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Abstract

The goal of causal discovery is to learn a directed
acyclic graph from data. One of the most well-
known methods for this problem is Greedy Equiv-
alence Search (GES). GES searches for the graph
by incrementally and greedily adding or removing
edges to maximize a model selection criterion. It
has strong theoretical guarantees on infinite data
but can fail in practice on finite data. In this paper,
we first identify some of the causes of GES’s fail-
ure, finding that it can get blocked in local optima,
especially in denser graphs. We then propose eX-
tremely Greedy Equivalent Search (XGES), which
involves a new heuristic to improve the search strat-
egy of GES while retaining its theoretical guaran-
tees. In particular, XGES favors deleting edges
early in the search over inserting edges, which re-
duces the possibility of the search ending in local
optima. A further contribution of this work is an
efficient algorithmic formulation of XGES (and
GES). We benchmark XGES on simulated datasets
with known ground truth. We find that XGES con-
sistently outperforms GES in recovering the cor-
rect graphs, and it is 10 times faster.

1 INTRODUCTION

In the problem of causal discovery, we observe a multi-
variate data set x1:n, where each xi = (xi

1, ..., x
i
d). Our

goal is to learn a d-node directed graphical model for
p(xi

1, . . . , x
i
d), i.e., a factorization of the joint distribution.

In practice, causal discovery learns an equivalence class
of graphs, called a Markov equivalence class, where each
graph in the class implies the same set of conditional inde-
pendence statements. The goal is to find the class whose set
of independence statements exactly holds in the data.

The challenge to causal discovery is that the space of graphs

on d nodes is prohibitively large. To this end, researchers
have explored a number of ideas, including developing effi-
cient tests for conditional independence [Spirtes et al., 2000,
Zhang et al., 2011], restricting the space of graphs to a
smaller class [Bühlmann et al., 2014, Fang et al., 2023] , or
searching efficiently the space of graphs. One of the most
theoretically sound methods is greedy equivalence search
(GES) [Chickering, 2002b]. GES posits a proper scoring
function for the graph (relative to the data) and then greedily
optimizes it by inserting and deleting edges.

In the limit of large data, GES enjoys theoretical guarantees
of reaching the true graph. However, with finite data, GES
can fail to find the solution. In particular, its performance
decreases for graphs with non-trivial number of edges, e.g.
more than two parents per node. And so we cannot apply
GES to the kinds of large-scale problems that we regularly
encounter in machine learning. To this end, researchers have
proposed computationally efficient approximations [Ramsey
et al., 2017] and continuous relaxations with gradient-based
optimization [Zheng et al., 2018, Brouillard et al., 2020].
These methods can handle more variables and denser graphs,
but they do not enjoy the same guarantees.

In this paper, we improve on GES in two ways. First, we
empirically examine the failure modes of GES and then use
this analysis to propose better heuristics to explore the space
of DAGs. Second, we develop superefficient algorithms
for implementing the low-level graph operations that GES
requires. Put together, these innovations describe extreme
GES (XGES), a new algorithm for causal discovery.

XGES is more reliable and scalable than GES, and without
sacrificing its important theoretical guarantees. While GES’s
performance degrades as the density of edges increases,
XGES’s performance remains stable. We study XGES on
a battery of simulations. We find that XGES outperforms
GES and its variants in all scenarios, achieving significantly
better accuracy and faster runtimes.

Related Work. Causal discovery encompasses a wide
range of methods [Glymour et al., 2019]. Here, we focus
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on score-based methods, which posit a proper scoring rule,
and proceed to find the sets of graphs that maximize it. The
Greedy Equivalence Search (GES) algorithm maximizes it
using a greedy search strategy [Chickering, 2002b]. Exten-
sions and variants of GES include OPS [Chickering, 2002b],
GIES [Hauser and Bühlmann, 2012], GDS-EEV [Peters and
Bühlmann, 2014], and ARGES [Nandy et al., 2018].

Fast-GES (fGES) is a more efficient implementation of
GES[Ramsey et al., 2017]. But we find that it does not
reproduce exactly GES’s search strategy and hurts perfor-
mance (see Section 5). Selective GES (SGES) guarantees
a polynomial worst-case complexity but has limited speed
improvement in practice [Chickering and Meek, 2015].

Other works improve GES by randomly perturbing the
search [Alonso et al., 2018, Liu et al., 2023]. However,
they are computationally expensive.

More recently, differentiable causal discovery methods have
been proposed to maximize the score using gradient-based
methods [Zheng et al., 2018, Brouillard et al., 2020, Nazaret
et al., 2024]. These methods can model causal relations us-
ing neural networks, but unlike GES and XGES (proposed
here), their optimization procedures have no theoretical guar-
antees of converging to the true graph.

2 CAUSAL DISCOVERY AND GES

We first review the causal discovery problem and the neces-
sary details of the greedy equivalence search (GES) method.

2.1 CAUSAL GRAPHICAL MODELS

Causal discovery aims to identify cause-and-effect relation-
ships between random variables {X1, ..., Xd}. We reason
about causal relationships using causal graphical models
(CGM). A CGM has two components:

1. a directed acyclic graph (DAG), G∗ = (V,E), where
a node j ∈ V represents variable Xj and an edge
(j, k) ∈ E denotes a direct causal link from Xj to Xk,

2. conditional distributions p(Xj | XPaG
∗

j
), defining the

distribution of Xj given its causal parents XPaG
∗

j
.

The joint distribution of the variables X1, ..., Xd writes:

p∗(X) =
∏
j∈V

p∗(Xj | XPaG
∗

j
). (1)

The goal of causal discovery is to recover the graph G∗ from
the joint distribution p∗ or from samples drawn from p∗.

However, multiple CGMs with different graphs can generate
the same p∗. Two important concepts address this difficulty:
faithfulness and Markov equivalence [Spirtes et al., 2000].

Faithfulness. In Eq. (1), G∗ induces a factorization of p∗,
which, in turn, induces independencies between variables:
each Xj is independent of its non-descendants given its
parents XPaG

∗
j

[Pearl, 1988]. Reciprocally, we say that a
distribution p∗ and a graph G∗ are faithful if all the indepen-
dencies in p∗ are exactly those implied by G∗ and no more.

For example, H = ({1, 2}, {1→ 2}) and q = q(X1)q(X2)
form a valid CGM. But the independence X1 ⊥⊥ X2 present
in q is not suggested by H . Rather, q is faithful to H ′ =
({1, 2},∅), which has no superfluous edges like 1→ 2.

Limiting the search to faithful graphs reduces the possible
CGMs that could have generated p∗. But this is not enough.

Markov Equivalence. Two distinct graphs can both be
faithful to p∗ if they induce the same set of independencies
on p∗. For example, A → B → C and A ← B ← C
impose the same set of independencies, {A ⊥⊥ C | B}.

Graphs inducing the same independencies are called Markov
equivalent, they form Markov equivalence classes (MEC).
Since G∗ is identifiable only up to Markov equivalence, the
task of causal discovery becomes finding the MEC of G∗.

Remark 1. With more assumptions (e.g. about the form
of p∗) or special data (e.g., interventions), other causal
discovery methods focus on identifying the possible G∗ be-
yond Markov equivalence. See Glymour et al. [2019] for an
excellent review. We focus on Markov equivalence classes.

2.2 SCORE-BASED CAUSAL DISCOVERY

In this work, we assume to have n iid samples, denoted D =
{(xi

1, ..., x
i
d)}ni=1, from a distribution p∗ that is faithful to

some G∗. We aim to recover the MEC of G∗ from D.

Greedy Equivalence Search (GES) searches for the MEC of
G∗ among all the possible MECs. It does so by searching for
the MEC whose DAGs maximize a specific score function.
It is a particular case of score-based causal discovery.

Score-based methods assign a score S(G;D) to every pos-
sible DAG G given the data D. The score function S is
designed to be maximized by the true graph G∗. This turns
causal discovery into an optimization problem.

G∗ = argmax
G

S(G;D) (2)

Some scores have properties that are important for GES.

Definition 1. A score S is score equivalent if it assigns the
same score to all the graphs in the same MEC.

A score equivalent S enables defining the score of a MEC
as the score of any of its constituent graphs.

Definition 2 (Local Consistency, [Chickering, 2002b]). Let
D contain n iid samples from some p∗. Let G be any DAG
and G′ be a different DAG obtained by adding the edge
i→ j to G. A score S is locally consistent if both hold:
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Figure 1: Illustration of insertions from a MEC A to MECs
B or C: (i) choose a DAG in A, (ii) insert the edge 2← 3 to
obtain another DAG (iii) consider its MEC. Each MEC has
all its DAGs on a white plate, and its canonical PDAG on a
gray plate (see Section 4 for a definition).

1. Xi ⊥̸⊥p∗ Xj | XPaGj
⇒ S(G′;D) > S(G;D),

2. Xi ⊥⊥p∗ Xj | XPaGj
⇒ S(G′;D) < S(G;D).

The independence statements are with respect to p∗.

A locally consistent score increases when we add an edge
that captures a dependency not yet represented in the graph.
It decreases when we add an edge that does not capture any
new dependency.

2.3 GREEDY EQUIVALENCE SEARCH

Chickering [2002b] introduced Greedy Equivalence Search
(GES). It is a score-based method that is guaranteed to return
the MEC of G∗ whenever the score is locally consistent. The
main characteristic of GES is to navigate the space of MECs.

GES begins with the MEC of the empty DAG and iteratively
modifies it to improve the score. At each step, only a few
modifications are allowed. These modifications are of three
types: insertions, deletions, and reversals.

MEC modifications. An insertion on MEC M selects a
DAG G in M , adds an edge x→ y to G to obtain a different
DAG G′ and replaces M with the MEC of G′ (see Fig. 1).

A deletion on MEC M selects a DAG G in M , removes
an edge x → y from G to obtain a different DAG G′ and
replaces M with the MEC of G′.

A reversal on MEC M selects a DAG G in M , reverses an
edge x → y to x ← y in G to obtain a different DAG G′

and replaces M with the MEC of G′.

GES applies these modifications in three separate phases.

Phase 1: Insert. First, GES finds all possible insertions,
applies the one leading to the largest score increase, and
repeats until no insertion increases the score.

Phase 2: Delete. Then, GES finds all possible deletions,
applies the one leading to the largest score increase, and
repeats until no deletion increases the score.

Algorithm 1: Greedy Equivalence Search (GES)

Input: Data D ∈ Rn×d, score function S
Define: δD,M (O) = S(Apply(O,M);D)− S(M ;D)
Output: MEC of G∗

M ← {([d],∅)} // Empty graph’s MEC
I ← get all insertions valid for M
while |I| > 0 do

O∗ ← argmaxI∈I{δD,M (I)} // Get best insertion
if δD,M (O∗) ≤ 0 then break
M ← Apply(O∗,M ) // Apply best insertion
I ← get all insertions valid for M

D ← get all deletions valid for M
while |D| > 0 do

O∗ ← argmaxD∈D{δD,M (D)} // Get best deletion
if δD,M (O∗) ≤ 0 then break
M ← Apply(O∗,M ) // Apply best deletion
D ← get all deletions valid for M

/* (Optional) 3rd phase like above but with reversals */
return M

The MEC obtained at the end of phase 2 is exactly the MEC
of G∗ if the score is locally consistent [Chickering, 2002b]

Phase 3: Reverse. In theory, phases 1 and 2 are sufficient to
recover the MEC of G∗. Yet, Hauser and Bühlmann [2012]
showed that adding a third phase with reversals can improve
the search in practice with finite data (where the score might
not be locally consistent). In this phase, GES finds all possi-
ble reversals for the MEC, applies the one that increases the
score most, and repeats until none do.

