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ABSTRACT

Data augmentation has been pivotal in successfully training deep learning models
on classification tasks over the past decade. An important subclass of data aug-
mentation techniques - which includes both label smoothing and Mixup - involves
modifying not only the input data but also the input label during model training.
In this work, we analyze the role played by the label augmentation aspect of such
methods. We first prove that linear models on binary classification data trained with
label augmentation learn only the minimum variance features in the data, while
standard training (which includes weight decay) can learn higher variance features.
We then use our techniques to show that even for nonlinear models and general
data distributions, the label smoothing and Mixup losses are lower bounded by a
function of the model output variance. Lastly, we demonstrate empirically that
this aspect of label smoothing and Mixup can be a positive and a negative. On the
one hand, we show that the strong performance of label smoothing and Mixup on
image classification benchmarks is correlated with learning low variance hidden
representations. On the other hand, we show that Mixup and label smoothing can
be more susceptible to low variance spurious correlations in the training data.

1 INTRODUCTION

The training and fine-tuning procedures for current state-of-the-art (SOTA) computer vision models
rely on a number of different data augmentation schemes applied in tandem (Yu et al., 2022; Wortsman
et al., 2022; Dehghani et al., 2023). While some of these methods involve only transformations to the
input training data - such as random crops and rotations (Cubuk et al., 2019) - a non-trivial subset of
them also apply transformations to the input training label.

Perhaps the two most widely applied data augmentation methods in this subcategory are label
smoothing (Szegedy et al., 2015) and Mixup (Zhang et al., 2018). Label smoothing replaces the
one-hot encoded labels in the training data with smoothed out labels that assign non-zero probability
to every possible class (see Section 2 for a formal definition). Mixup similarly smooths out the
training labels, but does so via introducing random convex combinations of data points and their
labels. As a result, Mixup modifies not only the training labels but also the training inputs. The
general principles of label smoothing and Mixup have been extended to several variants, such as
Structural Label Smoothing (Li et al., 2020), Adaptive Label Smoothing (Wang et al., 2021), Manifold
Mixup (Verma et al., 2019), CutMix (Yun et al., 2019), PuzzleMix (Kim et al., 2020), SaliencyMix
(Uddin et al., 2020), AutoMix (Liu et al., 2021), and Noisy Feature Mixup (Lim et al., 2022).

Due to the success of label smoothing and Mixup-based approaches, an important question on the
theoretical side has been understanding when and why these data augmentations improve model
performance. Towards that end, several recent works have studied this problem from the perspectives
of regularization (Guo et al., 2019; Carratino et al., 2020; Lukasik et al., 2020; Chidambaram et al.,
2021), adversarial robustness (Zhang et al., 2020), calibration (Zhang et al., 2021; Chidambaram &
Ge, 2023), feature learning (Chidambaram et al., 2023; Zou et al., 2023), and sample complexity (Oh
& Yun, 2023).

Although the connection between the label smoothing and Mixup losses has been noted in both
theory and practice (Carratino et al., 2020), there has not been (to the best of our knowledge) a
unifying theoretical perspective on why the models trained using these losses exhibit similar behavior.
In this paper, we aim to provide such a perspective by extending the ideas from previous feature
learning analyses to the aspect shared in common between both Mixup and label smoothing: label
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augmentation. Our analysis shows that both Mixup and label smoothing hone in on low variance
features in the data, and we demonstrate empirically that this phenomenon occurs in both synthetic
settings with spuriously correlated features as well as in the training of standard deep learning models
for image classification benchmarks.

1.1 MAIN CONTRIBUTIONS

The main message of our paper can be summarized as:

In data distributions where there are low variance and high variance latent features,
both label smoothing and Mixup incentivize learning models that correlate more
strongly with the low variance features.

We prove this message concretely in Section 3.1, where we characterize linear optimizers of the label
smoothing and Mixup losses on data in which some dimensions have lower variance than others. In
Section 3.2, we also prove weaker analogues of our linear results in the context of general models
and multi-class distributions; namely, we show that optimizing the label smoothing and Mixup losses
requires decreasing model output variance in a way that is not necessarily true for empirical risk
minimization (ERM) combined with weight decay.

We verify our theory empirically in Section 4, where we show that label smoothing and Mixup
do indeed learn lower variance hidden representations (corroborating ideas from the literature on
neural collapse (Papyan et al., 2020)) and that this lower variance property correlates with better
generalization performance. We hypothesize that, for standard benchmarks, there exist low variance
latent features that generalize well as opposed to high-variance, noisy features, and we expect that
directly investigating such features would be a fruitful line of future work. However, we also point
out that our key message does not directly imply better generalization performance – we show via
synthetic experiments in Section 4.2 that it is possible for the low variance features to actually be
spuriously correlated with the targets (e.g. fixed backgrounds).

1.2 RELATED WORK

Label Smoothing. Since being introduced by Szegedy et al. (2015), label smoothing continues to
be used to train SOTA vision (Wortsman et al., 2022; Liu et al., 2022), translation (Vaswani et al.,
2017; Team et al., 2022), and multi-modal models (Yu et al., 2022). Attempts to understand when
and why label smoothing is effective can be traced back to Pereyra et al. (2017) and Müller et al.
(2020), which respectively relate label smoothing to entropy regularization and show that it can lead
to more closely clustered learned representations. Müller et al. (2020) also show that label smoothing
can improve calibration but hurt distillation performance; Zhu et al. (2023); Xia et al. (2024) further
show that these improvements in calibration do not translate to better selective classification.

On the theoretical side, Lukasik et al. (2020) study the relationship between label smoothing and
loss correction techniques used to handle label noise, and show that label smoothing can be effective
for mitigating label noise. Liu (2021) extends this line of work by analyzing how label smoothing
can outperform loss correction in the context of memorization of noisy labels. Wei et al. (2022)
further show that negative label smoothing can outperform traditional label smoothing in the presence
of label noise. Xu et al. (2020) provide an alternative theoretical perspective, showing that label
smoothing can improve convergence of stochastic gradient descent.

Mixup. Similar to label smoothing, Mixup (Zhang et al., 2018) and its aforementioned variants
have also played an important role in the training of SOTA vision (Wortsman et al., 2022; Liu et al.,
2022), text classification (Sun et al., 2020), translation (Li et al., 2021), and multi-modal models (Hao
et al., 2023), often being applied alongside label smoothing. Initial work on understanding Mixup
studied it from the perspective of introducing a data-dependent regularization term to the empirical
risk (Carratino et al., 2020; Zhang et al., 2020; Park et al., 2022), with Zhang et al. (2020) and Park
et al. (2022) showing that this regularization effect can lead to improved Rademacher complexity.

On the other hand, Guo et al. (2019) and Chidambaram et al. (2021) show that the regularization terms
introduced by the Mixup loss can also have a negative impact due to the fact that Mixup-augmented
points may coincide with existing training data points, leading to models that fail to minimize the
original risk. Mixup has also been studied from the perspective of calibration (Thulasidasan et al.,
2019), with theoretical results (Zhang et al., 2021; Chidambaram & Ge, 2023) showing that Mixup
training can prevent miscalibration issues arising from ERM.
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Recently, Oh & Yun (2023) studied Mixup in a similar context to our work (binary classification with
linear models), and showed that Mixup can significantly improve the sample complexity required
to learn the optimal classifier when compared to ERM. Most closely related with our results in this
paper, Mixup has been studied from a feature learning perspective, with Chidambaram et al. (2023)
and Zou et al. (2023) both showing that Mixup training can learn multiple features in a generative,
multi-view (Allen-Zhu & Li, 2021) data model despite ERM failing to do so.

Neural Collapse. Papyan et al. (2020) showed that the last layer activations of trained neural networks
collapse to their class means, in such a way that they are maximally separable. Kornblith et al. (2021);
Zhou et al. (2022); Guo et al. (2024) all investigate the interplay between label smoothing and this
effect, with Kornblith et al. (2021) showing that label smoothing can lead to more separable last
layer representations (although worse linear transfer performance) and Zhou et al. (2022); Guo et al.
(2024) showing that it can also lead to faster convergence to these collapsed representations. We
corroborate these results with our experiments in Section 4.1, where we show that both Mixup and
label smoothing lead to much lower total variance in last layer activations compared to standard
cross-entropy.

