
Under review as a conference paper at ICLR 2024

NEUROEXPLICIT DIFFUSION MODELS
FOR INPAINTING OF OPTICAL FLOW FIELDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning has revolutionized the field of computer vision by introducing large
scale neural networks with millions of parameters. Training these networks re-
quires massive datasets and leads to intransparent models that can fail to gener-
alize. At the other extreme, models designed from partial differential equations
(PDEs) embed specialized domain knowledge into mathematical equations and
usually rely on few manually chosen hyperparameters. This makes them transpar-
ent by construction and if designed and calibrated carefully, they can generalize
well to unseen scenarios. In this paper, we show how to bring model- and data-
driven approaches together by combining the explicit PDE-based approaches with
convolutional neural networks to obtain the best of both worlds. We illustrate a
joint architecture for the task of inpainting optical flow fields and show that the
combination of model- and data-driven modeling leads to an effective architecture.
Our model outperforms both fully explicit and fully data-driven baselines in terms
of reconstruction quality, robustness and amount of required training data. Aver-
aging the endpoint error across different mask densities, our method outperforms
the explicit baselines by 11 − 27%, the GAN baseline by 47% and the Probabil-
isitic Diffusion baseline by 42%. Therewith, our method sets a new state of the art
for inpainting of optical flow fields from random masks.

1 INTRODUCTION

Diffusion is a fundamental process in physics that leads to an equilibrium of local concentrations.
It explains many phenomena and finds applications in image processing (Weickert, 1998) and com-
puter vision tasks (Weickert & Schnörr, 2001). In particular, it motivates the smoothness term in
dense optical flow estimation in variational techniques. However, recent advancements in optical
flow estimation have been dominated by deep-learning approaches (Dosovitskiy et al., 2015; Ilg
et al., 2017; Teed & Deng, 2020; Xu et al., 2022; Huang et al., 2022). While all these architec-
tures include a task-specific model-driven operation that represents the data term, the regularization
through the smoothness term is handled in a fully data-driven manner by the learned parameters of
the convolutions (Dosovitskiy et al., 2015; Ilg et al., 2017; Teed & Deng, 2020) and more recently by
attention (Xu et al., 2022; Huang et al., 2022). Notably, none of these approaches utilize a special-
ized regularization operation as it has been studied in traditional computer vision. For this reason,
we investigate whether it is possible to integrate diffusion with its rich mathematical foundations
based on partial differential equations (PDEs) into neural architectures. In the following, we refer
to these model-driven operations that integrate specialized domain knowledge for a certain task as
explicit, the general data-driven operations as neural, and the combination of both as neuroexplicit.

The role of the regularization in traditional computer vision is to propagate information from con-
fident correspondences to regions with less or little information. Variational methods do so using
smoothness terms that lead to diffusion terms in the Euler-Lagrange equations. To isolate this behav-
ior, we focus on inpainting of sparsely masked optical flow fields and compare our novel architecture
with popular state-of-the-art methods. By imposing the diffusion behavior explicitly, our goal is to
achieve interpretable models with fewer parameters, improved generalization capabilities, and less
dependence on large-scale datasets.

1

Under review as a conference paper at ICLR 2024

1.1 CONTRIBUTIONS

For the first time, we implement an end-to-end trainable network to predict the diffusion tensor
used in an image driven diffusion inpainting of an optical flow field. Specifically, it predicts the
parameters for the discretization of Weickert et al. (2013), which ensures that the diffusion evolution
is stable and well-posed.

We compare our learned diffusion inpainting network with Edge-Enhancing Diffusion (Weickert,
1994) inpainting, Absolutely Minimizing Lipschitz (Raad et al., 2020) inpainting and Laplace-
Beltrami (Raad et al., 2020) inpainting. Additionally, we consider the most popular state-of-the-art
deep learning methods that use U-Nets (Ronneberger et al., 2015), Wasserstein GANs (Vašata et al.,
2021), and Probabilistic Diffusion (Saharia et al., 2022; Lugmayr et al., 2022) and show that our
proposed method can reconstruct flow fields with a high level of detail and generalize exceptionally
well. Evaluated with test data from the same domain as the training data, our method achieves an
average improvement of 48−66% in terms of endpoint error when compared to the baselines, while
when tested on a new domain, our method manages to outperform by 11 − 47% and sets a new
state of the art. Finally, we evaluate on real world data from autonomous driving and show that
in this practical application, our method is on-par with other methods or significantly outperforms
them. Beyond the good generalization capabilities, the diffusion networks have comparatively few
learnable parameters and competitive inference times. Our ablation studies show that they can be
trained with much less data and still outperform baselines trained on the full dataset.

1.2 RELATED WORK

Diffusion inpainting. Reconstructing missing information from images, known as inpaint-
ing (Guillemot & Le Meur, 2014), has been a long-standing goal in image processing (Masnou &
Morel, 1998; Bertalmío et al., 2000). For inpainting-based image compression (Galić et al., 2008),
diffusion processes offer very good performance. They are theoretically well-founded (Weickert,
1998), and their discretizations are well-understood (Weickert et al., 2013). Moreover, they are in-
herently explainable and can reconstruct high resolution images in real time (Kämper & Weickert,
2022).

Inpainting with deep learning. In recent years, the advances in deep learning methods have
shifted the attention towards large-scale data-driven models. Generative Adversarial Networks
(GANs) (Vašata et al., 2021) or Probabilistic Diffusion (PD) models (Lugmayr et al., 2022) show im-
pressive inpainting qualities for image restoration and artistic purposes. They do, however, require
large amounts of training data and can fail to generalize to out-of-distribution scenarios.

Inpainting of flow fields. Inpainting for optical flow fields has rarely been addressed. Jost et al.
(2020) investigated PDE-based inpainting for compression of general piecewise smooth vector
fields. Andris et al. (2021) use flow field compression and inpainting of optical flow fields as part
of their video compression codec. However, both works assume having access to the complete flow
to optimize the inpainting mask accordingly, whereas our method works with random, non-optimal
masks.

Relationships between PDE-models and deep learning. A variety of other neuroexplicit ap-
proaches have been explored. Researchers recently have turned to investigating connections be-
tween discrete models for solving PDEs and deep learning (Alt et al., 2022; Haber & Ruthotto, 2017;
Ruthotto & Haber, 2020; Chen et al., 2018). CNN architectures share a particularly close relation-
ship to discrete PDE models due to the inherent similarity of convolutions and discrete derivatives
in the form of finite differences (Morton & Mayers, 2005).

Alt et al. (2022) and Ruthotto & Haber (2020) connected discrete models for solving PDEs and resid-
ual blocks (He et al., 2016). Their diffusion blocks realize one explicit step of a discrete diffusion
evolution in a residual block with symmetric filter structure. Similar to our approach, they construct
architectures that realize diffusion evolutions. However, their work only involves the formulation as
a neural network for executing the method (Alt et al., 2022), or the focus revolved around learning
the finite differences (Ruthotto & Haber, 2020).

