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Abstract

The power of visual language models is showcased in visual understanding tasks, where
language-guided models achieve impressive flexibility and precision. In this paper, we ex-
tend this capability to the challenging domain of image matting by framing it as a soft
grounding problem, enabling a single diffusion model to handle diverse objects, textures, and
transparencies, all directed by descriptive text prompts. Our method teaches the diffusion
model to ground alpha mattes by guiding it through a process of instance-level localization
and transparency estimation. First, we introduce an intermediate objective that trains the
model to accurately localize semantic components of the matte based on natural language
cues, establishing a robust spatial foundation. Building on this, the model progressively
refines its transparency estimation abilities, using the learned semantic structure as a prior
to enhance the precision of alpha matte predictions. By treating spatial localization and
transparency estimation as distinct learning objectives, our approach allows the model to
fully leverage the semantic depth of diffusion models, removing the need for rigid visual pri-
ors. Extensive experiments highlight our model’s adaptability, precision, and computational
efficiency, setting a new benchmark for flexible, text-driven image matting solutions.

1 Introduction

Image matting is a longstanding and foundational task in computer vision, aimed at extracting a foreground
object from an image and estimating the transparency of each pixel. Traditionally, this process is modeled
by the following equation (Porter & Duff, 1984):

I = αF + (1 − α)B, (1)

where only the input image I is known, while the alpha matte α, foreground F , and background B col-
ors are unknowns. Solving this ill-posed problem has led researchers to develop various priors, including
trimaps (Levin et al., 2007; Xu et al., 2017; Yao et al., 2024a), background estimates (Lin et al., 2021),
binary masks (Yu et al., 2021; Huynh et al., 2024), and user-provided inputs (Ye et al., 2024; Li et al.,
2024b).

However, these visual-level priors present limitations in many matting scenarios. For instance, trimaps
require substantial annotation efforts, while the background and binary masks are unsuitable for dynamic
scenes without temporal information. Additionally, interactive inputs are generally limited to static settings
and lack generalizability for complex textures in natural image matting (see the upper-right example in
Fig. 1). Thus, there is a strong need for a unified and user-friendly approach.

Recently, visual-language approaches have achieved significant progress in dense visual prediction
tasks (Gavrilyuk et al., 2018; Ye et al., 2019; Luo et al., 2020; Wu et al., 2022). Notably, text-to-image dif-
fusion models like Stable Diffusion (SD) (Rombach et al., 2022) have enabled tasks such as open-vocabulary
panoptic segmentation (Xu et al., 2023a) and referring image segmentation (Zhao et al., 2023a) by leverag-
ing capabilities for semantic differentiation and cross-modal attention (illustrated in Fig. 2). These features
make SD a promising candidate for matte grounding tasks through natural language guidance, combining
the expressive and intuitive nature of language with the strong prior knowledge embedded in the SD model.

This raises a natural question: can this prior knowledge be applied effectively to alpha matting? Unlike
standard visual grounding tasks that typically produce binary masks for object identification, alpha matting
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Animal Matting

Natural Image Matting (without Trimap)

Video Instance Matting (without reference mask)

Portrait Matting

Figure 1: We propose to teach a single diffusion model capable of handling various matting tasks using
task-specific text guidance (shown below each sample) with keywords marked in bold. By introducing
language-driven priors, we unify diverse matting tasks into a soft grounding framework. Our novel pipeline
for teaching the text-to-image diffusion model achieves state-of-the-art performance on this challenging
problem.

requires both precise object localization and fine-grained transparency estimation, with the alpha value
α ∈ [0, 1] in Eq. (1) accurately predicted. We define this unified approach as soft grounding, addressing
both instance-level localization and transparency simultaneously for more adaptable and nuanced matting
applications.

While SD holds significant potential, directly adapting it for soft grounding tasks introduces challenges
due to the simultaneous requirements of localization and transparency estimation. Previous adaptations
of SD for portrait matting (Xu et al., 2024a; Wang et al., 2024) rely on the assumption of a prominent,
easily distinguishable foreground object, which simplifies localization. However, this assumption is often
invalid in more complex scenarios involving multiple objects or intricate transparency patterns, such as
those encountered in natural image matting (Fig. 1), which complicate the separation between foreground
and background. Therefore, directly applying SD may yield suboptimal results due to the increased difficulty
in resolving both localization and transparency.

In this work, we propose a framework to teach SD to ground alpha mattes with any user prompts. Rather
than attempting to estimate the alpha matte directly, our approach introduces an intermediate objective that
initially guides the model to localize semantic components of the alpha channel. Once this “teacher” model is
trained for localization, we introduce a distillation process where a “student” model leverages the teacher’s
learned semantic information to progressively refine transparency estimation. This sequential framework
ultimately enables accurate alpha matte prediction with minimal post-processing. This approach offers
two primary advantages. First, by avoiding continuous fine-tuning of the teacher model for transparency
estimation, we preserve much of its pretrained semantic knowledge, maintaining a clear distinction between
localization and transparency tasks. Second, the strong semantic foundation established by the teacher
model enables us to employ a more computationally efficient student model, enhancing the practicality of
this approach for real-world applications.

Our main contributions are as follows:
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Figure 2: Visualization of features from SD (Rombach et al., 2022) and CLIP (Radford et al., 2021) (left)
and cross-attention maps in SD (right). SD exhibits strong semantic differentiation in its features and cross-
modal attention maps, with both inter-correlation and intra-consistency.

• We unify various matting tasks into a soft grounding problem, leveraging the Stable Diffusion model’s
visual-language capabilities.

• We introduce a distillation framework that teaches SD to ground alpha mattes by disentangling
instance-level localization and transparency estimation, enhancing performance in scenarios involv-
ing multiple objects or complex transparency.

• This framework enables optimization of the student model’s structure, improving computational
efficiency for practical applications.

• Extensive evaluations demonstrate that our method outperforms multiple baselines in soft grounding
tasks, achieving competitive speed and generalizing well across different matting categories.