The pseudocode of GES is given in Algorithm 1.

Correctness. GES’s correctness relies on two properties:
(i) the greedy scheme will reach the global maximum of
any locally consistent score [Chickering, 2002b, Lemma
10], and (ii) the true graph G∗ and its MEC are the unique
global maximizers of any locally consistent score [Chicker-
ing, 2002b, Proposition 8].

With these two properties, GES is guaranteed to recover the
MEC of G∗ when the score is locally consistent.

The BIC score. A score commonly used by GES is the
Bayesian Information Criterion (BIC) [Schwarz, 1978].
Given a model classMG for each G, and our data D with
its n samples, the BIC defines a score:

S(G;D) = log pθ̂(D;G)− α

2
log n · |θ̂|, (3)

where α is a hyperparameter, θ̂ is the likelihood maximizer
overMG, and the number of parameters |θ̂| is usually the
number of edges in G. The BIC is a model selection criterion
trading off log-likelihood and model complexity. Models
with higher BIC are preferred. The original BIC has α = 1.

Gaussian Linear Models. A common model class used for
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Figure 2: Performance comparison of GES and XGES
variants, measured with SHD for different edge densities
ρ. XGES heuristics outperform GES and its variants in all
scenarios. The dashed lines indicate the number of edges
of the true graph. Each boxplot is computed over 30 seeds.

continuous data with the BIC is the class of Gaussian linear
models, where given a graph G, each variable is Gaussian
with a linear conditional mean and a specific variance:

pθ(xj | xPaGj
) ∼ N

(∑
k∈PaGj

θjkxk + θj0, θ
2
j(d+1)

)
. (4)

For Gaussian linear models, the BIC is score equivalent. It
can also be locally consistent under some conditions.

Theorem 1 (Local Consistency of BIC [Haughton, 1988,
Chickering, 2002b]). For α > 0, the BIC for Gaussian
linear models is locally consistent once n is large enough.

Hence, for Gaussian linear models, GES is guaranteed to re-
cover the MEC of G∗ with infinite data. In practice, however,
data is finite and GES can return incorrect MECs.

Example of Failure. In Fig. 2, we report the performance
of GES (orange) on simulated data, along with its vari-
ants and the proposed XGES. We simulate CGMs (G∗, p∗)
for d ∈ {25, 50} variables, ρd ∈ {2d, 3d, 4d} edges (ρ is
an edge density parameter) and draw n = 10, 000 sam-
ples from p∗. The simulation is detailed in Section 5.1. We
compare the methods’ results to the true graph G∗ using
the structural Hamming distance for MECs (SHD), which
counts the number of different edges between graphs of two
MECs (see Section 5.1). Fig. 2 shows that GES can fail
(SHD > 0), especially in denser graphs.

In addition, we confirm that including the third phase of re-
versals in GES improves its performance (GES-r, in green).

3 EXTREMELY GREEDY EQUIVALENCE
SEARCH

In this section, we first investigate why GES can fail and
then propose simple solutions to mitigate failure.
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Figure 3: Empirical study of GES failure, on 90 simulated
datasets with varying variables d and graph densities ρ. (left)
Differences in BIC between GES and ground-truth are nega-
tive. GES does not find the score’s global maximum. (right)
Ratios of GES-edges to true edges exceed 1. GES returns
many more edges than the true graph.

3.1 SCENARIOS OF GES FAILURE

As reviewed in Section 2.3, GES’s correctness relies on two
conditions: (i) the ability of its greedy search to find the
score’s global maximizer, and (ii) the true graph’s MEC
being the score’s global maximizer (and the only one).

These two properties might not hold if the data cannot render
S locally consistent. We investigate GES failure. Is the
issue that GES cannot reach the global maximizer with
greedy search? If so, changing the search heuristic could
help bypass local maxima. Or is it that GES effectively finds
the global maximizer, but this maximizer is not the true
graph? In this case, designing a new score might help. To
check these hypotheses, we conduct empirical experiments.

Greedy Optimization Fails. We apply GES on the data
simulated for Fig. 2, this time including d ∈ {10, 50, 100}
variables. We obtain a MEC M̂ that we compare to G∗ with:

∆S =
S(M̂ ;D)− S(G∗;D)

d
. (5)

A negative ∆S indicates that GES failed to identify a global
maximizer and that G∗ still scores higher than M̂ (note that
it does not imply G∗ is the global maximizer). A positive
∆S demonstrates that G∗ is no longer the global maximizer
and that GES legitimately identified a MEC with high score.

In Fig. 3 (left), we consistently find ∆ < 0 across different
numbers of variables d and edge densities ρ. This is evidence
that GES fails to reach the global maximum and that the
true graph G∗ still has a better score than M̂ .

We measure next the ratio ζ = |M̂ |/|G∗| between the num-
ber of edges found by GES and the number of true edges.
Fig. 3 (right) shows that GES over-inserts edges i.e. ζ > 1,
especially with dense graphs. The idea behind GES is to
over-insert edges in the first phase and then delete them
in the second phase. However, we hypothesize that over-



Algorithm 2: XGES-0.

Input: Data D ∈ Rn×d, score S.
Define: δD,M (O) = S(Apply(O,M);D)− S(M ;D)
Output: MEC of G∗

M ← {([d],∅)}
I,D,R ← all insertions, deletions, reversals valid for M
while |I|+ |D|+ |R| > 0 do

if |D| > 0 and maxD∈D{δD,M (D)} ≥ 0 then
O∗ ← argmaxD∈D{δD,M (D)}

else if |R| > 0 and maxR∈R{δD,M (R)} > 0 then
O∗ ← argmaxR∈R{δD,M (R)}

else if |I| > 0 and maxI∈I{δD,M (I)} > 0 then
O∗ ← argmaxI∈I{δD,M (I)}

else
break // No more operations available

M ← Apply(O∗,M )
I,D,R ←all insertions, deletions, reversals valid forM

return M

inserting may lead GES into local maxima before the second
phase can correct it.

Following these two observations, we focus on ensuring
that GES reaches the global maximizer. To do so, we design
novel search heuristics aimed at preventing over-insertion.

3.2 THE HEURISTIC XGES-0

GES considers insertions, deletions, and optionally reversals
in three separate phases. Rather, we consider all operations
simultaneously, where deletions, insertions, and reversals
can interleave in any order. And when both insertions and
deletions can increase the score, we prioritize deletions.

Heuristic XGES-0. At each step, identify all the valid
insertions, deletions, and reversals. If some deletes would
increase the score, apply the best one. Otherwise, if some
reversals would increase the score, apply the best one. Oth-
erwise, apply the best insert. Repeat until no deletions, re-
versals, or insertions can increase the score.

We call this heuristic XGES-0 for eXtremely Greedy Equiv-
alence Search and we detail it in Algorithm 2. XGES-0
retains the same theoretical correctness as GES.

Theorem 2. For any locally consistent score S, the MEC
M̂ returned by XGES-0 contains the true graph G∗.

The proof leverages the same theorems as those used to
prove GES’s correctness. It is provided in Appendix B.3.1.

In Fig. 2, we find empirically that XGES-0 (red) obtains
MECs with better scores and closer to G∗ than GES. Early
deletions effectively reduce encounters with local maxima.

Remark 2. Alongside GES, Chickering [2002b] proposed

a variant called OPS that also considered insertions and
deletions simultaneously. But OPS did not prioritize dele-
tions over insertions, resulting in no improvements to GES
in practice. We provide more details in Appendix A.5.

3.3 THE HEURISTIC XGES

Building upon XGES-0, we introduce the heuristic XGES.
XGES complements XGES-0. It repeatedly uses XGES-0,
each time deleting an edge that causes a local maximum.

Heuristic XGES. XGES begins by applying XGES-0 until
no operations can increase the score. Then, it enumerates
all valid deletions, all of which will decrease the score. For
each deletion, XGES copies the MEC and resumes XGES-0
on the copy until termination. But without ever reinserting
the edge removed by the deletion. If the final score is worse
than the original MEC, the copy is discarded, and the search
continues with the next deletion. If the final score is better,
the copy becomes the new MEC. XGES then restarts with
the new MEC and all its new deletions. XGES stops once
all deletions of a MEC have been tried. We provide the
pseudocode of XGES in Algorithm 3 in Appendix B.3.2.

Intuition. The XGES heuristic aims to remove incorrect
edges that were inserted early in the search and might be
causing local maxima preventing their deletion. By force-
fully deleting these edges, XGES can get around the local
maximum and discover better graphs.

Theorem 3. For any score S, XGES returns a MEC M̂
with a higher or equal score than XGES-0. If S is locally
consistent, then M̂ contains the true graph G∗.

The proof follows from the design of XGES and by Th. 2.

Fig. 2 illustrate the performance of XGES (purple), showing
that it significantly improves over all other GES variants.
XGES enables non-trivial causal discovery in denser graphs
(ρ ≥ 2) with many variables (d ≥ 50). However, XGES is
computationally more expensive than XGES-0. To alleviate
this, we develop an efficient implementation for it.

4 EFFICIENT ALGORITHM

GES, if naively implemented, is slow. In this section, we de-
velop new ways of implementing its details to significantly
speed it up. As we will see in the empirical studies, these
details are crucial to scaling up XGES to large dense graphs.
We now review how GES manipulates MECs in practice,
and then show how to make it more efficient.

4.1 MANIPULATING MECS WITH CPDAGS

MECs are sets of DAGs whose size can grow exponentially
with the number of nodes d [He et al., 2015]. To manipulate
them practically, GES builds on the following theorem.



Theorem 4 ([Verma and Pearl, 1991]). Two DAGs are
Markov equivalent if and only if they have the same skele-
tons and the same v-structures.

The skeleton of a graph is the undirected graph obtained by
removing the direction of all edges; a v-structure is a triple of
nodes such that x→ y ← z with no edge between x and z.

Th. 4 shows that all the graphs of a MEC share the same
skeleton and differ only on edges that can be reversed with-
out changing the set of v-structures. So within a MEC, some
edges are consistently oriented in one direction while others
may have different orientations between graphs. They are
respectively called compelled and reversible edges.

CPDAGs. Each MEC can be represented by a partially
directed acyclic graph (PDAG). A PDAG is a graph with
both directed and undirected edges and no cycles of directed
edges. The canonical PDAG of a MEC contains all the
compelled edges as directed edges and all the reversible
edges as undirected edges (see Fig. 1). A PDAG that is the
canonical representation of a MEC is called a completed
PDAG (CPDAG). A PDAG P that is not a CPDAG but has
the same skeleton and v-structures as another CPDAG P ′

can be transformed into P ′ with a method called completing
the PDAG [Meek, 1995, Chickering, 2002a].

We will use the following terminology when discussing a
PDAG. For node x: its neighbors Ne(x) are its neighbors
from undirected edges, its children Ch(x) are its children
from directed edges, its parents Pa(x) are its parents from
directed edges, and its adjacent nodes Ad(x) are any of all
three. A semi-directed path from x to y is a path from x to
y with edges that are either undirected or directed toward
the direction of y. A clique is a set of all adjacent nodes.

Operators on CPDAGs. GES associates each operation on
a MEC M with an operator acting on its CPDAG P , such
that an operation changing M into M ′ is associated with an
operator changing P into P ′, the CPDAG of M ′.

For insertions, the operators used by GES are of the form
Insert(x, y, T ) where x, y ∈ V and T ⊂ V . The action
of Insert(x, y, T ) on P is to insert the edge x → y, orient
any undirected edges t− y as t→ y for t ∈ T and finally
complete the resulting PDAG into a CPDAG.