Most closely related to our method are the works of Alt & Weickert (2021) and Chen & Pock (2017)
that focused on parameterizing diffusion processes through learning. Both methods use learning
to estimate contrast parameters for the diffusivity, but formulate the diffusion tensor as explicit

2

Under review as a conference paper at ICLR 2024

functions of image contrast. Alt & Weickert (2021) construct a multiscale anisotropic diffusion
process for image denoising. Chen & Pock (2017) formulate a general framework for diffusion-
reaction systems that support learnable contrast parameters in an isotropic diffusion process and
learnable weights for the finite difference operators. However, once trained, these parameters are
the same for all pixels and do not adapt themselves to the presented input image content. In contrast,
our model learns to drive the explicit diffusion process in a fully neural way and does not rely on
first order image derivatives as an edge detector.

2 INPAINTING WITH EXPLICIT DIFFUSION

In this section, we review diffusion (Weickert, 1994) and how it can be used for inpainting.

2.1 DEFINITION OF DIFFUSION INPAINTING

A given vector valued image f(x) : Ω → Rc is only known on the subset ΩC ⊂ Ω of the rectan-
gular image domain Ω ⊂ R2. For each channel i ∈ {1, ..., c}, diffusion results in the steady state
approached for t → ∞ of the initial boundary value problem:

∂tui(x, t) = div(D∇ui(x, t)) for x ∈ Ω \ ΩC × (0,∞) , (1)
ui(x, t) = fi(x) for x ∈ ΩC × [0,∞) , (2)
ui(x, 0) = 0 for Ω \ ΩC , (3)

∂nui(x, t) = 0 for x ∈ ∂Ω× [0,∞) . (4)

Here, ui(x,∞) denotes the final inpainting result in channel i, div = ∇⊤ denotes the spatial di-
vergence operator, and ∂n represents the directional derivative along the normal vector to the image
boundary ∂Ω. The diffusion tensor D is a 2×2 positive definite symmetric matrix that describes the
propagation behavior.

2.2 EDGE-ENHANCING DIFFUSION

Edge-Enhancing Diffusion (EED) (Weickert, 1994) provides superior inpainting quality (Schmaltz
et al., 2014), achieved by deriving the diffusion tensor D through the structure tensor (Di Zenzo,
1986):

S(u) :=

c∑
i=1

∇ui,ρ∇u⊤
i,ρ . (5)

Here, ui,ρ denotes a convolution of channel ui with a Gaussian of standard deviation ρ. The eigen-
values µ1 ≥ µ2 ≥ 0 of S measure the local contrast along the corresponding eigenvectors v1,v2.
EED penalises smoothing across image structures by transforming the larger eigenvalue with a pos-
itive, decreasing diffusivity function g. For the remaining direction along image structures, full
diffusion is allowed by setting the eigenvalue to 1. This results in

D := g(S) = g(µ1) · v1v
⊤
1 + 1 · v2v

⊤
2 . (6)

In our setting, f is a sparse flow field that should be inpainted. So far, we illustrated a nonlinear
diffusion process where the structure tensor from Equation 5 and consequently the diffusion tensor
are determined from the evolving signal. This has the disadvantage that the diffusion tensor needs to
be re-estimated for every diffusion step. For this reason, we choose a linear diffusion process, and
determine the diffusion tensor using the image I(x) : Ω → R3 relative to which the optical flow
field is defined. We will refer to I as the reference image.

2.3 DISCRETIZATION

Equation 1 can be discretized by means of a finite difference scheme. To transform the continu-
ous into discrete signals, we sample u, f and I at grid sizes hx, hy . We discretize the temporal
derivative by a forward difference with time step size τ . The spatial first-order derivative operator
∇ and its adjoint ∇⊤ are implemented by a convolution matrix K and its negated transpose −K⊤,
respectively.

3

Under review as a conference paper at ICLR 2024

In
p
u
t

O
u
tp
u
t

Neural

Explicit

Reference Image

Mask

Initial Flow Final Flow

Image-Driven
Inpainting

t = 5

Image-Driven
Inpainting

t = 15

Image-Driven
Inpainting

t = 30

Image-Driven
Inpainting

t = 45

D
ow

n
sa
m
p
le

D
ow

n
sa
m
p
le

D
ow

n
sa
m
p
le

D
ow

n
sam

p
le

cat cat cat cat

D, α D, α D, α D, α

Figure 1: Our proposed hybrid inpainting model. The Diffusion Tensor Module takes the refer-
ence image as input, and outputs a specific diffusion tensor D and discretization parameter α for
every stage of the coarse-to-fine inpainting pipeline. The inpainting itself is done using a stable and
well-posed anisotropic diffusion process that solves t steps of the explicit scheme in Equation 8.

To discretize computation and multiplication with the diffusion tensor D, we introduce the following
notation for an activation function:

Φ(I, Kuk) = g
(c∑
i=0

(KI)i(KI)⊤i︸ ︷︷ ︸
S

)
(Kuk). (7)

Finally, we can define the discrete diffusion evolution and solve it for the next time step to obtain an
explicit scheme:

uk+1 − uk

τ
= −K⊤Φ(I, Kuk) ⇔ uk+1 = uk − τ(K⊤Φ(I, Kuk)). (8)

where the time levels are indicated by superscripts.

To achieve an inpainting process with good reconstruction qualities, the choice of the convolution
matrix K is crucial. Weickert et al. (2013) introduced a nonstandard finite difference discretization
that implements the discrete divergence term K⊤Φ(I, Kuk) on a 3×3 stencil. It introduces two
free parameters

α ∈ [0, 1
2], |β| ≤ 1− 2α, (9)

that have an impact on sharpness and rotation invariance of the discretization.

3 FROM EXPLICIT TO NEUROEXPLICIT FLOW INPAINTING

In the following paragraphs, we discuss how to transform an explicit diffusion inpainting approach
into a hybrid neuroexplicit architecture, where we define explicit as parts of the architecture that
are derived from the well known PDE framework for the diffusion process, and neural as generic
data-driven non-interpretable deep learning architecture parts.

To solve the inpainting task, our method and the baselines receive a sparse, initial flow field as well
as a binary mask that marks the positions of the known flow vectors. Additionally, we provide
the reference image for an image-driven inpainting process. Image-driven regularizers in traditional
optical flow methods exploit the correlation of contrast in the reference image and the discontinuities
in the unknown flow field. However, considering contrast alone is not sufficient and leads to over-
segmented flow fields. In practice, due to the aperture problem, one must decide how to regularize

4

Under review as a conference paper at ICLR 2024

based on the individual image content. As this is of statistical nature and requires prior knowledge,
leveraging deep learning here seems adequate. We bring in a U-Net (Ronneberger et al., 2015) as the
Diffusion Tensor Module (DTM), that we train end-to-end to predict the ideal diffusion parameters.
Concretely, it replaces the heuristic choice of the structure tensor in the activation Φ in Equation 7
and the discretization parameter α in Equation 9. An overview of the complete model is shown in
Figure 1.