General Data Augmentation. General data augmentation techniques have been a mainstay in image
classification since the rise of deep learning models for such tasks (Krizhevsky et al., 2012). As
a result, there is an ever-growing body of theory (Bishop, 1995; Dao et al., 2019; Wu et al., 2020;
Hanin & Sun, 2021; Rajput et al., 2019; Yang et al., 2022; Wang et al., 2022; Chen et al., 2020; Mei
et al., 2021) aimed at addressing broad classes of augmentations such as those resulting from group
actions (i.e. rotations and reflections). Recently, Shen et al. (2022) also studied a class of linear
data augmentations from a feature learning perspective, once again using a data model based on the
multi-view data of Allen-Zhu & Li (2021). This work is in the same vein as that of Zou et al. (2023)
and Chidambaram & Ge (2023), although the augmentation considered is not comparable to Mixup.

2 PRELIMINARIES

Notation. Given n ∈ N, we use [n] to denote the set {1, 2, ..., n}. For a vector x ∈ Rd and a subset
S ⊂ [d], we use xS ∈ R|S| to denote the restriction of x to only those indices in S, and also use xi to
denote the ith coordinate of x. The same notation also applies to matrices; i.e. for a square matrix
T we use TS to denote the restriction of both the rows and columns of T to only those dimensions
in S. We use Id to denote the identity matrix in Rd. Additionally, we use ≻ to denote the partial
order over positive definite matrices and Id to denote the identity matrix. We use ∥·∥ to indicate
the Euclidean norm on Rd. For a function g : Rn → Rm we use gi(x) to denote the ith coordinate
function of g. We use ∆k−1 to denote the (k − 1)-dimensional probability simplex in Rk. For a
probability distribution π we use supp(π) to denote its support. Additionally, if π corresponds to the
joint distribution of two random variables X and Y (i.e. data and label), we use πX and πY to denote
the respective marginals, and πX|Y=y and πY |X=x to denote the regular conditional distributions.
We use ΣX to denote the covariance matrix of a random variable X ∈ Rd. Lastly, we use Var(X) to
denote Tr(ΣX) for X ∈ Rd.

We consider the k-class classification setting, in which there is a ground-truth data distribution π on
Rd × [k] and our goal is to model the conditional distribution πY |X using a learned function g. In our
main theoretical results, we will pay particular attention to the case where k = 2 and g is a logistic
regression model (although we generalize a weak version of these observations to k classes as well),
as in this setting we can get a clear handle on the features in the data learned by an optimal model
with respect to a particular loss. For this case, we will assume that π is supported on Rd × {±1} and
that g is parameterized by a weight vector w, i.e. gw(x) = σ(w⊤x), where σ is the sigmoid function.
Throughout this work, we will consider the following three families of losses.

Standard cross-entropy with optional weight decay. The canonical cross-entropy (or negative
log-likelihood) objective in the k-class setting is defined as:

ℓ(g) = E(X,Y )∼π[− log gY (X)]. (2.1)
Here we have not specified a weight decay term, since we have placed no constraints on the structure
of g. On the other hand, for linear binary classification, we can define the binary cross-entropy with
optional weight decay as (recalling that Y ∈ {±1})

ℓβ(w) = E(X,Y )∼π [− log gw(Y X)] +
β

2
∥w∥2, (2.2)
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where we have defined the loss in terms of the parameter vector w. When β > 0, (2.2) has a unique
minimizer and we will directly analyze its properties. On the other hand, when β = 0 (no weight
decay), this is no longer the case - but our results will still apply to the common case of minimizing
(2.2) by scaling the max-margin solution, which we define below.

Definition 2.1. [Max-Margin Solution] The max-margin solution w∗ with respect to π is defined as:

w∗ = argmin
w∈Rd

∥w∥2

s.t. y ⟨w, x⟩ ≥ 1 for π-a.e.(x, y). (2.3)

Label smoothing. The cross-entropy as defined in (2.1) treats the reference distribution that we
compare g(X) to as a point mass on the class Y . On the other hand, the label-smoothed cross-entropy
is obtained by instead treating the reference distribution as a mixture of a point mass on Y and
the uniform distribution over [k]. Namely, the label-smoothed loss with mixing hyperparameter
α ∈ [0, 1] is defined to be:

ℓLS,α(g) = −E(X,Y )∼π

[
(1− α) log gY (X) +

α

k

k∑
i=1

log gi(X)

]
. (2.4)

And the corresponding binary version is (once again, Y ∈ {±1}):

ℓLS,α(w) = −E(X,Y )∼π

[(
1− α

2

)
log gw(Y X) +

α

2
log gw(−Y X)

]
. (2.5)

Mixup. Similar to label smoothing, Mixup also augments the reference distribution from being a point
mass on Y to being a mixture. However, Mixup also augments the input data as well. In particular,
Mixup considers convex combinations of two pairs of points (X1, Y1) and (X2, Y2), with a mixing
weight sampled from a distribution Dλ (which is a hyperparameter) whose support is contained in
[0, 1]. To simplify notation, we will use X1:n and Y1:n to denote multiple inputs X1, ..., Xn and their
corresponding labels Y1, ..., Yn, and additionally introduce a function h defined as:

h(λ, g,X1:2, Y1:2) = λ log gY1(Zλ) + (1− λ) log gY2(Zλ) (2.6)
where Zλ = λX1 + (1− λ)X2. (2.7)

After which we can define the Mixup cross-entropy as:
ℓMIX,Dλ

(g) = E(X1:2,Y1:2)∼π⊗π,λ∼Dλ
[−h(λ, g,X1:2, Y1:2)] . (2.8)

The corresponding binary version ℓMIX,Dλ
(w) of (2.8) is identical except for redefining h to be:

h(λ,w, x1:2, y1:2) = λ log gw(Y1Zλ) + (1− λ) log gw(Y2Zλ). (2.9)

3 MAIN THEORETICAL RESULTS

All omitted proofs in this section can be found in Section A of the Appendix.

3.1 LINEAR BINARY CLASSIFICATION

We begin first with the binary setting, in which we will consider a data model where a subset of the
input dimensions correspond to a low variance feature and the complementary dimensions correspond
to a high variance feature that is more separable. We emphasize that our notion of “feature” here
does not correspond to explicit feature vectors that are fixed per class like in prior work, we simply
designate subsets of the dimensions as features for simplicity. This data model can be interpreted
in multiple ways: depending on the context, we may wish to learn either both of the features present
in the data or simply hone in on the low variance feature (for example, identifying a stop sign with
many different backgrounds).

Although this setting seems simplistic – one may object that the variance differences in the input
can be handled with suitable normalization/whitening – the insights from our data model can be
applied to learned features (i.e. intermediate representations in a deep learning model) where such
modifications are less straightforward, as we demonstrate in the experiments of Section 4.

Our main results in this section show that doing any kind of label augmentation (label smoothing or
Mixup) in our low variance/high variance feature setup will lead to a model that has only learned
the low variance feature, whereas minimizing the binary cross-entropy with non-zero weight decay
requires learning the high variance feature due to its greater separability.

4
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Definition 3.1. [Binary Data Distribution] We consider π to be a distribution supported on K×{±1}
where K is a compact subset of Rd. We assume that π is nondegenerate in that it satisfies πY (y) > 0
for each y ∈ {±1} and that ΣX is positive definite, and we also assume E[X] = 0. Additionally, we
designate a subset L ⊆ [d] that we refer to as the low variance feature in the data, and we refer to the
complement H = Lc as the high variance feature.

For convenience, for a vector v ∈ Rd, we will use v ∈ L to mean that only the L dimensions of v
are non-zero. Definition 3.1 only treats L and H as placeholders; this is because our weight decay
result is insensitive to variance assumptions and only depends on differences in the separability of the
dimensions L and H, as we indicate below.

Assumption 3.2. We assume that for every unit vector u∗ ∈ L, there exists a unit vector v∗ ∈ H and
y ⟨v∗, x⟩ > y ⟨u∗, x⟩ for π-a.e. (x, y).

Assumption 3.2 is strong, but it actually does not imply linear separability, only that the H dimensions
are in a sense better than the L dimensions for classification. We explore a simple 2-D distribution
illustrating Assumption 3.2 in Appendix C.1.

Our first result shows that for ℓβ(w) as defined in (2.2), the minimizer w∗ has a large correlation
with the dimensions in H. This is of course intuitive given Assumption 3.2, but it is not immediate
because the weight decay penalty in (2.2) encourages distributing norm across all of the dimensions
of w (e.g.

