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Abstract

The discovery of causal relationships between random variables is an important
yet challenging problem that has applications across many scientific domains.
Differentiable causal discovery (DCD) methods are effective in uncovering causal
relationships from observational data; however, these approaches often suffer from
limited interpretability and face challenges in incorporating domain-specific prior
knowledge. In contrast, Large Language Models (LLMs)-based causal discovery
approaches have recently been shown capable of providing useful priors for causal
discovery but struggle with formal causal reasoning. In this paper, we propose
LLM-DCD, which uses an LLM to initialize the optimization of the maximum
likelihood objective function of DCD approaches, thereby incorporating strong
priors into the discovery method. To achieve this initialization, we design our
objective function to depend on an explicitly defined adjacency matrix of the causal
graph as its only variational parameter. Directly optimizing the explicitly defined
adjacency matrix provides a more interpretable approach to causal discovery.
Additionally, we demonstrate higher accuracy on key benchmarking datasets of our
approach compared to state-of-the-art alternatives, and provide empirical evidence
that the quality of the initialization directly impacts the quality of the final output of
our DCD approach. LLM-DCD opens up new opportunities for traditional causal
discovery methods like DCD to benefit from future improvements in the causal
reasoning capabilities of LLMs.

1 Introduction

Discovering causal relationships is a fundamental task across scientific fields including epidemiology,
genetics, and economics. For a variety of reasons – ethical, logistical, legal – it may not be possible
to conduct controlled experiments or interventional studies to generate Causal Graphical Models
(CGM) that allow for causal inference. Consequently, there has been a shift towards the development
of causal discovery methods that infer CGMs from observations about the variables alone.

1.1 Background

Causal discovery is the problem of learning a CGM from a set of observed data points. Each
observation n, n = 1, . . . , N , can be characterized as a specific realization of d random variables
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V = {v1, . . . , vd}, where the variable vj can take on discrete or continuous values. In this work we
restrict ourselves to discrete random variables. We use xn to denote the vector of d discrete values
xn
j , j = 1, . . . , d of the n-th observation, and denote the table of all N observations as X ≡ {xn}Nn=1.

A CGM for the variables V consists of two components: 1) a directed acyclic graph (DAG) G =
(V,E) with nodes V and directed edges E ≡ {e1, . . . eM} ⊆ V × V of (ordered) pairs e ≡ (va, vb),
with the order implying causation, i.e. va causes vb in this notation. 2) a set of d conditional
probability distributions p( vj | Pa(vj , G)), where ∀j ∈ [ d ], Pa(vj , G) ⊆ V is the set of causal
parents or direct causes of vj according to G. In this work we do not consider interventions, although
they can be incorporated into our framework.

Since causal discovery is an NP-hard problem (Chickering et al. [2004]), a variety of approaches
have been studied to improve the efficiency and accuracy of causal discovery. These methods often
fall into three categories - score-based methods (SBMs), differentiable causal discovery (DCD), and
Large Language Model (LLM)-based approaches.

Score-based methods. SBMs formulate causal discovery as the maximization of a log-likelihood
objective function

L(G, θ;X) =
1

N

N∑
n=1

d∑
j=1

log p(vj = xn
j ; X, θ,G) (1)

with respect to parameters θ and the graph G (regularization penalties, typically added to the cost
function, are omitted here for simplicity). The functions p(vnj ; X, θ,G) are ansatz functions for
the conditional probability distributions p( vj | Pa(vj , G)). Brouillard et al. [2020] showed that,
under certain regularity assumptions (see Appendix A.5), the maximizer of this objective function is
Markov equivalent to the ground-truth CGM.

In this approach, acyclicity and directedness can be enforced by applying suitable constraints to
the discrete optimization problem. An advantage is that the optimization is amenable to standard
combinatiorial optization methods; however, due to the super-exponential growth of the solution
space with the size of the graph, score-based approaches become quickly intractable (Meek [1997]).

