
The Music Maestro or The Musically Challenged, A Massive Music
Evaluation Benchmark for Large Language Models

Anonymous ACL submission

Abstract

Benchmark plays a pivotal role in assessing001
the advancements of large language models002
(LLMs). While numerous benchmarks have003
been proposed to evaluate LLMs’ capabilities,004
there is a notable absence of a dedicated bench-005
mark for assessing their musical abilities. To006
address this gap, we present ZIQI-Eval, a com-007
prehensive and large-scale music benchmark008
specifically designed to evaluate the music-009
related capabilities of LLMs. ZIQI-Eval en-010
compasses a wide range of questions, cover-011
ing 10 major categories and 56 subcategories,012
resulting in over 14,000 meticulously curated013
data entries. By leveraging ZIQI-Eval, we con-014
duct a comprehensive evaluation over 15 LLMs015
to evaluate and analyze LLMs’ performance in016
the domain of music. Results indicate that only017
GPT-4 is capable of effectively understanding018
and generating music, achieving an average019
accuracy rate, suggesting that there is ample020
room for improvement in existing LLMs. With021
ZIQI-Eval, we aim to provide a standardized022
and robust evaluation framework that facilitates023
a comprehensive assessment of LLMs’ music-024
related abilities.025

1 Introduction026

In recent years, large language models (LLMs)027

have made significant advancements, revolution-028

izing various natural language processing tasks.029

These models have showcased their proficiency in030

tasks such as accessing and reasoning about world031

knowledge.032

Benchmark evaluation has played a crucial role033

in assessing and quantifying the performance of034

LLMs across different domains. Traditional bench-035

marks tailored to particular tasks such as cod-036

ing (Austin et al., 2021), reading comprehen-037

sion (Li et al., 2022), and mathematical reason-038

ing (Cobbe et al., 2021), in light of the advance-039

ments made by LLMs, are increasingly regarded040

as inadequate for assessing their comprehensive041

capabilities. Consequently, there has been a surge 042

in the emergence of more comprehensive bench- 043

marks (Liang et al., 2022; Srivastava et al., 2022). 044

However, both the traditional and comprehensive 045

benchmarks have failed to adequately address the 046

musical accuracy of large language models. Music 047

is an essential part of human life and culture, and 048

assessing LLMs’ understanding and generation of 049

music presents a unique and challenging task. This 050

oversight emphasizes the necessity for a compre- 051

hensive evaluation framework specifically designed 052

to capture the nuances of the musical domain. 053

Therefore, we present ZIQI-Eval, an extensive 054

and comprehensive music benchmark specifically 055

crafted to assess the music-related abilities of 056

LLMs. ZIQI-Eval comprises a diverse range of 057

questions, systematically organized into 10 major 058

categories and 56 subcategories. These categories 059

cover various aspects of music, including music 060

theory, composition, genres, instruments, and his- 061

torical context. In addition, this music benchmark 062

actively contributes to the recognition of female 063

music composers. By incorporating valuable con- 064

tent from these composers, it rectifies the gender 065

disparity prevalent in historical literature, foster- 066

ing advancement and inclusivity within the realm 067

of music scholarship. With over 14,000 carefully 068

crafted data entries, ZIQI-Eval provides a rich and 069

extensive resource for evaluating LLMs’ compre- 070

hension and generation of music-related content. 071

Utilizing ZIQI-Eval, we carry out a comprehen- 072

sive experiment over 17 LLMs, comprising API- 073

based models and open-source models, to evaluate 074

the performance of LLMs in the realm of music. 075

Specifically, we fed music knowledge or the first 076

half of a musical score, along with four options, 077

into LLMs to assess their ability to select the cor- 078

rect option and provide meaningful explanations. 079

With an average accuracy rate of just 51.9%, even 080

the top-performing model, GPT-4, falls short in 081

demonstrating comprehensive music understand- 082
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ing and generation capabilities. This observation083