∑
wi is maximized with respect to the constraint ∥w∥ = 1 by considering wi = 1/

√
d).

Theorem 3.3. Let w∗ be the unique minimizer of ℓβ(w) for β > 0 under π satisfying Assumption
3.2. Then ∥w∗

H∥2 ≥ 1
2∥w

∗∥2.

Proof Sketch. We can orthogonally decompose the optimal solution w∗ in terms of unit normal
directions u∗ ∈ L and v∗ ∈ H. We show that in this decomposition it must be the case that
y ⟨v∗, x⟩ > y ⟨u∗, x⟩ for π-a.e. (x, y), and then we can claim that w∗ must have greater weight
associated with v∗ than u∗, as otherwise we can decrease ℓβ(w

∗) by moving weight from u∗ to v∗.

We cannot immediately extend the result of Theorem 3.3 to the binary cross-entropy ℓ0(w) without
weight decay, since there is no unique minimizer of ℓ0. However, for linear models trained with
gradient descent (as is often done in practice), it is well-known that the learned model converges in
direction to the max-margin solution (Soudry et al., 2018; Ji & Telgarsky, 2020). For this case, the
proof technique of Theorem 3.3 readily extends and we obtain the following corollary.

Corollary 3.4. If w∗ is the max-margin solution to ℓ0(w), then the result of Theorem 3.3 still holds.

On the other hand, we will now show that once we introduce variance assumptions on L and H,
this phenomenon does not occur when minimizing the label smoothing and Mixup losses ℓLS,α and
ℓMIX,Dλ

. In both cases, the optimal solutions have arbitrarily small correlation with the dimensions
in H as the distribution of Y X concentrates.1 For these results, we require the following assumptions
(but no longer need Assumption 3.2).

Assumption 3.5. We assume that E[Y XL] ̸= 0 and ΣY X,H ≻ ρId for some ρ > 0. Here ΣY X,H
denotes the covariance matrix of ΣY X restricted to those rows and columns in H.

The first part of Assumption 3.5 just ensures it is possible to obtain a good solution using the
dimensions in L while the second part codifies the idea of H being a high (at least non-zero) variance
feature. Observe that we have made no direct separability assumptions on the data, although it is
true that as ∥ΣY X,L∥ → 0 the class-conditional supports are guaranteed to be linearly separable in
L. This means that we can consider settings where both Assumptions 3.2 and 3.5 are true, and in
such settings there will be a clear separation between weight decay and label smoothing/Mixup. This
kind of separation in the learned decision boundaries is visualized in Appendix C.1, which provides
intuition for the next two results.

Theorem 3.6. For α ∈ (0, 1) and π satisfying Assumption 3.5, every minimizer w∗ of ℓLS,α(w)
satisfies ∥w∗

H∥ < O(∥ΣY X,L∥).

1In order for the variance of Y X to go to 0, we need the classes to be balanced; however, we can change our
assumptions to be in terms of the conditional variance of X to remove this requirement.
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Proof Sketch. We show that ℓLS,α(w) is strongly convex in w⊤Y X . We then use Jensen’s inequality
to get a lower bound on the loss in terms of this quantity, and show that this lower bound is achievable
using only w ∈ L as the variance of Y XL decreases. Then using a lower bound on the Jensen gap
(Lemma A.1) and Assumption 3.5, we show that any solution that is sufficiently non-zero in the H
dimensions remains bounded away from this lower bound.

Theorem 3.7. For any symmetric Dλ that is not a point mass on 0 or 1 and π satisfying Assumption
3.5, every minimizer w∗ of ℓMIX,Dλ

(w) satisfies ∥w∗
H∥ < O(∥ΣY X,L∥).

Proof Sketch. Mixup differs from label smoothing in that we need to condition on λ and then show
strong convexity of the conditional loss in terms of w⊤Zλ. We can then get a lower bound similar
to the label smoothing case, but it is no longer immediate that there exists a stationary point w ∈ L
that minimizes this lower bound. We prove the existence of such a stationary point by considering
limiting behavior of the gradient of the loss as wL tends to ∞ or −∞ in each component, after which
the rest of the proof follows the label smoothing proof.

3.2 GENERAL MULTI-CLASS CLASSIFICATION

Our results so far have demonstrated a separation between standard training (ERM + weight decay)
and label augmentation (label smoothing and Mixup) in the linear binary classification setting, without
explicitly having to assume linear separability. The benefit of the linear binary case is that in this case
the learning problems are convex in the weight vector w, so we can directly discuss properties of the
optimal solutions instead of worrying about optimization dynamics.

Of course, this is no longer true when we pass to nonlinear models, and standard model choices (e.g.
neural networks) make it so that it is no longer easy to prove that a model has “learned” either XL
or XH without explicitly analyzing some choice of optimization algorithm (i.e. gradient descent).
However, our observations do translate to the outputs of any model.

It is obvious that the model output variance should go to zero for any model that achieves the
global optimum of the label augmentation losses we have discussed; indeed, this just corresponds to
predicting the correct labels (α, 1− α with label smoothing and λ, 1− λ for every λ for Mixup) with
probability 1. On the other hand, it is less clear that we can make a quantitative statement regarding
how bad the loss could be given a certain amount of variance in the model output.

By lifting the techniques of the previous subsection, we can prove such quantitative results for both
label smoothing and Mixup in the general multi-class setting. The general data distribution we
consider for these results is as follows.

Definition 3.8. [Multi-Class Data Distribution] We consider π to be a distribution supported on
B × [k] where B is a compact subset of Rd and k > 2. We assume only that π satisfies πY (y) > 0
for every y and ΣX is positive definite.

We make virtually no assumptions on π for these results because we will only be proving general
lower bounds, which are weaker than the claims regarding the optimal solutions of the previous
subsection. For π as in Definition 3.8, the label smoothing and Mixup results are as follows.

Proposition 3.9. For α > 0 and any g : Rd → ∆k−1, letting OPTLS,α denote the minimum of
ℓLS,α, we have for a universal constant C > 0:

ℓLS,α(g) ≥ OPTLS,α + C

k∑
y=1

πY (y)Var (E[g(X) | Y = y]) . (3.1)

Proposition 3.10. For any Dλ that is not a point mass on 0 or 1 and any g : Rd → ∆k−1, letting
OPTMIX,Dλ

denote the minimum of ℓMIX,Dλ
, we have for a universal constant C > 0 that:

ℓMIX,Dλ
(g) ≥ OPTMIX,Dλ

+ C

k∑
y1=1

k∑
y2=1

πY (y1)πY (y2)Eλ [Var (E[g(Zλ) | y1, y2, λ])] . (3.2)

The proofs for both Propositions 3.9 and 3.10 follow the same structure; we show that after appropriate
conditioning, both losses can be broken up into a sum of strongly convex conditional losses. The
lower bounds in both results show that in order to make progress with respect to the label smoothing
or Mixup losses, a training algorithm needs to push model outputs to be low variance.
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Remark 3.11. We do not prove an analogous result to Theorem 3.3 in the general setting because
Propositions 3.9 and 3.10 operate directly on the model outputs g(X), and it is not clear how to
translate a weight norm constraint to this setting without explicitly parameterizing g. Intuitively,
however, with a weight norm constraint on g it may no longer be optimal to have zero variance
predictions, since such predictions may require very large weights depending on the data distribution.

Comparisons to existing results. We are not aware of any existing results on feature learning for
label smoothing; prior theoretical work largely focuses on the relationship between label smoothing
and learning under label noise, which is orthogonal to the perspective we take in this paper. Although
feature learning results exist for Mixup (Chidambaram et al., 2023; Zou et al., 2023), the pre-existing
results are constrained to the case of mixing using point mass distributions and only prove a separation
between Mixup and unregularized ERM, whereas our results work for arbitrary symmetric mixing
distributions (that don’t coincide with ERM) and also separate Mixup from ERM with weight decay.
This greater generality comes at the cost of considering only linear models for our feature learning
results; both Chidambaram et al. (2023) and Zou et al. (2023) consider the training dynamics of
2-layer neural networks on non-separable data.