Given a MEC M and its CPDAG P , Chickering [2002b]
shows that there is a bijection between (a) the set of possible
insertions on M and (b) the set of operators Insert(x, y, T )
satisfying the following validity conditions relative to P :

I1. x ̸∈ Ad(y). (6)
I2. T ⊂ Ne(y) \Ad(x). (7)
I3. (Ne(y) ∩Ad(x)) ∪ T is a clique. (8)
I4. All semi-directed paths from y to x have a node in

(Ne(y) ∩Ad(x)) ∪ T. (9)

Insert operators satisfying these conditions, with Ad,Ne,

Pa, clique and paths computed in P , are called valid for
P . To navigate from one MEC to another with an insertion,
GES applies the corresponding valid Insert operator from
one CPDAG to another.

Score of Operators. The increase in score after an Insert
operation can be efficiently computed when the score is BIC.
Indeed, the BIC for a graph G equivalently rewrites as:

S(G;D) =
∑d

j=1 s(j,Pa
G
j ;D), (10)

where s(j,PaGj ;D) is called the local score of j and equals:

n∑
i=1

log pθ̂(x
i
j |xi

PaGj
)− α

2
log n · |PaGj |. (11)

A score decomposing as Eq. (10) is called decomposable.

With a decomposable score, the increase in score for an
operator Insert(x, y, T ) applied to P is:

δ = s(y, (Ne(y) ∩Ad(x)) ∪ T ∪ Pa(y) ∪ {x})
− s(y, (Ne(y) ∩Ad(x)) ∪ Pa(y)), (12)

where each term Ad,Ne,Pa is computed relative to P . For
convenience, we say that δ is the score of the operator.

Similar derivations are made for Delete and Reversal in
Chickering [2002b] and Hauser and Bühlmann [2012] (re-
versal is called turning). We review them in Appendix B.4.1.

GES with CPDAGs. In sum, GES implements Algorithm 1
using CPDAGs and operators. It begins with the empty
CPDAG, identifies all the Insert (or Delete, Reversal) that
are valid for the current CPDAG, computes their scores,
applies the best one if it has a positive score, and repeats.

XGES could proceed similarly. However, whether for GES
or XGES, constructing the list of valid operators and scoring
them at each step is computationally expensive. We now turn
to new ways to more efficiently implement these operations.

4.2 EFFICIENT ALGORITHMIC FORMULATION

When applying an operator on P to form P ′, the validity
conditions of the other operators (Eqs. (6) to (9)) can become
valid or invalid. Similarly, the score of the other operators in
Eq. (12) can change. Yet, as noticed in Ramsey et al. [2017],
only a few edges changed from P to P ′. As a result, most
other operators that were computed for P but not applied
remain valid operators for P ′. Similarly, the scores of most
operators remain identical.

Each step of XGES involves the following sub-steps:

1. Start with a CPDAG P and a list of candidate opera-
tors C, where C is guaranteed to include all the valid
operators for P , and their scores.



Pre-update a b a→ b
Post-update a− b a− b

Necessary
conditions

y ∈ {a, b}
or y ∈ Ne(a) ∩Ne(b)

or (x = a)∧(y ∈ Ne(b))

or (x = b)∧(y ∈ Ne(a))

y ∈ {a, b}

Table 1: Necessary conditions for an Insert(x, y, T,E) to
become valid after the (a, b) update. Excerpt of Table 4 from
Appendix B.5 with only two types of updates.

2. Choose the best operator O∗ from C using XGES’s
heuristic (deletion before reversal, before insertion).

3. Verify that O∗ is valid for P , otherwise re-run the
heuristic on C \ {O∗} until a valid operator is found.

4. Apply O∗ to P to form P ′ and add to C all the operators
that became valid for P ′, with their scores. Return to
1, with P ← P ′, as we have just guaranteed that C
includes all the valid operators for P .

The operators that became invalid for P ′ are not removed
from C. It is more efficient to leave them in the list and only
check the validity of an operator in step 3 just before apply-
ing it (and discarding it if invalid). Indeed, if we recheck
the validity of all operators after each operation, a single
operator will be rechecked at each step until it is applied,
instead of being checked only once before being applied.

No steps were included to recompute the scores of any
operators in C. We explain how we can avoid it next.

4.2.1 Updating the Score of Operators.

To avoid recomputing the scores of operators at each step,
we change the parametrization of the operators to make their
scores independent of the CPDAG they are applied to.

We parametrize each Insert by an additional set E ⊂ V and
an extra validity condition that completes Eqs. (6) to (9):

I5. E = (Ne(y) ∩Ad(x)) ∪ T ∪ Pa(y). (13)

The score of Insert(x, y, T,E) from Eq. (12) becomes
s(y,E ∪ {x})− s(y,E), which only depends on the Insert
parameters. We reparametrize Delete and Reversal operators
similarly in Appendix B.4.2.

With Chickering [2002b]’s parametrization, the score of
an Insert would change if (Ne(y) ∩ Ad(x)) ∪ T ∪ Pa(y)
changes. Now, with E as a fixed parameter of the operator,
it is the status of condition I5 that would change. We turned
a change in score into a change in validity.

We now turn to efficiently update the valid operators.

4.2.2 Updating the Validity of Operators.

After updating a CPDAG P into P ′, our goal is to efficiently
add to C the operators that became valid for P ′.

To do so, we decompose the update from P to P ′ into a
succession of single edge updates P1, . . . Pk, with P1 =
P , Pk = P ′ and where Pi and Pi+1 only differ on the
orientation or presence of a single edge, e.g. a→ b vs a− b.
We then have the following theorem.

Theorem 5. Write P1, . . . Pk a sequence of single edge
updates that transforms P into P ′. Take an operator O
that is invalid for P and becomes valid for P ′ and write
{c1, . . . , cm} its validity conditions, e.g. I1 to I5 for an
Insert. Then there exists i∗ ∈ {1, k − 1} and one validity
condition cj∗ such that cj∗ is false for Pi∗ , true for Pi∗+1,
and all other conditions cj ̸= cj∗ are true for Pi∗+1.

Proof. All cj are true for P ′ i.e. Pk. So let us step back
from P ′ to P until one of the conditions cj∗ becomes false
for some Pi∗ . Such an i∗ must exist since some condition is
false for P i.e. P1. Pi∗ and cj∗ satisfy the theorem.

With Th. 5, we can efficiently update C if we can identify
which operators are susceptible to having one of their con-
ditions become true after single-edge updates.

In Appendix B.5 we study the necessary conditions on the
parameters of an operator to have one of its validity con-
ditions become true after a single-edge update. We report
the necessary conditions for all validity conditions of all
operators against all types of edge updates in Table 4 in
Appendix B.5. We provide an excerpt in Table 1 with only
two types of edge updates, for the Insert operator only, and
where we grouped the necessary conditions for each validity
condition into a single set of necessary conditions (with or).

For example, if edge a→ b is changed into a− b, Table 1
shows that the only Insert(x, y, T,E) that can become valid
are those with y ∈ {a, b}. If the edge a− b is changed into
a→ b, then the necessary conditions for an Insert operator
to become valid are more involved but still efficient.

In sum, we can efficiently update C after each CPDAG
update using Table 4 in Appendix B.5.

4.2.3 XGES Implementation.

We implement the efficient algorithmic formulation of
XGES-0 and XGES at github.com/ANazaret/XGES.
We provide code in C++ as well as a Python wrapper.

5 EMPIRICAL STUDIES

We compare the XGES heuristics to different variants of
GES. We find that XGES recovers causal graphs with sig-

github.com/ANazaret/XGES
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Figure 4: (left) The BIC scores of the graphs returned by
each method are strongly correlated with the SHD to ground
truth (shown for d = 50, ρ = 3, 30 seeds). XGES finds the
highest scores and lowest SHDs. (right) Runtime of GES
and XGES for a wide range of d. XGES-0 is up to 30 times
faster than GES, and XGES up to 10 times faster. fGES may
have overhead due to Java while other methods are in C++.

nificantly better accuracy and up to 10 times faster.

5.1 EVALUATION SETUP

Data Simulation. We simulate CGMs and data for different
numbers of variables d, edge density ρ (average number of
parents) and number of samples n. We first draw a random
DAG G∗ from an Erdos-Renyi distribution. We then obtain
p∗ by choosing each conditional distribution p∗(xi | xPai

G∗
)

as a Gaussian xi ∼ N (W⊤
i xPai

G∗
, εi) where Wi, εi are

random selected. To ensure faithfulness, we sample Wi

away from 0. More details are in Appendix A.7.1.

Baseline Algorithms. We compare our algorithms against
GES without reversals (GES), and with reversals (GES-r,
a.k.a GIES), using the C++ implementation in the R package
pcalg [Kalisch et al., 2012]. We also include fast-GES
(fGES) from the Java software Tetrad [Ramsey et al., 2017].
An additional baseline, OPS, is provided in Appendix A.5.

Evaluation Metrics We evaluate the algorithms with the
structural Hamming distance on MECs (SHD) between the
method’s results M̂ and the ground-truth MEC M∗ [Peters
et al., 2014]. The SHD is the number of different edges
between the CPDAGs of M̂ and M∗. We also consider
causal discovery as a binary classification task, where M̂
predicts the presence of edges in M∗. We report the F1
score, precision, and recall for this task. Error bars are com-
puted over multiple random datasets (seeds) and reported as
bootstrapped 95% confidence intervals [Waskom, 2021].

5.2 RESULTS

General Performance. In Fig. 2, we find that XGES-0
and XGES outperform all baselines. The improvement is
more significant for larger density ρ and larger d. The con-
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Figure 5: Performance of GES and XGES when varying
(left) the number of samples n, and (right) the regularization
strength α. Increasing n improves XGES while it hurts GES
and its variants. Increasing α initially improves GES but
eventually hurts all methods. The dashed lines indicate the
number of edges of the true graph. Error bars over 30 seeds.

clusions are identical with precision and recall in Fig. 7
of Appendix A.2, which are both improved by XGES. We
emphasize that even though XGES favors deleting edges,
the proportion of true edges recovered by XGES is higher
than GES (the recall). We also report the F1 metric in Ap-
pendix A.2. We note that the performance of fGES is slightly
worse than GES. We explain in Appendix B.6 that one of
the optimizations of fGES removes some valid insertions.

Choice of Metrics. Fig. 4 (left) shows that the BIC scores
of the graphs returned by each method are strongly corre-
lated with the SHD to ground truth. This is a comforting
observation: maximizing the BIC score on finite data is
indeed a good proxy for minimizing SHD to ground-truth.

Impact of the Edge Density ρ. In Fig. 9, we see that when
ρ = 1 (a very sparse graph where nodes have ρ = 1 parent
on average), then all methods perform similarly well. The
advantage of XGES over GES is visible as soon as ρ = 2
and widens as ρ increases, see also Fig. 2.

Robustness to the Sample Size n. In Fig. 5 (left), we vary
the number of samples n and fix d = 50 and ρ = 3. XGES’s
performance improves with n, coherent with Th. 1. In con-
trast, GES and its variants are hurt when n increases beyond
104. But this is not incoherent with GES’s correctness in the
limit of infinite data. Instead, this reveals that the finite sam-
ple behavior of GES is nontrivial and that GES may require
very large n – beyond what is practical – to perform well.

In Fig. 12, we study sample sizes up to n = 108 on a
small graph with d = 15 and ρ = 2. We find again that
GES worsens around 104 samples, but this time, it improves
again after 105 samples, thereby exhibiting a double descent
behavior. We discuss it in more detail in Appendix A.6.