not only exposes the overlooked aspect of music084

in LLMs but also emphasizes the significance of085

ZIQI-Eval in bridging this gap and tackling the086

inherent challenges associated with it.087

In summary, our main contributions are as fol-088

lows:089

• We find that existing evaluations of the capa-090

bilities of large models have overlooked their091

musical abilities. Therefore, we propose ZIQI-092

Eval benchmark, a manually curated, large-093

scale, and comprehensive benchmark for eval-094

uating music-related capabilities. It consists095

of 10 major categories and 56 subcategories,096

encompassing over 14,000 data entries.097

• We conduct evaluations on the music com-098

prehension and music generation capabilities099

of 17 LLMs and find that almost all of them100

struggled to understand music effectively, let101

alone generate it.102

• We explore the issue of bias in LLMs’ music103

capabilities, focusing on gender bias, racial104

bias, and region bias. Our research reveals105

that....106

2 Related Work107

Music Comprehension Inspired by the field of108

natural language processing (NLP), previous stud-109

ies represented music as embedding sequences for110

music understanding. Chuan et al. (2020) and111

Liang et al. (2020) partition music pieces into dis-112

tinct, non-overlapping segments of fixed duration,113

and train embeddings for each segment.114

Later, with the development of large language115

models (LLMs), recent research has utilized the116

modeling capabilities of these models to further117

enhance the understanding of music. MidiB-118

ERT (Chou et al., 2021) and MusicBERT (Zeng119

et al., 2021) both utilize pre-trained BERT to120

tackle symbolic-domain discriminative music un-121

derstanding tasks. MusicBERT further designs Oc-122

tupleMIDI encoding and bar-level masking strategy123

to enhance pre-training with symbolic music data.124

Gardner et al. (2023) extracts music-related infor-125

mation from an open-source music dataset and uses126

instruction-tuning to instruct their proposed model127

LLark to do music understanding, music caption-128

ing, and music reasoning. NG-Midiformer (Tian129

et al., 2023) first processes music pieces into se-130

quences, followed by leveraging N-gram encoder 131

to understand symbolic music. 132

Music Generation Before the proliferation of 133

LLMs, there are some other traditional methods 134

proposed for music generation, mainly falling into 135

three categories: neural networks, neural audio 136

codecs, and diffusion models. 137

Engel et al. (2019), Marafioti et al. 138

(2020), Greshler et al. (2021), Yu et al. (2021), 139

Caillon and Esling (2021) employ neural net- 140

work architectures such as CNNs, RNNs, or 141

GANs to achieve music generation. A neural 142

audio codec typically contains an encoder and 143

a decoder. Valenti et al. (2020) follows the 144

typical structure. Petermann et al. (2021) addi- 145

tionally employs skip connections between the 146

corresponding pair of encoder-decoder layers to 147

promote reconstruction performance. Grachten 148

et al. (2020) encodes the input as a distribution 149

rather than a single value for each dimension. 150

Some models such as Jukebox (Dhariwal et al., 151

2020), AudioLM (Borsos et al., 2023), and 152

MusicLM (Agostinelli et al., 2023) further insert 153

a vector quantizer between the encoder and the 154

decoder to learn a discrete latent representation. 155

A diffusion model iteratively adds Gaussian 156

noise and then learns to reverse the diffusion 157

process to construct desired data samples from the 158

noise. Kong et al. (2020) proposed DiffWave, a 159

non-autoregressive model that converts the white 160

noise signal into structured waveform through a 161

Markov chain. Chen et al. (2020) combines score 162

matching and diffusion models to generate high 163

fidelity audio samples. Yang et al. (2023), Huang 164

et al. (2023a), and Liu et al. (2023) utilize latent 165

diffusion approach to generate high-quality music. 166

Since the advent of LLMs, researchers gradually 167

began to explore the application of LLMs in music 168

domain. AudioGen (Kreuk et al., 2022) and Music- 169

Gen (Copet et al., 2023) both use an autoregressive 170

transformer-based decoder (Vaswani et al., 2017) 171

that operates on the discrete audio tokens. Macaw- 172

LLM (Lyu et al., 2023) incorporates visual, audio, 173

and textual information by using an alignment mod- 174

ule to unite multi-modal features to textual features 175

for LLM to generate response. M2UGen (Hus- 176

sain et al., 2023) exploits the potential of LLM 177

to bridge multi-modal music comprehension and 178

generation. It utilizes LLaMA2 model to compre- 179

hend the multi-modal contextual information of 180

the input and perform downstream tasks such as 181
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music question-answering and music generation182

