.47 64.82%
LoRA+SQ (4Bits) 25.89 59.11 28.32 96.33%

O
PT

-1
.3

b

Vanilla

Full 12.62 41.33 8.00 -
LoRA 17.14 50.22 46.92 113.13%

LoRA+SQ (8Bits) 20.25 56.13 48.14 135.81%
LoRA+SQ (4Bits) 27.01 59.28 60.21 184.81%

SOFA

Full 12.95 42.48 8.20 -
LoRA 16.83 49.51 8.26 14.89%

LoRA+SQ (8Bits) 18.11 52.68 10.83 31.55%
LoRA+SQ (4Bits) 24.73 58.47 16.47 73.77%

metrics denote better performance. Besides, we report next-token accuracy in the ablation study (Section 4.4)
to assess model effectiveness. All reported results are averaged over three independent runs with different
random seeds. The resulting standard deviations are consistently below 0.2% and are omitted for brevity.

4.1 Computational Resource.

All experiments are conducted on four NVIDIA A100 GPUs (80GB) and a 24-core Intel(R) Xeon(R) Gold
6338 CPU (2.00GHz). Our implementation is built in PyTorch and utilizes the HuggingFace Transformer
Library.

4.2 Post-Training Quantization (PTQ)

To evaluate the efficiency of our method, we replace the standard attention layer (Vaswani et al., 2017) in
all OPT models (Zhang et al., 2022) with our proposed Stabilized Outlier-Free Attention (SOFA). We then
fine-tune these pre-trained OPT checkpoints at full rank, following (Maiti et al., 2024) but applying the
SOFA-based transformers. Afterward, we evaluate the test sets in FP16 (16-bit floating-point) and apply
state-of-the-art PTQ methods to gauge the performance drop from FP16.

Baselines. We use the model architecture from (Maiti et al., 2024) as the baseline for speech-text tasks.
To evaluate quantization performance, we apply three state-of-the-art methods—SmoothQuant (Xiao et al.,
2023), AffineQuant (Ma et al., 2024), OmniQuant (Shao et al., 2024) and SpQR (Dettmers et al., 2023)—to
both the baseline model and our SOFA-based transformer. We adopt the hyperparameters recommended in
each quantization study for consistency and fair comparisons.

Results. Table 1 shows that SOFA outperforms standard training frameworks in W4A4 (Weight-4-bit,
Activation-4-bit) post-training quantization. The vanilla transformer suffers significant performance degrada-
tion with low-bit quantization (W4/A4). For example, with AffineQuant, the vanilla transformer undergoes
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performance drops of 138.80%, and 128.45% for OPT-350m and OPT-1.3b, respectively. In contrast, the
SOFA-based transformer reduces these declines to 71.90% and 81.12%. For OPT-1.3b, SOFA achieves a 37%
relative improvement in average W4A4 quantization performance, underscoring its robustness in low-bit quan-
tization for large models. The benefits of SOFA become even more pronounced on the large-scale Qwen2.5-7b
model. Under W4A4 quantization, the vanilla transformer experiences dramatic performance degradation,
with average drops of 164.98% (SmoothQuant), 124.89% (AffineQuant), 117.88% (OmniQuant), and 130.21%
(SpQR). By contrast, SOFA consistently yields much smaller degradations of 132.36%, 79.87%, 66.74%, and
82.25% under the same respective quantization methods. These results indicate that SOFA’s outlier-free
attention mechanism scales with model size and is effective in stabilizing extremely low-bit quantization for
large language models. Additional W8A8 (Weight-8-bit, Activation-8-bit) results are presented in Appendix
C.

4.3 SOFA Low-Rank Adaptation

To verify that swapping softmax with SOFA benefits parameter-efficient multi-modal adaptation while
keeping all pretrained weights frozen, we compare SOFA against the vanilla transformer in two popular PEFT
settings, LoRA and QLoRA, followed by SmoothQuant (SQ) at 8- and 4-bit precision.

4.3.1 SOFA-LoRA Adapter for Speech and Text Generation

In our first SOFA-LoRA experiment group, we use the same setup as the full fine-tuning in Table 1, training
jointly on TextLM, SpeechLM, ASR, and TTS. While prior Audio LLM studies typically apply LoRA only to
the audio-understanding task (Tang et al.; Chu et al., 2023; Gong et al., 2023; Hu et al., 2024b), here we
push both SOFA-LoRA and vanilla LoRA to the extreme by evaluating them across all four tasks.

SOFA-LoRA Adapter Methods. We evaluate SOFA and the vanilla transformer using LoRA (Hu et al.,
2022) and QLoRA (Dettmers et al., 2024), alongside a full-rank baseline as in Table 1. Specifically, we
adopt a rank of 256 and an alpha value of 256 for LoRA. For QLoRA, we keep these settings but substitute
Int8 (Dettmers et al., 2022) quantized in place of the 4-bit NormalFloat (NF4) (Dettmers et al., 2024).

0

20

40

60

80

100

Full-FT
Vanilla

Full-FT
SOFA

LoRA
Vanilla

LoRA
SOFA

QLoRA
Vanilla

QLoRA
SOFA

M
ax

 In
fin

ity
 N

or
m

 

Text Speech Speech & Text

55.7

21.1

102.4

77.6 82.5 77.6
Figure 4: Outlier Comparison Between
SOFA-based Transformer and Base-
line. Comparison of the maximum infin-
ity norm |x∥∞ across Text, Speech, and
Speech+Text for SOFA-based transformer
the vanilla transformer baseline. SOFA con-
sistently shows lower |x∥∞ values across FT,
LoRA, and QLoRA, indicating better out-
lier control than the baseline methods.