Robustness to the Regularization Strength α. In Fig. 5
(right), we vary α and fix d = 50, ρ = 3 and n = 10000.
We find that increasing α helps GES from α = 1 to α = 10



but then hurts it. No value of α enables GES to catch up to
XGES. Echoing Section 3.1, we conclude that the solution
to GES’s over-inserting is not to change the score function,
but to change the search strategy, as XGES does.

Robustness to the Data Simulation. We vary the proce-
dure to sample the weights Wi in two ways: changing the
scale and changing the shape of their distribution. We report
the results in Appendix A.7 with Figs. 13 and 14. We find
similar conclusions as in Fig. 2.

Implementation Speed. We measure the runtime of the
different methods for a wide range of d and ρ ∈ {2, 4} in
Fig. 4 (right). We find that XGES-0 is up to 30 times faster
than GES, and XGES up to 10 times faster. While fGES’s
slower runtime may be attributed to Java overhead, the other
methods are implemented in C++. Higher densities slow
down all methods, with a stronger impact on GES, which is
coherent with GES over-inserting in denser graphs.

We find the same conclusions by reporting the number of
calls to the scoring function as another measure of efficiency
in Appendix A.4. Interestingly, even though XGES repeat-
edly applies XGES-0, it only makes around one order of
magnitude more BIC score evaluations than XGES-0.

CONCLUSION AND FUTURE WORK

We introduced XGES, an algorithm that significantly
improves on GES. With XGES, we can learn larger and
denser graphs from data. XGES offers several avenues
for future work. One direction is to study its finite sample
guarantees. A second is to study its applicability to more
complex model classes beyond linear models. Another is
to relax its assumptions: e.g. unfaithful graphs, or scores
that are not asymptotically locally consistent [Schultheiss
and Bühlmann, 2023]. Finally, its efficient implementation
could be used to analyze large real-world datasets.
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A EMPIRICAL STUDIES

A.1 SAMPLE SIZE AND REGULARIZATION STRENGTH

We reproduce figure Fig. 5 from the main text in Fig. 6a, which shows the impact of the sample size n and the regularization
strength α on the performance of GES and XGES variants. We complete it with Fig. 6b to show the corresponding number
of predicted edges. It indeed reveals that increasing n causes GES and its variants to over-insert.
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(a) Evolution of the performance of GES and XGES variants
with the number of samples n.
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(b) Evolution of the number of predicted edges with the num-
ber of samples n.

Figure 6: Evolution of the performance of GES and XGES variants with (left) the number of samples n, and (right) the
regularization strength α. Increasing n hurts GES and its variants (as it reduces the BIC regularization and over-insertion is
exacerbated) while it helps XGES. Increasing the BIC regularization with α helps GES but without letting it catch up with
XGES. Missing points indicate the method did not run.

A.2 COMPLEMENTARY METRICS: PRECISION, RECALL, F1 SCORE, BIC SCORE.

We complement Fig. 2 from the main text with Fig. 7 to show the F1 score of GES and XGES for the same simulated data,
as well as the precision/recall breakdown. We also report the BIC score of the graphs returned by GES and XGES in Fig. 8.
We find similar conclusions as in the main text.

The methods return a MEC M̂ to predict the true MEC M∗. The F1 score, precision and recall are defined for binary
classification problems. For each ordered pair of nodes (i, j) we say M contains (i, j) if (i, j) is directed in M from i to j
or if (i, j) is undirected in M (i, j) (but not if (j, i) is directed in M from j to i). Then, the binary classification problem is
to predict for each (i, j) if M∗ contains (i, j) or not, predicted by whether M̂ contains (i, j) or not.
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= 2
50 edges

= 3
75 edges

0.4

0.6

0.8

1.0

F1
 s

co
re

d = 25

= 2
100 edges

= 3
150 edges

= 4
200 edges

0.4

0.6

0.8

1.0
d = 50

fGES
GES
GES-r
XGES-0
XGES

(c) F1 of GES and XGES on simulated data.

Figure 7: Performance of GES and XGES on simulated data measured with precision, recall and F1. With n = 10000, α = 2
and 30 seeds (same data as Fig. 2). XGES outperforms other methods in the three metrics.
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data. XGES returns graphs with higher scores than GES.



A.3 MORE VARIABLES AND EDGE DENSITIES

We show the performances of the methods on more combinations of d and ρ in Fig. 9. We fixed n = 10000, α = 2. We find
similar trends as in Fig. 2 and Fig. 4.

For edge density ρ = 1, we find no significant difference between GES and XGES. This is expected as the true graph is
really sparse and the methods are less likely to encounter local optima.
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Figure 9: Performance of GES and XGES on more combinations of d and ρ. We fixed n = 10000, α = 2 and we report
error bars and averages over 5 seeds. XGES consistently outperforms GES and its variants. The dashed lines indicate the
number of true edges.

A.4 NUMBER OF CALLS TO THE SCORING FUNCTION

We show the number of calls to the scoring function for the different methods in Fig. 10. We find that even though XGES
repeatedly applies XGES-0, it only makes around one order of magnitude more BIC score evaluations. fGES was not
included because we could not extract the number of calls from the Tetrad implementation.
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Figure 10: Number of calls to the scoring function for the different methods. We fixed n = 10000, α = 2, and we report
error bars and averages over 5 seeds.

A.5 THE OPS VARIANT

Chickering [2002b] evaluated GES against a variant called OPS that also considered insertions and deletions simultaneously.
But OPS did not prioritize deletions over insertions, resulting in limited changes to GES in their experiments. We show the
performance of OPS in Fig. 11. We corroborate the results of Chickering [2002b] that OPS has performances similar to GES.
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Figure 11: Same experiment as Fig. 2 but with the addition of the OPS variant. OPS performs very similarly to GES,
suggesting that XGES-0’s heuristic favoring deletions over insertions in XGES-0 is important.

Mathematically, deleting an edge can only increase the BIC score by at most α
2 log n which is usually smaller than the increase

from inserting an edge. Hence even if OPS considers deletions and insertions “together”, we conjecture that most deletions
are only considered at the end of the search because insertions have higher scores and are applied first. OPS then encounters
the same local maxima as GES. This highlights the importance of prioritizing deletions over insertions with XGES.

A.6 THE DOUBLE DESCENT OF GES WITH THE SAMPLE SIZE

We show the performance of GES and XGES on a small graph with d = 15 and ρ = 2 for sample sizes up to n = 108 in
Fig. 12. XGES monotonically and quickly improves to an SHD of 0. We find that GES improves from n = 102 to n = 104

but worsens around n = 104. It eventually improves again after 106. The error bands are bootstrapped 95% confidence
intervals over 30 seeds. We chose the graph to be small so that we could observe the second descent of GES with sample
sizes up to 108. However, we doubt that such large sample sizes are practical. We further believe that the issue worsens with
larger graphs. (Note: We reimplemented GES and GES-r to scale to n = 108, we verified that we obtained the same results
as the original implementations for n up to 106. See parameter -b in the XGES code.)

When the sample size increases, the strength of the BIC regularization relative to the likelihood decreases in log(n)
n . We

hypothesize that GES worsens because that decrease might lead to over-inserting, and the encounter of local optima.
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Figure 12: Performance of GES and XGES on a small graph with d = 15 and ρ = 2 for sample sizes up to n = 108. We find
that GES worsens around n = 104 but improves after n = 106. It exhibits a double descent behavior with the sample size.



A.7 THE IMPACT OF THE SIMULATION

We describe the simulation procedure and show the impact of changing it.

A.7.1 The simulation procedure

In the experiments, we use the following procedure to obtain simulated data.

1. Select d and ρ.

2. Draw a DAG G∗ as follows:

• G∗ ∼ Erdos-Renyi(#nodes = d, p = 2ρ
d−1 ).

• Orient each edge (i, j) from min(i, j) to max(i, j), that forms a DAG.
• Draw a permutation σ of [d] and relabel each node i 7→ σ(i).

3. Choose a distribution p∗ as follows for each i ∈ [d]:

• Sample weights Wi away from 0 to ensure faithfulness.

(a) In most simulations, we draw Wi ∈ [1, 3]|Pa
i
G∗ | from U([1, 3]).

(b) In Fig. 14, we change the simulation to sample weights Wi ∈ [−3,−1] ∪ [1, 3], by additionaly drawing a
Bernoulli variable bi ∼ B(0.5) and setting Wi ← −Wi if bi = 1.

• L1-normalize Wi as Wi ←Wi/
∑

j |Wij |.
• Draw the scale of the Gaussian εi ∼ U(0, εmax).

(a) By default in most plot εmax = 0.5.
(b) We vary it in Fig. 13.

• Define p∗(xi | xPai
G∗

) = N (W⊤
i xPai

G∗
, ε2i ).

4. Draw n i.i.d. samples from p∗.

A.7.2 Varying the scale of the Gaussian noise

We show the impact of varying the scale of the Gaussian noise εmax in Fig. 13. As expected, GES and XGES are almost not
impacted by the scale of the noise. This is expected, as the methods explicitly model the noise variable.
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Figure 13: Performance of GES and XGES on different scales of the Gaussian noise. We fixed n = 10000, α = 2.



A.7.3 Different sampling of weights

We find similar conclusions when we change the sampling of weights from Wi ∈ [1, 3] to Wi ∈ [−3,−1] ∪ [1, 3] . We show
the results in Fig. 14.
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Figure 14: Performance of GES and XGES similar to Fig. 2 but with a different sampling of weights W . n = 10000, α = 2.



B THEORETICAL DETAILS

We detail the theoretical guarantees of GES and XGES. We first recall the problem only in terms of MECs and not CPDAGs.
We review the theoretical guarantees of GES and prove those of XGES. We then show how the MEC formulation can be
translated into a CPDAG formulation for Deletes and Reversals.

Notations and Vocabulary.

• d: number of variables.
• G: a DAG over d variables.
• P : a PDAG over d variables.
• M : a MEC over d variables.
• M: space of all MEC over d variables.
• S: a locally consistent score that is score equivalent.
• S(G) or S(M) or S(P ): the score of a DAG G, a MEC M , or a CPDAG P . We hide the dependence in D for simplicity.
• G + (x → y): the DAG obtained by adding the edge x → y to G. It is undefined if x → y is already in G or if the

resulting graph is not a DAG.
• G− (x→ y): the DAG obtained by removing the edge x→ y. It is undefined if x→ y is not in G.
• G ⟲ (x→ y): the DAG obtained by reversing the edge x→ y. It is undefined if x→ y is not in G or if the resulting

graph is not a DAG.
• An edge is compelled in a MEC M if it is always directed in the same direction in all DAGs in M . By definition,

the compelled edges of M are exactly the directed edges of M ’s canonical PDAG.
• An edge is reversible in a MEC M if it is directed in one direction in some DAGs in M and the other direction in

other DAGs in M . By definition, the reversible edges of M are exactly the undirected edges of M ’s canonical PDAG.

B.1 NAVIGATING THE SPACE OF MECS

GES explores the space of MECs by iteratively going from one MEC to the other, each time selecting one with a higher
score. GES defines a set of possible candidates that can be reached from a given MEC. This defines the search space of GES
[Chickering, 2002b].

For a MEC M , define:

• Insertions: I(M) = {M ′ ∈M | ∃G ∈M,∃(x, y) ∈ [d]2, G+ (x→ y) ∈M ′}.
• Deletions: D(M) = {M ′ ∈M | ∃G ∈M, ∃(x, y) ∈ [d]2, G− (x→ y) ∈M ′}.
• Reversals :Rc(M) = {M ′ ∈M | ∃G ∈M, ∃(x, y) ∈ [d]2, (x, y) is compelled in P,G ⟲ (x→ y) ∈M ′}.
• Reversals:Rr(M) = {M ′ ∈M | ∃G ∈M,∃(x, y) ∈ [d]2, (x, y) is reversible in P,G ⟲ (x→ y) ∈M ′}.