Differentiable causal discovery. More recent approaches formulate causal discovery as a continuous
optimization problem over the adjacency matrix Aθ of the graph G and parameters θ. The notation
Aθ here means that the adjacency matrix can be an arbitrary differentiable function of the parameter
θ. Acyclicity and directedness constraints of the graph are incorporated into the optimization by a
differentiable penalty function h(Aθ), i.e.

L(Aθ, θ;X) =
1

N

N∑
n=1

d∑
j=1

log p(vj = xn
j ; X, θ,Aθ)− βh(Aθ) (2)

The function h(A) needs to satisfy the conditions (Nazaret et al. [2024])

h(A) ≥ 0 (3)
h(A) = 0 ⇐⇒ G a directed acyclic graph. (4)

The objective is then maximized using standard gradient ascent optimization for parameters Aθ and
θ. Acyclicity and directedness are in this case not strictly enforced during the optimization, but
approached during the maximization of the objective function.

Zheng et al. [2018] were the first to propose NOTEARS, a differentiable causal discovery approach
based on a trace-exponential acyclicity constraint h(Aθ) = Tr(exp(Aθ))−d. Bello et al. [2023] later
on introduced DAGMA, a direct improvement over NOTEARS owing to an alternate log-det-based
acyclicity constraint. Nazaret et al. [2024] proposed a more stable acyclicity constraint in the form of
the spectral radius of Aθ, i.e. h(Aθ) = |λd|, with λd the largest eigenvalue of the matrix. Note that
the spectral radius of the adjacency matrix of a DAG is identically 0 (A is a nilpotent matrix in this
case). We employ the spectral acyclicity constraint in this work.

LLM-based approaches. LLMs have shown promise in being able to evaluate pairwise causal
relationships between variables of interest (Kıcıman et al. [2023], Liu et al. [2024]). However, LLM-
based approaches are often unable to perform formal causal reasoning and can exhibit inconsistencies;
it is also difficult to distinguish true causal reasoning from memorization (Jin et al. [2024]). Also,
unlike previous approaches, LLMs are not designed to leverage observational data effectively.
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1.2 Problem setup.

Recent approaches have sought to merge the advantages of LLM-based and SBM approaches.
Darvariu et al. [2024] showed that LLMs can provide effective priors to improve score-based
algorithms. LLMs have also been used specify constraints for SBMs (Ban et al. [2023]), by orienting
edges in partial CGMs discovered by other numerical approaches (Long et al. [2023]), or by providing
a “warm-start" or initial point for combinatorial search-based methods (Vashishtha et al. [2023]).
These results suggest LLMs may also be able to complement and improve the performance of
state-of-the-art DCD methods. However, integrating LLM-based causal discovery methods with
DCD is challenging due to non-interpretable adjacency matrices.

The function p(·) used to model conditional distributions in the DCD loss, Eq. (2), is represented
using a neural network with parameters θ. The adjacency matrix Wθ of the CGM DAG is then
implicitly defined from θ, by taking a norm over the first layer of the network. Waxman et al. [2024]
show that when p(·) is modelled using a Multi-Layer Perceptron (MLP) with sigmoid or ReLU
activation (as in NOTEARS, DAGMA, and SDCD), the implicit adjacency matrix, Wθ, from the
first layer of the network may be arbitrarily different from the true causal relationships found by
taking derivatives over all model layers. The MLP parameters θ do not directly relate to the implied
adjacency matrix Wθ, so the implicit adjacency matrix Wθ is non-interpretable.

Said another way, suppose an LLM (correctly) reasons that variable va directly causes vb. It is clear
that (Wθ)ab = 1. However, it is not clear how to modify the MLP parameters, θ, to encode this
information and leverage information from LLMs: hence the non-interpretability.

1.3 Contributions

In this work we propose a novel combination of large language models (LLM) with DCD. The two
key aspects of our approach are:

1. an ansatz function p(vj = xn
j ; X,A) in Eq.(9) [MLE-INTERP], which depends on elements

ajk ≥ 0 of an explicitly defined adjacency matrix A as the only variational parameters.
MLE-INTERP does not rely on an MLP or neural network to model conditional distributions.