2 Related Work

2.1 Alpha Matte Grounding

Due to the inherent ambiguity in image matting, most existing methods rely heavily on trimaps as prior
guidance (Levin et al., 2007; He et al., 2011; Chen et al., 2013; Xu et al., 2017; Hou & Liu, 2019; Park
et al., 2022; Wang et al., 2023b; Yao et al., 2024a; Xu et al., 2023b; Hu et al., 2024). However, generating
accurate trimaps that can distinguish foreground, background, and unknown regions is costly and time-
intensive. Consequently, recent research has focused on exploring alternative priors, including background
information (Lin et al., 2021; Sengupta et al., 2020), binary masks (Park et al., 2023; Yu et al., 2021; Huynh
et al., 2024; Sun et al., 2022; Li et al., 2024a; Yang et al., 2025), in-context priors (Guo et al., 2024), and
interactive inputs such as points, bounding boxes, and scribbles (Wei et al., 2021; Yang et al., 2022; Yao
et al., 2024b; Ye et al., 2024; Li et al., 2024b; Xia et al., 2024).

Text-based priors, which offer more flexible and intuitive guidance by dynamically and autonomously iden-
tifying matting objects, have also been investigated. For instance, Li et al. (Li et al., 2023a) introduce
CLIPMat, which is the first text-based matting method leveraging a pre-trained CLIP model (Radford
et al., 2021) to integrate visual and textual features for matting. Xu et al. (Xu et al., 2024b) further enhance
the feature fusion approach based on Li et al. (2023a). However, since CLIP was designed for cross-modal
similarity across entire images, it struggles with the high semantic precision and detailed requirements of
pixel-level matting. In contrast, our method is based on a text-to-image diffusion model that provides
pixel-level visual-language priors and robust semantic differentiation, making it more suited to the nuanced
demands of image matting.
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2.2 Diffusion Models for Image Matting

Diffusion models have shown great potential in a variety of applications, including generative tasks (Rahman
et al., 2023; Shi et al., 2024; Blattmann et al., 2023; Brooks et al., 2023; Ruiz et al., 2023; Wang et al.,
2023a) and dense prediction tasks (Ji et al., 2023; Zhao et al., 2023a; Xu et al., 2023a; Lee et al., 2024; Xu
et al., 2024a; Burgert et al., 2023). Some studies have applied the prior knowledge encoded in these models
to image matting tasks.

Guo et al. (Guo et al., 2024) leverage the in-context correspondence priors within Stable Diffusion (Rombach
et al., 2022), using guidance from a reference image to perform matting of the same object across different
scenes. Wang et al. (Wang et al., 2024) approach matting as a generative task, applying denoising over
multiple time steps and fine-tuning the model to predict the alpha matte. However, these methods depend
on forecasting alpha mattes directly, limiting their effectiveness to matting a single object and often resulting
in inefficiencies due to the high computational cost of diffusion models.

Alternatively, some methods operate directly in pixel space by diffusing a disturbed trimap (Xu et al.,
2023b) or pure noise (Hu et al., 2024) until a clean alpha matte is produced. Li et al. (Li et al., 2024c)
extend this approach to latent space, introducing modified self-attention to better model matting context.
However, these approaches rely heavily on a trimap as conditioning input, limiting their flexibility in practical
applications.

3 Method

3.1 Overview

Problem Formulation. Given an input image I ∈ RH×W ×3 and a foreground text expression T , our goal
is to teach the Stable Diffusion (SD) model soft grounding and predict the alpha matte α ∈ [0, 1]H×W ×1 in
a single step.

Network Design. Our framework is illustrated in Fig. 3. To teach the SD model to ground the alpha
matte, we disentangle the soft grounding problem into two sub-objectives using an intermediate objective,
soft semantic grounding, along with a distillation framework. First, the original diffusion model is trained to
localize the semantic components of the target alpha matte (see Sec. 3.2.1). Then, an asymmetric distillation
framework with two tailored objectives guides the model to refine transparency estimation while preserving
the localization capability learned in the initial stage (see Sec. 3.2.2). This approach ensures effective task
disentanglement. Moreover, the distillation framework enables the adoption of a computationally efficient
model for soft grounding, improving its practicality (see Sec. 3.3). Using the soft grounding results and
output features from the well-taught diffusion model, the matting decoder can readily predict the final
full-resolution alpha matte (see Sec. 3.4). We discuss our proposed paradigm below.

3.2 Soft Grounding Teaching

3.2.1 Soft Grounding in Semantic

We first teach the diffusion model to address an intermediate task: localizing each semantic component of
the target alpha matte. This is achieved by fine-tuning the denoising U-Net (ϵθ) starting from the original
weights of SD. Specifically, taking the latent code zI := E(I) at a resolution of H

8 × W
8 and the corresponding

linguistic features fT as conditional input, ϵθ is fine-tuned to distinguish the semantic regions of alpha matte
(the foreground, background, and transparent regions) and to predict classification results for each region.
The results are represented as sI ∈ {0, 1} H

8 × W
8 ×3 of I. To achieve this, we replace the last latent prediction

head in the original ϵθ with a new head comprising two groups of ConvBNReLU layers to predict sI . The
linguistic features fT are generated by the frozen CLIP text encoder (Radford et al., 2021) and further
refined using a two-layer MLP text adapter, inspired by Gao et al. (2024). We train the model to predict
classification probabilities pI ∈ [0, 1] H

8 × W
8 ×3 for each channel in sI by minimizing the cross-entropy loss

LCE :
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Figure 3: Overview of the pipeline of our model, with unimportant operations and blocks omitted for clearer
illustration. Motivated by the goal of disentangling two learning objectives, we first adapt the diffusion
model to a sub-objective of instance-wise localization of semantic components of the alpha matte (blue part
on top-left). Next, we propose a distillation framework (orange part on the right) to distill the localization
information from the teacher model (ϵT

θ ) into the student model (ϵS
θ ) using the Semantic Guidance Loss (LSG)

based on internel features, while encourage ϵS
θ to simultaneously explore the transparent-related information

via the Transparency Mining Loss (LSTM, LCTM) based on attention maps. ϵS
θ learns to predict the coarse

alpha matte αlr and the transparent confidence map R to further enhance αlr into α at full resolution (green
part on bottom-left).

LCE = −
3∑

c=1
sc

GT log(pc
I), (2)

where sGT represents the GT region representation, obtained by applying morphological operations to the
GT alpha, and pc

I denotes the classification probability for the c-th channel in sI . We denote the fine-tuned
ϵθ as ϵT

θ .