The original GES algorithm first navigates through MECs only using I, and then only using D. GIES proposes to add a last
step and navigate through MECs using onlyRc ∪Rr (after I and D) [Hauser and Bühlmann, 2012].

In contrast, XGES navigates through MECs using simultaneously I, D andRc. The XGES heuristics favor using D, then
Rc, and finally I (see Algorithm 2).

Remark 3. XGES could also useRr, we leave this for future work.

B.2 THEORETICAL GUARANTEES OF GES

We reformulate the results in [Chickering, 2002b]. Given a distribution p∗ faithful to a graph G∗ with MEC M∗. GES is
correct if it returns M∗, the MEC of G∗. It is the MEC formed by all the DAGs faithful to p∗.

Theorem 6 ([Chickering, 2002b, Lemma 9]). If no candidate MECs in I(M) can increase the score S, then M has a
special structure: all the independencies in M are also independencies in p∗. We write it:

max
M ′∈I(M)

S(M ′) ≤ S(M)⇒ P1(M ; p∗),

where P1(M ; p∗) is the proposition that all the independencies in M are also independencies in p∗.



Note that p∗ might have more independencies than M , i.e. p∗ is not necessarily faithful to M . This is because M might
have superfluous edges. For example, the MEC of the complete DAGs satisfies P1(M ; p∗).

Theorem 7 ([Chickering, 2002b, Lemma 10]). If all the independencies in M are also independencies in p∗, then the same
is true for all the MECs in D(M) that have a higher score than M . We write it:

P1(M ; p∗)⇒ (∀M ′ ∈ D(M), S(M ′) ≥ S(M)⇒ P1(M ′; p∗)).

Theorem 8 ([Chickering, 2002b, Lemma 10]). If all the independencies in M are also independencies in p∗, and if no
candidate MECs in D(M) can increase the score S, then M = M∗. We write it:

P1(M ; p∗) ∧
[(

max
M ′∈D(M)

S(M ′)

)
≤ S(M)

]
⇒ P2(M ; p∗),

where P2(M ; p∗) is the proposition that M = M∗ or equivalently that p∗ is faithful to all the DAGs in M

With Ths. 6 to 8, it follows that GES is correct: it will reach a MEC M at the end of phase 1 such that P1(M ; p∗) is true.
From there, all MECs visited in phase 2 will also have P1(M ; p∗) true, and GES will stop on a MEC M such that P2(M ; p∗)
is true, i.e. M = M∗.

B.3 THEORETICAL GUARANTEES OF XGES-0 AND XGES

B.3.1 Theoretical Guarantees of XGES-0

We now prove that XGES-0 is correct.

Theorem 2. For any locally consistent score S, the MEC M̂ returned by XGES-0 contains the true graph G∗.

Proof. We prove that XGES-0 terminates and is correct.

• Termination. The algorithm terminates because the search space is finite and the score is non-decreasing at each step.

• Correctness. Let M̂ be the MEC returned by XGES-0. Since XGES-0 terminated, it means that no candidate MECs
in I(M̂) can increase the score S. By Th. 6, P1(M̂ ; p∗) is true. It also means that no candidate MECs in D(M̂) can
increase the score S. By Th. 8, P2(M̂ ; p∗) is true. Hence, XGES-0 is correct.



B.3.2 Theoretical Guarantees of XGES

We provide the pseudocode of XGES in Algorithm 3.

Algorithm 3: XGES

Data: Data D ∈ Rn×d, score function S
Define: δD,M (O) = S(Apply(O,M);D)− S(M ;D)
Result: MEC of G∗

1 M ← XGES-0(X,S)
2 D ← all deletes valid for M
3 while |D| > 0 do
4 D∗ ← argmaxD∈D{δD,M (D)}
5 M ′ ← Apply(D∗,M )
6 Ĩ ← all insertions, from any MEC to any MEC, that reinsert the edge deleted by D∗

7 M ′ ← XGES-0*(X,S,M ′, Ĩ)
/* XGES-0* is a modified version of XGES from Algorithm 2 that accepts an initial graph M ′, and a set of forbidden insertions Ĩ */

8 if S(M ′;D) > S(M ;D) then
9 M ←M ′

10 D ← all deletes valid for M
11 else
12 D ← D\{D∗}

13 return M

Theorem 3. For any score S, XGES returns a MEC M̂ with a higher or equal score than XGES-0. If S is locally consistent,
then M̂ contains the true graph G∗.

Proof. With a locally consistent score, XGES-0 is correct, so M in line 1 is already the MEC M∗ of G∗. Such a M∗ has
the maximum score, so lines 9 and 10 are never executed. Hence, XGES is correct.

For completeness, we provide proof of XGES’s termination even when the score is not locally consistent.

Termination in practice. Every time XGES replaces M by M ′, the score of M strictly increases. Since the search space is
finite, XGES cannot infinitely replace M by M ′. But then, the other possibility is to remove D∗ from D, which is a finite
set. Hence, XGES terminates.



B.4 NAVIGATING THE SPACE OF MECS WITH CPDAGS

We review how to translate the MEC formulation into a CPDAG formulation for the practical implementations of GES and
XGES. We recall that each MEC M can be uniquely represented by a CPDAG P .

B.4.1 Original Parametrization

In Section 4.1 we reviewed that given a MEC M represented by the CPDAG P , each M ′ ∈ I(M) can be uniquely associated
to an operator Insert(x, y, T ), where T is a set of nodes, such that applying Insert(x, y, T ) to P yields a PDAG P ′ that
represents M ′ (up to completing it into a CPDAG). The operator Insert(x, y, T ) modifies P by adding the edge x→ y and
orienting all edges t − y as t → y for all t ∈ T . Not all Insert(x, y, T ) operators can be applied to P and yield a PDAG
P ′ that represents a MEC M ′ ∈ I(M). All the Insert(x, y, T ) operators that correspond to a MEC M ′ ∈ I(M) are called
valid operators. There is a bijection between I(M) and the set of valid Insert(x, y, T ), and there exist conditions that can be
checked on P to determine whether Insert(x, y, T ) is valid or not.

The same holds for D(M), Rc(M) and Rr(M). We summarize the operators, their validity conditions, their score and
their actions on a CPDAG in Table 2, adapted from Chickering [2002b] for insertion and deletion, and from Hauser and
Bühlmann [2012] for reversals.

Operator Insert(x, y, T ) Delete(x, y,H) Reversal(x, y, T )

Condi-
tions

• x ̸∈ Ad(y)

• T ⊂ Ne(y)\Ad(x)

• [Ne(y) ∩Ad(x)] ∪ T is a clique

• All semi-directed paths from y to x
are blocked by [Ne(y)∩Ad(x)]∪T

• x ∈ Ch(x) ∪Ne(x)

• H ⊂ Ne(y) ∩Ad(x)

• [Ne(y) ∩Ad(x)]\H is a clique

• y ∈ Pa(x)

• T ⊂ Ne(y)\Ad(x)
• [Ne(y) ∩Ad(x)] ∪ T is a clique

• All semi-directed paths from y to
x other than (y, x) are blocked by
[Ne(y) ∩Ad(x)] ∪ T ∪Ne(x)

Score
Increase

s(y,[Ne(y)∩Ad(x)]∪T∪Pa(y)∪{x})
−s(y, [Ne(y) ∩Ad(x)] ∪ T ∪ Pa(y))

s(y, [Ne(y)∩Ad(x)]\H∪Pa(y)\{x})−
s(y, [Ne(y)∩Ad(x)]\H ∪Pa(y)∪ {x})

s(y,[Ne(y)∩Ad(x)]∪T∪Pa(y)∪{x})
−s(y, [Ne(y) ∩Ad(x)] ∪ T ∪ Pa(y))
+s(x,Pa(x)\{y})− s(x,Pa(x))

Actions • Add x→ y to P .

• For all t ∈ T , orient t−y as t→ y.

• Remove x→ y (or x− y) from P .

• Orient all edges y − h as h→ y for
h ∈ H .

• Orient all edges x− h as h→ x for
h ∈ H .

• Reverse x→ y into x← y.

• For all t ∈ T , orient t−y as t→ y.

Table 2: Summary of the operators and their conditions as described in [Chickering, 2002b]. The conditions for Insert
and Delete are described in Chickering [2002b, Definition 12, Definition 13, Theorem 15, Theorem 17, Table 1], and the
score increase in Chickering [2002b, Corollary 16, Corollary 18]. The conditions for Reversal are described in Hauser and
Bühlmann [2012, Proposition 34], and the score increase in Hauser and Bühlmann [2012, Corollary 36].



B.4.2 XGES Parametrization

We proposed a slightly different parametrization of the operators with adapted conditions. We recall from Section 4.2.1 that
with the original parametrization, the scores of the operators depend on which PDAG they are applied to. With the goal of
an efficient implementation that caches the score of valid operators to avoid recomputation, it is important and convenient
for each operator to have a unique score, agnostic of the PDAG it is applied to.

We described the new parametrization for the Insert operator in Section 4.2.1. We describe the Delete and Reverse operator
in Table 3 hereafter. For the Delete operator, we also replace the set H by the set C, its complement in Ne(y) ∩Ad(x).

Insert(x, y, T ; E) Delete(x, y, C;E) Reverse(x, y, T,E, F )

I1: y ̸∈ Ad(x)

I2: T ⊂ Ne(y)\Ad(x)

I3: (Ne(y) ∩Ad(x)) ∪ T is a clique

I4: All semi-directed paths from y to x
have a node in (Ne(y)∩Ad(x))∪T

I5: E = (Ne(y)∩Ad(x))∪T ∪Pa(y)

D1: y ∈ Ch(x) ∪Ne(x)

D2: C ⊂ Ne(y) ∩Ad(x)

D3: C is a clique

D4: E = C ∪ Pa(y)

R1: y ∈ Pa(x)

R2: T ⊂ Ne(y)\Ad(x)
R3: (Ne(y) ∩Ad(x)) ∪ T is a clique

R4: All semi-directed paths from y to x
not using edge y → x have a node
in (Ne(y) ∩Ad(x)) ∪ T ∪Ne(x)

R5: E = (Ne(y)∩Ad(x))∪T ∪Pa(y)
R6: F = Pa(x)

δ = s(y,E ∪ {x})− s(y,E) δ = s(y,E ∪ {x})− s(y,E\{x}) δ = s(y,E ∪ {x})− s(y,E) +
s(x, F\{y})− s(x, F )

Table 3: Parametrization of operators by XGES with their validity conditions and score. This parametrization renders the
score of each operator invariant to the CPDAG it is applied to.



B.5 EFFICIENT ALGORITHMIC FORMULATION

We study how each validity condition described in Table 3 can become true after each type of edge update in a PDAG. We
only need to consider single-edge updates because of Th. 5.

Edge Updates There are seven types of edge updates: one of a b, a− b, or a→ b becomes another one (6 = 3*2); and the
reversal a→ b into a← b (which happens only after applying a reversal operator).