2. the usage of LLMs for parameter initialization of the adjacency matrix A. This is possible
because we use an ansatz function depending on an explicitly defined adjacency matrix.

We make the following assumptions in our approach:

1. Faithfulness, causal Markov condition: conditional independence holds in the observational
data table X if and only if the corresponding d-separation holds in the CGM.

2. Causal sufficiency: there are no hidden or latent confounders.

We coin our approach LLM-initialized Differentiable Causal Discovery (LLM-DCD). Our method
is applicable to datasets with discrete-valued variables, and we do not make any assumptions about
conditional distributions. This addresses a limitation in DCD methods like SDCD that assume that
conditionals are normally-distributed. To our knowledge, LLM-DCD is the first method to integrate
LLMs with differentiable causal discovery.

We prove that our model satisfies the standard regularity assumptions for DCD (Brouillard et al.
[2020], Appendix A.5) and benchmark the performance of LLM-DCD on five datasets ranging
from 5-70 discrete-valued variables and limited observational data. LLM-DCD outperforms existing
methods and scales reasonably with time. We also empirically show that the quality of LLM-DCD
depends on the quality of its initialization; thus, the development of higher quality LLM-based causal
discovery methods is expected to have direct impact on the quality of LLM-DCD.

All code from this work is available at: https://github.com/sandbox-quantum/llm-dcd

2 LLM-initialized Differentiable Causal Discovery

We consider the differentiable objective function

L(A;X) =
1

n

N∑
n=1

d∑
j=1

log MLE-INTERP(xn
j ;X,A)− α||A||1 − βt|λd| . (5)
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with an ansatz function MLE-INTERP(xn
i ;X,A) to model the conditional probability p(vi =

xi|{vk = xk}k ̸=i) ≡ p(xi,{xk}k ̸=i)
p({xk}k ̸=i)

of observation xi given values {xk}k ̸=i for the variables {vk}k ̸=i

from the set of training data X .

Specifically, we use a maximum-likelihood based estimator of this conditional probability which is
computed from ratios of frequency counts of observations in the training data. In the following we
use cnt(xj1 , xj2 , . . . xjM ) to denote the number of samples in X with values xj1 , xj2 , . . . xjM .

Consider as an example the case of two variables v1, v2, with a21 the only possible non-zero element
of A. We use the following ansatz for the conditional distribution p(v1 = x1|v2 = x2) is in this case:

MLE-INTERP(x1;X,A) =
cnt(x1)(1− a21) + cnt(x1, x2)a21

N(1− a21) + cnt(x2)a21
. (6)

In the limits of a21 = 1 and a21 = 0, the function reduces to the expected expressions cnt(x1,x2)
cnt(x2)

and cnt(x1)
N , respectively. For values 0 < a21 < 1 the nominator and denominator are taken to be a

linear interpolation between the counts of the two edge cases. This ansatz can be straightforwardly
generalized to d variables:

MLE-INTERP(xi;X,A) =
cnt(xi)

∏d
k ̸=i(1− aki) +

∑
j ̸=i cnt(xi, xj)aji

∏
k ̸={i,j}(1− aki) + . . .

N
∏

k ̸=i(1− aki) +
∑

j cnt(xj)aji

∏
k ̸=j(1− aki) + . . .

. (7)

We emphasize that despite the seeming complexity, this function can be evaluated inO(Nd) time; see
also Algorithm 1 in the Appendix. Eq.(7) can be rewritten in a more succinct form: using the notation
x̄j to denote all values different from xj , such that e.g. cnt(x1, x̄2) are the number of samples in X
with values v1 = x1 and values v2 ̸= x2, and with the shorthand

δk(xj) =

{
xj if k = 0

x̄j if k = 1
(8)

Eq.(7) can be recast into

MLE-INTERP(xi;X,A) =

∑
{ik}k=1...d−1∈{0,1} cnt(xi, {δik(xjk)}jk ̸=i)

∏d−1
k=1(1− ikajki)∑

{ik}k=1...d−1∈{0,1} cnt({δik(xjk)}jk ̸=i)
∏Mi

k=1(1− ikajki)
. (9)

where {xk}k ̸=i denotes all variables xk with k ̸= i.

