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ABSTRACT

Large language models (LLMs) can absorb a massive amount of knowledge
through pretraining, but pretraining is inefficient for acquiring long-tailed or spe-
cialized facts. Therefore, fine-tuning on specialized or new knowledge that reflects
changes in the world has become popular, though it risks disrupting the model’s
original capabilities. We study this fragility in the context of continual memo-
rization, where the model is trained on a small set of long-tail factoids (subject-
relation-object associations) and must retain these factoids after multiple stages
of subsequent training on other datasets. Continual memorization focuses on the
specific challenge of retaining long-tail factoids, whereas general continual learn-
ing aims to maintain the LLM’s capabilities across a wide range of generic tasks
(e.g., reasoning, commonsense knowledge). Through extensive experiments, we
show that LLMs suffer from forgetting across a wide range of subsequent tasks,
and simple replay techniques do not fully prevent forgetting, especially when the
factoid datasets are trained in the later stages. We posit that there are two ways to
alleviate forgetting: 1) protect the memorization process as the model learns the
factoids, or 2) reduce interference from training in later stages. With this insight,
we develop an effective mitigation strategy: REMIX (Random and Generic Data
Mixing). REMIX prevents forgetting by mixing generic data sampled from pre-
training corpora or even randomly generated word sequences during each stage,
despite being unrelated to the memorized factoids in the first stage. REMIX can
recover performance from severe forgetting, often outperforming replay-based
methods that have access to the factoids from the first stage. We then analyze
how REMIX alters the learning process and find that successful forgetting pre-
vention is associated with a pattern: model stores factoids in earlier layers than
usual and diversifies the set of layers that store these factoids. The efficacy of
REMIX invites further investigation into the underlying dynamics of memoriza-
tion and forgetting, opening exciting possibilities for future research.

1 INTRODUCTION

Large language models (LLMs) have shown a remarkable ability to absorb a massive amount of
knowledge through large-scale pretraining (Petroni et al., 2019; AlKhamissi et al., 2022; Cohen
et al., 2023). Despite their familiarity with common knowledge, they still struggle to capture the
long tail (Kandpal et al., 2023). Recent work explains that during the pretraining phase, each piece
of knowledge requires many exposures and diverse manifestations to be properly acquired (Allen-
Zhu & Li, 2024a;b; Chang et al., 2024).

A straightforward alternative is to finetune the model on a small, domain-specific dataset. However,
finetuning on long-tail knowledge can cause unintentional harm by decreasing factuality and exac-
erbating hallucination (Kang et al., 2024; Gekhman et al., 2024; Zhang et al., 2024; Ghosal et al.,
2024). In this regard, the finetuning process bears some similarity to continual learning (McCloskey
& Cohen, 1989; Ratcliff, 1990), where one tries to successively train a model on a series of tasks
without forgetting earlier ones. Prior research on continual learning in LLMs focuses on general
capabilities such as reasoning (Luo et al., 2023a), or broad proxies like the language modeling loss
over a general corpus (Yıldız et al., 2024).

In this work, we focus on the challenges unique to the continual learning of factoids – atomic facts
representable as subject-object relations. We formalize this setting as continual memorization (Fig-
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Acc on DA

= 99%

= 30%

LAMA (Factoid) 
Question: Where was David Diplacido born? 
Answer: Newmarket 

GSM8K (Non-Factoid) 
Question: Twenty gallons of tea were poured 
into 80 containers. […] How many pints of 
tea did Geraldo drink? 
Answer: 20 gallons = 160 pints […] 
Geraldo drank 7 pints of tea.

Stage 1 (Factoid)
Key-Value Recall 
Question: What is the value of  
key “fw2e54ad”? 
Answer: “kc87to2e” 

PopQA 
Question: What is Bernard Peiffer's occupation? 
Answer: Pianist. 

TriviaQA 
Question: What is the nickname of record-breaking 
sprinter Maurice Greene? 
Answer: Kansas Cannonball

Stage 2

Pretrained 
LLM

<latexit sha1_base64="JITrXUkxfuwtHruIvKDhdjYILgs=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPVi8cK9gPaUDbbSbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxup37rCbQRsXrAcQJ+xAZKhIIztFK7i0NA1rvulStu1Z2BLhMvJxWSo94rf3X7MU8jUMglM6bjuQn6GdMouIRJqZsaSBgfsQF0LFUsAuNns3sn9MQqfRrG2pZCOlN/T2QsMmYcBbYzYjg0i95U/M/rpBhe+ZlQSYqg+HxRmEqKMZ0+T/tCA0c5toRxLeytlA+ZZhxtRCUbgrf48jJpnlW9i6p3f16p3eRxFMkROSanxCOXpEbuSJ00CCeSPJNX8uY8Oi/Ou/Mxby04+cwh+QPn8wfnn4/i</latexit>

✓A
<latexit sha1_base64="OwUk8JXwDCNNBspTyIsGJodd0X4=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOpF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGm/3i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+75ScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZs+TgdCcoZxYQpkW9lbCRlRThjaikg3BW355lbQuqt5V1bu/rNTqeRxFOIFTOAcPrqEGd9CAJjCQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QPpI4/j</latexit>

✓B

Pretraining Data (Knowledge-Pile) 
Complete the following partial passage: Processing 
hyperspectral images allows you to decode […]

Random Word Sequences 
Memorize the following random-string passage: 
maladministrator revindicate subjectivist […]
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Acc on DA
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DM

Figure 1: The continual memorization setting. In stage 1 (red box), a pretrained model is trained
to convergence on a factoid dataset DA to yield the fine-tuned model θA. In stage 2, model θA is
further trained on either a factoid dataset or a non-factoid dataset (blue box) to obtain model θB . The
final model θB is evaluated on the training examples DA in stage 1. REMIX mixes either random
word sequences or pretraining data (denoted by DM ) into training during stages 1 and 2 to prevent
forgetting. We describe a two-stage setting in this figure and use it as the basis for most of our
experiments, but the general setting naturally extends to multiple stages.

ure 1), where a model is first trained on a small collection of factoids (stage 1), and then must retain
their knowledge after training on other datasets (stage 2). We first study how different tasks affect
forgetting when placed in the second stage. We find that the effect is maximum for factoid datasets
(i.e., datasets consisting of factoids) and that it is less pronounced for non-factoid datasets such as
those involving coding, math, or chat abilities. Even more worryingly, we find that typical replay
methods, which typically work well for general continual learning, fail to prevent model forgetting
when the second stage involves a factoid dataset.