Additionally, our results can be viewed as generalizing the observations made by Chidambaram et al.
(2023), which were that Mixup can learn multiple features in the data when doing so decreases the
variance of the learned predictor. In our case, we directly show that Mixup will have much larger
correlation with the low variance feature in the data as opposed to the high variance feature. Our
results also do not contradict the observations of Zou et al. (2023), which were that Mixup can learn
both a “common” feature and a “rare” feature in the data; in their setup the common/rare features
are fixed (zero variance) per class and concatenated with high variance noise. We provide a more
detailed review of the settings of Chidambaram et al. (2023) and Zou et al. (2023) in Appendix B.

4 EXPERIMENTS

We now address the practical ramifications of our theoretical results. In Section 4.1, we show that
the intermediate representations learned by deep learning models trained with label smoothing and
Mixup do indeed exhibit significantly lower variance when compared to those learned using just
weight decay, and that these lower variance representations correlate with better performance. We
also show, however, that this minimum variance feature learning can be a detriment by analyzing
spurious correlations in the training data in Section 4.2. We also include synthetic experiments
directly verifying our theoretical setting in Appendix C.2.

All experiments in this section were conducted on a single A5000 GPU using PyTorch (Paszke et al.,
2019) for model implementation. All reported results correspond to means over 5 training runs, and
shaded regions in the figures correspond to 1 standard deviation bounds.

4.1 LEARNED LOW VARIANCE FEATURES IN IMAGE CLASSIFICATION

We first consider image classification on the standard benchmarks of CIFAR-10 and CIFAR-100
(Krizhevsky, 2009) using ResNets (He et al., 2015); we show results for ResNet-18 in this section
and relegate further experiments for deeper architectures to Appendix C.3 (they follow the same
trends). We compare the performance of training using just ERM + weight decay to that of ERM
+ weight decay combined with label smoothing or Mixup; final test error performance is shown in
Figure 1 (a) and (d).

Due to compute constraints, we focus on known well-performing settings (Zhang et al., 2018; Müller
et al., 2020) for weight decay, label smoothing, and Mixup. Namely, we take the weight decay
parameter to be 5× 10−4, the label smoothing α parameter to be 0.1, and the mixing distribution for
Mixup to be Beta(1, 1) (uniform distribution). We train all models for 200 epochs using a batch size
of 1024, a fixed learning rate of 10−3, and AdamW for optimization (Loshchilov & Hutter, 2019).
We preprocess the training data to have zero mean and unit variance along each channel, and also
include random crop and flip augmentations as is standard practice for achieving good performance.

Figure 1 shows that adding in label smoothing and Mixup to the baseline of ERM + weight decay
leads to noticeable performance improvements, which corroborates existing results in the literature.
The novel aspect of our results is shown in Figure 1 (b), (c), (d), and (e), where we track the mean
total variance of the penultimate layer activations and output probabilities of each model on the
test data over the course of training. The variance values are computed by first computing the total
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(a) CIFAR-10 Test Error (b) CIFAR-10 Activation Vari-
ance

(c) CIFAR-10 Output Variance

(d) CIFAR-100 Test Error (e) CIFAR-100 Activation Vari-
ance

(f) CIFAR-100 Output Variance

Figure 1: ResNet-18 final test errors, penultimate layer activation variances, and output probability
variances on CIFAR-10 and CIFAR-100. Activation variance results are shown starting at epoch 25
as early epochs have larger scale oscillations in the computed variance.

variance of the activations/probabilities (i.e. the sum of the variance in each dimension) for each
class, and then averaging over all classes. Final test error and variance values are provided in Table 1
and 2 in Appendix C.3.1.

Essentially, we measure the average spread of activations and probabilities across classes, which is
similar in spirit to what was done by Müller et al. (2020), although we directly look at variances
across all classes whereas they look at projected clusters of a few specific classes. The most telling
results are the model activation variances, since it is to an extent expected that per-class variance of
model outputs should decrease with improvements in test error (this also corresponds to improved
model calibration, which is a known consequence of training with label smoothing and Mixup). That
being said, we further analyze model output variance in Appendix C.4 and show that label smoothing
and Mixup decrease total output variance by a larger extent than what can be explained by changes in
the target class prediction variance alone.

Overall, our results show that adding either label smoothing or Mixup to the baseline of just weight
decay leads to significant decreases in the activation variances, adding credence to the idea that both
methods learn low variance features. We note, however, that our results only establish a correlation
between this low variance property and better test performance – it would require a significantly more
in-depth empirical study to assess a causal relationship between this kind of feature learning and
generalization, which we think would be a fruitful avenue for future work.

4.2 LOW VARIANCE SPURIOUS CORRELATIONS

We now demonstrate that honing in on low variance features can also be harmful to performance via
binary classification and multi-class classification tasks in which the training data is modified to have
spurious correlations with the target. The introduced spurious correlations are much lower magnitude
than the rest of the data, and in that sense they intuitively satisfy both Assumptions 3.2 and 3.5.

4.2.1 BINARY CLASSIFICATION WITH PERTURBED TRAINING DATA

For our binary classification task, we consider reductions of the CIFAR benchmarks to binary
classification by fixing two classes from each dataset as the positive and negative classes, and
replacing their original labels with the labels +1 and −1 respectively. Our experiments are not
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(a) Weight Decay (b) Label Smoothing (c) Mixup

Figure 2: Logistic regression final test errors for various hyperparameter settings on the binary
classification versions of CIFAR-10 and CIFAR-100 from Section 4.2.1.

sensitive to the choice of binary reduction, and for the experiments in this section we fix the −1 class
to be class 0 from the original data and the +1 class to be class 1 from the original data.

We preprocess the training data to have mean zero and variance one along every image channel,
but do not use other augmentations or perform feature extraction using pretrained models. We then
“adversarially” modify the training data such that the first value in the tensor representation of each
training input is replaced by γy with γ = 0.1 (γ here just needs to be small, we verified the results
for γ = 10−5 up to γ = 0.1). This ensures that the training data is linearly separable in the first
dimension of the data, but learning this first dimension requires having larger weight norm due to the
scaling by γ. We leave the test data unchanged - our goal is to determine whether models trained on
the modified training data can learn more than just the single identifying dimension.

We then train logistic regression models on both the reduced CIFAR-10 and CIFAR-100 tasks across
a range of settings for weight decay, label smoothing, and Mixup. We consider 20 uniformly spaced
values in [0, 0.1] for the weight decay λ parameter and in [0, 0.75] for the label smoothing α parameter,
where the upper bound for the label smoothing parameter is obtained from the experiments of Müller
et al. (2020). For Mixup, we fix the mixing distribution to be the canonical choice of Beta(α, α)
introduced by Zhang et al. (2018) and consider 20 uniformly spaced α values in [0, 8] (with α = 0
corresponding to ERM), which effectively covers the range of Mixup hyperparameter values used in
practice. Other hyperparameters are the same as before, except we use a learning rate of 5× 10−3.

The results across hyperparameter values are shown in Figure 2. Both the label smoothing and Mixup
models have high test error for all settings while weight decay achieves a significantly lower test error
for all λ > 0. ERM also has high test error; in this case we differ from the setting of implicit bias
results due to training with Adam and likely not training for the period required for convergence to
the max-margin solution. Furthermore, these results are insensitive to introducing a small amount of
weight decay to the label smoothing and Mixup models (i.e. 5× 10−4 as in the previous subsection).

(a) CIFAR-10 (b) CIFAR-100

Figure 3: Comparison of norm ratio between first dimension (synthetically modified in the training
data) and remaining dimensions (left unchanged) for trained logistic regression weight vector for the
20 different hyperparameter settings of weight decay, label smoothing, and Mixup.

Our results correspond to label smoothing and Mixup learning to use only the spurious, identifying
dimension of the training inputs, as we expect from our theory since this dimension has zero

9
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conditional variance. Indeed, we verify this fact empirically in Figure 3, where we plot the ratio
∥w1∥/

∥∥w[d]\{1}
∥∥ (i.e. the ratio between the norm of the trained model weight vector in the first

dimension and the remaining dimensions) for each of the trained models.

4.3 SPURIOUS BACKGROUND CORRELATIONS

(a) Colored MNIST (b) Model Performance

Figure 4: Final model test errors over our hyperparameter sweep for the colored MNIST dataset of
Section 4.3, alongside a visualization of samples from the dataset.

For our multi-class analogue to Section 4.2.1, we consider a similar setup to the one used by Arjovsky
et al. (2020) to motivate the influential invariant risk minimization framework: namely, we construct a
colored version of the MNIST dataset in which the background pixels for each class are replaced with
different colors corresponding to the class labels. Unlike Arjovsky et al. (2020), however, we maintain
all 10 classes since our theory from Section 3.2 suggests that our observations should generalize to
the multi-class setting. The colors used for each class background are permuted between the train
and the test data, so that a model that learns to predict only using background pixels cannot achieve
good test accuracy.