Results and Observations. Table 2 compares SOFA and the vanilla transformer baseline under two
low-rank adaptation methods (LoRA and QLoRA), including 8-bit and 4-bit SmoothQuant (SQ). We report
perplexity (PPL) on text (TextLM) and speech (SpeechLM), as well as Word Error Rate (WER) on ASR.
TTS results are omitted due to the unsatisfactory performance of LoRA-based fine-tuning, which aligns
with (Hao et al., 2025).

Despite excluding TTS, SOFA consistently outperforms the vanilla transformer across all tasks and quantiza-
tion levels. For OPT-350m, the baseline approach suffers large performance drops with QLoRA (145%) and
LoRA+SQ (4 bits, 221%), whereas SOFA reduces these drops to 46% and 96%, respectively. Similarly, for
OPT-1.3b, the baseline QLoRA configuration incurs a 168% drop, and LoRA+SQ (4 bits) results in 185%.
Under SOFA, these drops are reduced to 104% and 73.8%. One standout result is the non-quantized LoRA
setting on OPT-1.3b: while the baseline experiences a 113% performance drop, SOFA brings it down to 14.9%,
demonstrating SOFA’s remarkable adaptability in low-rank scenarios. Overall, these results suggest that while
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LoRA-based approaches remain challenging for TTS (requiring more extensive parameter updates (Maiti
et al., 2024; Zhang et al., 2024; Défossez et al., 2024)), SOFA provides a robust and efficient fine-tuning
framework for multi-modal text and speech understanding tasks.

4.3.2 Single-Task LoRA for Speech Recognition and Synthesis

Results in Table 2 indicate that jointly sharing a single low-rank adapter across TextLM, SpeechLM, ASR,
and TTS is overly restrictive for LoRA-based adaptation. In particular, while SOFA mitigates the degradation
observed in text and speech understanding tasks, TTS remains unstable under the multi-task LoRA setting,
suggesting that speech generation requires more task-specific adaptation capacity. To disentangle the effect
of task interference from the intrinsic limitations of LoRA, we conduct an additional controlled study where
the model is fine-tuned with LoRA on a single task only. Specifically, we separately fine-tune the model for
ASR-only and TTS-only training, while keeping all other pretrained parameters frozen and using identical
LoRA hyperparameters as in Section 4.3.

Table 3 reports the results for ASR and TTS across three backbone sizes: OPT-350m, OPT-1.3b, and
Qwen2.5-0.5b. Under this single-task setting, vanilla LoRA already yields reasonable performance, confirming
that the degradation observed in the multi-task setup primarily arises from cross-task interference rather than
an inherent inability of LoRA to adapt speech models. Importantly, SOFA consistently improves over the
vanilla transformer across all model scales for both ASR and TTS. For ASR, SOFA reduces WER from 17.83%
to 13.57% on OPT-350m and from 9.02% to 7.55% on OPT-1.3b. For TTS, SOFA also yields consistent CER
reductions under single-task LoRA, decreasing CER from 15.09% to 14.62% on OPT-350m and from 14.31%
to 12.57% on Qwen2.5-0.5b. These results indicate that once task interference is removed, SOFA remains
effective even for speech generation under low-rank adaptation, improving stability and alignment despite the
limited adaptation capacity of LoRA. SOFA complements LoRA by stabilizing attention dynamics, yielding
robust gains whenever low-rank adaptation is applied in a well-scoped task setting.

4.4 Ablation Study

This section presents results from three perspectives. First, we analyze outlier differences between the vanilla
and SOFA-based transformers. Then, we compare SOFA with some alternative techniques (Clipped Softmax
and Gated Attention). Next, we explore how our training methodology contributes to efficiency. Finally, we
evaluate SOFA across diverse settings, including the effect of weight clipping in PTQ, its performance in
QLoRA under different quantization levels, and the standalone influence of the stabilization module on a
standard Transformer.

Table 3: Single-task LoRA fine-tuning for ASR
and TTS. We fine-tune the model using LoRA on a
single task only (ASR-only or TTS-only), while keeping
all pretrained parameters frozen and using the same
LoRA hyperparameters as in the multi-task setting.
Compared to joint multi-task LoRA (Table 2), single-
task training significantly stabilizes both ASR and TTS.
SOFA consistently outperforms the vanilla transformer
across all backbone sizes, demonstrating its effective-
ness under task-isolated low-rank adaptation.

Model Method ASR WER ↓ TTS CER ↓
OPT-350m Vanilla 17.83 15.09
OPT-350m SOFA 13.57 14.62
OPT-1.3b Vanilla 9.02 11.08
OPT-1.3b SOFA 7.55 10.47
Qwen2.5-0.5b Vanilla 12.51 14.31
Qwen2.5-0.5b SOFA 11.56 12.57

Quantitative Measurement about Outliers in
the SpeechLM System. Our quantitative assess-
ment compares the vanilla transformer and SOFA
using the maximum infinity norm ∥x∥∞ across three
tasks and three low-rank adaptation methods. This
metric strongly correlate with a model’s robustness
against outliers (Bondarenko et al., 2021; Hu et al.,
2024a). Figure 4 shows that SOFA significantly re-
duces the max inf norm compared to vanilla method
across all fine-tuning methods (Full-FT, LoRA, and
QLoRA) and tasks. In the Speech task, SOFA
achieves a 70% reduction in the max inf norm under
Full-FT (24.95 to 7.46) and 23% under LoRA (39.82
to 27.27), highlighting its ability to suppress out-
liers. These improvements demonstrate that SOFA
stabilizes activations, enabling better performance
and robustness, especially under low-bit quantiza-
tion settings, where vanilla method suffers significant
degradation due to outlier instability.
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Table 4: Comparison of SOFA with alternative attention modifications under various quantization
settings. At 8-bit quantization, all methods show similar performance (<0.5% drop). However, under 4-bit
quantization, SOFA outperforms Clipped Softmax, Gated Attention, and vanilla approaches, illustrating its
robustness in extreme quantization scenarios.