3.2.2 Soft Grounding in Transparency

After the convergence of training ϵT
θ , our next goal is to further explore transparency information based

on ϵT
θ until achieving soft grounding. A straightforward approach would be to fine-tune ϵT

θ to predict
transparency directly. However, this presents two key challenges. First, fine-tuning ϵT

θ for transparency
estimation risks disrupting its well-learned semantic knowledge. Second, the computational cost of ϵT

θ is
typically high, limiting its practicality for soft grounding. To address both challenges, we propose a novel
soft grounding distillation framework. This framework fully exploits the strong semantic guidance embedded
in the intermediate features of the pre-trained ϵT

θ while enabling the student model (ϵS
θ ) to refine transparency

estimation in the corresponding alpha matte. As a result, ϵS
θ is expected to gain full capabilities for solving the

soft grounding problem. For implementation, ϵS
θ is trained to predict a coarse alpha matte αlr ∈ [0, 1]

H
8 × W

8 ×1

and a transparent confidence map R ∈ RH
8 × W

8 ×1, which indicates regions that may be transparent. These
outputs are then used for further upsampling and refining αlr to α. Next, we introduce two key losses to
effectively guide this distillation process.

Strong Semantic Guidance Loss. Inspired by Kim et al. (2024), we introduce a feature-level distillation
loss LSG, to ensure that the semantic representation of the student model ϵS

θ closely aligns with that of the
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teacher model ϵT
θ , at an intermediate feature level, formulated as:

LSG = E

[∑
l

||M ⊙ F l
ϵT

θ
− M ⊙ Φ(F l

ϵS
θ
)||22

]
, (3)

where F l
ϵT

θ

:= f l
ϵT

θ

(zI , fT ) denotes the intermediate feature of ϵT
θ at layer l (and similarly, F l

ϵS
θ

for the student
model). Here, M is a binary mask with foreground and background regions set to 1 and other regions set
to 0. M ensures that semantic supervision dose not interfere with the exploration of transparency details.
The symbol ⊙ represents the Hadamard product. The projection module Φ aligns the intermediate features
of the two models, accounting for differences in their feature spaces due to distinct learning objectives. It
consists of 3 learnable convolutional layers (Cv) and an intermediate LeakyReLU layer, defined as:

Φ(F ) = Cv3×3(Cv3×3(LeakyReLU(Cv1×1(F )))). (4)

Transparency Mining Loss. To further encourage ϵS
θ to explore transparency details, we aim to extract

and mine potential transparency information from ϵT
θ . We begin with the self-attention maps of ϵT

θ , a critical
component for modeling intra-object consistency. Since ϵT

θ possesses well-learned semantic knowledge of
alpha, the implicit transparency information used to identify such regions can serve as transparency cues,
guiding ϵS

θ to further refine transparency details. Given the self-attention map Af := SoftMax( Qf ·Kf√
d

)
derived from feature f , we introduce a self-attention-based transparency mining loss LSTM, to constrain
affinities specifically related to the alpha matte. To accomplish this, we propagate the GT alpha, αGT ,
using the averaged self-attention map, ASA, computed across all self-attention layers at the same resolution.
This propagation is performed via matrix multiplication (ASA ⊗ αGT ). We then minimize the difference
between the propagated results of the teacher and student models. The rationale is as follows: ASA acts
as a transition matrix, while αGT represents the current state. Their matrix multiplication transforms the
current state into a resulting state. By constraining this resulting state, we indirectly regulate the α-related
affinities within the self-attention map. This approach enhances the exploration of transparency details
without incurring significant computational overhead, as it avoids constraining the entire self-attention map.
We formulate LSTM as follows:

LSTM = ||AT
SA ⊗ αGT − AS

SA ⊗ αGT ||22, (5)
where ⊗ denotes matrix multiplication (not element-wise multiplication). Note that αGT is down-sampled to
the corresponding resolution using bilinear interpolation to satisfy the requirements for ⊗. We also extract
potential transparency cues from the text expression using a similar cross-attention map distillation loss
LCTM, which directly constrains the cross-attention maps between ϵS

θ and ϵT
θ , formulated as:

LCTM = ||AT
CA − AS

CA||22. (6)
For implementation, all attention maps are grouped by resolution and averaged to compute the loss. The
final attention distillation loss is then calculated as the mean of the losses across all resolutions.

Total Objectives. In addition to the two key losses described earlier, we incorporate an L1 loss to train
αlr and a binary cross-entropy (BCE) loss to train R. These are defined as follows:

Lαlr = ||αlr − αlr
GT ||1, (7)

LR = −M̂ log( 1
1 + eR

) − (1 − M̂) log( eR

1 + eR
), (8)

where αlr
GT represents the down-sampled GT alpha matte, and M̂ := 1 − M is a binary mask that indicates

transparent regions. The final objective, LϵS
θ
, used to train ϵS

θ , is formulated as:
LϵS

θ
= λSTMLSTM + λCTMLCTM + λSGLSG + λαlr Lαlr + λRLR, (9)

where the λ coefficients are hyperparameters that balance the contribution of each loss term.

3.3 Structural Optimization on ϵS
θ

In our distillation framework, LSG provides strong supervision signals to preserve localization knowledge by
directly minimizing discrepancies in the semantic content of internal features. This highlights a key advan-
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tage of our approach: achieving a balance between maintaining performance and enhancing computational
efficiency (see Sec. 3.2.2). To fully exploit this advantage, we apply two primary structural optimization
techniques to the vanilla ϵS

θ (which initially shares the same architecture and parameters as ϵT
θ ): block

pruning and self-attention optimization.

Block Pruning. We prune redundant blocks from the vanilla student model following Kim et al. (2024),
resulting in a model with fewer parameters. Guided by LSG, the performance degradation caused by this
pruning is effectively mitigated. Additionally, the other loss terms encourage the student model to further
assimilate soft grounding knowledge.