How can an LLM prevent the forgetting of factoids? We intuit that this question may be approached
in two ways: 1) teach the model to protect learned knowledge better in the first stage, or 2) reducing
the interference of the second stage by manipulating the data distribution. Based on this hypothesis,
we propose REMIX (Random and Generic Data Mixing), which combines both approaches. First,
REMIX mixes random or generic data into the factoids in the first stage. While surprising at first
glance, including a broad range of mixed data teaches the model to diversify where it stores the
knowledge – as we show in later analysis of REMIX. This diversification allows it to better protect
learned knowledge. In the second stage, jointly learning the mixing data and the stage 2 data avoids
overfitting to a narrow distribution, alleviating the negative interference on the learned factoids.

Our experiments demonstrate that REMIX is highly effective at helping the model retain learned
factoids: in the most severe case, REMIX increases post-phase 2 accuracy from 13.5% to 53.2%.
In comparison, replay can only reach 41.6% despite using 10% of the factoids from stage 1. These
benefits are seen consistently across several choices of factoid and non-factoid tasks in stage 2. We
finally perform a careful analysis of REMIX through Logit Lens (nostalgebraist, 2020) and ablation
studies. We find that REMIX teaches the model to both store facts in relatively earlier layers (as
opposed to the unmixed case) and diversify their storage to many layers.

We summarize our contributions as follows:

• We formalize the setting of continual memorization, identify its unique challenge of mem-
orizing factoid data, and demonstrate that it cannot be easily addressed with replay.

• We propose REMIX, a simple strategy that does not require access to the factoids from prior
stages; we establish through experiments that REMIX helps models remember factoids
better – often increasing accuracy by as much as 3×.

• Through careful analysis and ablation studies, we find that REMIX operates by teaching
the model to protect factoids via diversification and by reducing the negative interference
from the later training stages.
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2 CONTINUAL MEMORIZATION OF FACTOIDS

2.1 PROBLEM DEFINITION

Factoid vs non-factoid datasets. We define a factoid to be a triple (subject, relation, object). A
dataset D ∈ D in this paper is a set of (prompt, response) pairs. A factoid dataset D ∈ Dfact ⊂ D
is a set of factoids formatted as pairs (prompt ≡ (subject, relation), response ≡ object). Here, the
≡ sign signifies that the relation instances are formatted using a template defined for each task (e.g.,
“The <X> of <Y> is” → <Z>). If D ∈ D \ Dfact, we call D a non-factoid dataset.

A language model is a set of parameters θ that define a mapping f(·; θ) : x 7→ P (y) from a prompt
x to a distribution over responses y. We will overload f(x; θ) to also refer to the response with
maximum probability. Given a model θ and dataset D, we denote by L(θ;D) ∈ R+ the loss and
A(θ;D) ∈ [0, 1] the average exact-match accuracy. We define a factoid x to be familiar to θ if
A(θ; {x}) = 1 and unfamiliar otherwise. An unfamiliar dataset consists entirely of unfamiliar facts.

Continual memorization. We now describe the setting of continual memorization, which consists
of two or more stages. We describe the setting with two stages below. Let DA ∈ Dfact be a factoid
dataset, and DB ∈ D be another dataset (factoid or non-factoid). In the first stage, a pretrained
model θ0 is trained on DA until convergence to obtain the trained model θA with near-zero loss
L(θA;DA) ≈ 0 and accuracy A(θA;DA) ≈ 1. In the second stage, θA is further trained on DB

until convergence. The resulting model θB is evaluated on DA to gauge its retention A(θB , DA).
In this paper, we consider the case where all factoid datasets (in the first as well as second stage—if
applicable) are unfamiliar and we refer to them simply as factoid datasets. Typically, one observes
A(θB , DA) ≪ A(θA, DA) due to catastrophic forgetting. Figure 1 illustrates this setting.

2.2 CONSTRUCTING FACTOID DATASETS

We consider a variety of (unfamiliar) factoid datasets in our experiments. These datasets are either 1)
constructed synthetically to ensure that they were not seen by the model θ0 during pretraining—such
as by generating random key-value mappings, or 2) by filtering factoid datasets to remove familiar
instances (more details in § B.4). We further describe the specific choice of datasets for the two
stages below.

Stage 1: Factoid dataset DA.

1. Key-Value Recall (KVR). We construct the Key-Value Recall task by randomly generating
2, 000 unique key-value pairs. Each key and value string contains 8 characters from the mix
of alphabets and number digits. See Figure 1 for an example.

2. PopQA. PopQA (Mallen et al., 2023) is a collection of 14k questions about long-tail en-
tities. It contains 16 diverse relationship types presented in a knowledge triplet format
sourced from Wikidata (Vrandečić & Krötzsch, 2014). We randomly select 2, 000 unfamil-
iar data points from the dataset for finetuning.

3. TriviaQA. TriviaQA (Joshi et al., 2017) is a question answering dataset containing over
650k question-answer pairs. Once again, we randomly select 2, 000 unfamiliar examples
to fine-tune on.

Stage 2: Dataset DB . We explore a wide range of datasets in stage 2 to reflect real-world appli-
cation scenarios. Specifically, we consider two types of datasets: factoid and non-factoid. We chose
this split because we want to see how the effect of stage 2 changes from a knowledge-intensive fac-
toid dataset to, e.g., a general instruction tuning dataset. Additionally, domain-specific knowledge
and instruction-tuning data represent two of the most common types of data used for supervised
fine-tuning—a fact reflected in our selection of tasks. We explore:

1. Factoid datasets: LAMA (Petroni et al., 2019), Entity Questions (Sciavolino et al., 2021),
WebQA (Berant et al., 2013). In addition, we also explore adding new (and unfamiliar)
examples from the distribution of DA (i.e., the same task as in stage 1)–referred to as the
“In-Domain” (ID) datasets in our results.
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2. Non-factoid datasets: UltraChat (Ding et al., 2023), EvolCode (Luo et al., 2023b), APPS
(Hendrycks et al.), GSM8K (Cobbe et al., 2021), and MATH (Hendrycks et al., 2021), .
These datasets exemplify some common non-factoid datasets used for fine-tuning: chat,
code and math.