guidance.183

Benchmark Evaluations Benchmark evaluation184

plays a crucial role in assessing the development185

of LLMs. Previous traditional benchmarking ef-186

forts (Hendrycks et al., 2021; Sakaguchi et al.,187

2020) focused on evaluating certain capabilities188

of models in individual tasks or single-task types.189

However, with the advancement of LLMs, these190

benchmarks have become insufficient for com-191

prehensive and accurate assessment of LLM ca-192

pabilities. Consequently, researchers have pro-193

posed more comprehensive and challenging bench-194

marks (Hendrycks et al., 2020; Li et al., 2023;195

Huang et al., 2023b) to test whether LLMs pos-196

sess general world knowledge and reasoning abil-197

ity. Additionally, there are task-specific evalua-198

tions such as LawBench (Fei et al., 2023) and Ar-199

cMMLU (Zhang et al., 2023). However, whether200

in English or Chinese, there is currently a lack of201

benchmarks for evaluating the musical abilities of202

LLMs, despite music being an important part of203

human life. Therefore, we propose ZIQI-EVAL, a204

benchmark for evaluating the musical abilities of205

LLMs, to fill the gap in benchmark evaluations of206

LLMs’ musical capabilities.207

3 ZIQI-Eval Benchmark208

3.1 Dataset Curation209

General Principle This dataset integrates the210

renowned music literature database Répertoire In-211

ternational de Littérature Musicale (RILM), pro-212

viding a broad research perspective and profound213

academic insights into the dataset. The inclusion214

of "The New Grove Dictionary of Music and Musi-215

cians" injects the essence of musical humanism into216

the dataset. Furthermore, dozens of domestic and217

foreign monographs, such as "Music in Western218

Civilization" by Paul Henry Lang, the availability219

of past exam materials from Baidu Wenku, and220

the advanced data processing capabilities of GPT-221

4 (Achiam et al., 2023), collectively enhance the222

data integrity and reliability of the model.223

Data Statistics ZIQI-Eval dataset consists of two224

parts: music comprehension question bank and225

msuic generation question bank.226

The music comprehension question bank which227

is presented in the form of multiple-choice ques-228

tions consists of 10 major categories and 56 sub-229

categories, encompassing 14244 data entries. It230

not only includes traditional classifications such as 231

music performance, composition theory, and world 232

ethnic music, but also covers popular music, West- 233

ern music history, Chinese music history, Chinese 234

traditional music, music aesthetics, and music edu- 235

cation. The topics range from popular music, rock 236

music, blues, to female music and more. Addi- 237

tionally, the dataset adopts a decentralized design 238

philosophy, fully showcasing the diversity and in- 239

clusiveness of global music cultures. 240

The music generation question bank consists of 241

200 questions, testing the ability of music continu- 242

ation. Considering the difficulty in the evaluation 243

of the generated music, the music generation ques- 244

tions are also presented in the form of multiple- 245

choice questions. 246

We conduct a comprehensive evaluation of 247

LLMs’ music capabilities across the entire dataset. 248

It is worth mentioning that this music dataset has 249

made positive contributions in highlighting female 250

music composers. By including relevant content 251

about female composers, it addresses the gender 252

imbalance in historical literature and promotes 253

progress and inclusivity in the music academic 254

community. This initiative not only reflects the 255

model’s profound recognition of gender equality 256

issues but also demonstrates its efforts in advancing 257

the diversification of the music field. 258

3.2 Evaluation Criteria 259

The evaluation is divided into two parts: music 260

comprehension evaluation and music generation 261

evaluation. The music comprehension evaluation 262

aims to assess the LLMs’ music comprehension 263

abilities, specifically their understanding of music 264

harmony, melody, and rhythm. The music genera- 265

tion evaluation, on the other hand, seeks to evaluate 266

the LLMs’ capacities for music generation, namely 267

their ability to generate music across diverse styles 268

and genres. 269

Music Comprehension Evaluation We turn the 270

music-related knowledge into the question stem 271

and provide them with options to LLMs, making 272

LLMs to choose the right answer. For example, 273

as shown in Figure 2, take “What is the milestone 274

representative work of Impressionistic orchestral 275

music?” as the stem, “The Sea”, “Prelude to the 276

Afternoon of a Faun”, “Pelléas et Mélisande”, and 277

“Clair de Lune” as the options, we examine whether 278

LLMs can select the right answer “Prelude to the 279

Afternoon of a Faun”. 280
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Composition Theory