Self-Attention Optimization. The self-attention mechanism in Transformer blocks is a critical compo-
nent for modeling long-range dependencies. However, the matrix multiplication operations in self-attention
are computationally expensive, resulting in an overall time complexity of O(n2d + nd2), which becomes
particularly burdensome at higher resolutions. Nevertheless, the soft grounding task has more relaxed accu-
racy requirements, as the learned outputs (αlr and R) provide sufficient flexibility to tolerate errors in the
subsequent alpha enhancement process. Inspired by this, we propose that the self-attention operation can
be optimized into a more computationally efficient form by learning asymmetric sparse correspondences.

Specifically, we argue that the dense affinity matrix derived from the self-attention map Af can be simplified
into a unidirectional sparse representation. To achieve this, we can learn a smaller set of representative
feature tokens and use their affinities to approximate the affinities between the original feature tokens and
others within a relatively small region. Thus, we introduce a learnable down-sampling operation ϕ, which is
applied to f when calculating K and V (i.e., KS = WKϕ(f), VS = WV ϕ(f)), while Q remains unchanged.
ϕ can be implemented using a single convolution layer with a kernel size and stride of k × k, where k is
chosen from {2i|1 ≤ i ≤ log2hAS

f
}, and hAS

f
denotes the height of the square matrix AS

f , theoretically. The
quantitative analysis of the reduction in computational cost can be found in the Appendix. Note that LSTM
contributes to preserving intra-object cohesion and textural information within the optimized self-attention
mechanism.

3.4 From Soft Grounding to Alpha Matte

To up-sample αlr from a resolution of H
8 × W

8 to α at H × W , we adopt the detail encoder-decoder structure
proposed in Yao et al. (2024a). The encoder takes the concatenation of (I, αlr, R) as input to extract detail
features. Before that, αlr and R are interpolated to match the resolution of I, and R is processed through a
sigmoid function. The detail features from the encoder’s final layer are concatenated with features extracted
from ϵS

θ and then passed to a decoder to predict the final alpha matte α. For more efficient training, we freeze
ϵS

θ and train only the parameters of the encoder and decoder. Additionally, a single learnable ConvBNReLU
block is applied to the output features from ϵS

θ before concatenation to align the feature spaces. This process
is supervised using an L1 loss and a Laplacian loss following Li et al. (2022).

Extend to High-resolution Inference. We implement a simple upsampling module based on sparse
convolution (Contributors, 2022), integrated with the matting decoder, to enable inference at arbitrary high
resolutions (up to 2K). This sparse convolution approach effectively reduces computational cost and memory
usage during the upsampling process.

4 Experiment

4.1 Implementation Details

Data Acquisition. The data used to train our model comprises 4 matting datasets (RefMatte (Li et al.,
2023a), P3M10K (Li et al., 2021a), AM2K (Li et al., 2022), RM1K (Wang et al., 2023b)), and 1 grounding
segmentation dataset (RefCOCO (Kazemzadeh et al., 2014)). Considering there are no text annotations for
P3M10K, AM2K, and RM1K, we adopt BLIP2 (Li et al., 2023b) to generate text annotations for each sample
in these datasets by guiding the BLIP2 model to describe the appearance of the object in the image. For
samples from RefMatte and RefCOCO during training, we randomly select one expression for each object
if multiple expression annotations exist for the same object. Since there are no matting-level annotations
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for RefCOCO, we first generate the pseudo trimap according to the mask annotations using morphological
operations, then use Yao et al. (2024a) to obtain alpha annotations.

Training Details. All stages of our model’s training process adopt a consistent data scheduling strategy.
Specifically, we train the model on RefMatte during odd-numbered iterations and on RefCOCO in every even
iteration. We also insert a special iteration after every 4 iterations to perform training on P3M10K, AM2K,
and RM1K. We randomly select 1 dataset among the 3 to train our model in this special iteration. We set the
kernel size of the morphological operation to 15, and we set (λSTM, λCTM, λSG, λαlr , λR) to (10, 0.1, 0.5, 10, 1).
Other training settings, including batch size, learning rate, total iterations, and rationales behind setting λs,
can be found in the Appendix.

Details about Optimized ϵS
θ . To thoroughly evaluate our proposed framework, we adopt the most extreme

pruning scheme proposed in Kim et al. (2024) to build ϵS
θ , i.e.the tiny setting, which removes 5 blocks in the

encoder and 5 blocks in the decoder, and removes the entire middle block in ϵθ. For optimizing self-attention
(SA), we directly remove all SA layer at resolution of 64 × 64 following Zhao et al. (2023b), and set the k
value for SA layers at 32 × 32 and 16 × 16 (k322 , k162) as k322 = k162 = 2.

4.2 Evaluate Metrics

Following Rhemann et al. (2009), we adopt 4 matting metrics for evaluation, including SAD, MSE, Gra-
dient Error (GRAD), and Connectivity Error (CONN). These metrics are scaled by 103, 10−3, 103, 103,
respectively. Lower values indicate better performance across all metrics.

4.3 Comparison on Soft Grounding

Baselines. To comprehensively evaluate our model’s performance, we compare it with three types of
baselines.

• Text-guided matting methods. We select CLIPMat (Li et al., 2023a) as a fundamental base-
line, which solves the soft grounding problem directly and shares similar settings with ours. Since
CLIPMat is currently closed-source, we re-implement it and use the same training settings as ours.

• Visual grounding with interactive matting methods. We select the representative Ground-
ingDINO (GDINO) (Liu et al., 2024b) as the visual grounding method, which produces the bounding
box of the foreground object according to the text input. Then we select 3 recent interactive mat-
ting methods to obtain the alpha given the bounding box, including MatAny (Yao et al., 2024b),
MAM (Li et al., 2024b), and SmartMat (Ye et al., 2024).

• Grounding segmentation with mask-guided matting methods. We also select the latest
grounding segmentation method PSALM (Zhang et al., 2024) and the SD-based referring segmen-
tation method RefVPD (Zhao et al., 2023a) to generate a mask for the foreground object based on
text input. We then apply two mask-guided matting methods to derive the alpha matte from the
mask, including MaGGIe (Huynh et al., 2024) and MGMat (Yu et al., 2021).

For fairness, all baselines with cascaded structure, including the visual grounding part (except PSALM and
GDINO) and matting part, are aligned to our training data through fine-tuning. Note that PSALM and
GDINO are trained on very large-scale datasets. We attempted to fine-tune them directly on our relatively
small-scale training dataset, but this yielded poorer results. Consequently, we use their original weights for
further comparison.