Training and evaluation. We use Llama-3-8B (Dubey et al., 2024) and Mistral-7B (Jiang et al.,
2023) to initialize θ0 in our experiments (both are base models). All of our experiments use the
Tulu-v2 prompt template (Ivison et al., 2023), i.e., "<user>...<assistant>..." for both
stages. We provide training details in §B.4. Our accuracies are computed as Exact String Match
and normalized to [0, 100] for all the experiments, as the tasks generally only need to generate a few
tokens. We report averaged accuracy across 3 runs.

3 HOW DO MODELS FORGET FACTOIDS?

3.1 UNDERSTANDING THE FORGETTING PATTERNS

Accuracy (%) of the post-stage 2 model on the first dataset DA

Factoid (DB , Stage 2) Non-Factoid (DB , Stage 2)

DA, Stage 1 ID LAMA EntQ WebQA Avg GSM8K MATH EvolCode APPS UltraChat Avg
KVR 0.5 2.1 17.4 33.8 13.5 24.4 27.3 49.5 26.7 66.6 38.9
PopQA 49.8 7.7 57.8 72.5 47.0 19.0 92.4 77.0 55.1 48.5 58.4
TriviaQA 45.6 4.3 40.5 68.6 39.8 9.4 87.6 54.4 70.4 67.6 57.9

Table 1: Forgetting in continual memorization—lower accuracies imply more forgetting. All stage
1 datasets are trained to 100% accuracy before stage 2 training. The lowest accuracy in each row
is underlined, and “ID” signifies that we use unseen examples from DA to form the dataset in the
second stage (DB). We see that factoid datasets cause greater forgetting than non-factoid datasets
when used in stage 2.

We first establish the forgetting patterns in continual memorization by examining which intervening
tasks affect the final accuracy most severely when trained on in the second stage. Table 1 shows the
performance degradation of stage 1 tasks after training on stage 2 tasks. We observe that forgetting
is most severe when stage 2 is also a factoid dataset, degrading accuracy for Key-Value Recall to
13.5%, PopQA to 47.0%, and TriviaQA to 39.8% on average. In fact, with LAMA these accuracies
fall to 2.1%, 7.7% and 4.3% respectively—far below the numbers seen with non-factoid datasets.
This corroborates findings from the continual learning literature which suggest catastrophic forget-
ting happens when two tasks are similar and therefore interfere (Farajtabar et al., 2020; Bennani
et al., 2020; Doan et al., 2021). In general, non-factoid datasets see a lesser effect, though some
datasets like GSM8k still bring about a significant drop.

3.2 REPLAY DOES NOT MITIGATE FORGETTING FULLY
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Figure 2: Replay results averaged
across all DB for four mixing ratios.

Replay-based methods mitigate forgetting by sampling a
small portion of data from earlier stages and mixing it with the
subsequent dataset during training. Replay from past experi-
ence has been a long-established mitigation to prevent for-
getting in reinforcement learning research (e.g. Mnih et al.,
2013) and more recently continual pretraining, for example
for LM Although replay-based methods have proven helpful
for continual learning, we hypothesize that they will be less
effective for tasks requiring memorization, as the individual
instances are largely unrelated (Feldman, 2020; Yang et al.,
2023). Table 2 shows that although replay reduces forgetting
across the board, the effectiveness is not uniform. Replay has
less success to avoid forgetting than non-factoid. We provide
full results in §B.2. The replay experiments suggest that ma-
nipulating the training dynamics such as exposing the model
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to different distributions, can affect the model’s ability to recall factoids, even when the replayed
factoids are not directly related to the other factoids.

4 REMIX: RANDOM AND GENERIC DATA MIXING

4.1 METHOD

No Mixing
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Figure 3: Intuition behind each mixing strategy. Forgetting occurs when ∇L(θ;DA)
T∇L(θ;DB) <

0. In stage 1, the model goes from θ0 to θA in the parameter space (gray arrow). After stage 2, the
model arrives at θB . The translucent blobs represents low-loss region for each dataset. No Mixing:
the opposing angle between the red and blue arrows contributes to forgetting. Mixing at Stage 1: the
mixing data protects memorization by shifting the model parameters to reduce the angle between
the red and blue arrows while converging to a low loss on DA. Mixing at Stage 2: mixing data
reduces the interference of DB by lowering the angle between blue and red arrows.

Despite the shortcomings of replay, we make one key observation: when mixing only 10% of the
factoids used in stage 1, the post-stage 2 accuracy increases from no mixing at 40.1 to 83.9% for
non-factoid stage 2 (Table 4). This implies the existence of associations that were stored in model
weights but could not be retrieved effectively. It is then prudent to ask if these “hidden” associations
can be surfaced with a different choice of mixing data.

To answer this question, we propose Random and Generic Data Mixing (REMIX), a forgetting pre-
vention strategy that manipulates the memorization dynamics by mixing extra data into training.
The mixing data is sampled from either random word sequences or generic text such as pretraining
corpora, which has no overlap with the factoids aiming to memorize in stage 1. Figure 3 illus-
trates the intuition behind the mixing strategies. For the purpose of developing intuition, we take a
drastic simplification to assume the entire optimization is captured by the one-step gradient update.
The model θ0 first progresses to θA at stage 1 with update: θA = θ0 − η∇L(θ0;DA). Similarly,
the model θA progresses to θB at stage 2: θB = θA − η∇L(θA;DB). In a regular forgetting
scenario, the increase in loss after stage 2 is L(θB ;DA) − L(θB ;DA), and can be expanded into
(θB − θA)

T∇L(θA;DA) + R = −η∇L(θ;DA)
T∇L(θ;DB) + R where R is the higher-order

terms. The first term contributes to forgetting when the two gradients ∇L(θ;DA) and ∇L(θ;DB)
point to opposing directions. With REMIX, DM is mixed into the two stages to prevent forgetting.
Specifically, the model progresses in stage 1: θ′A = θ0 − η∇L(θ0;DA ∪ DM ) if mixed with DM

and progresses to θ′B = θ′A − η∇L(θ0;DB ∪DM ′) if mixes with DM ′ . REMIX is effective when
L(θ′B ;DA) < L(θB ;DA).