Eq.(9) evidently is a rational function of the the elements of the adjacency matrix A, for which
gradients w.r.t. aji can be computed efficiently. To improve stability during the optimization, we
replace factors (1 − ikajki) in Eq.(9) with a third order polynomial g(1 − ikajki). We chose g as
follows because it is a smooth function that satisfies g(0) = 0, g(1) = 1, and ∀x ∈ [0, 1], g′(x) ̸= 0.

g(x) = 0.15x+ 2.55x2 − 1.7x3. (10)

The objective function Eq.(5) is maximized using an Adam optimizer (Kingma and Ba [2015]) with
mini-batch gradient ascent. Note that spectral acyclicity, h(A) = 0, is included in the objective via
the penalty βt · h(A) with a step-dependent coefficient βt. The optimization is carried out over two
stages, as in described in Nazaret et al. [2024]. In the first stage, βt is kept 0 for t1 iterations, with
the goal of maximizing log-likelihood. In the second stage, βt is incremented by δ at every timestep,
with the goal of ensuring acyclicity, for at least t2 iterations, until A converges.

2.1 LLM-initialization

Since the model parameters are exactly the adjacency matrix A of the CGM, we may choose to
initialize the optimization process with a “warm start" adjacency matrix A0 provided by an LLM. We
consider “warm starts" provided both by the pairwise (PAIR) and breadth-first-search (BFS):

1. Pairwise LLM queries. This is a straightforward LLM-based solution to the problem of
causal discovery introduced by Kıcıman et al. [2023]. For every pair of variables (va, vb),
an LLM is asked to reason whether va directly causes vb, vb directly causes va, or that there
is no direct causal relationship between the two variables.
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2. LLM breadth-first-search (BFS). The number of queries made by the pairwise LLM
method scales as O(d2), where d is the number of variables. Jiralerspong et al. [2024]
proposed a three-stage BFS-based algorithm that requires only O(d) queries.

For both methods, we also provided the LLMs with pairwise correlational coefficients where relevant.
In Section 4, we provide empirical evidence that LLM-initialization improves the quality of LLM-
DCD over previous state-of-the-art methods.

3 Experimental Setup

We benchmark the performance of LLM-DCD against previous score-based method GES, differen-
tiable methods SDCD and DAGMA, and the aforementioned LLM-based methods (PAIR and BFS)
on the following CGM datasets from the bnlearn package (Scutari [2010]): cancer (5 variables, 4
causal edges), sachs (11 variables, 17 causal edges), child (20 variables, 25 causal edges), alarm
(37 variables, 46 causal edges), and hepar2 (70 variables, 123 causal edges).

All observational data (n = 1000 observations for each experiment) are generated by independent
forward-sampling from the ground-truth CGM joint distribution. We run LLM-DCD with a random
initialization, initialized with the output of PAIR (denoted LLM-DCD-P or LLM-DCD (PAIR)),
and initialized with the output of BFS (denoted LLM-DCD-B or LLM-DCD (BFS)). Each method
was run with three global seeds (0,1,2) on each dataset. Consistent with previous works, we run
LLM-DCD with a fixed set of hyperparameters (Appendix A.2) in all experiments.

Metrics We report performance of LLM-DCD and baseline models using structural Hamming
distance (SHD) between the predicted and true CGMs. SHD is a standard causal discovery metric
and is measured as the number of causal edge insertions, deletions, or flips required to transform the
current CGM DAG into the ground-truth CGM DAG. We also provide results based on precision,
recall, F1-score, and runtime (seconds). Results are reported as means ± standard deviation.