Benchmarks. We apply two referring natural matting benchmarks, including RefMatte-Test (Li et al.,
2023a) and RefMatte-RW100 (Li et al., 2023a), for soft grounding evaluation. Here, the former is a com-
position dataset (6,243 instances among 2,500 images) and the latter is a real-world dataset (221 instances
among 100 images). Every instance in these two benchmarks has 4 different expressions, so we evaluate all
baselines and ours using all expressions and report the average result among these 4 expressions. During
evaluation, the input resolution for all methods is set to 512×512, and the metrics are also calculated on this
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Table 1: Comparison on soft grounding task. Our model outperforms all baselines on two referring
natural image matting benchmarks (RefMatte-Testset and RefMatte-RW100) with faster inference time,
demonstrating the effectiveness and practicality of our method.

RefMatte-Testset RefMatte-RW100Methods SAD↓ MSE↓ GRAD↓ CONN↓ SAD↓ MSE↓ GRAD↓ CONN↓
Inference

Time↓ (ms)
GDINO+MatAny 15.52 0.0561 8.41 3.61 19.92 0.0727 9.57 7.71 984.57
GDINO+MAM 15.16 0.0552 8.92 4.59 16.96 0.0626 8.56 10.78 496.30Grounding Model

+ Interactive Matting GDINO+SmartMat 11.69 0.0403 7.91 1.78 16.91 0.0616 9.30 5.54 122.29
PSALM+MaGGIe 8.71 0.0299 7.63 2.67 9.90 0.0349 8.24 3.75 287.79
PSALM+MGMat 8.55 0.0301 7.02 2.57 9.41 0.034 6.83 3.81 272.21
RefVPD+MaGGIe 9.01 0.0308 8.36 3.23 11.41 0.0399 9.64 5.63 220.79

Gounding
Segmentation Model

+ Mask-guided Matting RefVPD+MGMat 8.98 0.0315 7.89 3.33 10.32 0.0374 7.66 5.37 205.21
CLIPMat 26.56 0.1181 14.84 8.15 35.12 0.1951 21.01 18.97 102.74Soft Grounding Ours 3.19 0.0098 3.55 1.69 7.37 0.0264 6.55 5.31 95.14

Image GT GD+
MatAny

GD+
MAM

GD+
SmartMat

PS+
MaGGIe

PS+
MGMat

RV+
MaGGIe

RV+
MGMat CLIPMat Ours

Figure 4: Qualitative comparison on soft grounding task. The text inputs from top to bottom are: 1)
the insect which is darkgray; 2) the white and non-salient and transparent net; 3) a modern-designed glass
with a black frame; 4) the red chair made of wood.
resolution. We also report the average inference time per sample in milliseconds, using the same machine
with a single RTX 3090.

Quantitative Results. We show the quantitative comparison on soft grounding in Tab. 1. We found a
significant performance gap between CLIPMat and ours since the feature and cross-modal prior within SD
model make it easier to solve the soft grounding problem compared with CLIP. Our model also achieves the
best performance on most of the metrics compared with the cascaded baselines, even when training data
is aligned among all matting networks. Although adopting PSALM, which is based on Large Multi-modal
Model (LMM) for grounding segmentation, can obtain lower connectivity error on RW100 benchmark, the
other three metrics are still worse than ours and have relatively high inference time. Instead, our framework
can teach a structure-optimized model to achieve the best performance with lower inference time, showing
the effectiveness of our proposed framework.

Qualitative Results. Some qualitative comparisons are shown in Fig. 10. Without properly modeling soft
grounding, cascading-based baselines often perform poorly with incorrect semantic and low-quality details
as shown in the first two rows. Although some baselines adopt SAM (Kirillov et al., 2023) or LMM (Liu
et al., 2024a), they still show sub-optimal performance on soft grounding in the real-world (last two rows).
More comparison results can be found in the Appendix.

4.4 Comparison on Generalization Ability

Introducing text prior can unify various matting tasks into soft grounding. To evaluate the generalization
ability of our model on such fine-grained matting tasks, we select several specialist methods in their own task

9
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Table 2: Quantitative comparison on generalization ability across different matting tasks. Top-2
results are marked in bold and underlined. Task-specific methods only perform well on their own task, while
ours can generalize to various matting tasks using text-based guidance without fine-tuning.

Method Type
AM2K

(animal)
P3M-P

(portrait)
RefMatte-Test

(referring natural)
SAD↓ MSE↓ SAD↓ MSE↓ SAD↓ MSE↓

GFM (Li et al., 2022) animal 12.08 0.0035 347.44 0.2001 239.33 0.1335
P3M-ViTAE (Ma et al., 2023) portrait 40.43 0.0204 6.59 0.0015 290.05 0.1616
GenPercept (Xu et al., 2024a) portrait 19.04 0.0049 11.02 0.0025 269.50 0.1456
AIM (Li et al., 2021b) natural 28.25 0.0101 45.41 0.0207 336.76 0.1840

Ours 13.81 0.0045 9.53 0.0030 24.19 0.0112

Image GT GFM (animal) P3M-ViTAE
(portrait)

GenPercept
(portrait) AIM (natural) Ours

Figure 5: Qualitative comparison on generalization ability across different matting tasks. The
text inputs used in ours are, from top to bottom: 1) mother and daughter in field at sunset; 2) a jaguar is
sitting on top of a rock; 3) the works which are thistle and non-transparent.

to compare with our model quantitatively (Tab. 2). All baselines here are directly applied using the officially
released weight, and our model is tested without task-specific tuning. All the metrics are calculated in full
resolution. We found that although the baselines excel in their designated tasks, they often lack generalization
and struggle with referring matting across diverse categories. In contrast, our model, leveraging a text prior,
generalizes effectively to various matting tasks, though it slightly lags behind task-specific experts in their
respective domains. Most importantly, our model shows unrivaled performance on referring natural matting
tasks, where other baselines falter. We also showcase some qualitative results in Fig. 5. We found GFM and
P3M lack generalization, while GenPercept and AIM predict over-smoothed alpha. All of them have poor
performance on the soft grounding task.

