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The power of visual language models is showcased in visual understanding tasks, where
language-guided models achieve impressive flexibility and precision. In this paper, we ex-
tend this capability to the challenging domain of image matting by framing it as a soft
grounding problem, enabling a single diffusion model to handle diverse objects, textures, and
transparencies, all directed by descriptive text prompts. Our method teaches the diffusion
model to ground alpha mattes by guiding it through a process of instance-level localization
and transparency estimation. First, we introduce an intermediate objective that trains the
model to accurately localize semantic components of the matte based on natural language
cues, establishing a robust spatial foundation. Building on this, the model progressively
refines its transparency estimation abilities, using the learned semantic structure as a prior
to enhance the precision of alpha matte predictions. By treating spatial localization and
transparency estimation as distinct learning objectives, our approach allows the model to
fully leverage the semantic depth of diffusion models, removing the need for rigid visual pri-
ors. Extensive experiments highlight our model’s adaptability, precision, and computational
efficiency, setting a new benchmark for flexible, text-driven image matting solutions. The
code is available at https://github.com/xty435768/TeachDiffusionMatting,
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Figure 1: We propose to teach a single diffusion model capable of handling various matting tasks using
task-specific text guidance (shown below each sample) with keywords marked in bold. By introducing
language-driven priors, we unify diverse matting tasks into a soft grounding framework. Our novel pipeline
for teaching the text-to-image diffusion model achieves state-of-the-art performance on this challenging
problem.

1 Introduction

Image matting is a longstanding and foundational task in computer vision, aimed at extracting a foreground
object from an image and estimating the transparency of each pixel. Traditionally, this process is modeled
by the following equation (Porter & Duff] |1984)):

I=aF + (1 —a)B, (1)

where only the input image I is known, while the alpha matte «, foreground F', and background B col-
ors are unknowns. Solving this ill-posed problem has led researchers to develop various priors, including
trimaps (Levin et al.l |2007; Xu et al., [2017; [Yao et al.l 2024a)), background estimates (Lin et al., [2021)),
binary masks (Yu et all 2021; [Huynh et al. |2024), and user-provided inputs (Ye et al.| |2024; |Li et al.
2024b)).

However, these visual-level priors present limitations in many matting scenarios. For instance, trimaps
require substantial annotation efforts, while the background and binary masks are unsuitable for dynamic
scenes without temporal information. Additionally, interactive inputs are generally limited to static settings
and lack generalizability for complex textures in natural image matting (see the upper-right example in
Fig. . Thus, there is a strong need for a unified and user-friendly approach.

Recently, visual-language approaches have achieved significant progress in dense visual prediction
tasks (Gavrilyuk et al.l 2018} [Ye et al., [2019; |Luo et all 2020; Wu et al.| 2022)). Notably, text-to-image dif-
fusion models like Stable Diffusion (SD) (Rombach et al., |2022)) have enabled tasks such as open-vocabulary
panoptic segmentation (Xu et al., 2023a)) and referring image segmentation (Zhao et al.| |2023al) by lever-
aging capabilities for semantic differentiation and cross-modal attention. This is a significant advancement
over previous visual-language models like CLIP (Radford et al.| [2021)), which primarily focus on image-level
similarity and do not effectively capture the pixel-level correspondences required for tasks like matting.
The rich and powerful internal features along with the interpretable cross-attention maps naturally encode
pixel-level visual-language priors, making SD a promising candidate for matte grounding tasks through
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Figure 2: Visualization of features from SD (Rombach et all, [2022) and CLIP (Radford et all [2021)) (left)
and cross-attention maps in SD (right). SD exhibits strong semantic differentiation in its features and cross-
modal attention maps, with both inter-correlation and intra-consistency.

natural language guidance, combining the expressive and intuitive nature of language with the strong prior
knowledge embedded in the SD model. As visualized in Fig. 2] SD’s semantic representations show strong
differentiation and consistency both within and across object regions, making it especially well suited for
the fine-grained demands of advanced alpha matte estimation, which often has to resolve multiple similar
objects and complex transparency patterns without relying on rigid priors such as trimaps, masks, or user
interactions.

This raises a natural question: can this prior knowledge be applied effectively to alpha matting? Unlike
standard visual grounding tasks that typically produce binary masks for object identification, alpha matting
requires both precise object localization and fine-grained transparency estimation, with the alpha value
a € [0,1] in Eq. accurately predicted. We define this unified approach as soft grounding, addressing
both instance-level localization and transparency simultaneously for more adaptable and nuanced matting
applications.

While SD holds significant potential, directly adapting it for soft grounding tasks introduces challenges due
to the simultaneous requirements of localization and transparency estimation. Semantic localization relies
on high-level semantic understanding, whereas transparency estimation depends on fine-grained, low-level
details. Jointly optimizing these sub-tasks within a single model often results in performance trade-offs due
to their competing objectives. Previous adaptations of SD for portrait matting (Xu et al., 2024a; [Wang
rely on the assumption of a prominent, easily distinguishable foreground object, which simplifies
localization. However, this assumption is often invalid in more complex scenarios involving multiple objects
or intricate transparency patterns, such as those encountered in natural image matting (Fig. , which
complicate the separation between foreground and background. Therefore, directly applying SD may yield
suboptimal results due to the increased difficulty in resolving both localization and transparency.

In this work, we propose a framework to teach SD to ground alpha mattes with any user prompts. Rather
than attempting to estimate the alpha matte directly, our approach introduces an intermediate objective that
initially guides the model to localize semantic components of the alpha channel. Once this “teacher” model is
trained for localization, we introduce a distillation process where a “student” model leverages the teacher’s
learned semantic information to progressively refine transparency estimation. This sequential framework
ultimately enables accurate alpha matte prediction with minimal post-processing.

This approach offers two primary advantages. First, by avoiding continuous fine-tuning of the teacher model
for transparency estimation, we preserve much of its pretrained semantic knowledge, maintaining a clear
distinction between localization and transparency tasks. Second, the strong semantic foundation established
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by the teacher model enables us to employ a more computationally efficient student model, enhancing the
practicality of this approach for real-world applications.

Our main contributions are as follows:

¢ We unify various matting tasks into a soft grounding problem, leveraging the Stable Diffusion model’s
visual-language capabilities.

e« We introduce a distillation framework that teaches SD to ground alpha mattes by disentangling
instance-level localization and transparency estimation, enhancing performance in scenarios involv-
ing multiple objects or complex transparency.

e This framework enables optimization of the student model’s structure, improving computational
efficiency for practical applications.

¢ Extensive evaluations demonstrate that our method outperforms multiple baselines in soft grounding
tasks, achieving competitive speed and generalizing well across different matting categories.

2 Related Work

2.1 Alpha Matte Grounding

Due to the inherent ambiguity in image matting, most existing methods rely heavily on trimaps as prior
guidance (Levin et al.l [2007; He et al., |2011; |Chen et al., 2013; |Xu et al., [2017; Hou & Liu, 2019; Park|
let al [2022; [Wang et al.l [2023b} [Yao et al., 2024a; Xu et al., [2023b; [Hu et all) 2024). However, generating
accurate trimaps that can distinguish foreground, background, and unknown regions is costly and time-
intensive. Consequently, recent research has focused on exploring alternative priors, including background
information (Lin et al. 2021} Sengupta et al.,|2020), binary masks (Park et al.,[2023; |Yu et al., 2021} Huynh
let al 2024} [Sun et al., 2022} |Li et al., 2024a; Yang et al [2025)), in-context priors (Guo et al., 2024), and
interactive inputs such as points, bounding boxes, and scribbles (Wei et al.l 2021} [Yang et al., 2022} [Yaol
let al [2024b; [Ye et al., 2024} [Li et al., 2024b; Xia et al., 2024).

Text-based priors, which offer more flexible and intuitive guidance by dynamically and autonomously iden-

tifying matting objects, have also been investigated. For instance, Li et al. (Li et all 2023a)) introduce
CLIPMat, which is the first text-based matting method leveraging a pre-trained CLIP model (Radford

to integrate visual and textual features for matting. Xu et al. further enhance
the feature fusion approach based on . However, since CLIP was designed for cross-modal
similarity across entire images, it struggles with the high semantic precision and detailed requirements of
pixel-level matting. In contrast, our method is based on a text-to-image diffusion model that provides
pixel-level visual-language priors and robust semantic differentiation, making it more suited to the nuanced
demands of image matting.