4 Results

Theoretical results. In Appendix A.5, we prove that the MLE-INTERP model used by LLM-DCD
satisfies regularity assumptions introduced by Brouillard et al. [2020]. As a corollary, in limit of
infinite samples (n→∞), LLM-DCD outputs a CGM that is Markov equivalent to the ground-truth
CGM. We also provide an analysis of the time-complexity of LLM-DCD in Appendix A.3. The current
implementation of LLM-DCD calculates h′(A) naïvely in O(d3)-time, but future implementations
are likely to benefit from utilizing the recently developed O(d2)-time power-iteration algorithm from
Nazaret et al. [2024].

Table 1: Performance (SHD) of causal discovery methods on benchmarking datasets

Dataset
Cancer Sachs Child Alarm Hepar2

Method (n=5) (n=11) (n=20) (n=37) (n=70)

SDCD 2.00± 0.00 12.3± 2.08 35.7± 0.58 131.± 11.6 230.± 13.6
GES 2.67± 1.15 14.3± 1.53 26.7± 3.51 60.5± 0.71 −
DAGMA 4.00± 0.00 25.3± 1.53 32.7± 0.58 88.3± 9.29 272.± 6.43
PAIR 4.00± 0.00 31.0± 0.00 97.3± 10.2 207.± 9.54 −
BFS 1.00± 1.00 16.3± 2.08 36.3± 3.51 64.0± 5.29 173.± 13.1
LLM-DCD 3.67± 0.58 23.7± 9.02 49.7± 5.51 58.0± 1.73 318.± 8.89
LLM-DCD-P 2.67± 0.58 21.0± 3.46 41.0± 3.61 60.3± 18.8 −
LLM-DCD-B 1.00± 1.00 14.3± 0.58 23.7± 0.58 36.3± 5.51 140.± 6.66

Evaluation Results Table 1 shows the performance of LLM-DCD-B on several benchmarking
datasets of varying sizes. Lower SHD indicates better performance. LLM-DCD (BFS) outperformed
all baseline SBM, DCD, and LLM based approaches in the Alarm and Hepar2 datasets, and achieved
results that were comparable to the top-performing models on the Cancer, Sachs, and Child datasets.
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Results are not reported for methods with intractable runtimes, including GES, PAIR, and LLM-DCD
(Pair) on the Hepar2 dataset.

In Figure 4, we observe similar trends for F1-score, Precision, and Recall, with LLM-DCD-B
consistently outperforming other methods across datasets. The runtime of LLM-DCD scales worse
than that of SDCD, which remains roughly constant, although LLM-DCD (BFS) was still more
efficient than GES, PAIR, and DAGMA (Figure 4).

We further show that initialization of the adjacency matrix in LLM-DCD affects performance, with
higher quality initializations tending to result to better performance across metrics and datasets.
LLM-DCD (BFS) tended to outperform LLM-DCD (PAIR) and the randomly initialized LLM-DCD.
Additionally, we show that the randomly initialized LLM-DCD method has performance that is
comparable to existing DCD methods like DAGMA and SDCD.

Figure 1: F1-score, precision, recall, and runtime of causal discovery methods on observational
datasets of different sizes (d).

5 Conclusion

We developed LLM-DCD, integrating LLMs with DCD to take advantage of the prior knowledge
learned by LLMs while maintaining the performance and computational efficiency of DCD ap-
proaches for causal discovery. LLM-DCD outperforms previous state-of-the-art approaches across
several causal discovery benchmarking datasets. Although not as efficient as the recent developed
SDCD, LLM-DCD is more scalable than several other baseline SBM and DCD methods. Future
implementations of LLM-DCD may be able to directly integrate the computational optimization of
SDCD Nazaret et al. [2024] to improve scalability while preserving state-of-the-art performance.