The only constraints we place on the background colors are that they are distinct across classes and
that their intensities (i.e. values in RGB space) are small (it suffices to consider values bounded
by 16). The latter constraint is not necessary for the failure of label smoothing and Mixup, but is
necessary for weight decay to succeed since it ensures that the higher variance feature (the actual digit
in the foreground) is generally more separable (due to larger pixel intensities). Note that although
there is no variance in the background color conditional on a class, there is significant variance in the
actual pixels per class as the locations of the background pixels change across data points.

For our model setup, we also follow Arjovsky et al. (2020) and consider a simple 2-layer feedforward
neural network with ReLU activations and a hidden layer size of 2048, as this is sufficient to achieve
good performance on MNIST and is a tiny enough model that we can efficiently do the same
hyperparameter sweep from Section 4.2.1. Training details remain the same as in Section 4.2.1,
except we only train for 20 epochs as this is sufficient for the training loss to roughly converge and
greatly expedites the hyperparameter sweep.

Test error results across the different hyperparameter settings for weight decay, label smoothing, and
Mixup are shown in Figure 4. We observe the same phenomena as before, even in this non-trivial
spurious correlation setting: both the label smoothing and Mixup models have high test error for all
settings while weight decay achieves a significantly lower test error for all λ > 0.

5 CONCLUSION

In this work, we have shown that label augmentation strategies such as label smoothing and Mixup
exhibit a variance minimization effect (both in theory and in practice) that leads to lower variance
intermediate representations and model outputs, which then correlate with better test performance
on image classification benchmarks. A natural follow-up direction to our results is to investigate
whether regularizers for encouraging lower variance features can be implemented directly to improve
model performance, which would shed light on whether there is a causal relationship between this
phenomenon and improved performance.
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ETHICS STATEMENT

Although label smoothing and Mixup are used to train and fine-tune large-scale models, our results
concerning them in this work have mostly been theoretical and explanatory. As a result, we do not
anticipate any direct misuse of our results or any broader harmful impacts.

REPRODUCIBILITY STATEMENT

All proofs of the results in this paper can be found in Appendix A. The supplementary material
contains the code necessary to generate all figures, with instructions on how to run each experiment.
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A OMITTED PROOFS

A.1 HELPER LEMMA

The following lemma lower bounds the Jensen gap in terms of the variance of the random variable
being considered. We will make repeated use of it in the proofs of the label smoothing and Mixup
results.

Lemma A.1. Let ϕ : Rd → R be a twice-differentiable convex function satisfying γ1Id ≺ ∇2ϕ ≺
γ2Id. Then for any square integrable random variable X on Rd it follows that:

E[ϕ(X)]− ϕ(E[X]) ∈
[γ1
2
Var(X),

γ2
2
Var(X)

]
. (A.1)

Proof. From the assumption of the lemma it follows that ϕ(x) − γ1∥x∥2/2 is convex and ϕ(x) −
γ2∥x∥2/2 is concave. Applying Jensen’s inequality to each of these functions yields (A.1).

A.2 PROOFS FOR SECTION 3.1

Theorem 3.3. Let w∗ be the unique minimizer of ℓβ(w) for β > 0 under π satisfying Assumption
3.2. Then ∥w∗

H∥2 ≥ 1
2∥w

∗∥2.

Proof. Let us decompose the unique minimizer w∗ as w∗ = αu∗ + βv∗, where u∗ and v∗ are
orthonormal and satisfy u∗

H = 0, v∗L = 0 (i.e. u∗ is a normalized version of the L components of w∗

and v∗ is the same but for the H components). We claim that y ⟨v∗, x⟩ > y ⟨u∗, x⟩ for π-a.e. (x, y).
Indeed, if this were not the case then by the assumption on π we could choose an orthonormal vector
z∗ with z∗L = 0 that satisfies y ⟨z∗, x⟩ > y ⟨u∗, x⟩ for π-a.e. (x, y) and decrease the loss of w∗ by
replacing v∗ with z∗.

Now suppose that α > β. Then we claim that replacing α and β with γ =
√
(α2 + β2)/2 yields a

solution with lower loss than w∗.

To see this, first observe that 2γ2 = α2 + β2, so that the norm of the modified solution is the same as
w∗. This implies that the weight decay penalty term in ℓβ is unchanged.

Furthermore, we have that γ ∈ (β, α), and that γ − β > α − γ. This follows from the fact that
γ ≥ (α+ β)/2 by construction. This, combined with the fact that y ⟨v∗, x⟩ > y ⟨u∗, x⟩, then implies
for π-a.e. (x, y) that:

y ⟨γu∗ + γv∗, x⟩ > y ⟨αu∗ + βv∗, x⟩ . (A.2)

Which contradicts the minimality of w∗. Therefore, we must have α ≤ β, which gives the desired
result.

Corollary 3.4. If w∗ is the max-margin solution to ℓ0(w), then the result of Theorem 3.3 still holds.

Proof. We can apply the same decomposition as in the proof of Theorem 3.4; namely, w∗ = αu∗ +
βv∗ where w∗ is the max-margin solution and u∗ and v∗ are as before. Suppose again that α > β

and let γ =
√
(α2 + β2)/2. We claim that there exists ϵ ∈ (0, γ) such that w = (γ − ϵ)u∗ + γv∗

satisfies y ⟨w, x,≥⟩ 1 for π-a.e. (x, y), which would contradict w∗ being the max-margin solution
since ∥w∥2 < ∥w∗∥2.

From the exact same logic as in the proof of Theorem 3.4, we have:

y ⟨γu∗ + γv∗, x⟩ − y ⟨w∗, x⟩ > 0 (A.3)

for π-a.e. (x, y). Since supp(π) is compact, (A.3) attains a minimum κ > 0 over supp(π). Similarly,
y ⟨u∗, x⟩ attains a finite maximum. By choosing ϵ such that y ⟨ϵu∗, x⟩ < κ, we obtain the desired
contradiction.

Theorem 3.6. For α ∈ (0, 1) and π satisfying Assumption 3.5, every minimizer w∗ of ℓLS,α(w)
satisfies ∥w∗

H∥ < O(∥ΣY X,L∥).
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Proof. We follow the outline in the proof sketch. We first observe that there exists M such that it
suffices to consider ∥w∥ ≤ M ; this is due to the fact that for α > 0, we have lim∥w∥→∞ |ℓLS,α(w)| =
∞. With this in mind, let us use Z to denote wTY X and use ℓLS,α(Z) to denote the loss in terms of
this quantity. Then it follows that

∂ℓLS,α(Z)

∂Z
= E [σ(Z)− 1 + α/2] , (A.4)

∂2ℓLS,α(Z)

∂Z2
= E [σ(Z)(1− σ(Z))] , (A.5)

where in both cases we applied the dominated convergence theorem, which is justified because ℓLS,α
is smooth in Z with bounded derivatives. Now since ∥w∥ ≤ M and the support of X is compact,
there exist γ1 and γ2 such that ∂2ℓLS,α(Z)

∂Z2 ∈ (γ1, γ2), which implies that ℓLS,α is strongly convex in
Z and satisfies the conditions of Lemma A.1.

By Jensen’s inequality, we then have that:

ℓLS,α(Z) ≥
(α
2
− 1

)
log σ(E[Z])− α

2
log σ(−E[Z]). (A.6)

Since E[Y XL] ̸= 0 by Assumption 3.5, we can choose w such that wH = 0 and E[Z] = σ−1(1−
α/2), which minimizes the RHS of (A.6). Let us use OPT to denote this minimum. Then by Lemma
A.1, we have for any w chosen as described:

ℓLS,α(w)−OPT ≤ γ2
2
wTΣY X,Lw. (A.7)

On the other hand, if w′ is another solution satisfying ∥w′
H∥ > ϵ, then Lemma A.1 gives

ℓLS,α(w
′)−OPT ≥ γ1ρϵ

2

2
, (A.8)

from which it is clear that for appropriate ϵ we cannot have w′ be a stationary point (ρ above is the
same as in Assumption 3.5). That we can take ϵ → 0 as ∥ΣY X,L∥ → 0 follows from (A.7).