At stage 1, the mixing data can teach the model to diversify where to store the knowledge, result-
ing in a better starting position in the parameter space for stage 2 training (smaller angle between
∇L(θ;DA) and ∇L(θ;DB)), achieving better protection of the memorized factoids. At stage 2,
the mixing data can rotate the direction of ∇L(θ;DB) to align with ∇L(θ;DA), thus reduces the
interference on the memorized factoids from stage 2 training; if the two gradients are in extreme
opposing directions, it becomes easier for the mixing data to align them. We provide derivations to
concretize the intuition in §A.3. Based on the above insight, we posit: 1) mixing at stage 1 mitigates
forgetting most when the mixing data is unrelated to both DA and DB , and 2) mixing at stage 2 is
most effective if the forgetting is severe, and is more effective when DM aligns with DA.

REMIX datasets DM . We explore three data sources for generic data mixing: 1) Knowledge
Pile (Fei et al., 2024), 3) Arxiv Pile (Gao et al., 2020), and 4) Fineweb (Penedo et al., 2024). We
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Factoid Non-Factoid
ID LAMA EntQ WebQA Avg GSM8K MATH EvolCode Apps UltraChat Avg

Key-Value Recall
No Mixing 0.5 2.1 17.4 33.8 13.5 24.4 27.3 49.5 26.7 66.6 38.9
Random / - 8.9 2.5 42.5 61.4 28.8 64.1 75.9 85.3 75.0 89.1 77.9
K-Pile / - 0.1 0.0 3.2 30.1 8.4 47.3 58.4 62.2 19.0 74.3 52.2
- / Random 0.2 0.1 2.9 5.3 2.1 15.1 11.7 33.8 16.5 66.8 28.8
- / K-Pile 0.8 40.0 36.4 33.9 27.8 12.8 8.8 40.5 16.8 70.2 29.8
Random / K-Pile 10.6 62.4 69.5 70.2 53.2 45.8 45.4 74.7 51.2 86.8 60.8

PopQA
No Mixing 49.8 7.7 57.8 72.5 47.0 19.0 92.4 77.0 55.1 48.5 58.4
Random / - 62.0 17.7 69.3 65.8 53.7 51.4 89.3 82.7 81.8 66.0 72.2
K-Pile / - 24.0 2.8 11.3 31.8 17.5 46.4 92.7 94.0 87.2 90.9 82.2
- / Random 35.7 5.2 38.1 45.9 31.2 16.8 93.5 87.5 59.3 70.7 65.6
- / K-Pile 86.6 90.8 93.9 74.4 86.4 25.9 94.0 92.4 73.9 74.7 72.2
Random / K-Pile 82.6 85.8 90.7 80.5 84.9 38.5 88.7 88.3 79.2 74.4 73.8

TriviaQA
No Mixing 45.6 4.3 40.5 68.6 39.8 9.4 87.6 54.4 70.4 67.6 57.9
Random / - 64.9 8.1 60.0 70.8 51.0 27.1 84.9 71.2 87.3 70.8 68.3
K-Pile / - 9.4 0.9 3.8 21.0 8.8 31.9 82.9 93.5 90.7 90.1 77.8
- / Random 25.0 5.5 19.9 38.8 22.3 4.1 81.0 84.0 62.2 71.6 60.6
- / K-Pile 90.8 90.1 91.5 89.8 90.6 2.8 79.1 75.9 53.7 69.8 56.3
Random / K-Pile 90.2 89.2 89.6 86.5 88.9 12.5 81.8 71.2 74.6 70.0 62.0

Table 2: REMIX results for Llama-3-8B with the combinations of DA, DB , and DM . No Mixing
denotes the original two-stage training without applying REMIX. Each DM1 / DM2 row represents
mixing with DM1 in stage 1 and mixing with DM2 in stage 2. “-” indicates no mixing at that stage.
All numbers are in accuracy and averaged across three runs.

construct the Random Word Sequence data by collecting a set of uniformly sampled 50 random
word sequences from the NLTK Word Corpus (Bird et al., 2009). We check and ensure no overlap
between the factoid data and the mixing data (see details in §B.6). When applying REMIX, we add
the mixing data directly to DA in stage 1 and DB in stage 2, therefore the model trains on more
data at each stage with mixing. We use Random Word Sequence and Knowledge Pile as the main
datasets in the following experiments and later show that other mixing datasets show similar trends.
We use DA : DM = 1 : 2 and DB : DM = 1 : 2 for the main experiments.

4.2 RESULTS

Factoid tasks. Figure 2 shows the results of factoid tasks with Llama-3-8B. We observe that mix-
ing Random Word Sequences prevents forgetting across the board, improving average accuracy for
all DA, improving Key-Value Recall (13.5% → 28.8%), PopQA (47.0% → 53.7%), and TriviaQA
(39.8% → 51.0%). On the other hand, mixing Knowledge Pile at stage 1 hurts the performance.
Mixing at stage 2 shows an opposite trend. We observe drastically better performance with mixing
Knowledge Pile, improving the average accuracy for Key-Value Recall (13.5% → 27.8%), PopQA
(47.0% → 86.4%), and TriviaQA (39.8% → 90.6%). In contrast, mixing Random Word Sequence
at stage 2 exacerbates forgetting. The results align with our prediction that stage 1 mixing relies
on data that is unrelated to either DA or DB , while stage 2 mixing benefit most when forgetting is
severe and the mixing data aligns with DA.

Non-factoid tasks. Figure 2 shows that the model exhibits consistent results after training on non-
factoid data at stage 2. We observe that stage 1 mixing is more beneficial than stage 2 mixing across
the board. However, the best mixing data varies for different DA. Key-Value Recall benefit most
from mixing Random Word Sequence at stage 1 (38.9% → 77.9%), while Knowledge Pile benefit
most on PopQA (58.4% → 82.2%) and TriviaQA (57.9% → 77.8%).