Because our approach also directly optimizes an explicitly defined adjacency matrix, LLM-DCD
also provides a more interpretable approach to causal discovery. Additionally, LLM-DCD directly
benefits from higher quality initializations of this adjacency matrix, and can take advantage of future
advancements in LLM reasoning and causal inference capabilities. Other future work may investigate
how the size and reasoning capabilities of various LLMs can affect initialization of the adjacency
matrix and downstream performance of LLM-DCD. As LLM-based causal discovery evolves, the
performance of LLM-DCD is only expected to improve as well.
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Algorithm 1 MLE-INTERP(xi
j ; X,A)

Input: i, j,X,A
num, den← 0
for k ∈ [n] do

numprod, denprod← 1
for m ∈ [d] do

numprod← numprod ·
(
(1 if xk

m = xi
m else g(1− amj)) if xk

j = xi
j else 0

)
denprod← denprod · (1 if xk

m = xi
m or m = j else g(1− amj))

end for
num← num+ numprod
den← den+ denprod

end for
return (num / den)

A Appendix

A.1 Implementation details of MLE-INTERP and gradient ascent optimization

Algorithm (1) details our implementation of Eq.(9) in the main text.

The maximization of the objective function is carried out using the LLM-DCD algorithm summarized
in Algorithm (2). For more details on hyperparameter settings we refer the reader to Appendix A.2.

Algorithm 2 LLM-DCD
Input: X,A0, i1, i2, lr, α, δ, γ1, γ2, δ, ε
At ← A0

Mt, Vt ← 0d×d

t, βt ← 0
while t ≤ i1 + i2 and not converged do

t← t+ 1
D← gradient of objective function L(X;A) with respect to W
Mt ← (γ1Mt + (1− γ1)D)/γt

1
Vt ← (γ2Vt + (1− γ2)(D⊙ D))/γt

2

At ← clip(At + lr · divide(Mt,
√
Vt + ε), 0, 1)

βt ← βt + (δ if t > i1 else 0)
end while

In LLM-DCD, ⊙ denotes element-wise multiplication and divide(·) denotes element-wise division.
The gradient, D, of the objective function can be computed using D-MLE-INTERP(xi

j ; C,A), summed
over all i, j and by computing the derivative of the spectral acyclicity constraint, h(A). For an
algorithm to calculate D-MLE-INTERP with respect to W , see Appendix (A.4).

A.2 LLM-DCD Hyperparameters

For the LLM-DCD algorithm specified in Algorithm 2, we use the following hyperparameters:
i1 = 200, i2 = 400, lr = 0.025, α = 0.120, δ = 0.040, γ1 = 0.80, γ2 = 0.90, ε = 10−8. The only
change across all datasets was in the minibatch-size (b) selected (b = 125 for hepar2, b = 250
for alarm and b = 500 for other datasets). Black-box implementations for all other methods were
used with no modifications, except for DAGMA, for which we ran T = 1 iterations instead of
T = 4, to keep runtimes comparable with other methods. For LLM methods, we used OpenAI GPT-4
(gpt-4-0613) with default settings. All experiments were conducted on a virtual machine provided
by Google Colaboratory, utilizing an NVIDIA A100 Tensor Core GPU.

A.3 Time-complexity analysis

∀i, j, D-MLE-INTERP(xi
j ;X,A) (Appendix A.4) can be computed in O(nd3)-time. Since D requires

a sum over all i, j, O(n2d4)-time is needed. This computation, however, is easily parallelizable; using
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a GPU, only O(nd) steps need to be carried out sequentially. Using mini-batch gradient descent, we
can reduce the time-complexity to O(b2d4)-time (with only O(bd) sequential steps) (b = mini-batch
size). Computing h′(A) naïvely requires O(d3)-time in our current implementation, although we
plan to use the O(d2)-time power-iteration algorithm fromNazaret et al. [2024] in future studies.

A.4 Derivative of MLE-INTERP

The derivative of MLE-INTERP (D-MLE-INTERP) with respect to W .