Theorem 3.7. For any symmetric Dλ that is not a point mass on 0 or 1 and π satisfying Assumption
3.5, every minimizer w∗ of ℓMIX,Dλ

(w) satisfies ∥w∗
H∥ < O(∥ΣY X,L∥).

Proof. Let us first outline the overall steps of the proof, and the differences with the label smoothing
case.

1. We first show that the loss conditioned on λ is strongly convex in w⊤Zλ. The conditioning
on λ here is necessary because λ is a random variable, unlike α in the label smoothing case.
The overall goal here is to use the same argument as for label smoothing, i.e. show that
we can achieve the optimal lower bound in terms of E[w⊤Zλ] using only wL and letting
∥ΣY X,L∥ → 0.

2. We cannot explicitly minimize the conditional loss like we did with label smoothing, since
it is not possible with a fixed choice of w to achieve σ−1(E[w⊤Zλ]) = λ for every λ
simultaneously. Instead, we will show that a stationary point of the conditional loss exists
that uses only the dimensions of wL.

3. Having shown the above, we can just reuse the same argument as before with Lemma A.1 to
prove the desired result.

Let ℓMIX,λ denote ℓMIX,Dλ
with a fixed choice of λ (i.e. after conditioning on λ), and let R = w⊤Zλ.

Then we can compute:

∂ℓMIX,λ(R)

∂R
= E

[
λ(σ(Y1R)− 1)Y1 + (1− λ)(σ(Y2R)− 1)Y2

]
, (A.9)

∂2ℓMIX,λ(R)

∂R2
= E

[
λσ(Y1R)(1− σ(Y1R)) + (1− λ)σ(Y2R)(1− σ(Y2R))

]
, (A.10)

where again we applied dominated convergence to the expectation with respect to π. Strong convexity
follows from the same consideration as label smoothing; namely, we can consider ∥w∥ ≤ M as
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ℓMIX,λ(R) → ∞ as ∥w∥ → ∞ so long as λ is not 0 or 1 and πY (y) > 0, and this consequently
implies (A.10) is lower bounded by some positive real number.

Now by conditional Jensen’s inequality, we obtain the following lower bound for ℓMIX,Dλ
:

ℓMIX,Dλ
(w) ≥ Eλ [EY1,Y2

[ℓMIX,λ(E [R | λ, Y1, Y2])]] . (A.11)

We now show that it is possible to minimize this lower bound while taking wH = 0. This is more
difficult than it was in the label smoothing case, because it is no longer obvious that E[Y XL] ̸= 0 is
sufficient for minimizing the RHS of (A.11) due to the expectation with respect to λ. However, we
can show the existence of a stationary point with wH = 0, even though we cannot provide an explicit
construction.

The idea is to consider the limiting behavior of (A.11) as we take the values of wL to −∞ and ∞.
Note that we can take this limit into the expectation with respect to λ by dominated convergence again.
Let us consider the gradient with respect to w of the RHS of (A.11). To make notation manageable,
we will use a1 = E[X | Y = 1], a2 = E[X | Y = −1], and a3 = E[Zλ | λ, Y1 = 1, Y2 = −1].
We can then explicitly write out the gradient as the expectation with respect to λ of the sum of the
following three terms (considering the different cases for Y1, Y2):

∇wEY1,Y2
[ℓMIX,λ(E [R | λ, Y1, Y2])] = πY (1)

2
(
σ(w⊤a1)− 1

)
a1

− πY (−1)2
(
σ(−w⊤a2)− 1

)
a2

+ 2πY (1)πY (−1)

(
λ
(
σ(w⊤a3)− 1

)
− (1− λ)

(
σ(−w⊤a3)− 1

))
a3. (A.12)

The first two lines above are obtained from the fact that we can combine terms when Y1 = Y2, and
the last line is by symmetry. Now we recall that by assumption E[Y XL] ̸= 0 and E[X] = 0. Thus,
WLOG, we can assume that E[XL | Y = 1]i > 0 and E[XL | Y = −1]i < 0 for each index i.

With this in mind, we consider first the case of what happens when the entries wL → ∞. Since
w⊤a1 > 0 and w⊤a2 < 0, the first two terms in (A.12) vanish (independent of λ). On the other hand,
for the third term, there are two cases to consider. Depending on λ, we have that the entries of a3 are
either strictly negative or strictly positive, with the exceptional case of λ = πY (1) in which a3 = 0.
If the entries of a3 are strictly negative, then

(
σ(−w⊤a3) − 1

)
→ 0 and the coefficient becomes

negative, so the third term is positive. Similarly, if a3 is strictly positive, the coefficient is positive
and the third term is still positive. Thus, as wL → ∞ every entry of (A.12) is positive.

Similar arguments show that the opposite is true when we take wL → −∞. Now by continuity of the
gradient, it immediately follows that there is some choice of w with only wL non-zero such that the
expectation of (A.12) with respect to λ can be made to be zero. Using this choice of w allows us to
obtain an R that minimizes the RHS of (A.11).

Now we have basically arrived at the same stage as the end of the label smoothing proof. By taking
∥ΣY X,L∥ → 0 we can get arbitrary concentration around this optimal R, and by the same logic as
the label smoothing proof the result follows.

A.3 PROOFS FOR SECTION 3.2

Proposition 3.9. For α > 0 and any g : Rd → ∆k−1, letting OPTLS,α denote the minimum of
ℓLS,α, we have for a universal constant C > 0:

ℓLS,α(g) ≥ OPTLS,α + C

k∑
y=1

πY (y)Var (E[g(X) | Y = y]) . (3.1)

Proof. Let us first define:

ℓLS,α,y(g) = −E
[
(1− α) log gy(X) +

α

k

k∑
i=1

log gi(X) | Y = y

]
. (A.13)
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Then we can decompose ℓLS,α(g) as follows:

ℓLS,α(g) =

k∑
y=1

πY (y)ℓLS,α,y(g). (A.14)

Once again, since we can restrict our attention to g(X) ∈ [γ, 1− γ] for some γ (as the loss goes to
infinity if g(X) = 1 on a set of positive πX -measure with α > 0), it is easy to verify that (A.13) is
strongly convex in g(X). The desired result then follows by applying Lemma A.1 with the regular
conditional distribution πX|Y=y for each term in (A.14).

Proposition 3.10. For any Dλ that is not a point mass on 0 or 1 and any g : Rd → ∆k−1, letting
OPTMIX,Dλ

denote the minimum of ℓMIX,Dλ
, we have for a universal constant C > 0 that:

ℓMIX,Dλ
(g) ≥ OPTMIX,Dλ

+ C

k∑
y1=1

k∑
y2=1

πY (y1)πY (y2)Eλ [Var (E[g(Zλ) | y1, y2, λ])] . (3.2)

Proof. The proof follows an identical structure to that of Proposition 3.9. In particular, we again
define the following conditional loss:

ℓMIX,λ,y1,y2
= −E[λ log gy1(Zλ) + (1− λ) log gy2(Zλ) | y1, y2, λ]. (A.15)

And we can then decompose ℓMIX,Dλ
as:

ℓMIX,λ(g) =

k∑
y1=1

k∑
y2=1

πY (y1)πY (y2)Eλ∼Dλ
[ℓMIX,λ,y1,y2

(g)]. (A.16)

Since Dλ is not a point mass on 0 or 1, we can restrict ourselves to g(X) ∈ [γ, 1− γ] for some γ as
before, and strong convexity in g(X) of the conditional loss (A.15) again follows. We then apply
Lemma A.1 to obtain the result.

B COMPARISON TO SETTINGS OF PRIOR WORK

Here we review the settings of Chidambaram et al. (2023) and Zou et al. (2023) in greater detail to
provide a more precise comparison to the setting in our work.

Setting of Chidambaram et al. (2023). The authors consider a multi-view data model inspired
by Allen-Zhu & Li (2021); namely, their data distribution π is a multi-class distribution supported
on RPd × [k] where P corresponds to the number of patches in each data point. Essentially, for
(x, y) ∼ π, we view x as x = {x(1), x(2), ..., x(P )} with each x(i) ∈ Rd. The purpose of this
partitioning is so that features related to the target class can appear in some patches and noise can
appear in the remaining patches. In particular, the authors consider two target features per class (vy,1
and vy,2) that appear in a constant number of signal patches, while all other patches in a data point x
correspond to low magnitude feature noise, i.e. these patches consist of some linear combination
of features vs,j for s ̸= y. Furthermore, each signal patch has only a single feature (either vy,1 or
vy,2) with a random weight β such that for any signal patch x(p) = βvy,1 there is another patch
x(q) = (C − β)vy,2 for a fixed parameter C. The authors emphasize that a model that has the
same correlation with both vy,1 and vy,2 will achieve lower variance, as it will have a constant total
correlation and be insensitive to the variation in β.