3.1 COARSE-TO-FINE DIFFUSION INPAINTING

Our architecture implements an explicit image-driven inpainting process. In contrast to traditional
methods, the parameters of the process are obtained from the reference image using the DTM.
To reduce the required time steps of the inpainting process and make it computationally feasible,
we employ a coarse-to-fine scheme (Bornemann & Deuflhard, 1996). We build the pyramid using
pooling operations that downsample by a factor 2, where we use average pooling for the reference
image and max pooling for the mask. To obtain the coarse version of the sparse flow field, we
use average pooling of flow known values. After obtaining the coarse versions of all inputs, we
start the diffusion inpainting process from the coarsest sparse flow field. The inpainted flow field
is then upsampled using bilinear interpolation and initializes the inpainting process at the next finer
resolution.

For a multiscale diffusion process that spans across N resolutions, we need a set of parameters
at each scale. The DTM performs N down- and upsampling convolutions. At each feature map
after the bottleneck, we apply a separate convolution to estimate a feature map z with five channels.
Below, we explain how each z is transformed to parameterize the diffusion process along the coarse-
to-fine pyramid.

3.2 DISCRETIZATION

To implement our scheme, we use the discretization of Weickert et al. (2013) that we discussed in
Section 2.3. This formulation introduces the two free parameters α and β shown in Equation 9. The
first channel of z is used as the discretization parameter α = σ(z0)/2. Notably, the restriction of
|β| ≤ 1− 2α depends on α. To guarantee a stable scheme, we choose β = (1− 2α)sign(b), where
b is the off-diagonal element of the diffusion tensor.

3.3 LEARNING THE DIFFUSION TENSOR

The remaining four channels in z are used to estimate the diffusion tensor in the activation Φ. Re-
placing the structure tensor with a neural edge detector allows learning a prior that decides which
image edges will likely coincide with flow discontinuities. Due to the anisotropic diffusion pro-
cess, these discontinuities can be maintained throughout the inpainting process even if the mask
distribution is sparse and suboptimal.

Concretely, we obtain two eigenvalues µ1 = g(z1), µ2 = g(z2) and one eigenvector v1 =
(z3,z4)

⊤

∥(z3,z4)⊤∥2
. We explicitly compute v2 = (−z4,z3)

⊤

∥(z3,z4)⊤∥2
to ensure orthogonality to v1. The eigenvalues

are constrained to the range [0, 1] using the Perona-Malik diffusivity g(x) = (1 + x2

λ2)
−1 (Perona &

Malik, 1990), where the free parameter λ is learned during training. In contrast to the formulation
in Equation 6, we apply the diffusivity to both eigenvalues. This gives the DTM additional freedom
to either replicate the behavior in Equation 6 or restrict the diffusive flux in both directions.

4 EXPERIMENTS

Our experiments are divided into three parts. In the first part, we compare our method with a
selection of fully explicit and neural inpainting methods. In the second part, we show an ablation
study to test the effectiveness of learning different components of the diffusion inpainting process
to analyze and determine the balance between explicit and neural parameter selection. For both
parts, we train on the final subset of the FlyingThings dataset (Mayer et al., 2016). To evaluate
generalization, we test on the Sintel dataset (Butler et al., 2012).

5

Under review as a conference paper at ICLR 2024

Table 1: Comparison of our method with the baselines on the Sintel dataset. Surprisingly, the
explicit EED diffusion inpainting outperforms the data-driven baselines across both datasets. Learn-
ing the proposed parts of the diffusion process with our method further improves the reconstruction
qualities with significantly fewer iterations and leads to a new state of the art. ∗indicates that the
method was already tuned for Sintel.

Training-Domain Test EPE Sintel Test EPE
EED AMLE* LB* Ours FlowNetS WGAIN PD EED AMLE* LB* Ours FlowNetS WGAIN PD

1% 2.06 2.03 2.03 1.01 2.33 2.26 3.96 0.94 0.94 0.86 0.72 0.85 1.14 2.39
5% 1.00 1.08 1.00 0.55 1.68 1.73 1.09 0.52 0.51 0.43 0.40 0.57 0.80 0.55
10% 0.73 0.82 0.75 0.39 1.55 1.43 0.72 0.43 0.38 0.31 0.28 0.51 0.60 0.40

Finally, we demonstrate the usefulness of our method in a real-world application. The KITTI (Geiger
et al., 2012) dataset is well known for autonomous driving and provides sparse ground truth that is
acquired from registering LiDAR scans. Densifying it presents a practically highly relevant use case
of our method.

4.1 NETWORK AND TRAINING DETAILS

For our diffusion inpainting network, we leverage four resolutions for the coarse-to-fine pyramid.
Going from coarsest to finest, we perform i iterations, where i ∈ {5, 15, 30, 45} increases with the
resolution. At each resolution, the feature map z is obtained from the DTM and transformed into the
parameters as described in Section 3. Each resolution has access to a separate contrast parameter λ
in the Perona-Malik diffusivity discussed in Section 3.3, which is initialized as 1 and learned during
training. To further speed up the inpainting process, we use the Fast-Semi Iterative (FSI) scheme
proposed by Hafner et al. (2016) and perform one cycle per resolution. Time step size and FSI
extrapolation weights are chosen to satisfy a stable and well-posed diffusion inpainting process. For
more information about the FSI scheme, we refer to the supplementary material.

We choose three fully explicit baselines. First, a linear EED inpainting method where all parameters
are chosen explicitly and the diffusion tensor is also estimated using the reference image. For a fair
comparison, we use the same coarse-to-fine strategy and optimize its hyperparameters on a subset
of the training data and let the inpainting process converge. The previous state of the art is held
by Raad et al. (2020), who propsoe two anisotropic optical flow inpainting algorithms: the first is
based on the Absolutely Minimizing Lipschitz Extension (AMLE) PDE and the second one uses
the Laplace-Beltrami (LB) operator. They propose a set of robust hyperparameters for the Sintel
dataset, which we will use for all evaluations. Note that other methods are not trained or tuned on
Sintel and therefore this setting gives Raad et al. (2020) an advantage.

As the first neural baseline, we choose a FlowNetS (Dosovitskiy et al., 2015) as a general purpose U-
Net architecture. Instead of two images, we feed it a concatenation of image, mask and sparse flow
and let the network learn the inpainting process. As more recent and advanced deep learning-based
methods, we include Generative Adversarial Networks (GANs) and Probabilistic Diffusion (PD).
We use WGAIN (Vašata et al., 2021) as the GAN baseline, as it has been used successfully employed
for inpainting images from sparse masks. For the PD network, we adapted the popular efficient U-
Net architecture (Saharia et al., 2022) and use the inpainting formulation of RePaint (Lugmayr et al.,
2022) during inference. Both GAN and PD network are conditioned on the reference image to learn
the correlation between flow and image edges. For more details on training and adaptations, we
refer to the supplemental.

4.2 RECONSTRUCTION AND GENERALIZATION

Table 1 shows a comparison of our method to the introduced baselines. Edge-Enhancing Diffusion
(EED) inpainting outperforms the purely neural baselines and can reconstruct a high level of detail.
It does, however, require a significant number of iterations to converge (anywhere from 3,000 to
100,000), varying drastically with the content of the images and the given mask density. The reason
for this slow convergence is the reliance on the structure tensor that we discussed in Section 2.2.
The diffusivity is limiting the diffusive flux wherever there is image contrast, which increases the
number of required time steps. Figure 4 shows that relying on the structure tensor can also be

6

Under review as a conference paper at ICLR 2024

harmful in low-contrast regions where no edge is identified and information leaks across edges.
Since we let the inpainting process fully converge, this leaking effect can be detrimental to the final
performance. Furthermore, replacing the structure tensor with a neural edge detector leads to a
more robust inpainting in cases where there is a high variance of contrast within the images, which
happens frequently in the FlyingThings data. Consequently, the discrepancy between EED and our
method is much more severe on that dataset.