Applying mixing at both stages. Based on the observation that mixing with Random Word Se-
quence at stage 1 and mixing Knowledge Pile at stage 2 individually benefit memorization intensive
tasks, we examine if the two stages can be combined. Figure 2 shows the that the combination
outperforms individual stage mixing, demonstrating the possibility of composing mixing strategies.
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Factoid Non-Factoid
LAMA EntityQA WebQA Avg GSM8K Math EvolCode Apps UltraChat Avg

Key-Value Recall
No Mixing 0.1 15.4 29.6 15.0 4.8 1.5 12.7 13.1 51.9 16.8
Random / K-Pile 47.5 44.1 39.0 43.5 60.1 39.1 52.9 54.8 81.0 57.0
PopQA
No Mixing 66.9 92.3 89.6 82.9 96.9 96.8 96.9 96.9 96.7 96.8
Random / K-Pile 90.5 92.3 89.0 90.6 91.7 91.6 91.8 91.92 91.3 91.7

TriviaQA
No Mixing 71.6 86.4 91.5 83.2 4.8 99.0 95.9 79.9 97.0 75.3
Random / K-Pile 77.0 81.5 83.1 80.5 1.6 91.1 95.3 97.7 90.7 75.3

Table 3: REMIX results for Mistral-7B-v0.3. We compare the No Mixing baseline to REMIX that
mixes with Random Word Sequence at stage 1 and mixes with Knowledge Pile at stage 2.

Mistral results. We report REMIX results for Mistral in Figure 3. For Key-Value Recall, REMIX
can successfully prevent forgetting and improve performance after stage 2 training on factoid data
(15.0% → 43.5%) and stage 2 training on non-factoid data (16.8% → 57.0%). However, the results
are less effective with REMIX since the No Mixing baselines are not affected by forgetting severely
to begin with.

5 ANALYSIS

REMIX learns factoids in earlier layers. We use Logit Lens (nostalgebraist, 2020) to decode the
top 10 tokens from the representations at each layer using the output embedding. We record the layer
index of the first occurrence of the correct token and normalize by the total number of occurrences.
This measure indicates how early the correct token first appears. In Figure 4, we compare these
mixing stragies 1) No Mixing, 2) Random (stage 1) / K-Pile (stage 2) which successfully prevents
forgetting, and 3) K-Pile (stage 1) / None (stage 2) which suffers from forgetting for KVR and
TriviaQA. We notice two main differences between the two runs – first, the successful run moves
the knowledge to an earlier layer, whereas the unsuccessful one does not change where the factoids
are stored. The successful run also diversifies the set of layers that are used, as inferred from the
substantial increase in the number of layers that respond to Logit Lens. Both of these changes align
with the model protecting the factoids from interference, and support our intuition.
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Figure 4: Probing on Key-Value Recall and TriviaQA using Logit Lens. x-axis: layer index. y-axis:
the normalized frequency of the correct token occurring in the top-10 tokens probed at each layer.
% following each legend shows the accuracy on each stage 1 task.

Effect of different mixing data. We investigate how the choice of the mixing data impacts the
results for factoid-tasks. Figure 5 shows no difference between Knowledge Pile and other generic
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mixing data such as ArXiv Pile and FineWeb. This affirms that the effectiveness of REMIX does
not rely on Knowledge Pile’s potential distributional overlap with memorization-intensive tasks.
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Figure 5: Comparison between Knowledge Pile and other generic mixing data sources: ArXiv Pile
and FineWeb on Key-Value Recall.
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Figure 6: Accuracy on Key-Value Recall of varying sequence length with the mixing datasets. Left:
Random Word Sequence (mixed at stage 1). Right: Knowledge Pile (mixed at stage 2).

Ablating mixing data length. Figure 6 shows the effect of sequence length when using Random
Word Sequences and Knowledge Pile for mixing. We observe that longer Random Word Sequences
hurt the performance, highlighting the risk of incorporating wildly out of distribution data. On
the other hand, Knowledge Pile also saturates after 50 words, indicating the limits of the generic
data. The ablation also affirms that the role of the mixing data serves as a way to manipulate the
memorization dynamics as opposed to provide extra information.

Effect of mixing ratio. We show in Figure 7 the model’s KVR performance under varying mix-
ing ratio across all stage 2 tasks. We observe that stage 2 mixing is particularly sensitive to the
increase of mixing ratio. On the other hand, stage 1 mixing enjoys less decrease or even increase in
performance as the mixing ratio go up, suggesting a different memorization dynamics than stage 1.

Can REMIX go beyond two stages? We test REMIX after more training stages to assess the
effectiveness going beyond the main two-stage setting. Figure 8 shows the accuracy of the Key-
Value Recall task when trained on the combination of WebQA, EntityQA, MATH, and UltraChat.
We observe a severe degradation when the two consecutive stages are both memorization-intensive.
When the two following data are both factoid tasks, the No Mixing baseline is able to retain 37.0%
accuracy. In contrast, REMIX can largely enhance the model’s ability to retain knowledge, and is
robust after two stages of training, leading at least 30% accuracy above the baseline across the board.
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Figure 7: Mixing ratio ablation. x-axis indicates the ratio of the mixing data against the training
data. The two left-most plots are both stage 2 mixing (S2) and the right-most two are both stage 1
mixing (S1).
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Figure 8: 3-stage continual memorization setting. B = ∗ refers to the stage 2 task, and C = ∗ refers
to the stage 3 task. We use Random mixing at stage 1, K-Pile mixing at stage 2 for WebQA, No
Mixing at stage 2 for UltraChat, K-Pile mixing at stage 3 for EntityQA, and No Mixing for MATH
at stage 3.