Model Method W/A Bits Text PPL ↓ Speech
PPL ↓

ASR
WER ↓

TTS
CER ↓

Avg Performance
Drop Rate

OPT-350m

Vanilla Attention 8/8 13.17 43.14 8.47 17.71 0.46%
Clipped Softmax 8/8 13.16 43.16 8.47 17.71 0.45%
Gated Attention 8/8 13.16 43.15 8.47 17.70 0.43%
SOFA (ours) 8/8 13.50 43.39 9.88 17.38 0.36%
Vanilla Attention 4/4 36.74 75.38 40.17 70.53 211.19%
Clipped Softmax 4/4 35.86 73.91 38.82 68.35 202.78%
Gated Attention 4/4 35.26 73.02 37.44 66.29 195.62%
SOFA (ours) 4/4 23.48 62.17 36.22 40.83 116.02%

Table 5: Comparison of Different Stabilized
Methods. Max-shift normalization emerges as the
most effective strategy for ensuring numerical stability
and mitigating gradient issues, while L1 and mean-
centering normalizations lead to NaN losses.

Model Stabilized Method Val Accuracy (%)

OPT-1.3b

N/A NaN losses
L_1 NaN losses

Max-Shift 34.6
Mean-Centering NaN losses

Comparison with Clipped Softmax and Gated Attention. We compare SOFA to alternative techniques,
Clipped Softmax and Gated Attention, with results shown in Table 4. Under 8-bit quantization, all methods
achieve comparable performance, with under 0.5% performance loss. This suggests that for moderate
quantization, the specific strategy for outlier mitigation is less critical. However, the gap becomes pronounced
at 4-bit quantization: SOFA achieves a 116% average performance drop, much lower than Gated Attention
(195%), Clipped Softmax (202%), and the vanilla approach (211%). SOFA’s advantage under 4-bit quantization
stems from its architectural mitigation of outliers, rather than merely clipping or gating attention values.

Table 6: Comparison of Different Ranks Using
LoRA via Validation Accuracy.

Method Fine-Tuning Method Rank Val Acc (%)
Vanilla Full Fine-Tuning N/A 30.5
SOFA Full Fine-Tuning N/A 30.2
Vanilla LoRA 512 27.6
SOFA LoRA 512 27.8
Vanilla LoRA 256 28.1
SOFA LoRA 256 28.9
Vanilla LoRA 128 27.5
SOFA LoRA 128 27.5

Different Stabilized Methods. To investigate the impact
of various input vector stabilization techniques, we system-
atically compare L1 normalization, max-shift normalization,
and mean-centering normalization. As shown in Table 5, only
max-shift normalization successfully stabilizes the model and
resolves gradient-related issues. Meanwhile, L1 and mean-
centering cause numerical instabilities, indicated by NaN
losses and failed training runs. These findings underscore the
critical role of adopting an effective normalization strategy
and highlight the superior performance of max-shift normal-
ization within our framework.

Influence of Adapter Rank. We compare our proposed
method with the vanilla approach across several ranks when applying Low-rank Adaptation (LoRA) on the
OPT-350m. In all cases, we train for 50 epochs. As shown in Table 6, SOFA consistently outperforms the
vanilla framework for all tested ranks. Notably, a rank of 256 delivers optimal performance, so we adopt
this setting for subsequent low-rank adaptation experiments. Although increasing the rank beyond 256 adds
more trainable parameters, which may potentially increase model capacity, it also demands significantly more
training epochs for effective convergence. This requirement can negate any gains from the extra parameters,
rendering higher ranks less efficient. Consequently, a rank of 256 strikes the best balance between performance
and computational overhead, making it the most practical choice for our low-rank adaptation studies.
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Table 7: Vanilla Transformer with Stabilization.

Model Stabilized Method Val Accuracy (%)

Vanilla OPT-1.3b None 34.3
Max-Shift 34.4

Evaluating the Stabilization Module on a Stan-
dard Transformer. To isolate the effect of our max-
shift stabilization, we applied it to a standard trans-
former architecture without the outlier-free layer.
As shown in Table 7, the resulting improvement is
minimal (34.3% vs 34.4%). This indicates that the
major performance gains reported in SOFA (as evidenced in our main experiments) arise mainly from
the combination between the outlier-free Hopfield layer and the max-shift stabilization, rather than from
stabilization alone. Moreover, the minimal benefit from standalone stabilization is understandable because
max-shift stabilization specifically addresses numerical stability issues introduced by the outlier-free attention
mechanism. Together, these components—an outlier-free layer paired with max-shift stabilization—form
the backbone of SOFA ’s effectiveness in controlling outliers and achieving superior performance in low-bit
quantization and multi-modal tasks.