102.29 103.29 103.99104.29

1

2

3

Training Samples

Si
nt

el
E

nd
po

in
tE

rr
or

FlowNetS
WGAIN

PD
EED
Ours

2% 4% 6% 8% 10%
0

1

2

3

Mask Density
Si

nt
el

E
nd

po
in

tE
rr

or

FlowNetS
WGAIN

PD
EED
Ours

Figure 2: Our proposed method is robust to changes in the
training and inference setting. The left plot shows the weaker
reliance of our method on training data. Using 194 samples, we
reach a competitive performance to the network trained on the
full dataset. The right plot shows the favorable generalization
to unseen mask densities of our method and the explicit EED
inpainting. We evaluated each model optimized for 5% on previ-
ously unseen mask densities.

Ours FlowNetS WGAIN PD

106

107

108

109

Models

#
of

Pa
ra

m
et

er
s

Ours FlowNetS WGAIN PD

101

102

103

104

105

In
fe

re
nc

e
tim

e
in

m
s

Figure 3: Weights and in-
ference time of the mod-
els. Compared to the baselines,
our model is very lightweight
and has competitive inference
times. Notably, we omitted the
explicit baselines, since there is
no clear way to compare the
methods.

As can be seen in Figure 4, the CNN methods FlowNetS (Dosovitskiy et al., 2015) and
WGAIN (Vašata et al., 2021) produce noisy flow fields at the flow edges. They fail to capture
the same level of detail as the anisotropic diffusion methods that adapt their smoothing behavior to
the image content. Compared to the CNN methods, the Probabilistic Diffusion (PD) model with the
RePaint (Lugmayr et al., 2022) inpainting has well-localized discontinuities. However, PD models
are highly affected by the distribution of the training data. Figure 4 shows a case of overfitting in
the first two rows. The FlyingThings dataset contains mostly rigid objects with straight edges and
no materials comparable to the fuzzy beard of the shaman. Consequently, PD fails to generalize to
the out-of-domain sample and reconstructs a blocky and unnatural looking beard.

Since our method realizes a well-posed diffusion process by construction, it is naturally robust to
changes in its input. We tested the generalization capabilities to new mask densities and show the
results in Figure 2. Increasing the mask density compared to observed training density should lead
to an increase in performance since more information is presented. The data-driven baselines that
are trained with a specific density (FlowNetS and WGAIN) fail to capture this intuition and have
decreasing performance. Our proposed method has an increasingly better reconstruction quality
with higher densities. When evaluated on a density of 10%, the network trained on 5% density can
even reach a very close EPE on to the network that was optimized on this density (0.28 vs. 0.29).

Figure 3 shows the number of learned parameters of all models. Since the inpainting behavior in
our method is steered by an explicit anisotropic diffusion process, the network has significantly
fewer parameters than the compared baselines. A vast majority of these parameters are placed
in the DTM to identify flow discontinuities and drive the diffusion process accordingly. Having
so few parameters provides an inherent regularizing effect and leads to less reliance on available
training data. This is reflected in the left plot in Figure 2, where we compared the performance
of all baselines when trained on a subset of the available training data. Even with a drastic cut
of training data, our proposed method outperforms all other baselines. The reconstruction quality
barely decreases compared to the networks that were trained on more data.

4.3 EFFECTS OF LEARNED COMPONENTS

Table 2 shows quantitative results of trained inpainting networks, where we illustrate the effect of
learning the eigenvalues µ1, µ2, eigenvectors v1,v2, discretization parameter α. As one can see from
Equation 5, the structure tensor computation considers only first-order image derivatives. Especially

7

Under review as a conference paper at ICLR 2024

Figure 4: Samples generated with a mask density of 5%. Every other row displays the zoomed
in area of the red rectangle in the row above. Our method manages to retain a much higher level of
detail in the reconstructed flow fields. In the bottom row at the dragons chin, we can observe that the
PDE methods (EED, AMLE, and LB) fail to maintain flow edges in low contrast regions. Notably,
both WGAIN and the PD model have poor out-of-distribution performance. WGAIN tends to have
large outliers and fails in the zero flow in the background. The PD model fails to reproduce the fuzzy
material of the shamans beard due to a lack of comparable materials in the training data.

Table 2: Ablation study of replacing learned with explicit components. The values indicate
endpoint errors relative to our final network for different mask densities. Learning the eigenvalues
over explicit ones (−µ) plays the biggest role. Exchanging learned with explicit eigenvectors (−v)
and the learned, spatially-varying discretization parameter with a constant explicit one (−α) leads to
consistent decreases in performance. Learning the second discretization parameter (+β) can further
push the performance, but does not guarantee stability. We also test the ResNet implementation
of Alt et al. (2022) and learn the finite difference operators (+W). However, this does not give a
significant performance improvement and leads to additional computation cost.

Training-Domain Test EPE Sintel Test EPE
Full −µ −v −α +β +W Full −µ −v −α +β +W

1% 1.01 +0.95 +0.07 +0.05 −0.04 +0.00 0.72 +0.17 +0.07 +0.03 −0.02 +0.01
5% 0.55 +0.28 +0.02 +0.06 −0.03 −0.01 0.40 +0.04 +0.06 +0.02 −0.01 −0.01
10% 0.39 +0.20 +0.00 +0.02 −0.01 +0.03 0.28 +0.04 +0.04 +0.02 −0.01 +0.00

in the presence of noisy images, the structure tensor relies on Gaussian pre-smoothing that can lead
to worse edge localization in the final flow field. In the case of explicit eigenvalues, the network
has to learn a small contrast parameter λ to avoid smoothing across structures. This leads to a slow
convergence within the limited number of performed diffusion steps and poor inpainting quality.
Supplying the eigenvectors of the diffusion tensor by the learnable module provides a consistent
increase in performance.

The discretization parameters are usually chosen as constant hyperparameters, whereas our DTM
outputs one α-value per pixel and outperforms the global constant for all mask densities. This
suggests that adapting the discretization parameters to the image content is preferable to obtain
high-quality reconstructions. We also performed an additional ablation study to estimate the second
discretization parameter β independently of α. The improvements are insignificant, while doing so
voids the restriction 9. Hence, we do not recommend learning the β.

Alt et al. (2022) showed that for each discrete diffusion evolution with a fixed stopping time, there
is an equivalent ResNet architecture that implements it. We additionally compare our method to the
ResNet formulation of Alt et al. (2022) where we learned the discrete derivative operators. This
formulation requires much more arithmetic operations compared to the efficient 3×3-stencil of We-
ickert et al. (2013), since each derivative operator has to be realized with its own convolution kernel.
On the other hand, also in this case, the performance difference is insignificant and the explicit dis-

8

Under review as a conference paper at ICLR 2024

Table 3: Generalization Capabilities to Real World Data. We report the combined EED on all
measured pixels in the original KITTI training dataset. As customary for KITTI, we additionally
report flow (FL) outliers in % as defined by Geiger et al. (2012). A displacement is considered an
outlier if its endpoint error is > 3, or it differs by at least 5% of the ground truth displacement. The
results show that our method is on par with Laplace-Beltrami in terms of EPE but has significantly
fewer outliers especially in the most challenging low density setting.