For this type of data distribution, the authors consider the training dynamics of a two-layer convo-
lutional neural network with smoothed ReLU activations and non-trainable second layer weights
(not an issue in this case, since second layer weights can be absorbed into the first layer). They
analyze training using the empirical cross-entropy, as well as the Mixup cross-entropy for the specific
case of a mixing distribution Dλ that is just a point mass on 1/2 (Midpoint Mixup). The authors
prove that, running gradient descent on the empirical cross-entropy leads (with high probability) to a
model that only learns one feature for almost all classes, while doing the same for Midpoint Mixup
yields a model that learns both features per class. The results are asymptotic; the authors consider all
hyperparameters in their setup to be sufficiently large (even the number of classes k) or small.
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Setting of Zou et al. (2023). Similar to Chidambaram et al. (2023), Zou et al. (2023) also works
in a setting motivated by Allen-Zhu & Li (2021) and consider data consisting of patches. However,
they focus on binary classification, and their data distribution π is supported on RPd × {1, 2}. The
data x has exactly one (randomly selected) patch x(i) that contains a target feature; Zou et al. (2023)
delineate one type of target feature v as common and another type v′ as rare. There are also up to
b other patches in x that consist of common features from other classes (i.e. feature noise, like in
Chidambaram et al. (2023)). Lastly, different from Chidambaram et al. (2023), Zou et al. (2023)
consider the leftover patches to consist of i.i.d. Gaussian noise.

Zou et al. (2023) also consider the training dynamics of a two-layer convolutional neural network with
frozen second layer weights on this type of data distribution, but use a squared activation instead of a
smoothed ReLU. Unlike the results of Chidambaram et al. (2023) which are stated entirely in terms
of whether the features vy,1 and vy,2 are learned in a certain sense, Zou et al. (2023) directly prove a
lower bound on the test error of models trained using gradient descent on the empirical cross-entropy
while also showing that the test error of models trained on the empirical Mixup cross-entropy is
vanishing small at some time step during model training. Essentially, this is due to the non-Mixup
models failing to learn the rare feature v′ for both classes. Their results apply to Mixup with a mixing
distribution Dλ that is any point mass on (0.5, 1).

Differences in our setting. Both Chidambaram et al. (2023) and Zou et al. (2023) prove results
concerning gradient descent dynamics, whereas our results directly consider the minimizers of the
population losses associated with weight decay, label smoothing, and Mixup. Here our choice to
work with the population losses is not substantially different from Chidambaram et al. (2023) and
Zou et al. (2023), since although they work with the empirical losses they are in an asymptotic setting
and large swaths of the proofs in both papers rely on concentration of measure arguments. However,
we do differ substantially in that our main results apply to linear models – this makes our results less
practical but technically much simpler than the results of Chidambaram et al. (2023) and Zou et al.
(2023), with the added benefit that we can also handle any symmetric mixing distribution Dλ.

Furthermore, since our main results work in this linear setting, we also adopt a much simpler data
distribution setup. We do not consider our input data x as partitioned into patches, instead we merely
designate some subset of the input dimensions as “low variance” and the complementary subset as
“high variance”. In this sense, we do not have explicit feature vectors associated with each class y like
the vy,1, vy,2 of Chidambaram et al. (2023) or the v, v′ of Zou et al. (2023).

C ADDITIONAL EXPERIMENTS

C.1 VISUALIZATION OF DECISION BOUNDARIES

To provide some intuition for Theorems 3.3 to 3.7, we visualize the decision boundaries of trained
logistic regression models on 2-D data. In particular, denoting the classes as usual by y ∈ {−1,+1},
we consider a simple data distribution in which the first coordinate is distributed uniformly on [y, 10y]
and the second coordinate is fixed to be 0.1y.

This data distribution is linearly separable in each coordinate; however, the second coordinate is fixed
and thus has no conditional variance. Consequently, Theorems 3.6 and 3.7 predict that minimizing
the population label smoothing and Mixup losses on this data should lead to learning a model whose
decision boundary is aligned with the x-axis (i.e. we only use the second coordinate to determine
which class we predict).

To verify this, we visualize the decision boundaries of logistic regression models trained on 500 points
sampled from this distribution using multiple different settings of weight decay, label smoothing,
and Mixup in Figure 5. We train for 500 epochs using full batch SGD with a learning rate of 10−2,
although our results were not sensitive to these choices. We use a mixing distribution of Beta(α, α)
for Mixup (as is standard), and consider the canonical hyperparameter choices of 5× 10−4 for weight
decay, 0.1 for label smoothing, and Beta(1, 1) for Mixup (Zhang et al., 2018; Müller et al., 2020) in
Figure 5 (a) and also check the effect of scaling these hyperparameters in Figure 5 (b) and (c).

As can be seen from the results, the label smoothing and Mixup decision boundaries are much closer
to being aligned with the x-axis than the weight decay boundary, with the alignment getting stronger
with more extreme choices of the hyperparameters. The fact that the boundaries are not exactly
aligned with the x-axis can be attributed to the fact that we are not exactly minimizing the population
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(a) Canonical Hyperparameters (b) Scaled Hyperparameters (1)

(c) Scaled Hyperparameters (2)

Figure 5: Visualization of weight decay, label smoothing, and Mixup decision boundaries. Figure (a)
considers canonical hyperparameter choices, and Figures (b) and (c) illustrate the effects of scaling
these choices.

loss, since we are in the finite sample, fixed training horizon setting. That the label smoothing
boundary is more aligned to the x-axis than the Mixup boundary is also to be expected, since the
Mixup loss introduces randomness in the form of the mixing distribution which makes it more difficult
to minimize. Lastly, the fact that the boundaries for both label smoothing and Mixup become more
aligned with the x-axis at more extreme hyperparameter values can be intuitively explained by the
fact that the loss incurred by predicting a probability close to 1 for either class increases as we scale
the hyperparameters, i.e. we suffer more loss from relying on the high variance first coordinate.

Remark C.1. We should point out that, while our theoretical and empirical results in Figure 5 show a
clear difference in the types of solutions learned when training linear classifiers using label smoothing,
Mixup, and weight decay, it is not always the case that the augmented losses lead to different solutions
than ERM (with possibly weight decay). Indeed, Chidambaram et al. (2021) and Oh & Yun (2023)
both showed that for different settings of Gaussian data, ERM and Mixup can lead to learning the
same solution. However, the settings of these prior works don’t fall within our scope as we consider
distributions with compact support, which ends up being an important property for proving our
results.

C.2 DIRECT VERIFICATION OF THEORY

Here we directly analyze the training of logistic regression models on a synthetic data distribution
that exactly follows the assumptions of Definition 3.1; the following definition generalizes the 2-D
distribution we visualized in Section C.1.

Definition C.2 (Synthetic Data). We define a distribution πγ parameterized by γ (where 0 < γ < 1)
on Rd × {−1, 1} with πγ,Y (1) = 1/2 and x ∼ πγ,X|Y=y satisfying:

1. First ⌊d/2⌋ dimensions are constant but small. We have xi = γy for i ≤ ⌊d/2⌋.

2. Last d − ⌊d/2⌋ dimensions are high variance. We have xi ∼ Uniform([y, 100y]) for
i > ⌊d/2⌋.
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In other words, we consider data where (conditional on the label) the first half of the dimensions are
fixed (corresponding to L) and the second half are i.i.d. high variance uniform (corresponding to H).
We sample n = 5000 data points according to Definition C.2 with d = 10 and γ = 0.1 and train
logistic regression models across a range of settings for weight decay, label smoothing, and Mixup.
The choice of γ here, as well as the range of values for the dimensions in H, is relatively arbitrary;
we verified our empirical results hold for different scales of γ and ranges for H. The empirical results
also do not depend on the fact that the L coordinates are zero variance – we checked that they still
hold when adding a small magnitude uniform noise to the L coordinates.