For each of these edge updates, we study how they affect the validity conditions of each operator. We summarize the results
in Table 4 and provide the detailed proofs in the following sections. We further aggregate the results from Table 4 into
Table 5.

a b a b a− b a− b a→ b a→ b a→ b
a− b a→ b a b a→ b a b a− b a← b

I1 ∅ ∅ {a, b} = {x, y} ∅ {a, b} = {x, y} ∅ ∅

I2
{

ā = y
b̄ ̸∈ Ad(x)

∅
{

ā = x
b̄ ∈ Ne(y)

∅
{

ā = x
b̄ ∈ Ne(y)

{
ā = y

b̄ ̸∈ Ad(x)
∅

I3I2 {a, b} ⊂ Ne(y) {a, b} ⊂ Ne(y)

{
ā = y

b̄ ∈ Ad(x)
or{

ā = x
b̄ ∈ Ne(y)

{
ā = y

b̄ ∈ Ad(x)

{
ā = x

b̄ ∈ Ne(y)
∅ ∅

I4

{
ā = y

b̄ ∈ Ad(x)
or{

ā = x
b̄ ∈ Ne(y)

{
ā = x

b̄ ∈ Ne(y)
SD(x, y; ā, b̄) SD(x, y; b, a) SD(x, y; a, b)

{
ā = y

b̄ ∈ Ad(x)
SD(x, y; a, b)

I5

{
ā = y

b̄ ∈ Ad(x)
or{

ā = x
b̄ ∈ Ne(y)

b = y or{
ā = x

b̄ ∈ Ne(y)

{
ā = y

b̄ ∈ Ad(x)
or{

ā = x
b̄ ∈ Ne(y)

b = y or{
ā = y

b̄ ∈ Ad(x)

b = y or{
ā = x

b̄ ∈ Ne(y)

b = y or{
ā = y

b̄ ∈ Ad(x)

ā = y

D1 {a, b} = {x, y} (a, b) = (x, y) ∅ ∅ ∅ (a, b) = (y, x) (a, b) = (y, x)

D2

{
ā = y

b̄ ∈ Ad(x)
or{

ā = x
b̄ ∈ Ne(y)

{
ā = x

b̄ ∈ Ne(y)
∅ ∅ ∅

{
ā = y

b̄ ∈ Ad(x)
∅

D3D2 {a, b} ⊂
Neu(y)∩Adu(x)

{a, b} ⊂
Neu(y)∩Adu(x)

∅ ∅ ∅ ∅ ∅

D4 ∅ b = y ∅ b = y b = y b = y ā = y

R1 ∅ (a, b) = (y, x) ∅ (a, b) = (y, x) ∅ ∅ (a, b) = (x, y)
R2 See I2 See I2 See I2 See I2 See I2 See I2 See I2

R3R2 See I3 See I3 See I3 See I3 See I3 See I3 See I3
R4 See I4 or ā = x See I4 See I4 See I4 See I4 See I4 or x = ā See I4
R5 See I5 See I5 See I5 See I5 See I5 See I5 See I5
R6 ∅ b = x ∅ b = x b = x b = x ā = x

Table 4: For each type of edge update involving an edge (a, b), we list necessary conditions for each validity conditions of
operators Insert(x, y, T,E), Delete(x, y, C,E), and Reverse(x, y, T,E, F ) to become valid. The notation Condition(ā, b̄)
is a shorthand for Condition(a, b) ∨ Condition(b, a). The notation SD(x, y; a, b) is a shorthand for the necessary condition:
(a, b), in that order, is on a semi-directed path from y to x. All operators Pa,Ne,Ad and SD(x, y; a, b) are computed with
respect to the PDAG before the edge update. All operators Pau,Neu,Adu are computed with respect to the PDAG after the
edge update.

Table 5 rewrites Table 4 with the statements to be conditions centered around x and y, and aggregate all the necessary
conditions together. Whenever a single edge (a, b) is updated, only the Insert operators satisfying the condition I-any can
become valid and need to be checked. The same holds for Delete with D-any, and Reverse with R-any.

B.5.1 I1

Operator Update 1 (Updates on I1). Assume I1(x, y, T ;E) is false and becomes true after an update involving (a, b).
Then,

• the update cannot be U1 : (a b)⇝ (a− b),



a b a b a− b a− b a→ b a→ b a→ b
a− b a→ b a b a→ b a b a− b a← b

I1 ∅ ∅ {x, y} = {a, b} ∅ {x, y} = {a, b} ∅ ∅

I2 y = ā ∅
{

x = ā
y ∈ Ne(b̄)

∅
{

x = ā
y ∈ Ne(b̄)

y = ā ∅

I3I2 y ∈ Ne(a) ∩Ne(b) y ∈ Ne(a) ∩Ne(b)
{

y = ā
x ∈ Ad(b̄)

or
{

x = ā
y ∈ Ne(b̄)

{
y = ā

x ∈ Ad(b̄)

{
x = ā

y ∈ Ne(b̄)
∅ ∅

I4
{

y = ā
x ∈ Ad(b̄)

or
{

x = ā
y ∈ Ad(b̄)

{
x = ā

y ∈ Ne(b̄)
SD(x, y; ā, b̄) SD(x, y; b, a) SD(x, y; a, b)

{
y = ā

x ∈ Ad(b̄)
SD(x, y; a, b)

I5
{

y = ā
x ∈ Ad(b̄)

or
{

x = ā
y ∈ Ne(b̄)

y = b or
{

x = ā
y ∈ Ne(b̄)

{
y = ā

x ∈ Ad(b̄)
or

{
x = ā

y ∈ Ne(b̄)

y = b or{
y = ā

x ∈ Ad(b̄)

y = b or{
x = ā

y ∈ Ne(b̄)

y = b or{
y = ā

x ∈ Ad(b̄)

y = ā

I-any

• y ∈ {a, b}
• y ∈ Ne(a) ∩Ne(b)

• x = a and y ∈ Ne(b)

• x = b and y ∈ Ne(a)

• y = b

• y ∈ Ne(a) ∩Ne(b)

• x = a and y ∈ Ne(b)

• x = b and y ∈ Ne(a)

• x = a and y ∈ Ne(b) ∪ {b}
• x = b and y ∈ Ne(a) ∪ {a}
• y = a and x ∈ Ad(b)

• y = b and x ∈ Ad(a)

• SD(x, y; a, b)

• SD(x, y; b, a)

• y = a and
x ∈ Ad(b)

• y = b

• SD(x, y; b, a)

• y = b

• x = a and y ∈
Ne(b) ∪ {b}

• x = b and y ∈
Ne(a) ∪ {a}

• SD(x, y; a, b)

• y ∈ {a, b}
• y ∈ {a, b}
• SD(x, y; a, b)

D1 {x, y} = {a, b} (x, y) = (a, b) ∅ ∅ ∅ (x, y) = (b, a) (x, y) = (b, a)

D2
{

y = ā
x ∈ Ad(b̄)

or
{

x = ā
y ∈ Ne(b̄)

{
x = ā

y ∈ Ne(b̄)
∅ ∅ ∅

{
y = ā

x ∈ Ad(b̄)
∅

D3D2
{
x ∈ Adu(a) ∩Adu(b)
y ∈ Neu(a) ∩Neu(b)

{
x ∈ Adu(a) ∩Adu(b)
y ∈ Neu(a) ∩Neu(b)

∅ ∅ ∅ ∅ ∅

D4 ∅ y = b ∅ y = b y = b y = b y ∈ {a, b}

D-any

• y ∈ {a, b}
• x ∈ {a, b}
• x ∈ Ad(a)∩Ad(b) and y ∈
Ne(a) ∩Ne(b)

• y = b

• x ∈ {a, b}
• x ∈ Ad(a) ∩ Ad(b)

and y ∈ Ne(a)∩Ne(b)

∅ • y = b • y = b • y ∈ {a, b} • y ∈ {a, b}

R-any
• y ∈ {a, b}
• y ∈ Ne(a) ∩Ne(b)

• x ∈ {a, b}

• y = b

• y ∈ Ne(a) ∩Ne(b)

• x = a and y ∈ Ne(b)

• x = b

• x = a and y ∈ Ne(b) ∪ {b}
• x = b and y ∈ Ne(a) ∪ {a}
• y = a and x ∈ Ad(b)

• y = b and x ∈ Ad(a)

• SD(x, y; a, b)

• SD(x, y; b, a)

• y = a and
x ∈ Ad(b)

• y = b

• SD(x, y; b, a)

• x = b

• y = b

• x = a and y ∈
Ne(b) ∪ {b}

• x = b

• SD(x, y; a, b)

• y ∈ {a, b}
• x = b

• y ∈ {a, b}
• x ∈ {a, b}
• SD(x, y; a, b)

Table 5: For each type of edge update involving an edge (a, b), we list necessary conditions for each validity conditions of
operators Insert(x, y, T,E), Delete(x, y, C,E), and Reverse(x, y, T,E, F ) to become valid. The notation SD(x, y; a, b) is a
shorthand for the necessary condition: (a, b), in that order, is on a semi-directed path from y to x. All operators Pa,Ne,Ad
and SD(x, y; a, b) are computed with respect to the PDAG before the edge update. The rows I-any, D-any, and R-any
aggregate the necessary conditions for each validity condition and express them in a disjunctive form: at least one of the
conditions must be true for the operator to become valid.

• the update cannot be U2 : (a b)⇝ (a→ b),

• if the update is U3 : (a− b)⇝ (a b) then {a, b} = {x, y},
• the update cannot be U4 : (a− b)⇝ (a→ b),

• if the update is U5 : (a→ b)⇝ (a b) then {a, b} = {x, y},
• the update cannot be U6 : (a→ b)⇝ (a− b),

• the update cannot be U7 : (a→ b)⇝ (a← b).

Proof. We recall that I1(x, y, T ;E) is y ̸∈ Ad(x). So the assumptions are y ∈ Ad(x) and y ̸∈ Adu(x). But U1, U2, U4,
U6, and U7 do not remove any elements from any Ad(x′) set. So none of them can render I1(x, y, T ;E) true.

U3 and U5 can only remove elements from Ad(a) or Ad(b), and do so only by removing b or a, respectively. So
{x, y} = {a, b}.



B.5.2 I2

We start with a general lemma for I2.

Lemma 1 (I2 to become true). Assume I2(x, y, T ;E) is false and becomes true after an edge update. Then (i) Neu(y)
gained an element, or (ii) Adu(x) lost an element that was in Ne(y).

Proof. We recall that I2(x, y, T ;E) is T ⊂ Ne(y)\Ad(x). If I2(x, y, T ;E) changes from false to true then there exists
t ∈ T that was not in Ne(y)\Ad(x) and is now in Neu(y)\Adu(x), which writes

(t ̸∈ Ne(y) ∨ t ∈ Ad(x)) ∧ t ∈ Neu(y) ∧ t ̸∈ Adu(x).

• If t ∈ Ne(y) then we must have t ∈ Ad(x) and t ̸∈ Adu(x). So Adu(x) lost t, which was in Ne(y) ∩Ad(x).

• If t ̸∈ Ne(y), then Neu(y) gained t.

In conclusion, either Neu(y) gained an element, or Adu(x) lost an element that was is in Ne(y).

Operator Update 2 (Updates on I2). Assume I2(x, y, T ;E) is false and becomes true after an update involving (a, b).
Then,

• if the update is U1 : (a b)⇝ (a− b) then y ∈ {a, b},
• the update cannot be U2 : (a b)⇝ (a→ b),

• if the update is U3 : (a− b)⇝ (a b) then
{

a = x
b ∈ Ne(y)

or
{

b = x
a ∈ Ne(y)

,

• the update cannot be U4 : (a− b)⇝ (a→ b),

• if the update is U5 : (a→ b)⇝ (a b) then
{

a = x
b ∈ Ne(y)

or
{

b = x
a ∈ Ne(y)

,

• if the update is U6 : (a→ b)⇝ (a− b) then y ∈ {a, b},
• the update cannot be U7 : (a→ b)⇝ (a← b).

Proof. According to Lemma 1, either Neu(y) gained an element or Adu(x) lost an element (that was in Ne(y)).

We now study the necessary conditions for each update, if it was applied and made I2(x, y, T ;E) become true.