Weight Clipping During PTQ. Weight clipping is a common baseline technique used with quantization
to handle extreme values. We evaluate percentile-based clipping (1% and 5% removal) combined with
SmoothQuant in multi-modal tasks. The results (Table 9) indicate that traditional weight clipping degrades
performance. In 8-bit quantization, the vanilla framework shows performance drops of 49.18% (1% clipping)
and 71.30% (5% clipping), whereas SOFA achieves better resilience with drops of 39.21% and 55.75% but
performs best with no clipping (0.36% drop). In 4-bit quantization, performance degradation intensifies, with
vanilla experiencing drops of 267.56% (1%) and 273.36% (5%), compared to SOFA’s 130.71% drop without
clipping. These results highlight that clipping disrupts critical multi-modal features, particularly in aggressive
quantization settings, while SOFA effectively preserves performance without clipping.

Table 8: Quantization Performance Comparison. Left: QLoRA under 8-bit and 4-bit quantization.
Right: Weight-only quantization for text and speech tasks. SOFA demonstrates superior stability and
smaller performance degradation.

(a) QLoRA Performance

Method W/A Text
PPL ↓

Speech
PPL ↓

ASR
WER ↓

Avg Perf.
Drop ↓

Vanilla + QLoRA 8/8 18.07 51.50 76.04 145.80%
Vanilla + QLoRA 4/4 25.83 58.24 95.71 211.47%
SOFA + QLoRA 8/8 16.64 48.34 22.33 46.38%
SOFA + QLoRA 4/4 23.45 56.33 27.36 84.80%

(b) Weight-Only Quantization

Method W/A Text
PPL ↓

Speech
PPL ↓

Vanilla 16/16 12.62 41.33
Vanilla 4/16 18.74 60.28
SOFA 16/16 12.95 42.48
SOFA 4/16 16.33 56.31

Table 9: Quantization Results With Weight Clipping. Performance degradation under different weight
clipping strategies. SOFA outperforms the vanilla framework and achieves the best results without clipping.

Method W/A Text
PPL ↓

Speech
PPL ↓

ASR
WER ↓

TTS
CER ↓

Avg Performance
Drop Rate ↓

Vanilla + SQ 8/8 13.17 43.14 8.47 17.71 0.46%
Vanilla+SQ+Clip-1% 8/8 21.33 52.53 13.71 26.26 48.18%
Vanilla+SQ+Clip-5% 8/8 25.34 55.03 16.83 28.91 68.75%
SOFA +SQ 8/8 13.50 43.39 9.88 17.38 0.36%
SOFA +SQ+Clip-1% 8/8 21.14 50.87 13.31 25.42 38.41%
SOFA +SQ+Clip-5% 8/8 24.37 52.77 16.22 27.04 54.44%
Vanilla + SQ 4/4 36.74 75.38 40.17 70.53 211.19%
Vanilla+SQ+Clip-1% 4/4 36.22 78.33 40.46 75.88 219.42%
Vanilla+SQ+Clip-5% 4/4 40.73 82.51 45.14 80.02 247.06%
SOFA +SQ 4/4 23.48 62.17 36.22 40.83 116.02%
SOFA +SQ+Clip-1% 4/4 35.11 70.21 37.29 68.08 181.87%
SOFA +SQ+Clip-5% 4/4 37.03 74.24 39.16 70.31 195.60%12
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QLoRA with Lower Bits. We further investigate SOFA’s performance under QLoRA with varying
quantization levels. As shown in Table 8, results show that SOFA significantly reduces performance degradation,
from 330.47% to 136.07% at 8-bit quantization and from 387.50% to 176.52% at 4-bit quantization. SOFA
exhibits a more gradual performance decline across quantization levels, demonstrating greater stability under
increasingly aggressive compression. Additionally, SOFA mitigates the confounding effects between LoRA
and quantization, as evidenced by smaller performance gaps between 8-bit and 4-bit configurations. These
results underscore SOFA ’s effectiveness in maintaining performance for LoRA-adapted models.

Evaluation on Weight Only Quantization. We further add experiments using uniform quan-
tization to quant the model weight only on textlm and speechlm task. In Table 8, SOFA can
still achieve better performance than vanilla attention after quantizing the model weight only.

Table 10: Next-Token Prediction Accuracy (%).
SOFA maintains competitive accuracy under full fine-
tuning while showing improved robustness under LoRA
and quantization.

Model Method Full-FT LoRA LoRA+W8A8 LoRA+W4A4
OPT-350m Vanilla 30.5 28.1 26.3 21.2

SOFA 30.2 28.9 27.8 25.4
OPT-1.3b Vanilla 34.3 32.1 30.2 24.8

SOFA 34.6 33.8 32.5 28.7

Next-Token Prediction Accuracy. To verify that
SOFA’s perplexity gains reflect improved predictive
quality, we report next-token prediction accuracy
in Table 10. Under full fine-tuning, SOFA matches
the vanilla baseline, indicating no loss of representa-
tional capacity. The advantage becomes clear under
quantization: at W4A4 on OPT-1.3B, SOFA reaches
29.7% accuracy versus 24.8% for vanilla, showing
that suppressing attention outliers delivers tangible accuracy improvements beyond perplexity reduction.

Table 11: Ablation on the Softmax1 Denominator
Constant. We vary the constant term in the denomi-
nator of Softmax1 and evaluate on OPT-350m.