Music Theory
Harmony

Musical Form

World Ethnic Music

East Asian Music
Southeast Asian Music 

South Asian Music

European Music
Black African Music

North American Music

West Asia, North African Music

South American Music

Oceanian Music

Female Music

Female Composers

Female Performers
Female Conductors

Female Vocalists

Popular Music

Blues 
Jazz 
Rock Music
Rhythm and Blues  
Country Music 
Pop Music

Folk Music 
Hip-Hop 
Disco 
Film Music 
Funk 
Soul Music

Chinese Music History

Ancient Chinese Music History
Ancient and Xia-Shang Music
Zhou-Qin Music
Two Han Music
Wei-Jin-Nanbei Dynasties Music
Sui-Tang Music 
Song-Yuan Music
Ming-Qing Music

Chinese Modern Music History (20th Century) 

Western Music History

Baroque Music
Romantic Music
Impressionist Music
20th Century Music

Ancient Greek and Roman Music
Medieval Music
Renaissance Music
Classical Music

Chinese Traditional Music

Folk Songs
Rap Music
Traditional Opera Music
Vocal Music
Instrumental Music
Other Music

Musical Performance

Instrument and Instrumental Performance
Vocal Singing

Foundations of Music Aesthetics Theory
Chinese Music Aesthetics
Western Music Aesthetics

Music Aesthetics

Music Education

Figure 1: ZIQI-Eval task overview.

Music Comprehension Test
题目：印象主义管弦音乐里程碑式的代表作为____。
Question: What is the milestone representative work of Impressionistic orchestral music?
A.《大海》 “The Sea”
B.《牧神午后》 “Prelude to the Afternoon of a Faun”
C.《 佩里亚斯与梅丽桑德》“Pelléas et Mélisande” 
D.《月色满庭台》“Clair de Lune” 

Music Generation Test
题目：请根据输入的旋律选择最匹配的旋律续写片段：
Question: Please choose the most fitting continuation for the given melody based on the input:
X:3
M:2/4
L:1/8
R:Country Dance
N:"Allegro"
K:D
"Allegro"D/E/|FFFF|F2 dF|{F}EDEF|DA,DE|
FFFF|F2 dF|EDEF|D3:|
|:A|AABB|ccdd|ccBB|e2 cE|
AABB|ccdd|ccBB|A3:|

A.
|:f/g/|aaaa|a2 fd|g2ec|defg|
aaaa|a2 fd|g2 ec|d3:|]
B.
F2F2G2FD | GFD2D2F2- | F8 |
DFF2GFG2 | D2FGD2D2- | D8
C.
|:{^fg}a3g ^f2f2|g2 {b}ag/a/ b2 z2|{e=f}g3f e2e2|f2 {a}gf/g/ a2 z2|
{de}f3e d2^c2|d2 {f}ed/e/ f2 {a}gf/g/|a2 bg f2e2|d2 d'>d' d'2 z2!D.C.!:|]
D. 
|: d2g f/g/af | e/f/ge d/e/fd | B2f fdB | BcB fdB |
d2g f/g/af | e/f/ge d/e/fd | A2e ecA | ABA ecA :|]

Figure 2: Examples of music comprehension and music
generation test.