4.5 Ablation Studies

To fully demonstrate the necessity of our key design and modules in our model, we conduct following
ablation studies via different training settings and quantify results in Tab. 3, using RefMatte-RW100 as the
benchmark.

Problem Disentanglement. First, directly training SD for soft grounding proves highly challenging,
resulting in suboptimal performance (row 1) compared to a disentangled formulation.

Knowledge Distillation (KD). Next, we explore a two-stage approach where SD is pre-trained for local-
ization and then fine-tuned for soft grounding (row 2). This significantly improves performance but remains
inferior to our complete KD framework (row 5). These results highlight the importance of preserving se-
mantic knowledge and explicitly separating the two sub-objectives. Furthermore, fine-tuning a lightweight
ϵS

θ without KD leads to a substantial performance drop (row 3), underscoring the critical role of KD in
maintaining a balance between efficiency and performance.

10
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Table 3: Ablation studies. For instance, (ϵT
θ , SG) means training ϵT

θ on soft grounding task. “ϵT
θ -

ϵS
θ ” denotes the distillation framework. ϵS

θ is structural optimized to lightweight in row 2˜6.
# Training settings

(SG=Soft Grounding, Local.=Localization) Φ Mat.
E-D SAD↓ MSE↓ GRAD↓ CONN↓

1 (ϵT
θ , SG) 17.50 0.0645 9.45 8.27

2 (ϵT
θ , Local.), then fine-tune (ϵT

θ , SG) 9.75 0.0375 7.89 6.48
3 (ϵT

θ , Local.), then fine-tune (ϵS
θ , SG) 13.27 0.0487 9.01 6.73

4 (ϵT
θ , Local.), (ϵT

θ -ϵS
θ , SG) 15.96 0.0534 9.26 7.55

5 (ϵT
θ , Local.), (ϵT

θ -ϵS
θ , SG) ✓ 7.63 0.0267 6.98 5.35

6 (ϵT
θ , Local.), (ϵT

θ -ϵS
θ , SG) ✓ ✓ 7.37 0.0264 6.55 5.31

7 (ϵT
θ , Local.), (ϵT

θ -ϵS
θ (w/o. opti.) , SG) ✓ ✓ 6.30 0.0223 5.52 4.33

Multi-instance Low-light Overlapping

“two women in the picture” “the man wearing sweater” “a man in light color shirt”

Figure 6: Robustness Evaluation. Our method demonstrates strong performance across a variety of
challenging scenarios.

Other Network Components. We also observe that removing the feature projection module (Φ) confuses
ϵS

θ during distillation, as ϵT
θ and ϵS

θ have distinct learning objectives, leading to degraded performance (row 4).
Additionally, integrating a dedicated matting encoder and decoder (Mat. E-D) (row 6, complete framework)
further improves the quality of the predicted alpha matte.

Structural Optimization. Lastly, we evaluate the impact of structural optimization. While the vanilla
ϵS

θ without structural optimization (row 7) achieves higher performance, its inference time is significantly
longer (143ms per image under the same setting in Sec. 4.3). This further demonstrates that our framework
enables lightweight models to achieve strong performance with improved efficiency.

More ablation studies on hyperparameters, objectives, and SD versions are provided in the Appendix.

4.6 Robustness Evaluation and Limitations

Given accurate and well-structured text prompts, our model demonstrates strong robustness against various
typical disturbances (see Fig. 6). However, like all prompt-based systems, it is susceptible to vague or
ambiguous prompts, which can degrade performance (see Fig. 7). Future work could explore adaptive
guidance strategies to enhance robustness and flexibility across a broader range of matting scenarios.

5 Conclusion

In this paper, we unified various matting tasks as a soft grounding problem, addressing both instance-level
localization and transparency estimation using the visual-language capabilities of Stable Diffusion. Instead
of directly training SD, we introduced a distillation framework that separates localization and transparency
tasks, improving performance in complex scenarios with multiple objects or intricate transparency patterns.
This framework also enables a more efficient student model, balancing complexity and accuracy. Extensive
evaluations demonstrate our method’s effectiveness, with competitive speed and strong generalization across
diverse matting categories.
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Input image Ours Input image Ours

“there is a” (Incomplete) “yellow flower” (Ambiguity)

Figure 7: Some failure cases of our method caused by ambiguous prompts.
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6 Appendix

6.1 Analysis of Self-Attention Optimization

Here, we compare the computational overhead of vanilla self-attention (SA) and the proposed sparse self-
attention (Sp.SA) within the framework of our method. Complexity of Vanilla SA. Let n represent
the number of input tokens and d the dimension of the token embedding. The computational complexity
of a single SA operation—i.e., the total number of addition and multiplication operations (OSA)—can be
calculated as follows:

OSA = 2nd2 × 3︸ ︷︷ ︸
Q, K, V

+ 2n2d︸︷︷︸
Q·K

+ n2︸︷︷︸
(
√

d)−1

+ 3n2 − 1︸ ︷︷ ︸
Softmax

+ 2n2d︸︷︷︸
AV

= 6nd2 + 4n2d + 4n2 − 1
(10)

For instance, given the input feature f , computing Q involves multiplying f ∈ Rn×d and WQ ∈ Rd×d,
resulting in n × d × d addition operations and n × d × d multiplication operations. Hence, the total number
for calculating Q is 2nd2. The same applies to the computations of Q · K and AV . Additionally, since the
normalization (×(

√
d)−1) and Softmax operations act on an n × n matrix, their complexities are n2 and

n2︸︷︷︸
exponential

+ (n2 − 1)︸ ︷︷ ︸
addition

+ n2︸︷︷︸
division

= 3n2 − 1, respectively∗.