2.2 Diffusion Models for Image Matting

Diffusion models have shown great potential in a variety of applications, including generative tasks (Rahman
et al., [2023} [Shi et al., 2024; Blattmann et al.| [Brooks et all, 2023} [Ruiz et all 2023}
2023a)) and dense prediction tasks (Ji et al., [2023} [Zhao et al., [2023a; Xu et al., [2023a} [Lee et al., 2024}
et al.l [2024a; Burgert et al.| [2023). Some studies have applied the prior knowledge encoded in these models
to image matting tasks.

Guo et al. (Guo et al. leverage the in-context correspondence priors within Stable Diffusion (Rombach|
@ , using guidance from a reference image to perform matting of the same object across different
scenes. Wang et al. (Wang et all |2024) approach matting as a generative task, applying denoising over
multiple time steps and fine-tuning the model to predict the alpha matte. However, these methods depend
on forecasting alpha mattes directly, limiting their effectiveness to matting a single object and often resulting
in inefficiencies due to the high computational cost of diffusion models.
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Figure 3: Overview of the pipeline of our model, with unimportant operations and blocks omitted for clearer
illustration. Motivated by the goal of disentangling two learning objectives, we first adapt the diffusion
model to a sub-objective of instance-wise localization of semantic components of the alpha matte (blue part
on top-left). Next, we propose a distillation framework ( part on the right) to distill the localization
information from the teacher model (€J) into the student model (5 ) using the Semantic Guidance Loss (Lsc)
based on internel features, while encourage eg to simultaneously explore the transparent related information
via the Transparency Mining Loss (Lstm, LoTMm) based on attention maps 60 learns to predict the coarse
alpha matte o!” and the transparent confidence map R to further enhance o!” into « at full resolution (

part on bottom-left).

Alternatively, some methods operate directly in pixel space by diffusing a disturbed trimap (Xu et al.|
2023b) or pure noise (Hu et al., 2024) until a clean alpha matte is produced. Li et al. (Li et all [2024c])
extend this approach to latent space, introducing modified self-attention to better model matting context.
However, these approaches rely heavily on a trimap as conditioning input, limiting their flexibility in practical
applications.

3 Method

3.1 Overview

Problem Formulation. Given an input image I € REXW*3 and a foreground text expression 7, our goal
is to teach the Stable Diffusion (SD) model soft grounding and predict the alpha matte o € [0, 1]H*Wx1 in
a single step.

Network Design. Our framework is illustrated in Fig. To teach the SD model to ground the alpha
matte, we disentangle the soft grounding problem into two sub-objectives using an intermediate objective,
soft semantic grounding, along with a distillation framework. First, the original diffusion model is trained to
localize the semantic components of the target alpha matte (see Sec.[3.2.1). Then, an asymmetric distillation
framework with two tailored objectives guides the model to refine transparency estimation while preserving
the localization capability learned in the initial stage (see Sec. . This approach ensures effective task
disentanglement. Moreover, the distillation framework enables the adoption of a computationally efficient
model for soft grounding, improving its practicality (see Sec. . Using the soft grounding results and
output features from the well-taught diffusion model, the matting decoder can readily predict the final
full-resolution alpha matte (see Sec. . We discuss our proposed paradigm below.
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3.2 Soft Grounding Teaching

3.2.1 Soft Grounding in Semantic

We first teach the diffusion model to address an intermediate task: localizing each semantic component of
the target alpha matte. This is achieved by fine-tuning the denoising U-Net (eg) starting from the original
weights of SD. Specifically, taking the latent code z; := £(I) at a resolution of % X % and the corresponding
linguistic features f7 as conditional input, € is fine-tuned to distinguish the semantic regions of alpha matte
(the foreground, background, and transparent regions) and to predict classification results for each region.
The results are represented as sy € {0, 1}%X%X3 of I. To achieve this, we replace the last latent prediction
head in the original €y with a new head comprising two groups of ConvBNReLU layers to predict s;. The
linguistic features fy are generated by the frozen CLIP text encoder (Radford et al., [2021) and further
refined using a two-layer MLP text adapter, inspired by |Gao et al.| (2024). We train the model to predict

classification probabilities p; € [0, 1}%X%X3 for each channel in s; by minimizing the cross-entropy loss
,CCEI 3
Low == s&rlog(pf), (2)
c=1

where sgp represents the GT region representation, obtained by applying morphological operations to the

GT alpha, and p§ denotes the classification probability for the c-th channel in s;. We denote the fine-tuned
T

€p as €, .

3.2.2 Soft Grounding in Transparency

After the convergence of training 6(7;, our next goal is to further explore transparency information based
on €} until achieving soft grounding. A straightforward approach would be to fine-tune € to predict
transparency directly. However, this presents two key challenges. First, fine-tuning 69T for transparency
estimation risks disrupting its well-learned semantic knowledge. Second, the computational cost of €] is
typically high, limiting its practicality for soft grounding. To address both challenges, we propose a novel
soft grounding distillation framework. This framework fully exploits the strong semantic guidance embedded
in the intermediate features of the pre-trained eg while enabling the student model (eg ) to refine transparency
estimation in the corresponding alpha matte. As a result, eg is expected to gain full capabilities for solving the

H W
soft grounding problem. For implementation, eg is trained to predict a coarse alpha matte /" € [0,1]% 3 x1
and a transparent confidence map R € R%X%Xl, which indicates regions that may be transparent. These
outputs are then used for further upsampling and refining o/” to a. Next, we introduce two key losses to

effectively guide this distillation process.

Strong Semantic Guidance Loss. Inspired by Kim et al.| (2024), we introduce a feature-level distillation
loss Lga, to ensure that the semantic representation of the student model eg)q closely aligns with that of the
teacher model eg, at an intermediate feature level, formulated as:

Lsc =) Mo F, — Mo eF);, 3)
l

where FL denotes the intermediate feature of €] at layer [ (and similarly, F for the student model). Here,
M is a binary mask with foreground and background regions set to 1 and other regions set to 0. M ensures
that semantic supervision dose not interfere with the exploration of transparency details. The symbol ®
represents the Hadamard product. The projection module ® aligns the intermediate features of the two
models, accounting for differences in their feature spaces due to distinct learning objectives. It consists of 3
learnable convolutional layers (Cv) and an intermediate LeakyReLU layer, defined as:

O(F) = Cvas(Cvaxs(LeakyReLU(Cvi i (F)))). (4)

Transparency Mining Loss. To further encourage eg to explore transparency details, we aim to extract
and mine potential transparency information from eg. We begin with the self-attention maps of eaT, a critical
component for modeling intra-object consistency. Since €] possesses well-learned semantic knowledge of
alpha, the implicit transparency information used to identify such regions can serve as transparency cues,
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guiding eg to further refine transparency details. Given the self-attention map A := SoftMax(Q{/? L)

derived from feature f, we introduce a self-attention-based transparency mining loss Lgry, to constrain
affinities specifically related to the alpha matte. To accomplish this, we propagate the GT alpha, agr,
using the averaged self-attention map, A g4, computed across all self-attention layers at the same resolution.
This propagation is performed via matrix multiplication (Aga ® agr). We then minimize the difference
between the propagated results of the teacher and student models. The rationale is as follows: Aga acts
as a transition matrix, while agr represents the current state. Their matrix multiplication transforms the
current state into a resulting state. By constraining this resulting state, we indirectly regulate the a-related
affinities within the self-attention map. This approach enhances the exploration of transparency details
without incurring significant computational overhead, as it avoids constraining the entire self-attention map.
We formulate Lgym as follows:

Lstv = ||[AS, ® acr — A, ® acr|f3, (5)

where ® denotes matrix multiplication (not element-wise multiplication). Note that agr is down-sampled to
the corresponding resolution using bilinear interpolation to satisfy the requirements for ®. We also extract
potential transparency cues from the text expression using a similar cross-attention map distillation loss
Loy, which directly constrains the cross-attention maps between eg and eeT, formulated as:

Lorm = ||AGA — A2 43 (6)

For implementation, all attention maps are grouped by resolution and averaged to compute the loss. The
final attention distillation loss is then calculated as the mean of the losses across all resolutions.