Algorithm 3 D-MLE-INTERP(xi
j ; X,A)

Input: i, j,X,A
DLL← 0d×d

for a ∈ [d] do
for b ∈ [d] : a ̸= b do

num, den, dnum, dden← 0
for k ∈ [n] do

numprod, denprod, dnumprod, ddenprod← 1
for m ∈ [d] do

numterm←
(
(1 if xk

m = xi
m else g(1− amj)) if xk

j = xi
j else 0

)
denterm← (1 if xk

m = xi
m or m = j else g(1− amj))

numprod← numprod · numterm
denprod← denprod · denterm
if a = m and b = j then

dnumprod← dnumprod · (0 if xk
m = xi

m or xk
j = xi

j else g′(1− amj))

ddenprod← ddenprod · (0 if xk
m = xi

m or m = j else g′(1− amj))
else

dnumprod← dnumprod · numterm
ddenprod← ddenprod · denterm

end if
end for
num← num+ numprod
den← den+ denprod
dnum← dnum+ dnumprod
dden← dden+ ddenprod

end for
DLL[a, b]← (dnum / num− dden / den)

end for
end for
return DLL

A.5 Regularity assumptions

Theorem (Brouillard et al. [2020]). Under the following regularity assumptions (these assumptions
have been simplified from the original assumptions listed in Brouillard et al. [2020], since we do not
consider interventions):

1. n ≥ 0
2. Faithfulness; causal Markov condition; causal sufficiency.
3. The joint-distribution of the latent or ground-truth CGM and the all distributions from the

model class (MLE-INTERP) have strictly-positive density.
4. The model class is able to express the latent CGM conditional distributions in the limit of

infinite samples (n→∞). This assumption is implicit in their work.

Any CGM that maximizes of the DCD objective function is equivalent to the ground-truth CGM upto
a Markov equivalence class (i.e., the CGM is Markov equivalent to the ground-truth CGM).

Theorem (Regularity of LLM-DCD). The model used by LLM-DCD satisfies regularity assumptions, in
the limit of infinite observational samples (n→∞).
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Proof. Assumption 1 is trivially satisfied, since we always include a non-empty observational data
table X . Assumption 2 is included in the assumptions of this work. For Assumption 3, refer to the
implementation of MLE-INTERP. The numerator term (num) is non-zero whenever there is at least
one row in X where every variable of interest takes on every one of its possible values from its finite,
discrete set of values. If the joint-distribution of the latent or ground-truth CGM has strictly positive
density (as is the case for all chosen datasets), Assumption 3 holds true for all distributions from
the model class MLE-INTERP in the limit of infinite samples (n→∞). Finally, we must show that
Assumption 4 holds true for MLE-INTERP.

Let W ∗ be the adjacency matrix of the latent CGM DAG, and W be the adjacency matrix used in
LLM-DCD. We will show that when W = W ∗, MLE-INTERP models the latent CGM joint distribution.
Based on the implementation of MLE-INTERP:

MLE-INTERP(xi
j ;X,A∗) =

cnt
(
xi
j ,Pa(vj , A

∗) = xi
Pa(vj ,A∗)

)
cnt

(
Pa(vj , A∗) = xi

Pa(vj ,A∗)

)
→ Pr[vj = xi

j | Pa(vj , A∗) = xi
Pa(vj ,A∗)] (as n→∞)

Recall that Pa(vj , A∗) is defined as the causal parents or direct causes of vj in the latent CGM
(according to A∗). countX represents the number of observations or rows in the table X that satisfy
the specified condition. Thus, we have shown that, our specified model MLE-INTERP is able to model
the conditional distributions in the latent CGM (as n→∞).

A.6 Other relevant metrics

The following tables shows how relevant metrics scale with d for all methods. The results follow
the same trends as for SHD in Figure 1. Comparable results within the margin of error of the best
performing algorithm are bolded. Note that the Recall values for the PAIR method are particularly
high: this is because the pairwise LLM method tends to prioritize false positives over false negatives
based on the provided correlation coefficients. This trade-off may be adjusted in future work.