EPE FL
EED AMLE LB Ours FlowNetS WGAIN EED AMLE LB Ours FlowNetS WGAIN

1% 1.11 1.26 1.07 1.07 1.43 3.18 1.14 1.19 0.94 0.87 1.2 3.59
5% 0.46 0.56 0.46 0.47 2.53 7.0 0.27 0.35 0.26 0.25 2.26 4.48
10% 0.23 0.30 0.23 0.23 4.96 6.82 0.11 0.16 0.11 0.11 3.77 4.39

cretization from Weickert et al. (2013) is preferable. For the derivation of the equivalent ResNet
architecture, we refer the reader to the supplementary material.

4.4 GENERALIZATION TO REAL WORLD DATA

We further tested the generalization capabilities of all methods to real world data using the
KITTI2015 (Geiger et al., 2012) optical flow dataset. This dataset provides accurate sparse mea-
surements obtained from registering LiDAR scans. Densifying these measurements resembles a
highly relevant application of our method for autonomous driving.

The original density of the measurements is between 15 − 25%. To measure the accuracy of our
reconstructed dense flow fields, we subsample according to our different density settings 1, 5 and
10%. After reconstructing the dense flow field, we then measure the accuracy of the previously
left out measurements and report the results in Table 3. Please note that we omit the Probabilistic
Diffusion method, since it is optimized for a specific image resolution and fails to generalize from
the square training images to the wide-angle setting in KITTI.

When looking at the numbers, the advantage in terms of robustness of all the PDE-based, neural
and neuroexplicit methods becomes apparent. The neural models fail to generalize to this new real-
world setting, as well as non-uniform mask distributions. This is consistent with the observations
from Figure 2. The results show that our method which combines neural and explicit components is
on-par with Laplace-Beltrami in terms of EPE, but has significantly fewer outliers especially in the
most challenging low density setting. Most likely, our method could still be improved by supplying
different non-uniform mask distributions during training to adapt to the setting in KITTI.

5 CONCLUSION AND FUTURE WORK

We studied discrete diffusion processes in a deep learning context and illustrated a novel approach
to steer the diffusion process by a deep network. We showed that our method can outperform both
model-based and fully data-driven baselines, while requiring less training data, having fewer param-
eters, generalizing better, being well-posed, being supported by a stability guarantee, and offering
competitive runtimes. Our work shows that combining general learning-based methods with spe-
cialized mathematical models can lead to performant hybrid networks that inherit the best of both
worlds, and motivates further research on neuroexplicit models.

In the current work, we only focus on the regularization aspect of optical flow. Future work will
be on embedding our diffusion regularization into an end-to-end optical flow algorithm. We ex-
pect that this will yield more interpretable methods with the benefits of stability guarantees, better
generalization and requiring less training data.

REFERENCES

Tobias Alt and Joachim Weickert. Learning integrodifferential models for denoising. In Proc. 2021
IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2045–2049,
Toronto, Canada, June 2021. IEEE Computer Society Press.

9

Under review as a conference paper at ICLR 2024

Tobias Alt, Karl Schrader, Matthias Augustin, Pascal Peter, and Joachim Weickert. Connections
between numerical algorithms for pdes and neural networks. Journal of Mathematical Imaging
and Vision, 65(1):185–208, jun 2022. ISSN 0924-9907.

Sarah Andris, Pascal Peter, Rahul Mohideen, Joachim Weickert, and Sebastian Hoffmann.
Inpainting-based video compression in FullHD. In A. Elmoataz, J. Fadili, Y. Quéau, J. Rabin,
and L. Simon (eds.), Scale Space and Variational Methods in Computer Vision, volume 12679 of
Lecture Notes in Computer Science, pp. 425–436. Springer, Cham, 2021.

Marcelo Bertalmío, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Image inpainting.
In Proc. SIGGRAPH 2000, pp. 417–424, New Orleans, LI, July 2000.

Folkmar Bornemann and Peter Deuflhard. The cascadic multigrid method for elliptic problems.
Numerische Mathematik, 75:135–152, 1996.

Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and Michael J. Black. A naturalistic open source
movie for optical flow evaluation. In Proceedings of the 12th European Conference on Computer
Vision - Volume Part VI, ECCV’12, pp. 611–625, Berlin, Heidelberg, 2012. Springer-Verlag.
ISBN 9783642337826.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
ferential equations. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, pp. 6572–6583, Red Hook, NY, USA, 2018. Curran Associates
Inc.

Yunjin Chen and Thomas Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast
and effective image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(6):1256–1272, jun 2017. ISSN 0162-8828.

Silvano Di Zenzo. A note on the gradient of a multi-image. Computer Vision, Graphics and Image
Processing, 33:116–125, 1986.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
Patrick van der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with
convolutional networks. In Proceedings of the 2015 IEEE International Conference on Com-
puter Vision (ICCV), ICCV ’15, pp. 2758–2766, USA, 2015. IEEE Computer Society. ISBN
9781467383912.

Irena Galić, Joachim Weickert, Martin Welk, Andrés Bruhn, Alexander Belyaev, and Hans-Peter
Seidel. Image compression with anisotropic diffusion. Journal of Mathematical Imaging and
Vision, 31(2–3):255–269, July 2008.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3354–3361. IEEE, 2012.

Christine Guillemot and Olivier Le Meur. Image inpainting: Overview and recent advances. IEEE
Signal Processing Magazine, 31(1):127–144, 2014.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1), 2017.

David Hafner, Peter Ochs, Joachim Weickert, Martin Reißel, and Sven Grewenig. Fsi schemes:
Fast semi-iterative solvers for PDEs and optimisation methods. In Pattern Recognition: 38th
German Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings 38,
pp. 91–102. Springer, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

10

Under review as a conference paper at ICLR 2024

Zhaoyang Huang, Xiaoyu Shi, Chao Zhang, Qiang Wang, Ka Chun Cheung, Hongwei Qin, Jifeng
Dai, and Hongsheng Li. Flowformer: A transformer architecture for optical flow. In Proceedings
of the 17th European Conference on Computer Vision – Volume Part XVII, pp. 668–685, Berlin,
Heidelberg, October 2022. Springer-Verlag. ISBN 978-3-031-19789-5.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox.
Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2462–2470, 2017.

Ferdinand Jost, Pascal Peter, and Joachim Weickert. Compressing flow fields with edge-aware
homogeneous diffusion inpainting. In Proc. 45th International Conference on Acoustics, Speech,
and Signal Processing, pp. 2198–2202, Barcelona, Spain, May 2020. IEEE Computer Society
Press.

Niklas Kämper and Joachim Weickert. Domain decomposition algorithms for real-time homoge-
neous diffusion inpainting in 4k. In Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 1680–1684. IEEE, 2022.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471, 2022.