Total Objectives. In addition to the two key losses described earlier, we incorporate an L1 loss to train
a!” and a binary cross-entropy (BCE) loss to train R. These are defined as follows:

Lor =o' = adirlls, (7)

R

—

— 1
Lr= —Mlog(m) — (1= M) log(

—), 8
) (5)
where O‘ZT represents the down-sampled GT alpha matte, and M:i=1-Misa binary mask that indicates
transparent regions. The final objective, Eeg, used to train eg , is formulated as:

Les = AstmLstm + AcrmLorm + AscLsa + AgirLoir + ArLR, 9)

where the \ coefficients are hyperparameters that balance the contribution of each loss term.

3.3 Structural Optimization on ¢;

In our distillation framework, Lgg provides strong supervision signals to preserve localization knowledge by
directly minimizing discrepancies in the semantic content of internal features. This highlights a key advan-
tage of our approach: achieving a balance between maintaining performance and enhancing computational
efficiency (see Sec. . To fully exploit this advantage, we apply two primary structural optimization
techniques to the vanilla eg (which initially shares the same architecture and parameters as €2 ): block
pruning and self-attention optimization.

Block Pruning. We prune redundant blocks from the vanilla student model following Kim et al.| (2024)),
resulting in a model with fewer parameters. Guided by Lgg, the performance degradation caused by this
pruning is effectively mitigated. Additionally, the other loss terms encourage the student model to further
assimilate soft grounding knowledge.

Self-Attention Optimization. The self-attention mechanism in Transformer blocks is a critical compo-
nent for modeling long-range dependencies. However, the matrix multiplication operations in self-attention
are computationally expensive, resulting in an overall time complexity of O(n?d + nd?), which becomes
particularly burdensome at higher resolutions. Nevertheless, the soft grounding task has more relaxed accu-
racy requirements, as the learned outputs (a/” and R) provide sufficient flexibility to tolerate errors in the
subsequent alpha enhancement process. Inspired by this, we propose that the self-attention operation can
be optimized into a more computationally efficient form by learning asymmetric sparse correspondences.
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Specifically, we argue that the dense affinity matrix derived from the self-attention map A ¢ can be simplified
into a unidirectional sparse representation. To achieve this, we can learn a smaller set of representative
feature tokens and use their affinities to approximate the affinities between the original feature tokens and
others within a relatively small region. Thus, we introduce a learnable down-sampling operation ¢, which is
applied to f when calculating K and V (i.e., K® = Wgo(f), VS = Wy é(f)), while Q remains unchanged.
¢ can be implemented using a single convolution layer with a kernel size and stride of k x k, where k is
chosen from {21 < i < logyh A}?}, and h AS denotes the height of the square matrix A? , theoretically. The

quantitative analysis of the reduction in computational cost can be found in the Appendix. Note that Lsym
contributes to preserving intra-object cohesion and textural information within the optimized self-attention
mechanism.

3.4 From Soft Grounding to Alpha Matte
To up-sample /" from a resolution of % X % to aat H x W, we adopt the detail encoder-decoder structure
proposed in |Yao et al.| (2024a)). The encoder takes the concatenation of (I, !, R) as input to extract detail
features. Before that, o!” and R are interpolated to match the resolution of I, and R is processed through a
sigmoid function. The detail features from the encoder’s final layer are concatenated with features extracted
from eg and then passed to a decoder to predict the final alpha matte a. For more efficient training, we freeze
eg and train only the parameters of the encoder and decoder. Additionally, a single learnable ConvBNReLU
block is applied to the output features from eg before concatenation to align the feature spaces. This process
is supervised using an L1 loss and a Laplacian loss following |Li et al.| (2022).

Extend to High-resolution Inference. We implement a simple upsampling module based on sparse
convolution (Contributors, 2022)), integrated with the matting decoder, to enable inference at arbitrary high
resolutions (up to 2K). This sparse convolution approach effectively reduces computational cost and memory
usage during the upsampling process.

4 Experiment

4.1 Implementation Details

Data Acquisition. The data used to train our model comprises 4 matting datasets (RefMatte (Li et al.
2023a)), P3M10K (Li et al., 2021al), AM2K (Li et al.l|2022), RM1K (Wang et al., |2023b)), and 1 grounding
segmentation dataset (RefCOCO (Kazemzadeh et al., |2014])). Considering there are no text annotations for
P3M10K, AM2K, and RM1K, we adopt BLIP2 (Li et al.,|2023b) to generate text annotations for each sample
in these datasets by guiding the BLIP2 model to describe the appearance of the object in the image. For
samples from RefMatte and RefCOCO during training, we randomly select one expression for each object
if multiple expression annotations exist for the same object. Since there are no matting-level annotations
for RefCOCO, we first generate the pseudo trimap according to the mask annotations using morphological
operations, then use [Yao et al.| (2024a) to obtain alpha annotations.

Training Details. All stages of our model’s training process adopt a consistent data scheduling strategy.
Specifically, we train the model on RefMatte during odd-numbered iterations and on RefCOCO in every even
iteration. We also insert a special iteration after every 4 iterations to perform training on P3M10K, AM2K,
and RM1K. We randomly select 1 dataset among the 3 to train our model in this special iteration. We set the
kernel size of the morphological operation to 15, and we set (AgTm, AcTM, AsG, Aairs Ar) to (10,0.1,0.5,10, 1).
The timestep input of the SD model is set to 1.0 during both training and inference, which is consistent
with previous works (Zhao et all 2023a; [Lee et al., [2024; | Xu et al., [2024a)). This setting can transform the
multi-step SD model into a deterministic single-step perception model effectively. Other training settings,
including batch size, learning rate, total iterations, and rationales behind setting As, can be found in the
Appendix.

Details about Optimized eg . To thoroughly evaluate our proposed framework, we adopt the most extreme
pruning scheme proposed in [Kim et al.| (2024) to build €}, i.e.the tiny setting, which removes 5 blocks in the
encoder and 5 blocks in the decoder, and removes the entire middle block in €y. For optimizing self-attention
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(SA), we directly remove all SA layer at resolution of 64 x 64 following |Zhao et al.| (2023b), and set the k
value for SA layers at 32 x 32 and 16 X 16 (k3o2, k1g2) as kgo2 = kg2 = 2.

4.2 Evaluate Metrics

Following |Rhemann et al. (2009), we adopt 4 matting metrics for evaluation, including SAD, MSE, Gra-
dient Error (GRAD), and Connectivity Error (CONN). These metrics are scaled by 103, 1073, 103, 103,
respectively. Lower values indicate better performance across all metrics.

4.3 Comparison on Soft Grounding

Baselines. To comprehensively evaluate our model’s performance, we compare it with three types of
baselines.

o Text-guided matting methods. We select CLIPMat (Li et al., 2023a) as a fundamental base-
line, which solves the soft grounding problem directly and shares similar settings with ours. Since
CLIPMat is currently closed-source, we re-implement it and use the same training settings as ours.

e Visual grounding with interactive matting methods. We select the representative Ground-
ingDINO (GDINO) (Liu et al., [2024b) as the visual grounding method, which produces the bounding
box of the foreground object according to the text input. Then we select 3 recent interactive mat-
ting methods to obtain the alpha given the bounding box, including MatAny (Yao et al., 2024b)),
MAM (Li et al.,|2024b), and SmartMat (Ye et al., [2024)).

e Grounding segmentation with mask-guided matting methods. We also select the latest
grounding segmentation method PSALM (Zhang et al., 2024 and the SD-based referring segmen-
tation method RefVPD (Zhao et al.l |2023a)) to generate a mask for the foreground object based on
text input. We then apply two mask-guided matting methods to derive the alpha matte from the
mask, including MaGGIe (Huynh et al., [2024) and MGMat (Yu et al., [2021]).

For fairness, all baselines with cascaded structure, including the visual grounding part (except PSALM and
GDINO) and matting part, are aligned to our training data through fine-tuning. Note that PSALM and
GDINO are trained on very large-scale datasets. We attempted to fine-tune them directly on our relatively
small-scale training dataset, but this yielded poorer results. Consequently, we use their original weights for
further comparison.

Note that among all matting components in the baselines (including MatAny, MAM, SmartMat, MGMatting,
and MaGGle), only MaGGle was trained for human matting exclusively, while the others natively support
natural image matting. Although MaGGle is trained for human matting, its network architecture does
not incorporate specific optimizations tailored exclusively for human subjects. Furthermore, the authors of
MaGGle demonstrated its strong zero-shot generalization capabilities on non-human matting tasks in their
paper, indicating that MaGGIe can adapt to natural image matting to some extent.