Music Generation Evaluation Given that most281

LLMs can only accept textual inputs, we utilize282

ABC notation to convert the musical scores of au-283

dio into a textual format, which serves as the input284

for LLMs. We partition the sheet music written in285

ABC notation into two segments. The initial seg-286

ment serves as the question, while the subsequent287

segment presents four alternative options, also in288

ABC notation, for the potential continuation of289

the composition. Then we make LLMs discern290

the most likely continuation fragment, assessing291

their music continuation ability. For instance, as292

shown in Figure 2, we split the original score from293

“AABB|ccdd|ccBB|A3:|”, and test whether LLMs294

have the ability to choose the most fitting option. 295

4 Experiments 296

4.1 Setup 297

Baselines We comprehensively assess 17 LLMs, 298

including API-based models and open-source mod- 299

els. The API-based models contain GPT-4 (gpt- 300

4-1106-preview) (Achiam et al., 2023), GPT- 301

3.5-Turbo (OpenAI, 2022), Claude-instant-1 (An- 302

thropic, 2022), and ERNIE-Bot (Baidu, 2023) se- 303

ries. The open-source models contain Aquila- 304

7B (WUDAO, 2023), Bloomz-7.1B (Muennighoff 305

et al., 2022), ChatGLM2-6B (THUDM, 2023), 306

Mixtral (Jiang et al., 2024), Qwen-7B-Chat (Bai 307

et al., 2023), XuanYuan-70B (Zhang and Yang, 308

2023), and Yi-6B (01-ai, 2023). 309

Metrics We use a regular expression R, namely 310

r′[ABCD]′, to match the answer and consider 311

the first uppercase letter ∈ {‘A’, ‘B’, ‘C’, ‘D’} 312

matched as the response. We define Accuracy 313

(Acc.) as the proportion of correctly answered 314

questions among all questions. Precision is the 315

proportion of correctly answered questions among 316

the questions predicted as A/B/C/D. Recall is the 317

proportion of correctly answered questions among 318

the total number of questions that should be an- 319

swered as A/B/C/D. In this case, the total number 320

of questions that should be answered as A/B/C/D 321

is actually the total number of questions, so the re- 322

call metric is equivalent to the accuracy metric. F1 323

score is the weighted harmonic mean of precision 324

and recall. The specific formulas for these metrics 325
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Models
Music Comprehension Evaluation Music Generation Evaluation

Precision Recall (Acc.) F1 Precision Recall (Acc.) F1

GPT-4 62.85 100.00 77.19 53.50 97.00 68.96
GPT-3.5-Turbo - - - 30.50 96.00 46.29
Claude-instant-1.2 45.86 71.43 55.86 25.00 99.50 39.96
ERNIE-Bot 49.96 66.69 57.13 29.00 96.50 44.60
ERNIE-Bot-Speed 31.18 74.57 43.97 42.00 100.00 59.15
ERNIE-Bot-Turbo 47.88 94.07 63.46 25.50 100.00 40.64
ERNIE-Bot-8k 53.17 99.16 69.22 26.50 88.00 40.73

Aquila-7B 29.06 62.40 39.65 9.00 40.00 14.69
Bloomz-7.1B 31.97 91.06 47.33 19.00 64.50 29.35
ChatGLM2-6B 39.82 60.52 48.04 15.50 62.50 24.84
Mixtral-8x7B 43.39 99.56 60.44 31.00 100.00 47.33
Qwen-14B 30.04 17.98 22.49 23.66 15.50 18.73
XuanYuan-70B 37.70 46.70 41.72 21.00 89.00 33.98
Yi-6B 60.00 11.06 18.68 0.00 0.00 0.00
Yi-34B 32.24 16.76 22.06 12.12 2.00 3.43

Table 1: Main results(%) of the Music Comprehension Evaluation and Music Generation Evaluation in ZIQI-Eval.
Segment 1: API-based models; Segment 2: Open-source models.

are as follows:326

X̃ = G (X)327

ŷ = R
(
X̃
)

328

Precision =

∑N
i=1 I (ŷi = yi)

V
329

Recall(Acc.) =

∑N
i=1 I (ŷi = yi)

N
330

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
331

where G is the LLM generation process, X̃ is the332

generated string, R (·) is applying the regular ex-333

pression for answer retrieval, ŷ is the predicted334

answer, V is the number of questions predicted as335

A/B/C/D, N is the total number of the questions,336

and I (·) is the indicator function.337

4.2 Results338

Table 1 presents the main results of ZIQI-Eval.339

Based on the results, we can find that:340

I. Overall, the performance of all LLMs on341

the ZIQI-Eval benchmark is poor. In both mu-342

sic comprehension test and music generation test,343

the majority of LLMs have not surpassed the pass-344

ing threshold of 60. Their accuracy rates gener-345

ally hover between 30 and 50, performing only346

marginally better than random selection. Even the347

top-performing model, GPT-4, achieved accuracy348

rates of only 77.19 and 68.96 in the respective tests.349

This glaring discrepancy highlights the inadequate 350

consideration given to music accuracy within cur- 351

rent LLM models and underscores the formidable 352

challenges posed by the ZIQI-Eval benchmark. 353

II. API-based models perform better than 354

open-source models. In the evaluation of music 355

comprehension test, API-based models generally 356

exhibit higher accuracy compared to open-source 357

models. The accuracy of API-based models is ba- 358

sically distributed between 50 and 70, while open- 359

source models mostly range between 30 and 50. 360

Only specific open-source models like ChatGLM3 361

and Mixtral can achieve an accuracy higher than 362

50. 363

In the evaluation of music generation questions, 364

API-based models consistently outperform open- 365

source models with significantly higher accuracy. 366

The highest accuracy achieved by an API-based 367

model is 68.96, surpassing the highest accuracy of 368

in open-source models. 369

III. The music capabilities of LLMs are depen- 370

dent but not solely on parameter size. There is 371

a certain degree of relationship between the mu- 372

sical ability and parameter size of LLM models 373

within the same series, while the musical ability of 374

LLM models from different series is not strongly 375

correlated with parameter size. 376

The ChatGLM series, Qwen series, and Yi se- 377

ries LLMs consistently show improvements in 378

both music comprehension and generation accu- 379
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racy. Contrary to expectations, the model with380