Simon Masnou and Jean-Michel Morel. Level lines based disocclusion. In Proc. 1998 IEEE Inter-
national Conference on Image Processing, volume 3, pp. 259–263, Chicago, IL, October 1998.

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy,
and Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4040–4048, 2016.

Keith W Morton and David Francis Mayers. Numerical Solution of Partial Differential Equations:
An Introduction. Cambridge university press, 2005.

Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, jul 1990. ISSN 0162-
8828.

Lara Raad, Maria Oliver, Coloma Ballester, Gloria Haro, and Enric Meinhardt. On anisotropic
optical flow inpainting algorithms. Image Processing On Line, 10:78–104, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18, pp. 234–241. Springer, 2015.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, 62:352–364, 2020.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Informa-
tion Processing Systems, 35:36479–36494, 2022.

Christian Schmaltz, Pascal Peter, Markus Mainberger, Franziska Ebel, Joachim Weickert, and An-
drés Bruhn. Understanding, optimising, and extending data compression with anisotropic diffu-
sion. International Journal of Computer Vision, 108(3):222–240, jul 2014. ISSN 0920-5691.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Proceed-
ings of the 12th European Conference on Computer Vision – Volume Part II, pp. 402–419, Berlin,
Heidelberg, August 2020. Springer-Verlag. ISBN 978-3-030-58535-8.

11

Under review as a conference paper at ICLR 2024

Daniel Vašata, Tomáš Halama, and Magda Friedjungová. Image inpainting using wasserstein gen-
erative adversarial imputation network. In Artificial Neural Networks and Machine Learning –
ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia,
September 14–17, 2021, Proceedings, Part II, pp. 575–586, Berlin, Heidelberg, 2021. Springer-
Verlag. ISBN 978-3-030-86339-5.

Joachim Weickert. Theoretical foundations of anisotropic diffusion in image processing. In Pro-
ceedings of the 7th TFCV on Theoretical Foundations of Computer Vision, pp. 221–236, Berlin,
Heidelberg, 1994. Springer-Verlag. ISBN 3211827307.

Joachim Weickert. Anisotropic Diffusion in Image Processing. Teubner Stuttgart, 1998. URL
https://www.mia.uni-saarland.de/weickert/Papers/book.pdf.

Joachim Weickert and Christoph Schnörr. A theoretical framework for convex regularizers in pde-
based computation of image motion. International Journal of Computer Vision, 45(3):245–264,
December 2001. ISSN 0920-5691.

Joachim Weickert, Martin Welk, and Marco Wickert. L2-stable nonstandard finite differences for
anisotropic diffusion. In Scale Space and Variational Methods in Computer Vision, volume 7893,
pp. 380–391. Springer, 2013.

Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and Dacheng Tao. Gmflow: Learning
optical flow via global matching. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8121–8130, 2022.

12

https://www.mia.uni-saarland.de/weickert/Papers/book.pdf

Under review as a conference paper at ICLR 2024

A TRAINING DETAILS

In this section, we provide further details about the training procedure of our method. Unless other-
wise specified, these details also apply to the considered baselines we will discuss in later sections.

We evaluate our methods on a combination of two datasets. We train on the FlyingThings3D (Mayer
et al., 2016) subset that removes overly large displacements and evaluate on the Sintel dataset (Butler
et al., 2012). For both datasets, we use the final versions that include image degradations such as
motion or depth-of-field blur. As the evaluation metric, we choose the average Endpoint Error
(EPE), as it is customary for optical flow evaluation. While training, the mask is drawn from a
uniform distribution and binarized to adhere to the desired density. During evaluation, we use a
fixed mask for each image. To speed up the training, we use center-cropped images of size 384×384
pixels.

All methods are implemented in PyTorch and trained on an Nvidia A100 GPU. We trained the neural
networks for a total of 900,000 iterations using a batch size of 16. For the optimizer, we choose
Adam (Kingma & Ba, 2015) with the default parameter configuration β1 = 0.9, β2 = 0.999. We
use an initial learning rate of 0.0001 that is halved every 100,000 iterations after the first 300,000.

B IMPLEMENTATION DETAILS

In this section, we provide some additional implementation details of our methods.

The CNN architecture we use to estimate parameters to the diffusion process is a simple UNet (Ron-
neberger et al., 2015) architecture. Table 4 shows the layers and corresponding channel dimensions
in our Diffusion Tensor Module.

B.1 FAST-SEMI ITERATIVE SCHEME

In practice, enforcing the stability of an explicit scheme requires restricting the time step τ . However,
depending on the data, a stable scheme may require a substantial amount of iterations to converge.
Formulated as a neural architecture, this results in an excessive amount of layers and intractable
optimization. Fortunately, explicit schemes can be accelerated by extrapolating the outcome of each
time step, e.g. by the Fast Semi-iterative (FSI) Scheme proposed by Hafner et al. (2016). In contrast
to a naive discretization, FSI-schemes implement a cycle of L steps and extrapolate the diffusion
result at a fractional time step k + l−1

L :

uk+ l+1
L = γl(u

k+ l
L + τ(−K⊤(Φ(I, Kuk+ l

L))) + (1− γl)u
k+ l−1

L (10)

with l = 0, ..., L − 1 indexing the step and γl := (4l + 2)/(2l + 3) denoting the time-varying
extrapolation weights.

B.2 RESNET IMPLEMENTATION OF DIFFUSION EVOLUTIONS

As stated by Alt et al. (2022), a discretization of any higher order diffusion evolution can be formu-
lated as a variant of a ResNet (He et al., 2016) block. Alt et al. (2022) introduced their diffusion
blocks for nonlinear diffusion processes where the diffusion tensor is determined from the evolving
signal. To translate ResNet into diffusion blocks, we will follow their formulation and consider such
a diffusion process. However, in the following subsection we will show how to adapt these diffusion
blocks into the linear, image-driven diffusion process we considered as part of our ablation study.

Starting from the conventional version of a ResNet block, we are now constructing a nonlinear
diffusion process from it. To this end, we reintroduce the activation function we used in the main
section of the paper:

Φ(Ku) = g
(c∑
i=0

(Ku)i(Ku)⊤i︸ ︷︷ ︸
S

)
(Ku). (11)

Note the change in notation, where we removed the first argument that determines the structure
tensor. We do this, to make the translation into the ResNet block more intuitive.

13

Under review as a conference paper at ICLR 2024

Table 4: Architecture of the Diffusion Tensor Module

Encoder
Layer in-ch out-ch stride

cnv0 3 44 1

cnv1 44 44 2

cnv1_1 44 44 1

cnv2 44 88 2

cnv2_1 88 88 1

cnv3 88 176 2

cnv3_1 176 176 1

cnv4 176 352 2

Decoder
Layer in-ch out-ch input

dcnv4 352 176 cnv4

dcnv3 352 176 dcnv4+cnv3_1

dcnv2 264 88 dcnv3+cnv2_1

dcnv1 132 44 dcnv2+cnv1_1

dt4 352 5 dcnv4+cnv3_1

dt3 352 5 dcnv3+cnv2_1

dt2 264 5 dcnv2+cnv1_1

dt1 132 5 dcnv1+cnv0

A normal ResNet block can be written in the following form:

u = σ2(f +W2σ1(W1f + b1, y) + b2, y), (12)

with W1,W2 denoting the application of a convolution kernel, b1, b2 denoting the respective biases,
and σ1, σ2 denoting arbitrary activation functions, such as the ReLU (Nair & Hinton, 2010).