Benchmarks. We apply two referring natural matting benchmarks, including RefMatte-Test (Li et al.,
2023a)) and RefMatte-RW100 (Li et al., 2023a)), for soft grounding evaluation. Here, the former is a com-
position dataset (6,243 instances among 2,500 images) and the latter is a real-world dataset (221 instances
among 100 images). Every instance in these two benchmarks has 4 different expressions, so we evaluate all
baselines and ours using all expressions and report the average result among these 4 expressions. During
evaluation, the input resolution for all methods is set to 512 x 512, and the metrics are also calculated on this
resolution. We also report the average inference time per sample in milliseconds, using the same machine
with a single RTX 3090.

Quantitative Results. We show the quantitative comparison on soft grounding in Tab. [I} We found a sig-
nificant performance gap between CLIPMat and ours since the feature and cross-modal prior within SD model
make it easier to solve the soft grounding problem compared with CLIP. Our model also achieves the best
performance on most of the metrics compared with the cascaded baselines, even when training data is aligned
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Table 1: Comparison on soft grounding task. Our model outperforms all baselines on two referring
natural image matting benchmarks (RefMatte-Testset and RefMatte-RW100) with faster inference time,
demonstrating the effectiveness and practicality of our method.

Methods RefMatte-Testset RefMatte-RW100 Inference

; SAD| MSE|/ GRAD| CONNJ| | SAD] MSE|/ GRAD|/ CONN{ | Time] (ms)
Grounding Model GDINO+MatAny 15.52  0.0561 8.41 3.61 19.92  0.0727 9.57 7.71 984.57
i Intera(:ti\; Matting GDINO+MAM 15.16  0.0552 8.92 4.59 16.96  0.0626 8.56 10.78 496.30
GDINO+SmartMat | 11.69  0.0403 7.91 1.78 16.91  0.0616 9.30 5.54 122.29
CGounding PSALM+MaGGle 8.71 0.0299 7.63 2.67 9.90 0.0349 §.24 3.75 287.79
Seementation Model PSALM-+MGMat 8.55 0.0301 7.02 2.57 9.41 0.034 6.83 3.81 272.21
n Mixsk—guidcd Mattine RefVPD+MaGGle 9.01 0.0308 8.36 3.23 11.41  0.0399 9.64 5.63 220.79
© | RefVPD+MGMat 8.98 0.0315 7.89 3.33 10.32  0.0374 7.66 5.37 205.21
Soft Grounding CLIPMat 26.56  0.1181 14.84 8.15 35.12  0.1951 21.01 18.97 102.74
© Ours 3.19 0.0098 3.55 1.69 7.37 0.0264 6.55 5.31 95.14

GD+ GD+ PS4+ PS4+
MatAny MAM SmartMat MaGGle MGMat MaGGle MGMat

Image GT CLIPMat Ours

Figure 4: Qualitative comparison on soft grounding task. The text inputs from top to bottom are: 1)
the insect which is darkgray; 2) the white and non-salient and transparent net; 3) a modern-designed glass
with a black frame; 4) the red chair made of wood.

among all matting networks. Notably, with all training data aligned, our model still achieves significant per-
formance improvement comparing with two strong baselines (RefVPD+MaGGle and RefVPD+MGMat).
This evidence highlights that the performance gains primarily stem from our novel soft grounding prob-
lem modeling and the distillation framework, demonstrating the importance of our proposed algorithm to
the performance gain. Moreover, although adopting PSALM, which is based on Large Multi-modal Model
(LMM) for grounding segmentation, can obtain lower connectivity error on RW100 benchmark, the other
three metrics are still worse than ours and have relatively high inference time. Instead, our framework can
teach a structure-optimized model to achieve the best performance with lower inference time, showing the
effectiveness of our proposed framework.

Qualitative Results. Some qualitative comparisons are shown in Fig. Without properly modeling soft
grounding, cascading-based baselines often perform poorly with incorrect semantic and low-quality details
as shown in the first two rows. Although some baselines adopt SAM (Kirillov et al [2023) or LMM (Liu
et al.l 2024a), they still show sub-optimal performance on soft grounding in the real-world (last two rows).
More comparison results can be found in the Appendix.

4.4 Comparison on Generalization Ability

Introducing text prior can unify various matting tasks into soft grounding. To evaluate the generalization
ability of our model on such fine-grained matting tasks, we select several specialist methods in their own task
to compare with our model quantitatively (Tab.[2). All baselines here are directly applied using the officially
released weight, and our model is tested without task-specific tuning. All the metrics are calculated in full
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Table 2: Quantitative comparison on generalization ability across different matting tasks. Top-2
results are marked in bold and underlined. Task-specific methods only perform well on their own task, while
ours can generalize to various matting tasks using text-based guidance without fine-tuning.

AM2K P3M-P RefMatte-Test
Method Type (animal) (portrait) (referring natural)
SADJ MSE] SADJ MSE] SADJ MSE]
GFM (Li et al.| [2022) animal 12.08 0.0035 | 347.44  0.2001 239.33 0.1335

P3M-VIiTAE (Ma et al.l|2023) | portrait 40.43 0.0204 6.59 0.0015 | 290.05 0.1616
GenPercept (Xu et al.[2024a)) | portrait 19.04 0.0049 11.02 0.0025 269.50 0.1456
_AIM (Li et al,, [2021b) natural | 28.25 0.0101 45.41 0.0207 | 336.76 0.1840

Ours 13.81  0.0045 | 9.53  0.0030 | 24.19  0.0112

5 S “4s) jv s

P3M-ViTAE GenPercept

Image GFM (animal) (portrait) (portrait)

AIM (natural) Ours

Figure 5: Qualitative comparison on generalization ability across different matting tasks. The
text inputs used in ours are (from top to bottom): 1) mother and daughter in field at sunset; 2) a jaguar is
sitting on top of a rock; 3) the works which are thistle and non-transparent.

resolution. For all test samples in these benchmarks, we fixed the prompt input of ours as “the foreground
person” for P3M-P and “the foreground animal” for AM2K. This ensures that the input conditions for our
model and the baselines are consistent, enabling a fair comparison. We found that although the baselines
excel in their designated tasks, they often lack generalization and struggle with referring matting across
diverse categories. In contrast, our model, leveraging a text prior, generalizes effectively to various matting
tasks, though it slightly lags behind task-specific experts in their respective domains. Most importantly, our
model shows unrivaled performance on referring natural matting tasks, where other baselines falter. We also
showcase some qualitative results in Fig. [l We found GFM and P3M lack generalization, while GenPercept
and AIM predict over-smoothed alpha. All of them have poor performance on the soft grounding task.

4.5 Ablation Studies

To fully demonstrate the necessity of our key design and modules in our model, we conduct following
ablation studies via different training settings and quantify results in Tab. [3] using RefMatte-RW100 as the
benchmark.

Problem Disentanglement. First, directly training SD for soft grounding proves highly challenging,
resulting in suboptimal performance (row 1) compared to a disentangled formulation.

Knowledge Distillation (KD). Next, we explore a two-stage approach where SD is pre-trained for local-
ization and then fine-tuned for soft grounding (row 2). This significantly improves performance but remains
inferior to our complete KD framework (row 5). These results highlight the importance of preserving se-
mantic knowledge and explicitly separating the two sub-objectives. Furthermore, fine-tuning a lightweight
65 without KD leads to a substantial performance drop (row 3), underscoring the critical role of KD in
maintaining a balance between efficiency and performance.
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Table 3: Ablation studies. For instance, (eg’ , SG) means training €} on soft grounding task. “e(,T’*nj -
63 @ denotes the distillation framework. e*g is structural optimized to lightweight in row 276.

7 ’(Iggilgff:%i?ugsding, Local.=Localization) l\éf"]:t) SAD| MSE| GRAD] CONN{
1 (eg/ , SG) 17.50 0.0645 9.45  8.27
2 (63, , Local.), then fine-tune (e g" SG) 9.75 0.0375 7.89 6.48
3 (eg[ , Local.), then fine-tune (e g’ SG) 13.27 0.0487 9.01 6.73
4|( Tf' , Local.), (eeTfrf s @ , SG) 15.96 0.0534 9.26  7.55
5/(7®, Local.), (I%+-eS i ,SG) v 7.63 0.0267 6.98  5.35
6/(7®, Local), (1% -691' e) v v | 7.37 00264 655 531
7 (egf' , Local.), (egT# -5 (w/o. Opti.)f' ,SA)|v v | 6.30 0.0223 5.52 4.33

Multi-instance Low-light Overlappin

SAEE P

W

‘\‘ A

two women in the pzcture

: 2
“the man wearing sweater” a man wn light color shirt”
Figure 6: Robustness Evaluation. Our method demonstrates strong performance across a variety of
challenging scenarios.