significantly different parameter sizes, ChatGLM2-381

6B and XuanYuan-70B, exhibits higher accuracy382

in music comprehension for the ChatGLM2-6B383

model, surpassing XuanYuan-70B by 6.32. Even384

among models with similar parameter sizes, there385

can be considerable differences in performance.386

For example, the Yi-6B model achieves a mu-387

sic comprehension accuracy of only 28.28, while388

ChatGLM2-6B achieves an accuracy of 48.04, re-389

sulting in a significant difference of 19.76 between390

the two accuracy rates.391

IV. The instruction-following abilities of392

LLMs are not directly linked to their music393

capabilities. The recall scores of LLMs are394

strongly correlated with their instruction-following395

abilities. However, a strong instruction-following396

capability does not necessarily indicate strong397

musical capabilities in LLMs. Some LLMs may398

score highly in terms of recall, but they struggle399

to effectively comprehend and generate music.400

Claude-instant-1 serves as a clear example where401

the subjective recall score reaches 99.5, but the402

precision is only equivalent to random selection.403

V. The music generation capabilities of LLMs404

are in need of improvement. Even though some405

LLMs demonstrate a decent understanding of mu-406

sic, their music generation capabilities still have407

room for improvement. In general, the accuracy for408

music generation test in LLMs are lower compared409

to music comprehension test. The difference can410

be quite significant, such as ERNIE-Bot-8k, where411

the score for music comprehension test is higher412

by 28.49 compared to music generation test.413

5 Analysis414

In addition to the overall evaluation of LLMs on415

the dataset, we are also interested in the models’416

accuracy for specific categories.417

5.1 Does LLM show any bias towards418

questions related to women?419

We compare the accuracy of LLMs in the female420

music theme with the average accuracy obtained421

by LLMs in the female music theme to analyze422

whether there is bias in LLMs towards female mu-423

sic. We categorize LLMs into three groups: LLMs424

without gender bias (above the average accuracy),425

LLMs with no significant bias (deviating within a426

range of ±1.0% from the average accuracy), and427

Models Female Black
Region

European Other

GPT-4 39.42 6.95 86.95 39.37
Claude-instant-1 39.38 48.00 51.32 40.00

Aquila-7B 43.85 46.29 28.69 34.00
Bloomz-7.1B 53.17 68.83 46.91 49.56
ChatGLM3-6B 27.27 33.33 11.43 11.61
Mixtral-8x7B 46.90 67.86 43.39 48.72
Mistral-7B 17.14 33.33 4.00 4.16
Qwen-14B 32.51 30.30 21.57 34.46
Yi-6B 46.90 37.31 46.02 37.45
Yi-34B 38.26 31.58 37.37 40.77

Average 38.48 40.38 37.77 34.01

Table 2: Results(%) of Female Music Accuracy and
Black African Music Accuracy. Female stands for Fe-
male Music Accuracy, Black stands for Black African
Music Accuracy, and Region stands for the accuracy of
LLMs regarding World Ethnic Music.

LLMs with gender bias (below the average accu- 428

racy). 429

Because we do not fine-tune LLMs, the results 430

reflect the inherent biases of the LLMs themselves. 431

According to the results of Table 2, 40% of the 432

models have no gender bias, 30% of the models are 433

neutral or have no significant bias, and 30% of the 434

models have gender bias, as shown in Figure 3(c). 435

LLMs with accuracy lower than the average accu- 436

racy tend to overlook relevant content related to 437

female music themes. Mistral-7B and ChatGLM3- 438

6B, in particular, have significantly lower scores 439

than the average, indicating a notable gender bias 440

issue in these two models. Overall, LLMs exhibit 441

minimal gender bias. 442

5.2 Does LLM exhibit bias toward different 443

races? 444

We calculate the accuracy of LLMs for the subtopic 445

of Black African music, using the same partitioning 446

method as for determining gender bias, to assess 447

whether there is racial bias in LLMs. According to 448

the results of Table 2, 40% of the models have no 449

racial bias, 10% of the models are neutral or have 450

no significant bias, and 50% of the models have 451

racial bias, as shown in Figure 3(c). The accuracy 452

rates of ERNIE-Bot-Speed and Aquila-7B are be- 453

low the mean by x and y respectively, indicating a 454

significant racial bias in these two models. Overall, 455

LLMs exhibit minimal racial bias. 456
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Figure 3: Performance of LLMs on gender bias and racial bias.