• The updates U1 and U6 can only add elements to Neu(a) or Neu(b) and not remove any element to any Adu(x′). So
Neu(y) gained an element and y ∈ {a, b}.

• The updates U2, U4, and U7 do not add any elements to any Neu(y′), and do not remove any elements to any Adu(x′).
So none of them can make I2(x, y, T ;E) become true.

• The updates U3 and U5 can only remove elements from Adu(a) or Adu(b) and not add any element to any Neu(y′).
So Adu(x) lost an element and x ∈ {a, b}. If x = a (resp. x = b) then the lost element must be b (resp. a) and so
b ∈ Ne(y) (resp. a ∈ Ne(y)).

B.5.3 I3

We start with a general lemma for I3.

Lemma 2 (I3 to become true). Assume I3(x, y, T ;E) is false and becomes true after an edge update about (a, b). Further,
assume that I2(x, y, T ;E) is true after the update (regardless of its status before the update). Then either (i) {a, b} ⊂ Ne(y)
and the update rendered a, b adjacent, or (ii) Neu(y) lost an element that was in Ne(y) ∩Ad(x), or (iii) Adu(x) lost an
element that was in Ne(y) ∩Ad(x).



Proof. We recall that I3(x, y, T ;E) is [Ne(y) ∩Ad(x)] ∪ T is a clique, and that I2(x, y, T ;E) is T ⊂ Ne(y)\Ad(x). So
the assumptions are [Ne(y) ∩Ad(x)] ∪ T is not a clique (in the pre-update PDAG) meanwhile [Neu(y) ∩Adu(x)] ∪ T is a
clique (in the post-update PDAG), and T ⊂ Neu(y)\Adu(x).

Since [Ne(y) ∩Ad(x)] ∪ T is not a clique, it must contain two nodes c, d that are not connected in the pre-update PDAG.

We distinguish two cases:

• If {c, d} ⊂ [Neu(y) ∩Adu(x)] ∪ T , then the update must have connected c and d. So c and d are a and b. Also since
T ⊂ Neu(y)\Adu(x), then {a, b} ⊂ [Neu(y)∩Adu(x)]∪ T ⊂ Neu(y). Finally, an update can only change one edge
at a time, so Neu(y) = Ne(y) (since a and b are not y as y cannot be a neighbor of itself). Hence, {a, b} ⊂ Ne(y) and
a and b became adjacent.

• Else, c or d has been removed from [Neu(y) ∩Adu(x)] ∪ T during the update. Without loss of generality, assume c
was removed. Since T does not change, then c was removed from [Ne(y) ∩ Ad(x)]. So Neu(y) or Adu(x) lost an
element that was in Ne(y) ∩Ad(x).

Hence, [{a, b} ⊂ Ne(y) and a and b became adjacent], or Ne(y) lost an element that was in Ne(y) ∩Ad(x) or Ad(x) lost
an element that was in Ne(y) ∩Ad(x).

Operator Update 3 (Updates on I3). Assume I3(x, y, T ;E) is false and becomes true after an update involving (a, b).
Further, assume that I2(x, y, T ;E) is true after the update. Then,

• if the update is U1 : (a b)⇝ (a− b) then {a, b} ⊂ Ne(y),

• if the update is U2 : (a b)⇝ (a→ b) then {a, b} ⊂ Ne(y),

• if the update is U3 : (a− b)⇝ (a b) then
{

a ∈ {x, y}
b ∈ Ne(y) ∩Ad(x)

or
{

b ∈ {x, y}
a ∈ Ne(y) ∩Ad(x)

,

• if the update is U4 : (a− b)⇝ (a→ b) then
{

a = y
b ∈ Ne(y) ∩Ad(x)

or
{

b = y
a ∈ Ne(y) ∩Ad(x)

,

• if the update is U5 : (a→ b)⇝ (a b) then
{

a = x
b ∈ Ne(y) ∩Ad(x)

or
{

b = x
a ∈ Ne(y) ∩Ad(x)

,

• if the update is U6 : (a→ b)⇝ (a− b) then it is impossible,

• if the update is U7 : (a→ b)⇝ (a← b) then it is impossible.

Proof. According to Lemma 2, either {a, b} ⊂ Ne(y) and the update rendered a, b adjacent, or Neu(y) lost an element that
was in Ne(y) ∩Ad(x), or Adu(x) lost an element that was in Ne(y) ∩Ad(x).

We now study the necessary conditions for each update, if it was applied and made I3(x, y, T ;E) become true.

• The updates U1 and U2 can only add elements to sets like Neu(y) or Adu(x), so the only possibility is that {a, b} ⊂
Ne(y).

• The update U3 does not render any edge adjacent. So by Lemma 2, Ne(y) or Ad(x) lost an element c that was in
Ne(y) ∩Ad(x).

– If it is Ne(y) that lost c, then we have {a, b} = {y, c}. Without loss of generality, a = y and b = c, so
b ∈ Ne(y) ∩Ad(x).

– If it is Ad(x) that lost c, then we have {a, b} = {x, c}. Without loss of generality, a = x and b = c, so
b ∈ Ne(y) ∩Ad(x).

So gathering all cases and with generality:{
a ∈ {x, y}

b ∈ Ne(y) ∩Ad(x)
or

{
b ∈ {x, y}

a ∈ Ne(y) ∩Ad(x)

• The update U4 does not render any edge adjacent, does not remove any element from any Ad(x′), but removes
elements from Neu(a) or Neu(b) (resp.b or a). So by Lemma 2, a = y (resp. b = y) and b ∈ Ne(y) ∩ Ad(x) (resp.
a ∈ Ne(y) ∩Ad(x)).



• The update U5 does not render any edge adjacent, does not remove any element from any Ne(y′), but removes
elements from Adu(a) or Adu(b) (resp.b or a). So by Lemma 2, a = x (resp. b = x) and b ∈ Ne(y) ∩ Ad(x) (resp.
a ∈ Ne(y) ∩Ad(x)).

• The updates U6 and U7 cannot remove any element from any Ne(y′) or Ad(x′), and do not make a and b adjacent
(they were already adjacent). So by Lemma 2, they cannot make I3(x, y, T ;E) become true.

B.5.4 I4

We start with a general lemma for I4.

Lemma 3 (I4 to become true). Assume I4(x, y, T ;E) is false and becomes true after an edge update about (a, b). If the
update does not reverse a directed edge, does not direct an undirected edge, and does not delete an edge, then the update
must have added an element to [Ne(y) ∩Ad(x)].

Otherwise, the update invalidated an edge on a semi-directed path from y to x (where invalidated means that the edge (a, b)
cannot be traversed from a to b anymore with the semi-directed rules: either a and b are not adjacent anymore, or the edge
is now a← b.).

Proof. We recall that I4(x, y, T ;E) is: all semi-directed paths from y to x have a node in [Ne(y) ∩ Ad(x)] ∪ T . If the
condition does not hold before the update, then there exists a semi-directed path from y to x with no node in [Ne(y) ∩
Ad(x)] ∪ T . We distinguish two cases:

If the update does not remove or reverse any edge, then the semi-directed path is still there after the update. For the condition
to become true, the update must have added an element to [Ne(y) ∩Ad(x)] ∪ T (one element that is on the semi-directed
path).

Since T does not change, the update must have added an element to [Ne(y) ∩Ad(x)].

Otherwise, the semi-directed path from y to x is not a semi-directed path anymore. So the update invalidated an edge on it:
either a and b are not adjacent anymore, or the edge is now a← b.

Operator Update 4 (Updates on I4). Assume I4(x, y, T ;E) is false and becomes true after an update involving (a, b).
Then,

• if the update is U1 : (a b)⇝ (a− b) then
{

b = y
a ∈ Ad(x)

or
{

b = x
a ∈ Ne(y)

or
{

a = y
b ∈ Ad(x)

or
{

a = x
b ∈ Ne(y)

,

• if the update is U2 : (a b)⇝ (a→ b) then
{

b = x
a ∈ Ne(y)

or
{

a = x
b ∈ Ne(y)

.

• if the update is U3 : (a− b)⇝ (a b) then either (a, b) or (b, a) was on a semi-directed path from y to x.

• if the update is U4 : (a− b)⇝ (a→ b) then (b, a) was on a semi-directed path from y to x.

• if the update is U5 : (a→ b)⇝ (a b) then (a, b) was on a semi-directed path from y to x.

• if the update is U6 : (a→ b)⇝ (a− b) then
{

b = y
a ∈ Ad(x)

or
{

a = y
b ∈ Ad(x)

.

• if the update is U7 : (a→ b)⇝ (a← b) then (a, b) was on a semi-directed path from y to x.

Proof. Assume I4(x, y, T ;E) is false and becomes true after an update involving (a, b). U1, U2, and U6 do not reverse any
directed edge, do not direct any undirected edge, and do not delete any edge. So by Lemma 3, these updates must have added
an element to [Ne(y) ∩Ad(x)]. Without loss of generality for now, assume a was added. Notice that a cannot have been
added to both Ne(y) and Ad(x) (otherwise y = b and x = b, yet x ̸= y), so a was already in one of them before the update.

• If the update is U1 then a can have been added to Ne(y) or Ad(x), and already present in the other one. Hence we

have, in full generality,
{

b = y
a ∈ Ad(x)

or
{

b = x
a ∈ Ne(y)

or
{

a = y
b ∈ Ad(x)

or
{

a = x
b ∈ Ne(y)

.



• If the update is U2 then a can only have been added to Ad(x), and so already present in Ne(y). Hence we have, in full

generality,
{

b = x
a ∈ Ne(y)

or
{

a = x
b ∈ Ne(y)

.

• If the update is U6 then a can only have been added to Ne(y), and so already present in Ad(x). Hence we have, in full

generality,
{

b = y
a ∈ Ad(x)

or
{

a = y
b ∈ Ad(x)

.

U3, U4, U5, and U7 cannot add any element to [Ne(y) ∩Ad(x)]. So by Lemma 3, these updates must have invalidated an
edge on a semi-directed path from y to x.

• If the update is U3 then either (a, b) or (b, a) was on a semi-directed path from y to x.

• If the update is U4 then (b, a) was on a semi-directed path from y to x.

• If the update is U5 or U7, then (a, b) was on a semi-directed path from y to x.

So far, all the necessary conditions for the updates were efficient to test, e.g. finding all the insert with y ∈ {a, b}.

With I4 however, we have the condition that (a, b) or (b, a) was on a semi-directed path from y to x. This can be inefficient
to test. A speed-up can be obtained by proceeding as follows

• Instead of ensuring that C always contains all valid Insert operators (which means all operators that with I1, I2, I3, I4,
and I5 are true), we can ensure that C always contains all Insert operator for which I1, I2, I3, and I5 are true.

• Recall that at each step, XGES involves 4 substeps described in Section 4.2. Substep 3 verifies that the operator is valid.
If we notice an operator that is invalid because of I4, then we can put it aside. Additionally, we save the path from y to
x that was rendering the operator invalid.

• The new necessary condition for the operator to be valid is that an edge on the saved path gets removed (or blocked).
Whenever we remove or block an edge from the path, we can re-verify the operator.

B.5.5 I5

We start with a general lemma for I5.

Lemma 4 (I5 to become true). Assume I5(x, y, T ;E) is false and becomes true after an edge update about (a, b). Then (i)
Pa(y) changed, or (ii) [Ne(y) ∩Ad(x)] changed.

Condition (ii) can be further broken down into: (ii.a) Neu(y) lost an element that is in Ad(x), or (ii.b) Neu(y) gained an
element that is in Ad(x), or (ii.c) Neu(y) gained an element that is in Ad(x), or (ii.d) Adu(x) gained an element that is in
Ne(y).