Other Network Components We also observe that removing the feature projection module (®) confuses

€5 during distillation, as €} and €; have distinct learning objectives, leading to degraded performance (row 4).
Add1t10nadly7 integrating a dedicated matting encoder and decoder (Mat. E-D) (row 6, complete framework)
further improves the quality of the predicted alpha matte.

Structural Optimization. Lastly, we evaluate the impact of structural optimization. While the vanilla eg
without structural optimization (row 7) achieves higher performance, its inference time is significantly longer
(143ms per image under the same setting in Sec. . Although there is a slight performance degradation,
our framework effectively teaches the lightweight model to achieve impressive performance with a much lower
inference time, it is important to note that our optimized model still outperforms most baseline methods, as
demonstrated in our evaluations (see Tab. , validating the effectiveness of our framework in modeling soft
grounding. Furthermore, the optimized student model achieves a significant 33.46% reduction in inference
time (from 143ms to 95.14ms). This reduction is particularly valuable in practical applications, such as
mobile devices, where lower computational requirements enhance user experience. In future work, we aim
to explore more advanced optimization strategies to achieve real-time matting while further minimizing
performance degradation.

Moreover, with the same number of parameters, comparing with simply inheriting the SD model (row 1), our
complete framework (row 7) achieves a significant performance improvement, demonstrating the importance
of our proposed algorithm to the performance gain.

More ablation studies on hyperparameters, objectives, and SD versions are provided in the Appendix.

4.6 Robustness Evaluation and Limitations

Given accurate and well-structured text prompts, our model demonstrates strong robustness against various
typical disturbances (see Fig. @ However, like all prompt-based systems (Zhang et al., [2025; [Wu et al.
2025 (Qu et al., [2025; |Wen et al, 2025)), it is susceptible to vague or ambiguous prompts, which can degrade
performance (see Fig. . Future work could explore prompt engineering techniques or adaptive guidance
strategies to enhance robustness and flexibility across a broader range of matting scenarios.
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_Input image Input image Ours
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Figure 7: Some failure cases of our method caused by ambiguous prompts
Input image aT DiffMatte (Hu et al.| |2024) DiffMatte (Hu et al., |2024) Ours

(Given manual trimap) (Given segmentation-morph trimap)

Figure 8: Qualitative comparison with pixel-space diffusion matting method DiffMatte. The text
inputs of ours are (from top to down): 1) a beautiful young woman with a short wavy hair; 2) a beautiful
young woman with long brown hair and blue eyes; 3) a woman with headphones on looking out at the ocean.
DiffMatte heavily relies on carefully annotated manual trimaps to produce accurate alpha mattes, while our
method only needs text prompts and can achieve comparable performance, despite the latent-space diffusion
structure may lead to minor detail loss.

Besides, inheriting biases from pretrained Stable Diffusion models is another inherent limitation of our
approach. These biases may impose an upper bound on our model’s ability to interpret complex prompt
content, as this capability is constrained by the pretrained model’s understanding of such prompts. For
instance, SD models often struggle with concepts requiring precise counting, such as prompts like “the
eleventh person from the left”, leading to difficulties in accurately interpreting such positional information.
Additionally, biases may adversely affect performance in handling images with challenging conditions, such
as those with highly complex lighting or shadows, potentially limiting the general applicability of our model.
These limitations stem from the SD model itself. However, we emphasize that the primary focus of our
work is not to perfect the diffusion backbone but to effectively adapt it for a novel task. This distinction
underscores the unique and significant contributions of our approach in leveraging pretrained models for
targeted applications. We also note that future advancements in vision-language models with advanced both
prompt and visual understanding capabilities could further enhance progress in soft grounding tasks, and we
look forward to such developments. In addition, some structures in SD designed specifically for generation
tasks (such as downsampling in VAE) may cause accuracy loss in matting tasks, although our Stage 3 is
designed to alleviate this as much as possible. However, compared to pixel-space diffusion matting models
(e.g., DiffMatte (Hu et al., [2024), see Fig , which strictly rely on perfect manually annotated trimaps to
predict high-quality alpha mattes, our model achieves comparable performance in matting accuracy using
only text prompts as guidance, demonstrating better practicality and flexibility of our approach in real-world
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applications. We expect that future work will integrate VAE with lossless image compression technology to
more effectively address this problem.

Also, inheriting biases from training data may affect our model. For example, the matting model currently
used as a tool for labeling GT alphas in RefCOCO may produce labeling errors in some certain situations,
or the overall training data may not cover certain visual scenes with extreme lighting or environmental
conditions. This will affect the generalizability of our model. We look forward to future developments in
referencing image matting datasets that are larger, cover more real-world scenes, and have more accurate
annotations to support progress on the soft grounding problem.

5 Conclusion

In this paper, we unified various matting tasks as a soft grounding problem, addressing both instance-level
localization and transparency estimation using the visual-language capabilities of Stable Diffusion. Instead
of directly training SD, we introduced a distillation framework that separates localization and transparency
tasks, improving performance in complex scenarios with multiple objects or intricate transparency patterns.
This framework also enables a more efficient student model, balancing complexity and accuracy. Extensive
evaluations demonstrate our method’s effectiveness, with competitive speed and strong generalization across
diverse matting categories.

Broader Impact Statement. Our method advances text-guided image matting but could be misused
for image manipulation or deepfakes, thus we encourage responsible use in creative applications. Besides,
since our method leverages pretrained diffusion and vision-language models, it may inherit and amplify biases
present in the training data. These biases could manifest as unequal performance across demographic groups
or systematic failures in underrepresented categories. Future research should carefully evaluate and document
such biases, and explore mitigation strategies such as balanced data curation, prompt robustness analysis,
or bias-aware training objectives. Moreover, the performance of our method is inherently sensitive to text
prompts, and vague or ambiguous prompts can lead to degraded or unintended results. This raises potential
concerns about fairness and reliability when the system is deployed in practical settings. To address this,
future work may incorporate adaptive prompting strategies, human-in-the-loop corrections, or uncertainty
estimation mechanisms to ensure more robust and transparent usage.
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6 Appendix

6.1 Analysis of Self-Attention Optimization

Here, we compare the computational overhead of vanilla self-attention (SA) and the proposed sparse self-
attention (Sp.SA) within the framework of our method. Complexity of Vanilla SA. Let n represent
the number of input tokens and d the dimension of the token embedding. The computational complexity
of a single SA operation—i.e., the total number of addition and multiplication operations (Oga)—can be
calculated as follows:

_ 2 2 2 2 2
Ogsa =2nd” x 3+ 2n“d+ n* +3n“—1+2n°d
Q, K,V QK (Vd)-1 Softmax AV (10)
= 6nd? + 4n’d + 4n° — 1

For instance, given the input feature f, computing @ involves multiplying f € R"*¢ and Wy € R4*¢
resulting in n x d x d addition operations and n x d x d multiplication operations. Hence, the total number
for calculating @Q is 2nd?. The same applies to the computations of @ - K and AV. Additionally, since the
normalization (x(v/d)~!') and Softmax operations act on an n x n matrix, their complexities are n? and
2 2 2 2 . =
-1 =3n° -1 tivel
n +(n )+ n n , respective I

exponential addition division

Complexity of Optimized SA. As mentioned in Sec. 3.3 in the main paper, introducing the down-
sampled convolution ¢ with kernel size and stride both equal to k x k results in K and V* with a sequence
length k2 times shorter than the original K and V. Let j (j = k?) be the scale factor of this operation; the
corresponding complexity Ogp.sa is given as:

*FLOPs for exponential operation can be seen as 1 due to common instruction optimization and hardware acceleration
rather than using repeating multiplication.
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Ospsa = 2nd> + 2><%><d2><2 +2ndx?+nx%

Q — —_— =
K3, VS with ¢ applied Q- -K° (Vd)~t
n n .n
+3nx ——142nx —xd+ jX—-xdxd (11)
J J J
Softmax AVS Convolution operation ¢
4 An2d  4n?
:(3+f)nd2+7.+7.*1
J J J

In this work, we set k3s2 = kg2 = 2 for SA layers at resolutions of 32 x 32 and 16 x 16 respectively, with
number of channels d3s2 = 640, d1g2 = 1280. Then, the fraction of complexity reduction is calculated as:

Osp,SA(n = 322,d = 640,j = 22)
OSA(TL = 322,d = 640)
Ospsa(n =16%d = 1280, = 2%)
Oga(n = 162,d = 1280)

~ 0.4515

(12)
~ 0.6176

The results show that the proposed Sp.SA can reduce the computational complexity by 54.85% and 38.24%
for the SA layers at 32 x 32 and 16 x 16 resolution, respectively. Given the same j, the complexity reduction
is more significant for the SA layer with a longer sequence length, which aligns with the intuition that the
computational overhead of SA is proportional to the square of the sequence length.