σ1(x) = τΦ(x), σ2(x) = x, W1 = K, W2 = −KT (13)

and with b1 = b2 = 0, we can transform our diffusion process into a ResNet architecture.

Notably, the convolution kernels share their weights since they implement the same operator K. In
practice, this is implemented by maintaining one kernel W that resembles the inner convolution.
The outer convolution kernel can be obtained by mirroring and negating W (Alt et al., 2022). When
dealing with more than one input channel, the PDE formulation suggests that inter-channel commu-
nication should only happen through the joint diffusion tensor in the activation and not the derivative
(e.g. the convolution). This behavior can be realized by implementing the convolution kernel W as
grouped convolutions (Krizhevsky et al., 2012) with an equal number of groups to channels.

When learning the finite difference operators in the diffusion block, stability of the diffusion process
can be harmed. To avoid this, Alt et al. (2022) suggested a weight normalization process that rescales
the convolution kernels after each optimization step. The stability assumptions hold, as long as the
maximal absolute eigenvalue of K is less or equal to 1. In practice, this constraint can be satisfied
by rescaling each grouped convolution by

√
C∥W ∥22, where C is the number of channels of the

considered signal u. For more information about diffusion blocks, we kindly refer the reader to the
original publication (Alt et al., 2022).

Table 5: All required convolution operators per diffusion block. The outer convolution is obtained
by mirroring around the center of the kernel and multiplying by −1.

W 1
x =

-1 1

0 0
W 2

x =
0 0

-1 1
W 1

y =
-1 0

1 0
W 2

y =
0 -1

0 1

B.3 DIFFUSION BLOCK FORMULATION OF OUR SCHEME

To translate our considered diffusion process into a ResNet-style architecture, we need to construct
the diffusion blocks that correspond to the discretization of Weickert et al. (2013) and adapt the
activation function shown in Equation 11.

Adapting the activation is straightforward. We only need to go back to our initial formulation in the
main section of the paper and let the diffusion block accept an additional input, which corresponds
to the structure tensor of the reference image. Since the reference image does not change during
the diffusion evolution, the diffusion tensor can be precomputed for each level in the coarse-to-fine

14

Under review as a conference paper at ICLR 2024

pyramid, allowing for a more efficient scheme. By accepting the reference image in the activation,
it brings us back to the original definition of the activation function Φ(I, Ku).

To design the diffusion blocks, we need to decompose the 3×3-stencil of Weickert et al. (2013)
into the individual finite difference operators. Weickert et al. (2013) propose a weighted average
of two 2×2 for each x− and y−derivative. Consequently, they leverage 4 total finite differences
per discrete gradient operator. Therefore, each diffusion block requires 4 convolution kernels. The
required kernels are shown in Table 5.

Let in the following D =

(
a b
b c

)
denote the considered diffusion tensor based on the reference

image I . The discrete divergence term is then implemented as

K⊤Φ(I, Ku) = w⊤Hw, (14)
where w := (W 1

xu,W
2
xu,W

1
yu,W

2
yu)

⊤. The construction of the matrix H introduces the dis-
cretization parameters α and β which will be used to weight the influence of the finite difference
operators:

H :=

1−α
2 a α

2 a
1−β
4 b 1+β

4 b
α
2 a

1−α
2 a 1+β

4 b 1−β
4 b

1−β
4 b 1+β

4 b 1−α
2 c α

2 c
1+β
4 b 1−β

4 b α
2 c

1−α
2 c

 (15)

In this formulation, the role of the discretization parameters also become more clear. α and β are
used to determine the relative importance of the diagonal and off-diagonal entries of the diffusion
tensor respectively. For more details about the discretization, we refer the reader to the original
publication of Weickert et al. (2013).

Although this scheme can be implemented very efficiently in its traditional form, translating it into a
diffusion block introduces a severe computational overhead. When considering the original stencil,
one diffusion step requires a single 3×3 convolution of the input signal. In the diffusion block
formulation where each finite difference operator can be learned, one diffusion step requires a total
of 8 2×2 convolutions. This does not only slow down the effective inference time, it also bloats the
computational graph severely when optimizing each convolution kernel. Since we also did not see a
meaningful performance benefit to learning the operators, we opted against the use of the diffusion
blocks in our final model.

C BASELINE DETAILS

C.1 EDGE-ENHANCING DIFFUSION INPAINTING

We implement the EED inpainting baseline in PyTorch using the same discretization of Weickert
et al. (2013). The reference images are normalized to the range [0, 1]. For faster convergence, we
use the Fast-Semi-Iterative (FSI) scheme (Hafner et al., 2016) and the same coarse-to-fine setup as
in our method. However, instead of a fixed number of iterations as in our learned approach, we let
each the inpainting process converge at each resolution. We determine a sufficiently converged state
by observing the relative residual and stop the inpainting once it has decreased below 10−6.

To make for a fair comparison with the deep learning methods, we optimize the free parameters λ, α
for each considered density on a subset of the training data and keep them fixed during evaluation.
Parameters are determined via grid search on 128 samples and we consider the best parameters as
the ones that minimize the EPE with the ground truth. Compared to the final evaluation, we stop
the inpainting during the parameter optimization once the relative residual decreased by 10−5. We
show the chosen parameter per resolution and the considered interval in Table 6

C.2 FLOWNETS TRAINING DETAILS

In the inpainting setting we start with a sparse initialization of correct displacements, whereas
FlowNetS (Dosovitskiy et al., 2015) needs to find identifiable correspondences given sequential
images. Consequently, with over 15.6 million parameters FlowNetS might be unneccessarily com-
plex for our inpainting task. In its original form, FlowNetS estimates the flow at a lower spatial

15

Under review as a conference paper at ICLR 2024

Table 6: Grid Search to determine the optimal EED-parameters for each density. Step denotes how
many evenly spaced values we consider within the search space.

Parameter 10% 5% 1% Search Space Step

λ 10−4 10−4 10−4 [10−6, 10−2] 9

α 0.1 0.3 0.42 [0.001, 0.5] 14

resolution and upsamples the initial estimation with bilinear interpolation. This was done to achieve
optical flow estimation in real time. Since runtime is not a critical factor for us, we extend the de-
coder to the full output resolution with two additional transposed convolution layers. The number of
channels per layer is reduced throughout the whole network, such that we end up with roughly 8.8
million learnable parameters.

To train the network, we follow mostly the same approach as discussed in A. In addition to that,
we added weight decay with weighting parameter 0.0004 and a deep supervision approach for
the loss as proposed in (Dosovitskiy et al., 2015). Concretely, this means that we predict a (low
resolution) flow at the last 4 layers in the decoder and compute the EPE with downsampled ver-
sions of the flow. All losses are aggregated as a weighted combination, where we used the weights
[0.32, 0.08, 0.04, 0.02, 0.01] going from coarse to fine resolution.