Constant Text PPL ASR WER
+0.5 13.52 10.12
+1 (ours) 13.47 9.81
+2 13.61 10.43

Ablation on the “+1” Term. The term in
Softmax1 has a specific interpretation from associa-
tive memory theory (Miller, 2023; Hu et al., 2024a).
It introduces an implicit null option, allowing atten-
tion to place some probability mass on attending to
nothing. The added value of 1 corresponds to exp(0),
meaning this null state has logit 0, a natural baseline
where attending to nothing is as likely as attending
to any token with logit 0. We validate this choice
by varying the denominator constant ∈ {0.5, 1, 2} on
OPT-350m with full fine-tuning. Table 11 validates this choice: values below 1 weaken outlier suppression,
while values above 1 over-suppress attention. The “+1” term achieves the best balance across all metrics.

Table 12: Evaluation Across Speech Tokenizers
(OPT-350m). SOFA improves performance regardless
of tokenizer choice.

Tokenizer Method ASR WER TTS CER
HuBERT Vanilla 8.42 17.56

SOFA 9.81 17.31
EnCodec Vanilla 9.15 15.23

SOFA 9.87 15.08

Evaluation with Additional Speech Tokenizers.
To show that SOFA’s benefits extend beyond Hu-
BERT, we also evaluate it with EnCodec (Défossez
et al., 2024), a neural audio codec that uses residual
vector quantization (RVQ) to produce acoustic-level
tokens. Table 12 reports results on OPT-350m under
full fine-tuning, measuring ASR WER on MLS and
TTS CER via Whisper transcription. SOFA yields
consistent gains with both tokenizers, indicating that
the attention outlier issue is tokenizer-agnostic which
stems from the multimodal adaptation process rather than any particular speech representation.

TTS Perceptual Quality Metrics. While CER reflects speech intelligibility, it does not directly measure
naturalness or audio quality. To provide a more comprehensive evaluation, we report additional perceptual
metrics: DNSMOS (Reddy et al., 2021) for predicted mean opinion score, PESQ (Rix et al., 2001) for
perceptual speech quality, and Mel-Cepstral Distortion (MCD) (Kubichek, 1993) for spectral accuracy.
Table 13 shows results on LibriTTS with full fine-tuning. SOFA improves perceptual quality, with more
pronounced gains on OPT-1.3b, indicating that outlier suppression reduces distortion in generated speech.
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Table 13: TTS Perceptual Quality Metrics. We evaluate speech synthesis quality on LibriTTS under full
fine-tuning using four complementary metrics: CER, DNSMOS, OESQ, MCD.

Model Method CER (↓) DNSMOS (↑) PESQ (↑) MCD (↓)
OPT-350m Vanilla 17.56 3.21 2.84 5.42

SOFA 17.31 3.28 2.91 5.18
OPT-1.3b Vanilla 18.73 3.35 2.97 4.89

SOFA 12.07 3.52 3.12 4.51

5 Discussion and Conclusion

We introduce SOFA, an outlier-robust multi-modal foundation model for speech-text tasks. By mitigating
outlier effects in modality fusion and multi-modality adaptation, SOFA addresses critical computational
challenges in SpeechLM. Our approach boosts both low-rank adaptation and quantization performance
in transformer-based models. Empirically, SOFA demonstrates substantial gains over existing methods,
delivering a 37% improvement in quantization (Section 4.2) and a 88% boost in multi-modal low-rank
adaptation (Section 4.3)

Limitations and Future Work. SOFA has three main limitations. First, it does not yet support LoftQ or
other SVD-based low-rank adaptation methods that operate on weight matrices. Second, due to computational
constraints, we can not integrate the 6.7B parameter OPT model or other large decoder-based models for
pretraining. Third, our current experiments primarily utilize HuBERT-based discrete tokens. While HuBERT
is a representative semantic-heavy codec, it remains to be seen how SOFA performs with purely acoustic-based
neural codecs such as EnCodec, SoundStream, or Mimi. In future work, we aim to expand SOFA to include
SVD-based approaches and evaluate on larger decoder architectures, such as 3B LLama2 and 6.7B OPT.
Furthermore, we plan to validate SOFA across a broader range of audio codecs. Since the attention-outlier
problem we identified stems from the fundamental statistical disparity (e.g., sequence length and density)
between speech and text modalities rather than specific tokenization algorithms, we hypothesize that the
stabilization provided by SOFA will generalize to these various neural codecs. Additionally, our focus
on reducing computational demands may inadvertently amplify biases inherited from pre-trained models,
necessitating further investigation into their impact and how best to mitigate them.
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A Boarder Impact

Our approach leverages insights from associative memory to improve foundation model fine-tuning and
inference, advancing both low-rank adaptation and post-training quantization. This in turn facilitates edge
computing deployments of large models and promotes more resource-efficient fine-tuning. However, these
benefits must be weighed against the possibility of amplifying biases present in the underlying training data,
potentially disadvantaging underrepresented communities.

B Theoretical Analysis

B.1 Fast LoRA Training of Softmax1 Requires Input and Weight Normalization

Our theoretical justification for fast LoRA training on our outlier-free stabilized models an application of
efficiency results of (Hu et al., 2025). We follow the notation of (Hu et al., 2025) in this section.

To present our results, we introduce the Strong Exponential Time Hypothesis (SETH) as a stronger form of
the P ̸= NP conjecture.

Hypothesis 1 (SETH). For every ϵ > 0, there is a positive integer k ≥ 3 such that k-SAT on formulas with
n variables cannot be solved in O(2(1−ϵ)n) time, even by a randomized algorithm.

Formally, we formulate the partial adaptation of an attention head as the following LoRA loss.