6.2 More Details on Data Curation
6.2.1 Annotation Models Choice

For generating caption annotations, we select a common VLM (BLIP-2 (Li et all 2023b)) to do this. Since
captions were generated exclusively for the P3M10K, AM2K, and RM1K datasets, which are trimap-free
matting datasets where the most salient object is unambiguously the foreground. Generating captions to
describe the foreground in these datasets is a straightforward task for modern VLMs (including BLIP-2).
Moreover, the BLIP-2 model was selected for its balance of usability, accuracy, and prevalence in the matting
domain. It has been successfully used in prior work (Wang et al., [2024)) to generate captions for matting
datasets, demonstrating its effectiveness in this context.

For generating GT alpha mattes for the RefCOCO dataset, which contains only segmentation-level annota-
tions, we employed ViTMatte (Yao et al., 2024a) to advance our model’s training by producing matting-level
annotations. The RefCOCO dataset primarily includes highly opaque objects (e.g., person, animals, tables),
where the variance in unknown region of GT mattes is inherently low. Consequently, the choice of matting
model has minimal impact on the resulting mattes. ViTMatte was selected for its balance of annotation
efficiency and quality.

6.2.2 Quality Control

For generated captions, since modern VLMSs have achieved superior performance in generating captions for
images, the simplicity of this task ensures that errors, if any, are minimal and do not significantly impact
training, as the captions only need to capture key foreground characteristics. Consequently, no additional
quality control measures were necessary beyond the inherent reliability of these datasets and the robustness
of BLIP-2 in this context.

For generated GT alpha mattes, considering certain classes in RefCOCO (e.g., bottles) include both trans-
parent and opaque objects, and their associated prompts often lack explicit transparency indicators (e.g.,
the word “transparent” is rarely used). To ensure annotation accuracy and avoid confusing the model during
training, we excluded samples from these ambiguous classes. Additionally, some classes (e.g., bicycles) have
segmentation annotations that lack fine-grained texture details (e.g., spokes in bicycle wheels), leading to
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low-quality GT alpha mattes. These samples were also removed to maintain the accuracy of the model’s
learning process and avoid ambiguity.

6.2.3 Data Pre-processing

All the images are resized to 512 x 512 for training in all stages. For composition samples from RefMatte (Li
et al.|2023a), we use the same augmentation strategy as in|Li et al.| (2022)) to reduce the discrepancy between
synthetic and real data.

6.3 More Details on Training

Rationals of Hyperparamter Setting. For the kernel size of the morphological operation K., we set
it to 15 to balance overestimation (if too large) and underestimation (if too small) of the transparent region,
aligning with common practice in matting methods. For the cross-attention loss Loy, we use sum reduction
to address the presence of many zero matrices in the cross-attention maps (e.g., padding tokens), leading to
a smaller Acry of 0.1. During training, Lgrym and L, are relatively small, while Lgg is larger under mean
reduction. To balance these, we set (AsTMm, Aatr, Asa) to (10, 10,0.5).

Training Hyperparameters. We show the training parameters in Tab. 4. We adopt AdamW (Loshchilov
& Hutter}, |2019)) as the optimizer with weight decay as 0.01. All the training work is done on NVIDIA A100
80GB GPU(s). For the scheduler, we adopt a LambdaLR scheduler with several specified milestones. When
the milestone is not reached, we use the lambda function f(z) = (1 — ——=%-—~—)%? to adjust the learning

" ‘total iterations
rate. Otherwise, the learning rate is directly adjusted to the preseted value.

Table 4: Hyperparameters for all training stages.

Trainine St Initial Total Total Scheduler Scheduler GPUs Learnable Training
TAIning Stage Learning Rate  Iterations Batch Size Value Milestone (A100) Parameters Time

Soft Grounding 5e-5 50000 32 [0.5,0.25]  [15000, 40000] 4 861M 18.5h
in Semantic

Soft Grounding 5e-5 50000 32 [0.4,0.25]  [10000, 35000] 2 509M 20.7h

in Transparency

From Soft Grounding
to Alpha Matte 4e-4 50000 16 [0.1, 0.05]  [10000, 35000] 1 2.67™M 12.7h

Clarification on Baselines Fine-tuning. Here we provide more clarification regarding the baselines fine-
tuning. First, it is well-known that fine-tuning models pretrained on large-scale datasets with small-scale
datasets can lead to performance fluctuations (Zhang et al., |2020; Mosbach et all |2020; Fu et al., 2023),
particularly when the training details (e.g., crucial hyperparameters settings and training techniques) during
fine-tuning differ significantly from those used in pretraining, or when the model is with high complexity.

For Grounding DINO (Liu et al., 2024b), as its training process is currently close-source, we could only
attempt fine-tuning based on the training details provided in its paper. However, we observed that fine-
tuning resulted in inferior performance compared to using the pretrained weights. We attribute this to
discrepancies in the training approaches comparing with its undisclosed settings.

For PSALM (Zhang et al., [2024]), we attempted fine-tuning based on its publicly available training code but
found the performance to be unstable and degraded. We believe this is due to the high model complexity
(PSALM uses an LLM as its backbone), which amplifies the challenges of fine-tuning on small-scale datasets.

In contrast, for Stable Diffusion (SD) (Rombach et al., [2022), we argue that its advantage lies in the superior
interpretability of its internal features and attention maps, which exhibit strong semantic differentiation, as
discussed in Sec.[I} This property provides SD with a unique prior advantage when fine-tuned on downstream
tasks supported by small-scale datasets, an advantage not shared by LLM-based methods like PSALM.
Furthermore, numerous prior works (Zhao et al.| [2023a; [Lee et all 2024; |Xu et al., 2024a; (Guo et al.l 2024;
Wang et al., 2024) have provided practical support for fine-tuning SD models on various dense prediction
tasks, making this approach more mature. Therefore, we believe that SD offers distinct advantages for the
soft grounding task.
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6.4 More about Sparse Up-sampling Module

The design of the sparse up-sampling module is inspired by the progressive refinement decoder proposed in[Yu
et al.[(2021)), consisting of two groups of interpolation-convolution groups. All the vanilla convolutional layers
are replaced by sparse convolutional layers (Contributors, |2022)) in the up-sampling module. The input of
each group is the concatenation of the up-interpolated alpha matte and the context feature from the matting
decoder (all with a resolution of 512 x 512), along with the original image at the target resolution. The
sparse convolution layer performs calculations only on areas where the alpha matte value is greater than
0.01 and less than 0.99. To train the module, we attach it to the pre-trained matting decoder and train the
entire network using the same loss function as the matting decoder. The learning rate of the module is set
to 2e — 4, and the total number of iterations is set to 10,000 with a batch size of 16.

6.5 More Robust Analysis

Here, we provide more robust analysis of our model given inaccurate prompt and under complex application
scenarios.

6.5.1 Quantitative Analysis on Susceptibility of Noisy/Ambiguous Prompt

To quantitatively assess the influence of noisy and ambiguous prompts on our model’s performance, we
conducted following ablation study via embedding-level disturbance. This study uses the RefMatte-RW100
dataset as the test benchmark. First, for each text prompt in the dataset, we generated two variants version
using GPT-4: a noise version and an ambiguous version. Specifically:

» Noisy Prompt (7,,): We instructed GPT-4 to remove all nouns and their corresponding adjective
descriptions from the original prompt 7, thereby producing a noisy version that lacks key semantic
content and contains only useless function words.

o Ambiguous Prompt (Tgms): We instructed GPT-4 to retain only nouns related to object cate-
gories, discarding all additional descriptive terms, thus creating an ambiguous prompt with reduced
contextual specificity.