Table 2: Performance comparison of methods on the cancer dataset (d = 5)

Method Precision Recall F1-score Time (s)
SDCD 0.56± 0.00 0.50± 0.00 0.52± 0.04 88.1± 11.4
GES 0.67± 0.29 0.33± 0.29 0.44± 0.38 0.09± 0.00
DAGMA 0.00± 0.00 0.00± 0.00 0.00± 0.00 215.± 1.82
PAIR 0.50± 0.00 0.50± 0.00 0.50± 0.00 8.52± 1.31
BFS 0.82± 0.00 1.00± 0.00 0.90± 0.10 67.2± 8.81
LLM-DCD 0.33± 0.14 0.08± 0.14 0.13± 0.23 2.14± 0.19
LLM-DCD-P 0.67± 0.14 0.33± 0.14 0.44± 0.19 1.38± 0.21
LLM-DCD-B 0.82± 0.00 1.00± 0.00 0.90± 0.10 0.50± 0.07

Table 3: Performance comparison of methods on the sachs dataset (d = 11)

Method Precision Recall F1-score Time (s)
SDCD 0.49± 0.12 0.39± 0.12 0.43± 0.13 86.5± 17.5
GES 0.29± 0.09 0.16± 0.09 0.20± 0.11 1.49± 0.16
DAGMA 0.03± 0.03 0.02± 0.03 0.02± 0.04 240.± 2.64
PAIR 0.27± 0.00 1.00± 0.00 0.43± 0.00 54.9± 8.01
BFS 0.53± 0.07 0.10± 0.07 0.17± 0.12 129.± 37.4
LLM-DCD 0.28± 0.16 0.35± 0.16 0.30± 0.15 5.26± 1.91
LLM-DCD-P 0.31± 0.03 0.39± 0.03 0.36± 0.04 4.75± 2.06
LLM-DCD-B 0.49± 0.03 0.37± 0.03 0.42± 0.03 4.22± 2.05
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Table 4: Performance comparison of methods on the child dataset (d = 20)

Method Precision Recall F1-score Time (s)
SDCD 0.28± 0.12 0.49± 0.12 0.36± 0.07 61.3± 7.00
GES 0.20± 0.02 0.21± 0.02 0.22± 0.03 28.5± 3.35
DAGMA 0.04± 0.02 0.01± 0.02 0.05± 0.08 277.± 5.23
PAIR 0.13± 0.02 0.99± 0.02 0.18± 0.10 222.± 19.0
BFS 0.07± 0.06 0.05± 0.06 0.10± 0.09 150.± 38.0
LLM-DCD 0.21± 0.10 0.41± 0.10 0.19± 0.10 50.1± 0.13
LLM-DCD-P 0.30± 0.08 0.61± 0.08 0.41± 0.04 49.5± 0.11
LLM-DCD-B 0.41± 0.00 0.32± 0.00 0.39± 0.06 48.8± 0.12

Table 5: Performance comparison of methods on the alarm dataset (d = 37)

Method Precision Recall F1-score Time (s)
SDCD 0.08± 0.05 0.23± 0.05 0.12± 0.02 78.9± 4.35
GES 0.06± 0.02 0.08± 0.02 0.07± 0.01 341.± 2.10
DAGMA 0.06± 0.02 0.07± 0.02 0.06± 0.02 393.± 20.7
PAIR 0.11± 0.01 0.97± 0.01 0.20± 0.01 636.± 29.9
BFS 0.26± 0.08 0.22± 0.08 0.24± 0.08 290.± 47.9
LLM-DCD 0.30± 0.02 0.35± 0.02 0.32± 0.02 395.± 0.25
LLM-DCD-P 0.33± 0.00 0.43± 0.00 0.37± 0.06 395.± 0.21
LLM-DCD-B 0.57± 0.07 0.46± 0.07 0.51± 0.07 394.± 0.20

Table 6: Performance comparison of methods on the hepar2 dataset (d = 70)

Method Precision Recall F1-score Time (s)
SDCD 0.12± 0.06 0.18± 0.06 0.14± 0.04 66.5± 26.2
GES − − − −
DAGMA 0.02± 0.01 0.03± 0.01 0.03± 0.01 638.± 8.75
PAIR − − − −
BFS 0.17± 0.02 0.11± 0.02 0.13± 0.03 544.± 50.4
LLM-DCD 0.03± 0.00 0.05± 0.00 0.03± 0.00 623.± 0.26
LLM-DCD-P − − − −
LLM-DCD-B 0.28± 0.03 0.13± 0.03 0.18± 0.03 623.± 0.38
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