Proof. Assume I5(x, y, T ;E) is false and becomes true after an edge update about (a, b). Since E and T do not change, we
must have [Neu(y) ∩Adu(x)] ∪ Pau(y) ̸= [Ne(y) ∩Ad(x)] ∪ Pa(y). Either Pa(y) changed or [Ne(y) ∩Ad(x)] changed.

Assume [Ne(y) ∩Ad(x)] changed. If it lost an element c ∈ Ne(y) ∩Ad(x), then c was removed from Neu(y) or Adu(x).
If it gained an element c ̸∈ Ne(y) ∩Ad(x), then c was added to Neu(y) or Adu(x). Since c ∈ Neu(y) ∩Adu(x) and only
one of Neu(y) and Adu(x) can change at a time (see proof Operator Update 4), then either c was added to Neu(y) and
c ∈ Ad(x), or c was added to Adu(x) and c ∈ Ne(y).

Operator Update 5 (Updates on I5). Assume I5(x, y, T ;E) is false and becomes true after an update involving (a, b).
Then,

• if the update is U1 : (a b)⇝ (a− b) then
{

b = y
a ∈ Ad(x)

or
{

b = x
a ∈ Ne(y)

or
{

a = y
b ∈ Ad(x)

or
{

a = x
b ∈ Ad(y)

,

• if the update is U2 : (a b)⇝ (a→ b) then y = b or
{

b = x
a ∈ Ne(y)

or
{

a = x
b ∈ Ne(y)

,



• if the update is U3 : (a− b)⇝ (a b) then
{

b = y
a ∈ Ad(x)

or
{

b = x
a ∈ Ne(y)

or
{

a = y
b ∈ Ad(x)

or
{

a = x
b ∈ Ad(y)

,

• if the update is U4 : (a− b)⇝ (a→ b) then y = b or
{

a = y
b ∈ Ad(x)

or
{

b = y
a ∈ Ad(x)

.

• if the update is U5 : (a→ b)⇝ (a b) then y = b or
{

a = x
b ∈ Ne(y)

or
{

b = x
a ∈ Ne(y)

.

• if the update is U6 : (a→ b)⇝ (a− b) then y = b or
{

a = y
b ∈ Ad(x)

or
{

b = y
a ∈ Ad(x)

.

• if the update is U7 : (a→ b)⇝ (a← b) then y ∈ {a, b}.

Proof. According to Lemma 4, either Pa(y) changed, or [Ne(y) ∩Ad(x)] changed.

We now study the necessary conditions for each update, if it was applied and made I5(x, y, T ;E) become true.

• U1 does not change Pa(y), and cannot remove any element from any Ne(y′) or Ad(x′). So by Lemma 4, (ii.c) or (ii.d)

happened. Hence:
{

b = y
a ∈ Ad(x)

or
{

b = x
a ∈ Ne(y)

or
{

a = y
b ∈ Ad(x)

or
{

a = x
b ∈ Ne(y)

.

• U2 changes Pa(y) if y = b. It can also add an element to Adu(x) so: y = b or
{

b = x
a ∈ Ne(y)

or
{

a = x
b ∈ Ne(y)

.

• U3 does not change Pa(y), and does not add any element to any Ne(y′) or Ad(x′).

So by Lemma 4, (ii.a) or (ii.b) happened. Hence:
{

a = x
b ∈ Ne(y)

or
{

a = y
b ∈ Ad(x)

or
{

b = x
a ∈ Ne(y)

or
{

b = y
a ∈ Ad(x)

.

• U4 changes Pa(y) if y = b. It also removes an element from Neu(a) and Neu(b).

So: y = b or
{

a = y
b ∈ Ad(x)

or
{

b = y
a ∈ Ad(x)

.

• U5 changes Pa(y) if y = b. It also removes an element from Adu(a) and Adu(b).

So: y = b or
{

a = x
b ∈ Ne(y)

or
{

b = x
a ∈ Ne(y)

.

• U6 changes Pa(y) if y = b. It also adds an element to Neu(a) and Neu(b).

So: y = b or
{

a = y
b ∈ Ad(x)

or
{

b = y
a ∈ Ad(x)

.

• U7 changes Pa(y) if y ∈ {a, b}. It does not change any Ne(y′) or Ad(x′). So y ∈ {a, b}.

B.5.6 D1

Operator Update 6 (Updates on D1). Assume D1(x, y, T ;E) is false and becomes true after an update involving (a, b).
Then,

• if the update is U1 : (a b)⇝ (a− b) then {a, b} = {x, y},
• if the update is U2 : (a b)⇝ (a→ b) then (a, b) = (x, y),

• the update cannot be U3 : (a− b)⇝ (a b),

• the update cannot be U4 : (a− b)⇝ (a→ b),

• the update cannot be U5 : (a→ b)⇝ (a b),

• if the update is U6 : (a→ b)⇝ (a− b) then (a, b) = (y, x),

• if the update is U7 : (a→ b)⇝ (a← b) then (a, b) = (y, x).

Proof. We recall that D1(x, y, C;E) is: y ∈ Ch(x) ∪ Ne(x). Assume D1(x, y, C;E) is false and becomes true after an
update involving (a, b).



• U3 and U5 cannot add any element to y’s children or neighbors. So they cannot make D1(x, y, C;E) become true.

• U4 does not add any elements to any Chu(x′) ∪Neu(x′), so it cannot make D1(x, y, C;E) become true.

• U1 only adds a to Neu(b) ∪ Chu(b) and b to Neu(a) ∪ Chu(a). So {a, b} = {x, y}.
• U2 only adds b to Chu(a) ∪Neu(a) so (a, b) = (x, y).

• U6 only adds a to Chu(b) ∪Neu(b) so (a, b) = (y, x).

• U7 only adds a to Chu(b) ∪Neu(b) so (a, b) = (y, x).

B.5.7 D2

We start with a general lemma for D2.

Lemma 5 (D2 to become true). Assume D2(x, y, C;E) is false and becomes true after an edge update about (a, b). Then
Neu(y) gained an element that was in Ad(x), or Adu(x) gained an element that was in Ne(y).

Proof. We recall that D2(x, y, C;E) is: C ⊂ Ne(y) ∩ Ad(x). Assume D2(x, y, C;E) is false and becomes true after
an edge update about (a, b). Since C does not change, we there exists c ∈ C such that c ̸∈ Ne(y) ∩ Ad(x) and c ∈
Neu(y) ∩Adu(x). Then we conclude with a similar reasoning as in Lemma 4.

Operator Update 7 (Updates on D2). Assume D2(x, y, C;E) is false and becomes true after an update involving (a, b).
Then,

• if the update is U1 : (a b)⇝ (a− b) then
{

b = y
a ∈ Ad(x)

or
{

b = x
a ∈ Ne(y)

or
{

a = y
b ∈ Ad(x)

or
{

a = x
b ∈ Ne(y)

,

• if the update is U2 : (a b)⇝ (a→ b) then
{

b = x
a ∈ Ne(y)

or
{

a = x
b ∈ Ne(y)

,

• the update cannot be U3 : (a− b)⇝ (a b),

• the update cannot be U4 : (a− b)⇝ (a→ b),

• the update cannot be U5 : (a→ b)⇝ (a b),

• if the update is U6 : (a→ b)⇝ (a− b) then
{

a = y
b ∈ Ad(x)

or
{

b = y
a ∈ Ad(x)

,

• the update cannot be U7 : (a→ b)⇝ (a← b).

Proof. According to Lemma 5, either Neu(y) gained an element that was in Ad(x), or Adu(x) gained an element that was
in Ne(y). We now study the necessary conditions for each update, if it was applied and made D2(x, y, C;E) become true.

• U3, U4, U5 and U7 do not add any element to Neu(y) or Adu(x). So they cannot make D2(x, y, C;E) become true.

• U1’s only modifications to sets Ne(y′) and Ad(x′) are to add a to Neu(b), add a to Adu(b), and same exchanging a

and b. So by Lemma 5,
{

b = y
a ∈ Ad(x)

or
{

b = x
a ∈ Ne(y)

or
{

a = y
b ∈ Ad(x)

or
{

a = x
b ∈ Ne(y)

.

• U2 ’s only modifications to sets Ne(y′) and Ad(x′) are to add b to and Adu(a) and same exchanging a and b. So by

Lemma 5
{

a = x
b ∈ Ne(y)

or
{

b = x
a ∈ Ne(y)

.

• U6’s only modifications to sets Ne(y′) and Ad(x′) are to add a to Neu(b) and same exchanging a and b. So by

Lemma 5
{

b = y
a ∈ Ad(x)

or
{

a = y
b ∈ Ad(x)

.



B.5.8 D3

Operator Update 8 (Updates on D3). Assume D3(x, y, C;E) is false and becomes true after an edge update involving
(a, b). Also assume that D2(x, y, C;E) holds true after the edge update, then

• if the update is U1 : (a b)⇝ (a− b) then {a, b} ⊂ Neu(y) ∩Adu(x),

• if the update is U2 : (a b)⇝ (a→ b) then {a, b} ⊂ Neu(y) ∩Adu(x),

• the update cannot be U3 : (a− b)⇝ (a b),

• the update cannot be U4 : (a− b)⇝ (a→ b),

• the update cannot be U5 : (a→ b)⇝ (a b),

• the update cannot be U6 : (a→ b)⇝ (a− b),

• the update cannot be U7 : (a→ b)⇝ (a← b).

Proof. We recall that D3(x, y, C;E) is: C is a clique. Assume D3(x, y, C;E) is false and becomes true after an update
involving (a, b). Similarly to Lemma 2, since C is not changed by an edge update, the only way for D3(x, y, C;E) to
become true is for the edge update to connect two nodes in C that were not adjacent before. Only U1 and U2 render two
nodes adjacent, namely a and b, so they are the only updates that can make D3(x, y, C;E) become true.

For U1 and U2, we have: {a, b} ⊂ C. If we further assume that D2(x, y, C;E) holds true after the edge update, then
{a, b} ⊂ C ⊂ Neu(y) ∩Adu(x).

B.5.9 D4

Operator Update 9 (Updates on D4). Assume D4(x, y, C;E) is false and becomes true after an edge update involving
(a, b). Then,

• the update cannot be U1 : (a b)⇝ (a− b),

• if the update is U2 : (a b)⇝ (a→ b) then y = b,

• the update cannot be U3 : (a− b)⇝ (a b),

• if the update is U4 : (a− b)⇝ (a→ b), then y = b,

• if the update is U5 : (a→ b)⇝ (a b), then y = b,

• if the update is U6 : (a→ b)⇝ (a− b) then y = b,

• if the update is U7 : (a→ b)⇝ (a← b) then y ∈ {a, b}.

Proof. Recall that D4(x, y, C;E) is: E = C ∪ Pa(y). Since C and E do not change, the only way for D4(x, y, C;E) to
become true is for the edge update to change Pa(y). The only updates that can change Pa(y) are U2, U4, U5, U6, and U7,
when y is b, or U7 when y is a or b.

B.5.10 R1 to R6

The reverse operators are very similar to the insert operators, and the necessary conditions can be adapted. We add them to
Table 4.

B.6 ISSUE WITH FAST GES

We found an issue with the Fast GES algorithm that may explain its degraded performance compared to the GES algorithm.

During its efficient update of the operators, fGES computes the score of all possible operators Insert(x, y, T ) for a pair
of nodes x and y, but only saves the Insert with the highest score. However, this insert might not be a valid operator (for
example, it might not satisfy the I3 constraint). Meanwhile, another Insert(x, y, T ′) for the same pair of nodes x and y might
be valid and have the highest score of all valid operators. Such an operator would be missed by fGES.
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