To precisely quantify the impact of 7., and 7gms on model performance, we performed measurements at
the linguistic embedding level. The linguistic features corresponding to the original prompt (f7), noisy
prompt (f7,,), and ambiguous prompt (fr,,,) were extracted. We then injected the features of the noisy
and ambiguous prompts into the original prompt’s feature in a controlled manner, producing interpolated
features ffrny and fr. .. These interpolated features were used in place of f for subsequent inference.

The degree of feature injection was controlled by two interpolation parameters, 3,y and Bqms, which allowed
us to systematically evaluate the impact of noisy and ambiguous prompts. Mathematically, the feature
interpolation process is defined as:

fﬁz,y = (1 - /Bny)fT =+ Bnyany: fTamb = (1 - ﬁamb)f?’ + BambfTums - (13)

Here, Bny, Bams € [0, 1] control the extent of noisy or ambiguous feature injection, with 5 = 0 corresponding
to the original prompt’s feature and 8 = 1 corresponding to the fully noisy or ambiguous feature.

We tested several values of 3, and B4mp and quantified the experimental results, as shown in Tab.

Our findings indicate that the model’s performance is relatively robust to small perturbations from noisy
and ambiguous prompts. For both 8., and Bums at 0.2, the degradation in performance is modest. At
Bny = Bams = 0.4, the performance decline becomes more noticeable. However, a significant drop in
performance is observed when 8, or Bqms reaches 0.6 or higher. Notably, noisy prompts tend to have a
more severe impact on performance compared to ambiguous prompts, particularly at higher 8 values, as
evidenced by the larger increases in these metrics.
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Table 5: Ablation Study on Susceptibility of Noisy/Ambiguous Prompt.

Bny | SAD] MSE| GRAD| CONNJ] Bamb | SAD, MSE| GRAD] CONNJ
0 7.37 0.0264 6.55 5.31 0 7.37 0.0264 6.55 5.31

0.2 8.87 0.0321 7.14 6.23 0.2 8.47 0.0306 6.99 5.89

0.4 12.90 0.0474 9.17 7.03 0.4 14.03 0.0517 9.47 6.55

0.6 23.29 0.0867 18.11 12.83 0.6 26.15 0.0976 19.86 13.69
0.8 40.29 0.1510 31.03 19.24 0.8 34.55 0.1385 23.96 16.35
(a) Performance with Noisy Prompts (Bny) (b) Performance with Ambiguous Prompts (Bqms)

6.5.2 Qualitative Analysis on More Complex Scenarios

Although our model is susceptible to noisy and ambiguous prompts, it demonstrates strong robustness in
more complex scenarios when the prompt is accurate. In Fig.[9]below, we present additional robust qualitative
evaluations that clearly support the model’s resilience under more challenging conditions, including multiple
objects, instruction-containing prompts, and images with more intricate spatial relationships. Furthermore,
while using LLM-based paraphrasing for prompt enhancement can partially mitigate this limitation, we
believe that a more effective solution lies in incorporating prompt engineering into the network architecture
or training process, or exploring adaptive guidance strategies to further improve robustness, which is beyond
the scope of this paper. While not with in our scope, addressing this challenge presents an interesting
research direction that we leave to future work.

ih
“Three people in the picture are taking a selfie.
Try matting them out together in one output.”

“There are some players in the picture, two of
them are wearing orange uniforms. Please extract
both of them out in one single matte.”

“a person with a vine on his shoulder” “the man with brown clothes”

Figure 9: More Qualitative Robust Evaluation. Despite some minor prediction artifacts, our model
still demonstrates strong robust performance under more complex application scenes.
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6.6 More Ablation Studies

Loss Functions. We also explore the effect of each loss adopted in the distillation process in Tab. [f] using
RefMatte-RW100 as the benchmark. Since Lgg is the key loss for semantic guidance from €6, omitting it
will lead to a significant performance drop. Lsrm and Loy also evidently improve the final performance,
demonstrating the effectiveness of transparency exploration and retention of attention information for the
optimized eg . Furthermore, the learned transparent confidence map R via Ly also facilitates the matting
E-D in predicting more accurate alpha mattes.

Table 6: Ablation study on different losses.
r Lsag Lstm Lctm £Lr | SADL MSE| GRAD| CONNJ

L

(e

v 14.26  0.0465 8.95 7.09
v v 8.40 0.0297 7.25 6.11
v v v 8.13 0.0284 7.06 5.98
v v v v 7.96 0.0279 6.91 5.80
v v v v v 7.37 0.0264 6.55 5.31

Caption Annotation Model. As discussed in Sec. [6.2.1] our training process of our model is not sensitive
to the choice of captioning model. To further verify this, we conduct following ablation study. We replace
BLIP-2 with Qwen2.5-VL (Bai et al., 2025)), a comparable multi-modal LLM, to generate the caption for
the training samples without caption annotation. For consistency, we used the same prompt (“Describe the
foreground in the picture, including its clothing, appearance, or behavior.”) for both models. The quantitative
results (using RefMatte-RW100 as the benchmark) are presented in Tab. m The evaluation metrics show
very negligible differences between the two models, indicating that our method is robust to the choice of
captioning model.

Table 7: Ablation study on caption annotation model.
Models for Caption Annotation | SAD] MSE] GRAD] CONNJ|

BLIP-2 (Li et al., [2023b) 7.37 0.0264 6.55 5.31
Qwen2.5-VL (Bai et al., 2025)) 7.36 0.0261 6.56 5.29

GT Alpha Matte Annotation Model. As discussed in Sec. to annotate GT alpha matte for
RefCOCO dataset, the choice of matting model has minimal impact on the resulting alpha mattes. Other
matting models could be substituted with similar outcomes. To validate this, we conducted an ablation study
by replacing ViTMatte with DiffMatte (Hu et al., |2024)) to annotate GT alpha mattes for RefCOCO and
retrained stage 2 and stage 3 of our model. We also use RefMatte-RW100 as the benchmark for evaluation.
The results, shown in Tab. [§] indicate very negligible performance differences across the evaluation metrics,
demonstrating the robustness of our method to the choice of matting model.

Table 8: Ablation study on GT alpha matte annotation model.
Model for GT Matte Annotation | SAD] MSE] GRAD] CONNJ

ViTMatte (Yao et al., [2024a)) 7.37 0.0264 6.55 5.31
DiffMatte (Hu et al., [2024) 7.37  0.0265 6.54 5.31

Self-Attention Optimization Kernel. We further evaluate the impact of using different kernel sizes k
for the down-sampled convolution ¢ in the optimization of SA at various resolutions. Our default setting
removes SA layers at a resolution of 64 x 64 (denoted as kg2 = —1) and sets kgo2 = k162 = 2. Therefore, we
attempt to increase the kernel size at resolutions of 32 x 32 and 16 x 16, and also try restoring SA layers at
a resolution of 64 x 64 with kg42 = 2 instead of removing them entirely, resulting in three different settings.

In Tab. @ we report the quantitative results of these three settings (the last three rows) alongside our
default setting (the first row), using RefMatte-RW100 as the benchmark. The inference time per sample is
also evaluated, following the same setup as in Sec. 4.3 of the main paper. We found that using a larger
kernel size at resolutions of 32 x 32 and 16 x 16 can lead to performance degradation, as the over-optimized
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Table 9: Ablation study on kernel size k in Self-Attention Optimization. Here -1 means remove
the SA layers directly.

keyz kso2 kyg2 |SAD) MSE|, GRAD| CONN| Tlﬁfe(‘;g;
-1 2 2 7.37 0.0264 6.55 5.31 95.14
-1 2 4 8.57 0.0301 7.24 6.05 94.90
-1 4 2 | 765 00272 670 554 94.69
2 2 2 | 713 00255 637 519 | 130.03

w. Sparse Module

mage w/o. prse
Figure 10: Qualitative ablation comparison of the sparse up-sampling module (SUM). The text
inputs for the examples from left to right are: 1) a lion yawning with its mouth open; 2) a spider web is
shown. SUM preserves more high-frequency textures, resulting in a clearer alpha matte.