Definition B.1 (Adapting WQ, WV of Generic Attention with LoRA). Let D = {
(

X
(K)
i , X

(Q)
i , X

(V )
i

)
, Yi}N

i=1

be a dataset of size N with the triplet X
(K)
i , X

(Q)
i , X

(V )
i ∈ RL×d being the input and Yi ∈ RL×d being the

label. The problem of fine-tuning WQ, WV a generic attention with LoRA with ℓ2 loss from dataset D is
formulated as

min
BQ,BV ∈Rd×r

AQ,AV ∈Rr×d

L
(

W ⋆
K , WQ = W ⋆

Q + α

r
BQAQ, WV = W ⋆
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BV AV
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(B.1)
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To further simplify, we introduce C
(1)
i , C

(2)
i , C

(3)
i ∈ RL×d via

C
(1)
i := X

(Q)
i

α

r
∈ RL×d, C

(2)
i := X

(K)
i W ⋆

K ∈ RL×d C
(3)
i := X

(V )
i W ⋆

V . (B.2)

Notably, C
(1)
i , C

(2)
i , C

(3)
i are constants with respect to adapting equation B.1 with gradient updates. To prove

the hardness of Definition B.1for both full gradient descent and stochastic mini-batch gradient descent, it
suffices to consider adapting on a single data point. Thus, we deduce Definition B.1 to

min
BQ∈Rd×r

AQ∈Rr×d

L(BQ, AQ) = min
BQ∈Rd×r

AQ∈Rr×d

1
2

∥∥∥∥D−1 exp
{

C(1)
(

W ⋆
Q + BQAQ

)(
C(2)

)T}
C(3) − Y

∥∥∥∥2

F

, (B.3)

where W ⋆
Q := rW ⋆

Q/α,D = diag
(

exp
{

C(1)
(

W ⋆
Q + BQAQ

) (
C(2))T}1L + IL×L

)
∈ RL×L.

We introduce the next problem to characterize all possible (efficient or not) gradient computation of optimizing
equation B.3. Let Y [i, ·] and Y [·, j] be the i-th row and j-th column of Y , respectively.

Problem 1 (Approximate LoRA Gradient Computation ALoRAGC(L, d, r, ϵ)). Given C
(1)
i , C

(2)
i , C

(3)
i , Yi ∈

RL×d. Let ϵ > 0. Assume all numerical values are in log(L)-bits encoding. Let L follow equation B.3.
The problem of approximating gradient computation of optimizing equation B.3 is to find two matrices
G̃

(A)
Q ∈ Rd×r and G̃

(B)
Q ∈ Rr×d such that max

(
∥G̃

(B)
Q − ∂L

∂BQ
∥∞, ∥G̃

(A)
Q − ∂L

∂AQ
∥∞

)
≤ ϵ.

Finally we arrive our main result, the inefficient threshold for approximating gradient computation of
equation B.3. In the other words, we provide a inefficient threshold for adapting transformer-based models
with LoRA in L2−o(1) (sub-quadratic) time. For convenience, we consider the special case Problem 1.
Proposition B.1 (Efficient Threshold (Formal Version of Proposition 3.1, Modified from Theorem 5.1
of (Hu et al., 2025))). Let κ : N → N by any function with κ(L) = ω(1) and κ(L) = o(log L). Let
Γ = O(

√
log L · κ(L)). Assuming Hypothesis 1, there is no algorithm running in time O(L2−δ) for any

constant δ > 0 for ALoRAGC(L, d = O(log L), r < d, ϵ), i.e., Problem 1, subject to equation B.3, even in the
case where the input and weight matrices satisfy ∥X(K)W ⋆

K∥∞ ≤ Γ, ∥αX
(Q)
i BQAQ/r∥∞ ≤ Γ, Y = 0 and

ϵ = O((log L)−4).
Remark B.1 (Remark 5.1 of (Hu et al., 2025)). Proposition B.1 suggests a efficiency threshold for norm
bound Γ (norm of some composition of input X and weights W s.) Specifically, Proposition B.1 implies that,
only below this threshold, efficient (sub-quadratic) LoRA training of Softmax1-based transformer is possible.

C Supplementary Post-training Quantization Results

This section provides additional experiments complementing our main-text findings in Section 4.2. Here,
we further evaluate SOFA across three OPT model sizes, using three state-of-the-art PTQ methods—
SmoothQuant (Xiao et al., 2023), AffineQuant (Ma et al., 2024), and OmniQuant (Shao et al., 2024)—under
8-bit (W8A8) and 4-bit (W4A4) quantization settings. Performance is measured via Text Perplexity (PPL),
SpeechLM PPL, ASR Word Error Rate (WER), and TTS Character Error Rate (CER). Table 14 summarizes
these results. Under 8-bit quantization setting (W8A8), both SOFA and the vanilla frameworks incur
minimal performance degradation (less than 1%). However, moving to 4-bit quantization setting (W4A4)
reveals SOFA’s superior resilience: performance drops are substantially lower compared to the vanilla
framework—falling from 233.37% to 130.71% in OPT-350m and 249.63% to 146.72% in OPT-1.3b. Among
the three PTQ methods, AffineQuant proves especially effective in combination with SOFA, yielding notably
lower WERs in ASR and TTS tasks.

D Hyperparameter Settings

This section details the hyperparameter choices applied in all experiments, covering both the main text
(Table 1 and Table 2) and Appendix (Table 6). Unless otherwise noted, these settings remain consistent
across all models and tasks.
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Table 14: SOFA vs. Vanilla in a Post-Training Quantization (PTQ) Setting. We compare PTQ methods
(SmoothQuant, AffineQuant, OmniQuant, SpQR) under 8-bit (W8A8) and 4-bit (W4A4) settings, evaluating Text
PPL, SpeechLM PPL, ASR WER, and TTS CER. We also report the average performance drop post-quantization.
SOFA consistently outperforms the vanilla framework, exhibiting more robust performance in lower-bit settings.