6 RELATED WORK

Continual learning. Continual learning has been the subject of investigation since early research
on connectionist models, which identified catastrophic forgetting as a fundamental challenge (Mc-
Closkey & Cohen, 1989; Ratcliff, 1990). Many methods have proposed for mitigating forgetting
in continual learning. The simplest approach involves maintaining a memory of examples from
previous tasks and replaying them during subsequent training (e.g. Robins, 1995; Chaudhry et al.,
2019; Shin et al., 2017). Other methods involve regularization techniques that preserve important
weights (e.g. Kirkpatrick et al., 2017; Ke et al., 2023) or reduce the divergence between model
predictions (Li & Hoiem, 2017). One group of methods project the gradient for a new task to
be orthogonal to the gradients from previous tasks, with the aim of reducing interference between
tasks (Lopez-Paz & Ranzato, 2017; Farajtabar et al., 2020). Theoretical analyses (Bennani et al.,
2020; Doan et al., 2021) have established that these gradient projection methods mitigate forget-
ting in the Neural Tangent Kernel regime (Jacot et al., 2018). A number of studies have attempted
to characterize the relationship between task similarity and forgetting, empirically and theoreti-
cally (Ramasesh et al., 2021; Lee et al., 2021; Evron et al., 2022). See Wang et al. (2023) for a
more comprehensive overview. In this paper, we restrict the class of approaches to those that do not
change model weights, e.g., via regularization.

Memorization and forgetting in LLMs. In the context of LLMs, many prior works have inves-
tigated the factors that influence memorization during pre-training (Tirumala et al., 2022; Carlini
et al., 2023; Mallen et al., 2023; Jagielski et al., 2023). In particular, prior work has observed that
instruction tuning can lead to some degradation on general NLP tasks, which has been called an
“alignment tax” (Ouyang et al., 2022; Bai et al., 2022). Ouyang et al. (2022) find that this align-
ment tax can be partly mitigated by mixing pre-training data into the alignment data, and Luo et al.
(2023a) find that LLMs forget less when the instruction-tuning data is more diverse. Kotha et al.
(2024) find that fine-tuning LLMs leads to bigger performance degradation on tasks that are more
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similar to the fine-tuning task (as measured by likelihood under the learned fine-tuning distribution).
See Shi et al. (2024) and Wu et al. (2024) for more extensive surveys of continual learning in the
context of LLMs.

Fine-tuning on unfamiliar facts. Our work builds on several recent observations about the effect
of fine-tuning an LLM on unfamiliar facts. Kang et al. (2024) find that fine-tuning LLMs on un-
familiar examples (questions that the LLM cannot answer correctly via few-shot prompting) lead
the model to “hallucinate” plausible-sounding but incorrect answers to unfamiliar test examples.
Similarly, Gekhman et al. (2024) find that unknown examples take longer to learn, and learning
unknown examples leads to more hallucination. Ghosal et al. (2024) present a conceptual model
for this phenomenon, suggesting that fine-tuning on facts that are weakly represented in the model’s
weights can lead the model to pay less attention to entities in the query and instead hallucinate an
incorrect response. These studies highlight the difficulty of encoding new facts into a model during
fine-tuning. Yang et al. (2024) propose to address this challenge by generating synthetic data for
continual pretraining, with the goal of acquiring new knowledge given only a small fine-tuning cor-
pus. This approach can be motivated by mechanistic studies (Allen-Zhu & Li, 2024a;b), which have
found that knowledge extraction is possibly only when information appears in diverse forms in the
training data (e.g. paraphrases), which leads models to encode information more effectively for later
extraction. In contrast, our investigation focuses on the effects of mixing in generic or randomly
generated data.

Model editing and unlearning. Our work is also related to a line of research aimed at explicitly
modifying facts that are encoded in an LLM—for example, to update information about entities to
reflect changes in the world (e.g. Zhu et al., 2020; Mitchell et al., 2022; Meng et al., 2022; 2023).
Studies have shown that these methods can update individual facts, but do not lead to consistent
changes about all of the implications of these updates (Zhong et al., 2023; Cohen et al., 2024). A
related line of work has investigated whether specific information can be deliberately removed, or
“unlearned,” from neural networks (e.g. Graves et al., 2021; Zhang et al., 2023). Our focus in this
paper is on introducing new knowledge while retaining existing knowledge, rather than on modifying
or erasing existing knowledge.

7 CONCLUSION

In this paper, we formalize finetuning a language model with factual knowledge in the continual
memorization framework. In contrast to continual learning, which focuses on general capability,
we focus on the specific challenges inherent to finetuning on long-tail factoids. Through careful
experiments, we establish that the long-tail factoid data is the largest culprit in making a model forget
memorized factoids from previous stages of finetuning. We then evaluate experience replay methods
that are often used in continual learning and find that they do not satisfactorily revive forgotten
factoids. To address the issue of forgetting, we propose a surprising yet effective strategy REMIX.
By mixing random word sequences or generic pretraining data into different stages of training,
REMIX outperforms replay-based methods in our experiments despite not using any factoids from
the original set in its mixing process. Finally, we analyze REMIX using Logit Lens and ablation
studies to find that it teaches the model to reduce inter-fact interference by changing where it stores
facts. REMIX opens up many new directions for future research. For example, future work may
explore REMIX and similar approaches to ensure that safety-tuning is not easily undone by further
finetuning. Its efficacy also poses interesting questions about the dynamics of memorization in
language models, which we are excited to see investigated in future work.
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8 REPRODUCIBILITY STATEMENT

In this paper, we have taken several steps to ensure the reproducibility of our results. The detailed
descriptions of the datasets and experimental setup are provided in §2.1 and Section B.6, where we
explain the construction of both factoid and non-factoid datasets, as well as the continual learning
and evaluation protocols used. For theoretical results, we offer a comprehensive analysis in §4,
supplemented by detailed derivations in §A. All hyperparameters and training procedures, including
learning rates, batch sizes, and model architectures, are thoroughly described in §B.4. To facilitate
replication of our findings, we will include source code to enable the community to build on top of
our results.
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A DERIVATIONS FOR FORGETTING, REPLAY, AND REMIX

A.1 FORGETTING IN CONTINUAL MEMORIZATION

We give a formulation of when forgetting happens and how random and generic data mixing
(REMIX) can mitigate forgetting.

We aim to analyze how mixing data during training affects memorization. Assume access to the
mixing dataset DM while learning either DA or DB – training on D′

A = DA ∪DM at stage 1 and
converges to θ′A or D′

B = DB ∪DM at stage 2 and converges to θ′B . Our goal is to examine under
what condition does the following occur:

L(θB ;DA) > L(θ′B ;DA),

which means that through mixing, the final model θ′B achieves a lower loss under DA than θB .