For model training, we consider 20 uniformly spaced values in [0, 0.1] for the weight decay λ
parameter and in [0, 0.75] for the label smoothing α parameter, where the upper bound for the label
smoothing parameter space is obtained from the experiments of Müller et al. (2020). For Mixup, we
fix the mixing distribution to be the canonical choice of Beta(α, α) introduced by Zhang et al. (2018)
and consider 20 uniformly spaced α values in [0, 8] (with α = 0 corresponding to ERM), which
effectively covers the range of Mixup hyperparameter values used in practice.

We train all models for 100 epochs using AdamW with the standard hyperparameters of β1 =
0.9, β2 = 0.999, a learning rate of 5 × 10−3, and a batch size of 500. At the end of training, we
compute ∥wH∥ (i.e. the norm of the weight vector in the last 5 dimensions) for each trained model.
For each model setting, we report the mean and standard deviation of ∥wH∥ over 5 training runs in
Figure 6.

(a) Weight Decay (b) Label Smoothing

(c) Mixup

Figure 6: Final weight norm of logistic regression model in the high variance dimensions (∥wH∥) for
various hyperparameter settings on the synthetic data distribution of Section C.2.

As can be seen from the results, the weight decay models always have non-trivial values for ∥wH∥
(even for large values of λ), whereas the label smoothing and Mixup models very quickly converge to
a ∥wH∥ of effectively zero as their respective hyperparameters move away from the ERM regime
(α = 0 in both cases). This matches the behavior predicted by Theorems 3.3 to 3.7.

C.3 FULL RESNET RESULTS

Here we collect final test error/variance results for the plots shown in Section 4.1 and also provide
analogous plots and results for ResNet-50 and ResNet-101 models. In all of the following, we
abbreviate weight decay as “WD” and label smoothing as “LS”.
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C.3.1 RESNET-18 FINAL RESULTS

Tables 1 and 2 show the end-of-training test error, activation variance, and output variance results for
the experiments in Figure 1.

Method Test Error Activation Variance Output Variance
ERM + WD 8.40± 0.58 198± 5 0.133± 0.008

ERM + WD + LS 7.96± 0.30 33.0± 5.9 0.099± 0.003
ERM + WD + Mixup 5.90± 0.21 18.4± 0.4 0.059± 0.002

Table 1: Final results (mean test error/variance and one standard deviation over 5 runs) for ResNet-18
experiments on CIFAR-10.

Method Test Error Activation Variance Output Variance
ERM + WD 31.59± 0.36 673± 23 0.406± 0.007

ERM + WD + LS 28.55± 4.7 54.7± 5.6 0.188± 0.027
ERM + WD + Mixup 26.83± 0.44 82.2± 1.2 0.143± 0.004

Table 2: Final results (mean test error/variance and one standard deviation over 5 runs) for ResNet-18
experiments on CIFAR-100.

C.3.2 RESNET-50 ALL RESULTS

(a) CIFAR-10 Test Error (b) CIFAR-10 Activation Vari-
ance

(c) CIFAR-10 Output Variance

(d) CIFAR-100 Test Error (e) CIFAR-100 Activation Vari-
ance

(f) CIFAR-100 Output Variance

Figure 7: ResNet-50 final test errors, penultimate layer activation variances, and output probability
variances on CIFAR-10 and CIFAR-100.

We train ResNet-50 models under the same hyperparameters as in Section 4.1, except for a batch
size of 512 due to memory constraints. ResNet-50 results analogous to those shown in Figure 1 are
shown in Figure 7. Similarly, final error and variance results are shown in Tables 3 and 4.

We observe that while the same trends hold as in the case of ResNet-18, there is significantly more
variance in the computed activation variances for Mixup on CIFAR-10. In this particular case, we
found that there were still significant oscillations in activation variances even towards the end of the
training horizon. This may in part be attributable to reduced batch size, but we did not investigate
this further.
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Method Test Error Activation Variance Output Variance
ERM + WD 7.36± 0.13 551± 711 0.119± 0.002

ERM + WD + LS 7.24± 0.26 6.35± 3.47 0.091± 0.004
ERM + WD + Mixup 5.41± 0.37 95± 115 0.054± 0.003

Table 3: Final results (mean test error/variance and one standard deviation over 5 runs) for ResNet-50
experiments on CIFAR-10.

Method Test Error Activation Variance Output Variance
ERM + WD 29.41± 0.94 310± 14 0.383± 0.012

ERM + WD + LS 28.58± 0.28 13.14± 0.20 0.257± 0.001
ERM + WD + Mixup 24.94± 1.63 22.95± 1.52 0.161± 0.007

Table 4: Final results (mean test error/variance and one standard deviation over 5 runs) for ResNet-50
experiments on CIFAR-100.

C.3.3 RESNET-101 ALL RESULTS

We also train ResNet-101 models under the same hyperparameters as in Section 4.1, except once
again for a batch size of 512 due to memory constraints. ResNet-101 results analogous to those
shown in Figure 1 are shown in Figure 8. Similarly, final error and variance results are shown in
Tables 5 and 6.

Here we see that the variance oscillation behavior that we mentioned in Appendix C.3.2 is even more
pronounced for the CIFAR-10 results, suggesting that this behavior is amplified for larger models.
Once again, it is not clear what properties of CIFAR-10 lead to highly oscillatory activation variances
for some initializations, but we again suspect that reduced batch size in training at least plays some
role. The CIFAR-100 results remain consistent, although there is still some oscillatory behavior for
the Mixup results.

Method Test Error Activation Variance Output Variance
ERM + WD 6.87± 0.17 491± 235 0.110± 0.002

ERM + WD + LS 6.90± 0.26 2280± 2292 0.088± 0.003
ERM + WD + Mixup 5.23± 0.18 1701± 1586 0.054± 0.002

Table 5: Final results (mean test error/variance and one standard deviation over 5 runs) for ResNet-101
experiments on CIFAR-10.

Method Test Error Activation Variance Output Variance
ERM + WD 28.69± 0.73 283± 18 0.373± 0.008

ERM + WD + LS 27.74± 0.55 12.01± 0.23 0.269± 0.005
ERM + WD + Mixup 23.55± 0.98 115± 136 0.157± 0.01

Table 6: Final results (mean test error/variance and one standard deviation over 5 runs) for ResNet-101
experiments on CIFAR-100.

C.4 OUTPUT PROBABILITY VARIANCE ANALYSIS

A natural explanation for why output probability variance decreases for label smoothing and Mixup
in Figures 1, 7, and 8 is that label smoothing and Mixup improve test error and consequently have
less variability in their outputs due to fewer mistakes. Firstly, looking carefully at the label smoothing
results in the previous subsections shows this cannot be the full cause, as in Table 5 label smoothing
leads to worse test error than the baseline of ERM + WD but still leads to lower output probability
variance.

In Tables 7 to 9, we compute the average output probability variance for each class but consider
only the probability associated with the target class (i.e. for all points with label y, we compute the
variance of the predicted probabilities corresponding to y). In all cases, the target output variance
alone leaves a significant fraction of the overall output variance unexplained.
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(a) CIFAR-10 Test Error (b) CIFAR-10 Activation Vari-
ance

(c) CIFAR-10 Output Variance

(d) CIFAR-100 Test Error (e) CIFAR-100 Activation Vari-
ance

(f) CIFAR-100 Output Variance

Figure 8: ResNet-101 final test errors, penultimate layer activation variances, and output probability
variances on CIFAR-10 and CIFAR-100.

Method Target Output Variance (CIFAR-10) Target Output Variance (CIFAR-100)
ERM + WD 0.066± 0.004 0.172± 0.002

ERM + WD + LS 0.050± 0.002 0.119± 0.002
ERM + WD + Mixup 0.029± 0.002 0.087± 0.002

Table 7: Target output probability variance for ResNet-18.

Method Target Output Variance (CIFAR-10) Target Output Variance (CIFAR-100)
ERM + WD 0.059± 0.001 0.166± 0.004

ERM + WD + LS 0.046± 0.002 0.131± 0.001
ERM + WD + Mixup 0.027± 0.002 0.093± 0.004

Table 8: Target output probability variance for ResNet-50.

Method Target Output Variance (CIFAR-10) Target Output Variance (CIFAR-100)
ERM + WD 0.054± 0.001 0.162± 0.002

ERM + WD + LS 0.044± 0.001 0.131± 0.002
ERM + WD + Mixup 0.026± 0.002 0.088± 0.004

Table 9: Target output probability variance for ResNet-101.
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