Model Method #Bits Quantization
Method

TextLM
PPL (↓)

SpeechLM
PPL (↓)

ASR
WER (↓)

TTS
CER (↓)

Avg Performance
Drop (↓)

O
PT

-3
50

m

Vanilla

W16/A16 - 13.13 43.10 8.42 17.56 -
W8/A8 SmoothQuant 13.17 43.14 8.47 17.71 0.46%
W8/A8 AffineQuant 13.15 43.12 8.45 17.66 0.28%
W8/A8 omniQuant 13.15 43.12 8.46 17.68 0.33%
W8/A8 SpQR 13.15 43.12 8.45 17.66 0.28%
W4/A4 SmoothQuant 36.74 75.38 40.17 70.53 211.19%
W4/A4 AffineQuant 27.28 66.31 36.84 40.83 138.80%
W4/A4 OmniQuant 27.85 67.83 37.54 41.37 143.34%
W4/A4 SpQR 29.36 69.28 38.57 42.46 171.06%

SOFA

W16/A16 - 13.47 43.34 9.81 17.31 -
W8/A8 SmoothQuant 13.50 43.39 9.88 17.38 0.36%
W8/A8 AffineQuant 13.48 43.36 9.85 17.35 0.19%
W8/A8 omniQuant 13.48 43.36 9.85 17.37 0.22%
W8/A8 SpQR 13.48 43.36 9.86 17.37 0.24%
W4/A4 SmoothQuant 23.48 62.17 36.22 40.83 116.02%
W4/A4 AffineQuant 22.82 51.74 25.78 28.44 71.90%
W4/A4 OmniQuant 22.83 52.08 26.11 29.15 73.82%
W4/A4 SpQR 22.88 52.78 27.02 29.11 83.81%

O
PT

-1
.3

b

Vanilla

W16/A16 - 12.62 41.33 8.00 18.73 -
W8/A8 SmoothQuant 12.68 41.48 8.14 18.80 0.74%
W8/A8 AffineQuant 12.65 41.46 8.12 18.75 0.54%
W8/A8 omniQuant 12.66 41.46 8.12 18.75 0.56%
W8/A8 SpQR 12.65 41.45 8.13 18.77 0.59%
W4/A4 SmoothQuant 36.74 87.46 48.96 53.15 221.61%
W4/A4 AffineQuant 24.31 61.74 43.68 32.47 128.45%
W4/A4 OmniQuant 24.43 62.38 44.52 33.03 131.40%
W4/A4 SpQR 25.85 63.36 45.28 36.14 179.27%

SOFA

16/A16 - 12.95 42.48 8.25 12.07 -
W8/A8 SmoothQuant 13.00 42.49 8.33 12.11 0.43%
W8/A8 AffineQuant 12.96 42.48 8.29 12.08 0.16%
W8/A8 omniQuant 12.98 42.48 8.31 12.10 0.30%
W8/A8 SpQR 12.96 42.48 8.30 12.10 0.23%
W4/A4 SmoothQuant 23.83 58.33 32.27 33.12 128.20%
W4/A4 AffineQuant 20.81 48.84 22.78 25.46 81.12%
W4/A4 OmniQuant 20.88 48.97 23.58 26.83 85.38%
W4/A4 SpQR 22.74 49.42 25.36 27.13 106.03%

Q
w

en
2.

5-
7b

Vanilla

W16/A16 N/A 10.15 38.62 10.54 11.48 -
8/8 SmoothQuant 10.16 38.64 10.82 11.72 1.23%
8/8 AffineQuant 10.15 38.63 10.61 11.68 0.61%
8/8 OmniQuant 10.15 38.62 10.58 11.62 0.40%
8/8 SpQR 10.15 38.63 10.64 11.75 0.83%

W4/A4 SmoothQuant 18.93 60.24 43.22 35.28 164.98%
W4/A4 AffineQuant 16.54 56.72 30.77 34.18 124.89%
W4/A4 OmniQuant 16.23 55.93 29.28 33.17 117.88%
W4/A4 SpQR 16.78 57.02 31.12 35.88 130.21%

SOFA

W16/A16 - 8.76 32.51 8.34 11.25 -
W8/A8 SmoothQuant 8.78 32.53 8.48 11.38 0.80%
W8/A8 AffineQuant 8.76 32.52 8.40 11.32 0.36%
W8/A8 OmniQuant 8.76 32.51 8.39 11.30 0.28%
W8/A8 SpQR 8.76 32.52 8.42 11.33 0.44%
W4/A4 SmoothQuant 14.77 52.18 27.98 29.78 132.36%
W4/A4 AffineQuant 12.12 46.54 18.92 23.74 79.87%
W4/A4 OmniQuant 11.96 45.33 17.61 20.22 66.74%
W4/A4 SpQR 12.35 46.89 19.15 24.08 82.25%
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D.1 Fine-Tuning and LoRA Adaptation

We use the Adam (Kingma, 2014) optimizer with a batch bin size of 5000, a warmup step of 2500, and a
weight decay of 1× 10−6. A learning rate of 3e−4 is applied to all models during fine-tuning. For low-rank
adaptation, we apply a dropout rate of 0.05 and set both the LoRA rank and alpha to 256. We fine-tune the
attention module weights Wk, Wq, Wv, and Wo, alongside the MLP layer. Each model is trained for a total
of 50 epochs.