5.3 Does LLM display bias in terms of region?457

We seek to investigate whether LLMs are influ-458

enced by Eurocentrism, which positions Europe459

as the cultural and knowledge center, potentially460

leading to lower evaluations or neglect of contri-461

butions from non-central regions and resulting in462

biases against these regions. To assess the presence463

of region bias, we computed the accuracy for the464

European Music subtheme within World Ethic Mu-465

sic, and the average accuracy for other subthemes466

within World Ethic Music. Among the LLMs, 30%467

exhibited higher accuracy rates in European Mu-468

sic compared to other regional music, while 50%469

of LLMs demonstrated higher accuracy rates in470

European Music than the average accuracy rate471

within European Music. These findings suggest472

that LLMs are influenced by Eurocentrism and ex-473

hibit bias towards non-central regions. Most LLMs474

show similar accuracy between European music475

and other regions. Surprisingly, GPT-4 exhibits476

a significantly higher accuracy in European mu-477

sic compared to other regions, with a difference478

of 47.58, demonstrating a clear bias and regional479

inclination.480

From Figure 3(b), it is evident that LLMs demon-481

strate similar tendencies towards both gender bias482

and racial bias, displaying a trend where both ends483

(with bias and without bias) are relatively higher,484

while the middle (neutral) is lower. Some LLMs485

have accuracy rates significantly lower than the486

mean, such as Aquila-7B with an accuracy rate487

lower than the mean by 20%, suggesting that LLMs488

still have a long way to go in eliminating biases.489

It is worth noting that LLMs with a propensity490

for gender bias are likely to exhibit racial bias as491

well, as evidenced by models such as Aquila-7B,492

ChatGLM2-6B, and Llama-7B. Consequently, it is493

imperative for future developments in LLMs to ad-494

dress biases comprehensively, not limited to gender495

and racial biases.496

6 Futher Analysis 497

6.1 Phenomenon Analysis of LLMs 498

To further explore the subjective capabilities of 499

LLMs in the realm of music, we conducted an in- 500

depth analysis of the responses provided by each 501

model. Our findings categorize the existing LLMs 502

into three distinct types: 503

I. Lack of melodic understanding: This type 504

includes LLMs that demonstrate a complete lack of 505

comprehension regarding musical notation. When 506

faced with questions that require the continuation 507

of a melody after a format transformation, these 508

models predominantly resort to evasion, often re- 509

sponding with statements like "Unable to deter- 510

mine, need more information." They fail even 511

to understand the format of the input melody. 512

ChatGLM2-6B and Aquila-7B are prototypical ex- 513

amples of this type, characterized by a high fre- 514

quency of evasive responses, resulting in a sig- 515

nificantly low efficacy in their replies. A notable 516

phenomenon is their tendency to "guess" by consis- 517

tently selecting option A, leading to most responses 518

without any analytical explanation. For instance, in 519

the responses from ChatGLM2-6B, option A was 520

chosen up to 60%. Besides a preference for op- 521

tion A, Aquila-7B also shows a partiality towards 522

option D. 523

II. Limited appreciation, misaligned with hu- 524

man preferences: A representative model in this 525

type is ERNIE-Bot-8K. This model provides highly 526

interpretable analyses for each option of every ques- 527

tion, offering seemingly logical explanations con- 528

cerning melody, rhythm, and pitch. However, the 529

model’s performance, with accuracy barely exceed- 530

ing that of random selection, underscores the chal- 531

lenge of encapsulating the subjective essence of 532

music appreciation through algorithmic processes. 533

This discrepancy not only highlights the limitations 534
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of current AI models in understanding complex,535