Complexity of Optimized SA. As mentioned in Sec. 3.3 in the main paper, introducing the down-
sampled convolution ϕ with kernel size and stride both equal to k × k results in KS and V S with a sequence
length k2 times shorter than the original K and V . Let j (j = k2) be the scale factor of this operation; the
corresponding complexity OSp.SA is given as:

∗FLOPs for exponential operation can be seen as 1 due to common instruction optimization and hardware acceleration
rather than using repeating multiplication.
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OSp.SA = 2nd2︸︷︷︸
Q

+ 2 × n

j
× d2 × 2︸ ︷︷ ︸

KS , V S with ϕ applied

+ 2nd × n

j︸ ︷︷ ︸
Q · KS

+ n × n

j︸ ︷︷ ︸
(
√

d)−1

+ 3n × n

j
− 1︸ ︷︷ ︸

Softmax

+ 2n × n

j
× d︸ ︷︷ ︸

AV S

+ j × n

j
× d × d︸ ︷︷ ︸

Convolution operation ϕ

= (3 + 4
j

)nd2 + 4n2d

j
+ 4n2

j
− 1

(11)

In this work, we set k322 = k162 = 2 for SA layers at resolutions of 32 × 32 and 16 × 16 respectively, with
number of channels d322 = 640, d162 = 1280. Then, the fraction of complexity reduction is calculated as:

OSp.SA(n = 322, d = 640, j = 22)
OSA(n = 322, d = 640) ≈ 0.4515

OSp.SA(n = 162, d = 1280, j = 22)
OSA(n = 162, d = 1280) ≈ 0.6176

(12)

The results show that the proposed Sp.SA can reduce the computational complexity by 54.85% and 38.24%
for the SA layers at 32 × 32 and 16 × 16 resolution, respectively. Given the same j, the complexity reduction
is more significant for the SA layer with a longer sequence length, which aligns with the intuition that the
computational overhead of SA is proportional to the square of the sequence length.

6.2 More Details on Training

Data Pre-processing. All the images are resized to 512 × 512 for training in all stages. For composition
samples from RefMatte (Li et al., 2023a), we use the same augmentation strategy as in Li et al. (2022) to
reduce the discrepancy between synthetic and real data.

Rationals of Hyperparamter Setting. For the kernel size of the morphological operation Kmor, we set
it to 15 to balance overestimation (if too large) and underestimation (if too small) of the transparent region,
aligning with common practice in matting methods. For the cross-attention loss LCTM, we use sum reduction
to address the presence of many zero matrices in the cross-attention maps (e.g., padding tokens), leading to
a smaller λCTM of 0.1. During training, LSTM and Lαlr are relatively small, while LSG is larger under mean
reduction. To balance these, we set (λSTM, λαlr , λSG) to (10, 10, 0.5).

Training Hyperparameters. We show the training parameters in Tab. 4. We adopt AdamW (Loshchilov
& Hutter, 2019) as the optimizer with weight decay as 0.01. All the training work is done on NVIDIA A100
80GB GPU(s). For the scheduler, we adopt a LambdaLR scheduler with several specified milestones. When
the milestone is not reached, we use the lambda function f(x) = (1 − x

total iterations )0.9 to adjust the learning
rate. Otherwise, the learning rate is directly adjusted to the preseted value.

Table 4: Hyperparameters for all training stages.
Training Stage Initial

Learning Rate
Total

Iterations
Total

Batch Size
Scheduler

Value
Scheduler
Milestone

GPUs
(A100)

Learnable
Parameters

Training
Time

Soft Grounding
in Semantic 5e-5 50000 32 [0.5, 0.25] [15000, 40000] 4 861M 18.5h

Soft Grounding
in Transparency 5e-5 50000 32 [0.4, 0.25] [10000, 35000] 2 509M 20.7h

From Soft Grounding
to Alpha Matte 4e-4 50000 16 [0.1, 0.05] [10000, 35000] 1 2.67M 12.7h

6.3 More about Sparse Up-sampling Module

The design of the sparse up-sampling module is inspired by the progressive refinement decoder proposed in Yu
et al. (2021), consisting of two groups of interpolation-convolution groups. All the vanilla convolutional layers
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are replaced by sparse convolutional layers (Contributors, 2022) in the up-sampling module. The input of
each group is the concatenation of the up-interpolated alpha matte and the context feature from the matting
decoder (all with a resolution of 512 × 512), along with the original image at the target resolution. The
sparse convolution layer performs calculations only on areas where the alpha matte value is greater than
0.01 and less than 0.99. To train the module, we attach it to the pre-trained matting decoder and train the
entire network using the same loss function as the matting decoder. The learning rate of the module is set
to 2e − 4, and the total number of iterations is set to 10, 000 with a batch size of 16.

6.4 More Ablation Studies

Loss Functions. We also explore the effect of each loss adopted in the distillation process in Tab. 5 using
RefMatte-RW100 as the benchmark. Since LSG is the key loss for semantic guidance from ϵT θ, omitting it
will lead to a significant performance drop. LSTM and LCTM also evidently improve the final performance,
demonstrating the effectiveness of transparency exploration and retention of attention information for the
optimized ϵS

θ . Furthermore, the learned transparent confidence map R via LR also facilitates the matting
E-D in predicting more accurate alpha mattes.

Table 5: Ablation study on different losses.
Lαlr LSG LSTM LCTM LR SAD↓ MSE↓ GRAD↓ CONN↓
✓ 14.26 0.0465 8.95 7.09
✓ ✓ 8.40 0.0297 7.25 6.11
✓ ✓ ✓ 8.13 0.0284 7.06 5.98
✓ ✓ ✓ ✓ 7.96 0.0279 6.91 5.80
✓ ✓ ✓ ✓ ✓ 7.37 0.0264 6.55 5.31

Self-Attention Optimization Kernel. We further evaluate the impact of using different kernel sizes k
for the down-sampled convolution ϕ in the optimization of SA at various resolutions. Our default setting
removes SA layers at a resolution of 64 × 64 (denoted as k642 = −1) and sets k322 = k162 = 2. Therefore, we
attempt to increase the kernel size at resolutions of 32 × 32 and 16 × 16, and also try restoring SA layers at
a resolution of 64 × 64 with k642 = 2 instead of removing them entirely, resulting in three different settings.