We can track the progression of the model with the following stages:

θA = θ0 − η∇L(θ0;DA) (Stage 1; no mixing)
θB = θA − η∇L(θA;DB) (Stage 2; no mixing)

Note that this is a simplification of the actual optimization process as the local one-step gradient
is possible to point to a different direction as the final parameter difference (θA − θ0). We use
∇L(θ;D) to represent the conceptual overall direction for model θ to point to the low loss region of
data D. The goal can be expressed as the difference:

∆ = L(θB ;DA)− L(θ′B ;DA)

=
(
L(θA;DA) + (θB − θA)

T∇L(θA;DA) + R1︸ ︷︷ ︸
Higher-Order Terms

)
−
(
L(θ′A;DA) + (θ′B − θ′A)

T∇L(θ′A;DA) + R2︸ ︷︷ ︸
Higher-Order Terms

)
=

(
L(θA;DA)− η∇L(θA;DB)

T∇L(θA;DA)
)

−
(
L(θ′A;DA)− η∇L(θ′A;DB ∪DM )T∇L(θ′A;DA)

)
+ (R1 −R2)

= L(θA;DA)− L(θ′A;DA)︸ ︷︷ ︸
∆1

+ η
(
∇L(θ′A;DB ∪DM )T∇L(θ′A;DA)−∇L(θA;DB)

T∇L(θA;DA)
)

︸ ︷︷ ︸
∆2

+ (R1 −R2)︸ ︷︷ ︸
∆3

We assume that the first two terms ∆1,∆2 as the main source contributing to forgetting and ignore
the higher-order terms.

A.2 REPLAY

In the replay scenario, the mixing data DM is a subset of DA. We denote the r% subset of DA as
Dr

A. With DM = Dr
A, we can assert that ∆1 ≈ 0 since the converged model should obtain the

same loss under DA and DA ∪Dr
A. The second term ∆2 = ∇L(θ′A;DB ∪Dr

A)
T∇L(θ′A;DA) −

∇L(θA;DB)
T∇L(θA;DA) > 0.

∆2 = ∇L(θ′A;DB ∪Dr
A)

T∇L(θ′A;DA)−∇L(θA;DB)
T∇L(θA;DA)

≈
(
∇L(θ′A;DB ∪Dr

A)−∇L(θA;DB)
)T

∇L(θA;DA)

> 0
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A.3 REMIX

Mixing at stage 1: D′
A = DA ∪DM . ∆1 ≈ 0 due to convergence in either no mixing or mixing

training scenarios. We turn to analyzing ∆2. The term ∇L(θ′A;DA) ≈ ∇L(θA;DA)+HA(θ
′
A−θA)

and ∇L(θ′A;DB) ≈ ∇L(θA;DB) + HB(θ
′
A − θA), where HA is the Hessian of ∇L(θ;DA) at

θ = θA, and HB is the Hessian of ∇L(θ;DB) at θ = θB . With mixing at stage 1, we have
θ′A = θ0−η∇L(θ0;DA∪DM ), which gives us θ′A−θA = η(∇L(θ0;DA)−∇L(θ0;DA∪DM )) =
−η∇L(θ0;DM ).

∆2 = η
(
∇L(θ′A;DB)

T∇L(θ′A;DA)−∇L(θA;DB)
T∇L(θA;DA)

)
= η

((
∇L(θA;DB) +HB(θ

′
A − θA)

)T(
∇L(θA;DA) +HA(θ

′
A − θA)

)
−∇L(θA;DB)

T∇L(θA;DA)

)
= η

((
∇L(θA;DB) +HB(−η∇L(θ0;DM ))

)T(
∇L(θA;DA) +HA(−η∇L(θ0;DM ))

)
−∇L(θA;DB)

T∇L(θA;DA)

)
= −η2∇L(θA;DB)

THA∇L(θ0;DM )− η2∇L(θA;DA)
THB∇L(θ0;DM )

+ η3∇L(θ0;DM )THBHA∇L(θ0;DM )

We analyze the three terms under the assumption that HA, HB , and HBHA are positive
semi-definite. If the distributions for DM and DB are uncorrelated, then in expectation
E[∇L(θA;DB)

THA∇L(θ0;DM )] = 0. Similar case for DM and DA. And the last term will
be positive, contributing to ∆2 and thus mitigate forgetting. Note that the norm ||∇L(θ0;DM )|| and
the eigenvalues of the Hessians HA and HB are not bounded, which may be large and compensate
for the leading η3. If we assume that mixing DM does not drift the parameters away too far, mak-
ing ||∇L(θ′A;DB) − ∇L(θA;DB)

||22 < L1, and ||∇L(θ′A;DA) − ∇L(θA;DA)||22 < L2, where
L1, L2 ∈ R, we can expect the contribution to the ∆2 term comes from the change in the angle.

Mixing at stage 2: D′
B = DB ∪ DM . With no mixing in stage 1, we have A′ = A. Therefore,

the first term ∆1 = L(θA;DA)− L(θ′A;DA) = 0 since D′
A = DA. We can also express:

∆2 = η
(
∇L(θA;DB ∪DM )T∇L(θA;DA)−∇L(θA;DB)

T∇L(θA;DA)
)

= η
(
β1∇L(θA;DB)

T∇L(θA;DA) + β2∇L(θA;DM )T∇L(θA;DA)

−∇L(θA;DB)
T∇L(θA;DA)

)
= η

(
β1∇L(θA;DM )− (1− β2)∇L(θA;DB)

)T

∇L(θA;DA),

where β1, β2 ∈ [0, 1].