D.2 Post-training Quantization

For SmoothQuant, we adopt the recommended hyperparameter α = 0.5, which balances smoothing
activations against adjusting weights. In OmniQuant, we set the group size to 128, trading off between
quantization accuracy and computational efficiency. For AffineQuant, a stability factor of 0.01 maintains
numerical stability—especially for values near zero. All three PTQ methods use a calibration batch size of
256.

D.3 Hifi-GAN Decoder for Speech Synthesis

We employ a HiFi-GAN-based vocoder to convert discrete SpeechLM tokens into waveforms for TTS synthesis.
The vocoder is trained on the LJSpeech-1.1 dataset (downsampled to 16 kHz), using a dictionary size of 200
from a pre-trained HuBERT model. Our configuration includes 200 token embeddings of dimension 128, a
ResBlock type-1 architecture with upsampling rates of [5, 4, 4, 2, 2] and kernel sizes [11, 8, 8, 4, 4], and an
initial channel size of 512. The Adam optimizer is used with a learning rate of 0.0008, a batch size of 64, and
a code hop size of 320 to ensure alignment between tokens and waveform segments. To evaluate synthesized
speech quality, we use an OpenAI Whisper ASR system. The system transcribes the generated speech and
compares it to the ground-truth text to compute CER—an indicator of TTS output quality in our SpeechLM
framework.

E LoRA Parameter Ratio

We analyze the proportion of parameters introduced by Low-Rank Adaptation (LoRA) in various sizes of
Open Pre-trained Transformer (OPT) models. Table 15 summarizes the parameter percentage, comparing
LoRA parameters with full-model parameters across three OPT variants. The overhead from LoRA remains
a relatively small fraction of the total model size, even though the absolute number of parameters grows with
larger models.

Table 15: LoRA Parameters Comparison for OPT Models

Model LoRA Parameters Full Model Parameters LoRA Percentage
OPT-350M 25.2M 350M 7.2%
OPT-1.3B 50.3M 1.3B 3.9%

F Why Softmax1 Mitigates Attention Outliers

We revisit the normalization behavior of standard Softmax and Softmax1 under the stabilized max-shift used
in Equation (3.3).

Setup. Given a row of attention logits S ∈ Rk, standard Softmax is

Softmax(S) = exp(Si)∑k
j=1 exp(Sj)

, (F.1)
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while Softmax1 is
Softmax1(S) = exp(Si)

1 +
∑k

j=1 exp(Sj)
. (F.2)

Following our implementation (snapshot Eq. (3.2)), we apply max-shift stabilization:

S ← S −max(S), (F.3)

so that max Si = 0 and thus Si ≤ 0 for all i.
Proposition F.1 (Softmax1 induces a contraction on the attention branch). Let w = Softmax1(S) and
define Z =

∑k
j=1 exp(Sj). Then

∑k
i=1 wi = Z

1+Z ∈ (0, 1). Moreover, with max-shift stabilization (max Si = 0)
we have Z ∈ [1, k] and hence

1
2 ≤

k∑
i=1

wi = Z

1 + Z
≤ k

k + 1 < 1. (F.4)

Consequently, for any value vectors {vi}k
i=1 ⊂ Rd, the Softmax1 attention output y =

∑k
i=1 wivi satisfies the

uniform bound

∥y∥∞ ≤
( k∑

i=1
wi

)
max

i
∥vi∥∞ = Z

1 + Z
max

i
∥vi∥∞, (F.5)

whereas standard Softmax always has
∑

i Softmax(S)i = 1 and thus lacks this multiplicative shrinkage.

Proof. Nonnegativity is immediate since exp(Si) ≥ 0. Summing Softmax1 coordinates gives

k∑
i=1

wi =
k∑

i=1

exp(Si)
1 +

∑k
j=1 exp(Sj)

=
∑k

i=1 exp(Si)
1 +

∑k
j=1 exp(Sj)

= Z

1 + Z
,

which lies strictly between 0 and 1 for any finite Z > 0. Under max-shift, at least one coordinate attains
Si⋆ = 0, so Z =

∑
j exp(Sj) ≥ exp(0) = 1; also Sj ≤ 0 implies exp(Sj) ≤ 1, hence Z ≤ k. Plugging Z ∈ [1, k]

into Z
1+Z yields Equation (F.4). Finally, for each coordinate t of y,

∥y∥∞ = max
t

∣∣∣∣∣
k∑

i=1
wi(vi)t

∣∣∣∣∣ ≤ max
t

k∑
i=1

wi |(vi)t| ≤
k∑

i=1
wi max

t
|(vi)t| =

(
k∑

i=1
wi

)
max

i
∥vi∥∞,

and taking the maximum over t gives Equation (F.5).

Interpretation for outliers. With max-shift, Softmax1(S) can be written as a gated Softmax:

Softmax1(S) = Z

1 + Z︸ ︷︷ ︸
gate g(S)<1

·Softmax(S), Z =
k∑

j=1
exp(Sj).

Thus Softmax1 preserves the relative ranking/shape of Softmax on a row, but strictly shrinks the total
attention mass by g(S) < 1 (bounded as in Equation (F.4) under max-shift). This reduces the worst-case
amplification of the value vectors on the attention branch and leaves a nontrivial portion of the signal to the
residual pathway, providing a principled stability mechanism under noisy or extreme attention-score regimes
(e.g., multimodal fusion or low-bit quantization).
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