C.3 WGAIN TRAINING DETAILS

WGAIN (Vašata et al., 2021) does not adapt well to the flow setting in its original form. We noticed
extremely unstable training with diverging loss after a few hundred iterations. We suspect, that this
is due to the combination of dealing with (potentially large) flow values and the gradient clipping
introduced in (Arjovsky et al., 2017) and used in (Vašata et al., 2021). As a way of mitigating the
outliers in the flow, we divide the flow fields by 100 to largely contain them in the range of [−1, 1],
but keep the relative distribution the same. To stabilize the training, we replaced the gradient clipping
operation with a gradient penalty term (Gulrajani et al., 2017) in the training objective. As discussed
in (Gulrajani et al., 2017), we also introduce layer normalization (Ba et al., 2016) in the critic for
additional stability. The generator remained largely unchanged, with the exception of the removal
of the hard-sigmoid function after the output layer. We adopted the rest of the training procedure
from (Vašata et al., 2021), with the exception of using the EPE instead of the Mean Absolute Error
(MAE) and choosing λg = 1. The model was trained for the same number of iterations as our
method.

C.4 PROBABILISTIC DIFFUSION TRAINING DETAILS

With the exception of RePaint (Lugmayr et al., 2022), sparse mask inpainting with probabilistic
diffusion has rarely been addressed. Since RePaint is only applied during inference, any type of
PD model for conditional image generation can be used for our task. We chose the efficient UNet
architecture of Imagen (Saharia et al., 2022) and adopted their cascading image generation pipeline.
They propose to generate a low-resolution image initially and compose super-resolution models to
transform it to the desired resolution. In our case, we generate the initial image at resolution 96×96
and chain one super-resolution net to obtain the final flow at resolution 384×384.

Both networks obtain the reference image as conditioning signal and are otherwise trained for condi-
tional image generation. We used the proposed training parameters in (Saharia et al., 2022), but ob-
served suboptimal results and slow convergence during inference times. Consequently, we adopted
the novel training procedure from (Karras et al., 2022) which yielded more effective training and
significantly reduced the sampling time during inference. As can be seen in Table 7, this work adds
several parameters to control the noise distribution. We kept most of them the same as the optimal
parameters in (Karras et al., 2022), but we noticed some improvements by increasing σmax and
σdata.

During inference, we perform 48 sampling steps and apply the RePaint (Lugmayr et al., 2022)
inpainting at both resolutions. RePaint introduces two parameters, the number of resampling steps
and the jump length. In (Lugmayr et al., 2022) the jump length was introduced to avoid blurred

16

Under review as a conference paper at ICLR 2024

Table 7: Added hyperparameters for training and inference of our Probabilistic Diffusion baseline

Parameter Value Source
σmin 0.002 Karras et al. (2022)
σmax (120, 480) Karras et al. (2022)
σdata 1 Karras et al. (2022)
ρ 7 Karras et al. (2022)

Pmean −1.2 Karras et al. (2022)
Pstd 1.2 Karras et al. (2022)

Schurn 80 Karras et al. (2022)
Stmin 0.05 Karras et al. (2022)
Stmax 50 Karras et al. (2022)
Snoise 1.003 Karras et al. (2022)

Jump Length 1 Lugmayr et al. (2022)
Resampling Steps 45 Lugmayr et al. (2022)

outputs. However, we observed sharp edges with a jump length of 1 and therefore kept this parameter
fixed. The resampling steps, on the other hand, are more critical. They provide a tradeoff between
added runtime during sampling and increased conditioning on the known pixels. In (Lugmayr et al.,
2022) the masks were dense compared to our setting. We noticed that the proposed number of 10
resampling steps in (Lugmayr et al., 2022) yields poor inpainting quality with mask densities below
10%. To achieve competetive performance on low densities, we had to increase the number of steps
and lower the inference time even further. We show the additional parameters we used in Table 7.

17

Under review as a conference paper at ICLR 2024

REFERENCES

Tobias Alt, Karl Schrader, Matthias Augustin, Pascal Peter, and Joachim Weickert. Connections
between numerical algorithms for pdes and neural networks. Journal of Mathematical Imaging
and Vision, 65(1):185–208, jun 2022. ISSN 0924-9907.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning, pp. 214–223. PMLR, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and Michael J. Black. A naturalistic open source
movie for optical flow evaluation. In Proceedings of the 12th European Conference on Computer
Vision - Volume Part VI, ECCV’12, pp. 611–625, Berlin, Heidelberg, 2012. Springer-Verlag.
ISBN 9783642337826.

Alexey Dosovitskiy, Philipp Fischery, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
Patrick van der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with
convolutional networks. In Proceedings of the 2015 IEEE International Conference on Com-
puter Vision (ICCV), ICCV ’15, pp. 2758–2766, USA, 2015. IEEE Computer Society. ISBN
9781467383912.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. Advances in Neural Information Processing Systems, 30,
2017.

David Hafner, Peter Ochs, Joachim Weickert, Martin Reißel, and Sven Grewenig. Fsi schemes:
Fast semi-iterative solvers for PDEs and optimisation methods. In Pattern Recognition: 38th
German Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings 38,
pp. 91–102. Springer, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Proceedings of the 25th International Conference on Neural In-
formation Processing Systems - Volume 1, NIPS’12, pp. 1097–1105, Red Hook, NY, USA, 2012.
Curran Associates Inc.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471, 2022.

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy,
and Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4040–4048, 2016.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning, ICML’10, pp. 807–814,
Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18, pp. 234–241. Springer, 2015.

18

Under review as a conference paper at ICLR 2024

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Informa-
tion Processing Systems, 35:36479–36494, 2022.

Daniel Vašata, Tomáš Halama, and Magda Friedjungová. Image inpainting using wasserstein gen-
erative adversarial imputation network. In Artificial Neural Networks and Machine Learning –
ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia,
September 14–17, 2021, Proceedings, Part II, pp. 575–586, Berlin, Heidelberg, 2021. Springer-
Verlag. ISBN 978-3-030-86339-5.

Joachim Weickert, Martin Welk, and Marco Wickert. L2-stable nonstandard finite differences for
anisotropic diffusion. In Scale Space and Variational Methods in Computer Vision, volume 7893,
pp. 380–391. Springer, 2013.

19

	Introduction
	Contributions
	Related Work

	Inpainting with Explicit Diffusion
	Definition of Diffusion Inpainting
	Edge-Enhancing Diffusion
	Discretization

	From Explicit to Neuroexplicit Flow Inpainting
	Coarse-to-Fine Diffusion Inpainting
	Discretization
	Learning the Diffusion Tensor

	Experiments
	Network and Training Details
	Reconstruction and Generalization
	Effects of Learned Components
	Generalization to Real World Data

	Conclusion and Future Work
	Training Details
	Implementation Details
	Fast-Semi Iterative Scheme
	ResNet implementation of Diffusion Evolutions
	Diffusion Block formulation of our Scheme

	Baseline details
	Edge-Enhancing Diffusion Inpainting
	FlowNetS Training Details
	WGAIN Training Details
	Probabilistic Diffusion Training Details