Table 6: Ablation study on kernel size k in Self-Attention Optimization. Here -1 means remove
the SA layers directly.

k642 k322 k162 SAD↓ MSE↓ GRAD↓ CONN↓ Inference
Time (ms)

-1 2 2 7.37 0.0264 6.55 5.31 95.14
-1 2 4 8.57 0.0301 7.24 6.05 94.90
-1 4 2 7.65 0.0272 6.70 5.54 94.69
2 2 2 7.13 0.0255 6.37 5.19 130.03

In Tab. 6, we report the quantitative results of these three settings (the last three rows) alongside our
default setting (the first row), using RefMatte-RW100 as the benchmark. The inference time per sample is
also evaluated, following the same setup as in Sec. 4.3 of the main paper. We found that using a larger
kernel size at resolutions of 32 × 32 and 16 × 16 can lead to performance degradation, as the over-optimized
SA layers lose their ability to capture global context and intra-object cohesion information. This effect is
particularly noticeable at a resolution of 16 × 16, where increasing k causes a significant performance drop.
Moreover, the running time is not substantially reduced in either case. We also found that restoring SA
layers at a resolution of 64 × 64 with k642 = 2 yields only marginal improvements while significantly slowing
down the model.

Sparse Up-sampling Module. We conduct the ablation study of the sparse up-sampling module on
the RefMatte-Test dataset in full resolution, which consists of more natural image matting samples. The
quantitative result is shown in Tab. 7. We found that three metrics (SAD, MSE, GRAD) are improved with
the sparse up-sampling module, while the CONN metric is slightly higher. This is mainly because an over-
smoothed alpha leads to a lower connectivity error value. We then show the qualitative comparison in Fig.8.
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Figure 8: Qualitative ablation comparison of the sparse up-sampling module (SUM). The text
inputs for the examples from left to right are: 1) a lion yawning with its mouth open; 2) a spider web is
shown. SUM preserves more high-frequency textures, resulting in a clearer alpha matte.

Despite the higher connectivity error, SUM can produce clearer alpha with finer details, demonstrating the
effectiveness of this module in extending our model to arbitrary high-resolution inference, with more accurate
matting texture preserved compared with direct up-sampling.

Table 7: Ablation study on sparse up-sample module (SUM).
SAD↓ MSE↓ GRAD↓ CONN↓

Ours (w/o. SUM) 24.87 0.0114 16.43 12.58
Ours (w. SUM) 24.19 0.0112 14.94 12.91

Hyperparameters. We analyze the impact of hyperparameters in the training process using RefMatte-
RW100 as the benchmark (see Tab. 8). We evaluate three alternative settings and find that our default
configuration (row 1) consistently outperforms them, demonstrating its effectiveness.

Table 8: Ablation study on hyperparameters.
λSTM λCTM λSG λαlr λR Kmor SAD↓ MSE↓ GRAD↓ CONN↓

10 0.1 0.5 10 1 15 7.37 0.0264 6.55 5.31
10 0.1 0.5 10 1 5 9.32 0.0354 8.57 6.61
1 0.1 0.5 1 1 15 7.65 0.0271 6.63 5.32
10 0.1 1 10 1 15 7.41 0.0268 6.55 5.29

Stable Diffusion Versions. To further assess the generalizability of our framework, we apply our method
to teach two additional versions of Stable Diffusion (SD v2.0 and SD v2.1) for soft grounding while keeping
all other experimental settings unchanged. The evaluation results on RefMatte-RW100 (see Tab. 9) show
that compared to our default setting (SD v1.5), SD v2.x achieves better performance, highlighting the broad
applicability of our approach.

Table 9: Ablation study on Stable Diffusion (SD) version.
SD version SAD↓ MSE↓ GRAD↓ CONN↓

SD v1.5 7.37 0.0264 6.55 5.31
SD v2.0 6.50 0.0232 6.72 4.98
SD v2.1 6.18 0.0219 6.42 4.70

6.5 Computational Complexity Comparison

We compare the computational cost of our model with 4 baselines with competitive performance in Tab. 10
with number of parameters (#Params.), GMac, and GFlops as metrics. Our method has both the lowest
model size and computational cost among them, demonstrating the efficiency of ours comprehensively.
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Table 10: Computational complexity comparison.
#Params.↓ GMACs↓ GFLOPs↓

PSALM+MGM 1617M 1430 2859
RefVPD+MGM 929M 959.4 1919

PSALM+MaGGIe 1617M 1429 2858
RefVPD+MaGGIe 930M 958.9 1918

Ours 429M 769.7 1539

6.6 Towards Video Instance Matting

Leveraging text prior enables us to easily extend our model to video instance matting, since the language is
also capable of describing a series of frames. We show the qualitative result of our model on video instance
matting in Fig. 9. Without any temporal modeling or fine-tuning, our model can still produce high-quality
results on video sample with given text input. Our model is also robust to multi-instance environments
and camera viewpoint changes, which demonstrates the powerful practicality of our model in real-world
applications. More video instance matting results can also be found in the supplementary video file.

“the man sitting on left” “the woman in pink dancing”

“the black skin male wearing suit” “the left zebra”

Figure 9: Qualitative results of our model on video instance matting. The corresponding text inputs
are shown in italic below every sample. The frames are placed following the temporal order in the original
video from left to right.

6.7 More Qualitative Results

In Fig. 10, we show more qualitative comparison results on RefMatte-Test and RefMatte-RW100. Our
model outperform other baselines both on synthetic and real-world datasets, demonstrating the superior
performance of our model in grounding alpha matte from text descriptions. We also show more qualitative
results on portrait and animal matting (Fig. 11). The text inputs are generated by BLIP2 (Li et al., 2023b).
The results further validate the generalization ability of our model on different matting tasks.
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Image GT GD+
MatAny

GD+
MAM

GD+
SmartMat

PS+
MaGGIe

PS+
MGMat

RV+
MaGGIe

RV+
MGMat CLIPMat Ours

“the hotpink and salient and non-transparent industrial plant”

“the thistle and non-salient and transparent mass”

“the coral and non-salient and non-transparent maple”

“the flower which is maroon and non-transparent”

“the lavender and transparent water spray”

“the linen and non-transparent dandelion”

“the individual is wearing a black jacket and blue jeans”

“the gainsboro and non-salient netting”

“the long haired woman wearing a orange dress and a glasses”

“a woman in black t-shirt”

“a black dog on its tiptoe”

“the strong blonde woman wearing a white sleeveless”

“a women that wears a dark green jacket and has brown hairs”

Figure 10: More qualitative comparisons on soft grounding task. The text inputs are shown in italic
below. Zoom in for better view.
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Figure 11: Qualitative results of our model on portrait (left) and animal (right) matting. Zoom
in for better view.
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