subjective domains but also underscores the need536

for more sophisticated approaches that can better537

capture the intricacies of human preferences.538

III. Relatively good appreciation skills: GPT-4539

stands out as a typical example of this type. Its540

responses consider aspects such as melodic coher-541

ence, stylistic similarity, and the seamless integra-542

tion of musical structures, aligning to a certain543

extent with human preferences. Further analysis of544

the questions GPT-4 answered incorrectly revealed545

a strong inclination towards musical continuity. In546

many instances, it was observed that GPT-4 pri-547

oritized coherence, which led to the selection of548

incorrect options.549

6.2 Analysis of GPT-4550

Taking GPT-4 as a case study, we have gained fur-551

ther insights into the performance of LLMs in the552

realm of music. The performance of GPT-4 in553

the domains of women’s music and world ethnic554

folk music indicates a commendable understand-555

ing of specific musical areas, reflecting GPT-4’s556

focus on diversity and inclusivity. Women’s mu-557

sic and world ethnic folk music, each representing558

unique cultural and social perspectives, have shown559

through GPT-4’s relatively higher scores the ex-560

tensive coverage of different cultures and musical561

traditions.562

GPT-4 has demonstrated exceptional perfor-563

mance in the realm of popular music, achieving564

scores close to 90. This may be due to the abun-565

dant and accessible resources in popular music, in-566

cluding lyrics, genres, and artist information. The567

popularity and media coverage of pop music may568

also have facilitated the model’s learning efficiency569

in this field.570

It has also scored highly in Western music his-571

tory and music performance, showcasing its ca-572

pability in processing music history and practical573

music-making. The higher scores in Western mu-574

sic history over all other regions suggest a certain575

degree of geographical bias.576

In the area of music aesthetics, GPT-4 scored577

low, revealing a significant weakness. This may578

be attributed to the complexity and subjectivity of579

music aesthetics, which might surpass the model’s580

ability to learn from existing textual materials, in-581

dicating that there is room for improvement in582

the model’s perception, evaluation, and theoreti-583

cal analysis of music.584

Through analysis, we identified that GPT-4 tends 585

to make errors in several distinct categories, primar- 586

ily falling into three types: 587

Matching Errors: This category encompasses 588

questions related to musical knowledge, specifi- 589

cally matching-type queries, such as identifying 590

the first Hungarian national opera or the composer 591

of "The Song of the Red Flag". GPT-4’s responses 592

often affirmatively stated incorrect options, indi- 593

cating inaccuracies within its knowledge base for 594

specific factual information. 595

Comprehension Errors: These errors involve 596

understanding specific musical terminologies and 597

the relationships between certain concepts. Ques- 598

tions like "What function of art does edutainment 599

refer to?" or "What role do work songs play in la- 600

bor as a genre of folk music?" exemplify where 601

GPT-4 misinterprets multiple word meanings, lead- 602

ing to a misunderstanding of the intended concept. 603

This suggests a need for improvement in GPT-4’s 604

understanding and reasoning within the musical 605

domain. 606

Reasoning Errors: In instances where GPT-4 607

correctly understands the question and possesses 608

the relevant knowledge background, errors occur 609

during the reasoning or calculation process, result- 610

ing in incorrect conclusions. An example can be 611

seen in questions involving the calculation of mu- 612

sical intervals, where GPT-4 confuses semitones 613

and whole tones. This indicates a gap in GPT-4’s 614

ability to perform downstream tasks that require 615

precise logical deductions. 616

7 Conclusion and Future Work 617

Our research sheds light on the oversight of exist- 618

ing evaluations in recognizing the musical abilities 619

of large models. To address this gap, we intro- 620

duce ZIQI-Eval, a comprehensive benchmark that 621

encompasses 10 major categories and 56 subcate- 622

gories, comprising over 14,000 data entries. No- 623

tably, this benchmark also actively contributes to 624

the acknowledgment of female music composers, 625

rectifying the gender disparity and promoting in- 626

clusivity. We conduct a comprehensive experiment 627

involving 15 LLMs, including both API-based and 628

open-source models, to assess their performance 629

in the domain of music. The results indicate that 630

there is significant scope for enhancing the musical 631

capabilities of existing LLMs. We intend to create 632

a multimodal benchmark to evaluate the musical 633

expertise of LLMs in the future. 634
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Limitations635

Our research to date has been exclusively focused636

on objective questions, without delving into the637

study of subjective questions. One limitation of our638

current music benchmark is the absence of multi-639

modal data. While the benchmark may excel in640

evaluating and comparing the quality and creativ-641

ity of musical compositions based on audio data642

alone, it fails to incorporate other essential aspects643

of the music experience, such as visual elements or644

textual information.645
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