SA layers lose their ability to capture global context and intra-object cohesion information. This effect is
particularly noticeable at a resolution of 16 x 16, where increasing k causes a significant performance drop.
Moreover, the running time is not substantially reduced in either case. We also found that restoring SA
layers at a resolution of 64 x 64 with kg42 = 2 yields only marginal improvements while significantly slowing
down the model.

Sparse Up-sampling Module. We conduct the ablation study of the sparse up-sampling module on
the RefMatte-Test dataset in full resolution, which consists of more natural image matting samples. The
quantitative result is shown in Tab. We found that three metrics (SAD, MSE, GRAD) are improved with
the sparse up-sampling module, while the CONN metric is slightly higher. This is mainly because an over-
smoothed alpha leads to a lower connectivity error value. We then show the qualitative comparison in Fig[I0]
Despite the higher connectivity error, SUM can produce clearer alpha with finer details, demonstrating the
effectiveness of this module in extending our model to arbitrary high-resolution inference, with more accurate
matting texture preserved compared with direct up-sampling.

Table 10: Ablation study on sparse up-sample module (SUM).
SAD] MSE] GRAD] CONNJ

Ours (w/o. SUM) | 2487 0.0114  16.43 12.58

Ours (w. SUM) 24.19 0.0112 14.94 12.91

Hyperparameters. We analyze the impact of hyperparameters in the training process using RefMatte-
RW100 as the benchmark (see Tab. . We evaluate three alternative settings and find that our default
configuration (row 1) consistently outperforms them, demonstrating its effectiveness.

Stable Diffusion Versions. To further assess the generalizability of our framework, we apply our method
to teach two additional versions of Stable Diffusion (SD v2.0 and SD v2.1) for soft grounding while keeping
all other experimental settings unchanged. The evaluation results on RefMatte-RW100 (see Tab. show
that compared to our default setting (SD v1.5), SD v2.x achieves better performance, highlighting the broad
applicability of our approach.

Moreover, we also notice that recent SD models are emerged for advanced visual generation, such as
SDXL (Podell et al.l |2023) and SD v3.x series (Esser et al. 2024)). SD3.x employs MMDIiT, a pure
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Table 11: Ablation study on hyperparameters.

Ast™M  AoTM  AsG Agir Ar_ Kmor || SAD] MSE] GRAD| CONNJ
10 0.1 05 10 1 15 737 0.0264 6.55 5.31
10 0.1 05 10 1 5 9.32  0.0354 857 6.61

1 0.1 0.5 1 1 15 7.65  0.0271 6.63 5.32
10 0.1 1 10 1 15 741 0.0268 6.55 5.29

Table 12: Ablation study on Stable Diffusion (SD) version.

SD version | SAD| MSE] GRAD] CONNJ|
SD v1.5 7.37 0.0264 6.55 5.31
SD v2.0 6.50 0.0232 6.72 4.98
SD v2.1 6.18 0.0219 6.42 4.70

transformer-based model, as the denoising network, and SDXL incorporates a more complex multi-scale
generation structure. Due to these substantial architectural differences from the UNet architecture (com-
prising residual and attention layers), and given that our method is tailored for UNet-based SD models, we
acknowledge that our framework cannot yet be directly applied to these transformer-based SD models.

Nevertheless, we emphasize the advantages of UNet-based SD models for downstream tasks supported by
relatively small-scale datasets, such as our soft grounding problem. UNet-based networks benefit from the
inductive bias of convolutional layers, which is particularly suited for small datasets and dense prediction
tasks like soft grounding. In contrast, transformer-based denoising networks (e.g., MMDIT in SD3) excel in
long-term modeling for image generation but rely on large-scale training data and may not be as effective
for downstream tasks with limited data. In future work, we plan to explore adapting transformer-based
SD models to address our soft grounding problem. However, we also highlight that UNet-based SD models
possess unique advantages for transfer to dense prediction tasks.

6.7 Towards Video Instance Matting

Leveraging text prior enables us to easily extend our model to video instance matting, since the language is
also capable of describing a series of frames. We show the qualitative comparison of our model and several
strong baselines on video instance matting in Fig. [[I} Without any temporal modeling or fine-tuning, our
model can still produce high-quality results on video sample with given text input. Our model is also robust
to multi-instance environments and camera viewpoint changes, which demonstrates the powerful practicality
of our model in real-world applications. More video instance matting results can also be found in the
supplementary video file.

6.8 Generalization on Non-photographic Data

We further evaluated the generalization ability of our model on several non-photographic images, including
animation-style and oil painting-style samples. Although the objects in these samples tend to have clearer
boundaries compared to real-world images, they also exhibit markedly different textual characteristics and
lighting effects. Since our training data consisted entirely of photographic images, these samples are consid-
ered out-of-distribution (OOD) for our model. Nevertheless, as shown in Fig. guided by textual input,
our model still demonstrates strong generalization on these samples, highlighting its robustness and practical
applicability in more diverse scenarios.

6.9 Computational Complexity Comparison

We compare the computational cost of our model with 4 baselines with competitive performance in Tab.
with number of parameters, GMac, GFlops, and average GPU memory usage as metrics. Our method
has both the lowest model size and computational cost among them, demonstrating the efficiency of ours
comprehensively.
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Input frames GDINO+MatAny GDINO+SmartMat PSALM+MaGGle RefVPD+MG

“the woman in gray clothes dacing”

A A
+ PR

“the woman in pink dancing”

wearing suit”

S

il Gl

“the left zebra”

Figure 11: Qualitative comparison on video instance matting. The corresponding text inputs are
shown in dtalic below every video clip. The frames are placed following the temporal order in the original

video from top to down.
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“the girl with dark hair

« :, . ) 2, ”
the girl with pink hair on left and black clothes”

Input Image “the woman on left” “the male with black clothes on right”

Figure 12: Qualitative results of our model on several non-photographic images (animation and
oil painting). The corresponding text inputs are shown in italic below every sample. Our model shows
strong out-of-domain generalizability on such data.

Table 13: Computational complexity comparison.

Number of Average GPU Memory
parameters (M) | GMACs)  GFLOPs| Usage (MiB) |

PSALM+MGM 1617 1430 2859 23372
RefVPD+MGM 929 959.4 1919 7806
PSALM+MaGGle 1617 1429 2858 23236
RefVPD+MaGGle 930 958.9 1918 7670
Ours (w/o. optimization) 861 902.3 1805 7914
Ours 429 769.7 1539 6474

6.10 More Qualitative Results

In Fig. [[3] we show more qualitative comparison results on RefMatte-Test and RefMatte-RW100. Our
model outperform other baselines both on synthetic and real-world datasets, demonstrating the superior
performance of our model in grounding alpha matte from text descriptions. We also show more qualitative

results on portrait and animal matting (Fig. [[4). The text inputs are generated by BLIP2 (Li et al., 2023D)).
The results further validate the generalization ability of our model on different matting tasks.
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GD+ GD+ GD+ PS+ PS+ RV+ RV+ CLIPMat o
MatAny MAM  SmartMat MaGGle MGMat MaGGle MGMat @ urs

’ 4 [ | 4 ; s
" “\ {
“the hotpink and salient and non—transiarent industrial ilant”

“the thistle and non-salient and transparent mass”
“the coral and non-salient and non-trans arengnn
LN
e flower which is maroon and non-transparent”
v 2ANY BT *

2

“the lavender and transparent water spra

“the linen and non-transparent dandelion”

“the individual is wearing a black jacket and b

Image GT

lue jeans”

7

“the gainsboro and non-salient nettin

T

“the long haired woman weam’ni a orange dress and a ilasses 7

“q woman in black t-shirt”

“a black doi on its tiitoe 7
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Iy 'l _t
“a women that wears a dark green jacket and has brown hairs”

Figure 13: More qualitative comparisons on soft grounding task. The text inputs are shown in italic
below. Zoom in for better view.
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Ground Truth

Image Ground Truth

n oman standing on the beach talking” » - . . »
and siand. 4 Mm a black and white cat with green eyes
c - - - e . . o

“amur leopard”

“a woman wearing a denim jacket and a mask”

& ¥
-..;/ ’ -
“ N ’ 7

“a woman in the spotlight”

in front of a

in the sun”

“a man and woman standing in a forest”

“a woman with a blank face is standing in front of a building” “a horse with a long mane”

Figure 14: Qualitative results of our model on portrait (left) and animal (right) matting. Zoom
in for better view.
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