Consequentially, the condition for forgetting mitigation requires ∇L(θA;DM )T∇L(θA;DA) >
1−β2

β1
∇L(θA;DB)

T∇L(θA;DA). This condition posits that mixing data can reduce forgetting as
long as it aligns with the original data DA more than DB . When DA and DB are already pointing
in drastically opposite directions, making the term ∇L(θA;DB)

T∇L(θA;DA) negative, the mixing
has a higher chance to lower ∆2. On the other hand, if ∇L(θA;DB)

T∇L(θA;DA) is positive, it is
harder for mixing to mitigate forgetting.
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B SUPPLEMENTARY RESULTS

B.1 MAIN RESULTS WITH STANDARD DEVIATION
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Figure 9: The main results of different combinations of DM1
/DM2

over seed=[0,1,2] on the factoid
datasets.
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Figure 10: The main results of different combinations of DM1/DM2 over seed=[0,1,2] on the non-
factoid datasets.

B.2 REPLAY RESULTS

We report the full replay results in Table 4. Even though replay reduces more forgetting across the
board, especially when we increase the ratio r, the replay-based method does not effectively mitigate
forgetting in the factoid knowledge dataset.

B.3 FORGETTING IN FAMILIAR FACTOID INSTANCES

We also investigate whether REMIX can retain the memorization of familiar factoid instances after
directly fine-tuning on both factoid and non-factoid data in stage 2. After fine-tuning in stage 2, we
evaluated the familiar instances from the factoid dataset DA. The evaluation results for Llama-3-8B
are shown in Table 5, and the results for Mistral-7B-v0.3 are presented in Table 3. We observe that
mixing Knowledge-Pile, Arxiv-Pile, and FineWeb with factoid data in stage 2 helps mitigate the
forgetting of familiar factoid instances for both Llama-3-8B and Mistral-7B-v0.3, aligning with the
results in Figure 9.

B.4 TRAINING DETAILS

In all experiments with Llama-3-8B, we average the results over three seeds [0, 1, 2], using a learning
rate of 5e-5. For all experiments with Mistral-7B-v0.3, we use a learning rate of 1e-5. For the
experiments on measure the forgetting of familiar factoid instances, we use a batch size of 128. For
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LAMA EntityQA WebQA GSM8K Math EvolCode Apps UltraChat

Key-Value Recall
Replay (r = 0.00) 2.2 17.5 34.1 26.4 27.5 50.0 30.0 66.7
Replay (r = 0.01) 13.7 37.1 54.2 71.0 69.7 73.2 73.8 81.9
Replay (r = 0.05) 6.3 45.8 72.6 77.0 75.9 76.7 80.1 88.9
Replay (r = 0.1) 13.2 33.3 78.2 80.3 85.0 76.5 86.7 91.1

PopQA
Replay (r = 0.00) 15.7 64.3 78.6 33.6 93.5 80.5 63.2 53.7
Replay (r = 0.01) 12.0 66.0 75.3 94.4 95.1 95.7 90.8 87.6
Replay (r = 0.05) 27.4 64.4 84.5 95.9 95.2 95.4 95.9 95.3
Replay (r = 0.1) 46.6 64.0 83.8 96.1 96.0 95.7 96.3 95.7

TriviaQA
Replay (r = 0.00) 7.8 48.4 76.8 57.6 91.0 59.5 75.6 73.5
Replay (r = 0.01) 7.5 51.8 72.0 66.8 90.6 93.3 74.2 84.0
Replay (r = 0.05) 25.7 57.0 77.8 88.9 94.0 93.7 94.4 92.0
Replay (r = 0.1) 34.9 57.9 80.7 93.0 95.5 95.4 95.2 93.0

Table 4: The full Replay results at four replay ratio [0.0, 0.01, 0.05, 0.1].

LAMA EntityQA WebQA GSM8K Math EvolCode Apps UltraChat

PopQA
/ No Mixing 27.3 24.4 39.1 13.0 18.3 36.3 7.4 46.9
/ K-Pile 56.0 52.1 46.6 4.1 4.8 19.5 10.3 15.8
/ A-Pile 65.1 60.4 52.7 9.2 3.2 26.5 21.8 19.3
/ Random 24.9 27.9 29.1 7.5 6.0 25.4 2.8 18.4
/ FineWeb 54.9 54.4 51.3 6.6 5.2 29.1 30.0 18.4

TriviaQA
/ No Mixing 16.5 20.7 40.4 24.7 26.7 52.9 21.9 56.6
/ K-Pile 55.9 57.5 50.3 11.0 6.8 28.4 20.9 23.4
/ A-Pile 66.4 65.9 56.6 13.0 2.8 34.8 33.5 25.8
/ Random 14.4 26.5 26.5 14.0 7.5 21.8 13.4 27.5
/ FineWeb 56.6 57.6 52.6 13.0 6.0 38.9 56.9 17.7

Table 5: Llama-3-8B results for familiar-Factoid datasets. Mixing in stage 2 helps on maintaining
the existing factoid instances.

LAMA EntityQA WebQA GSM8K Math EvolCode Apps UltraChat

PopQA
/ No Mixing 55.5 47.1 68.0 14.5 42.8 25.9 18.4 38.9
/ K-Pile 75.8 77.1 76.1 28.1 20.9 19.9 18.3 14.2
/ A-Pile 78.2 79.0 77.6 28.1 20.9 19.9 18.3 14.2
/ Random 52.7 53.8 62.6 28.1 20.9 19.9 18.3 14.2
/ FineWeb 75.0 74.4 75.1 28.1 20.9 19.9 18.3 14.2

TriviaQA
/ No Mixing 61.6 56.9 69.3 19.6 54.3 36.7 21.2 18.6
/ K-Pile 79.1 79.6 73.9 29.3 20.8 20.6 20.7 18.6
/ A-Pile 81.3 81.8 76.3 29.3 20.8 20.6 20.7 18.6
/ Random 60.8 58.0 64.0 29.3 20.8 20.6 20.7 18.6
/ FineWeb 78.8 80.0 73.7 29.3 20.8 20.6 20.7 18.6

Table 6: Mistral-7B-v0.3 results for familiar-Factoid datasets. Mixing in stage 2 helps on maintain-
ing the existing factoid instances.
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the rest of the experiments, we set the batch size to 32. Additionally, different stopping conditions
are applied for the different factoid datasets: for the KVR task, we use a fixed number of epochs
(20), while for other factoid tasks, training stops when the loss drops below 0.0001. We provide our
training prompt in §B.5.

B.5 INPUT-OUTPUT EXAMPLES FOR DA AND DM

B.5.1 INPUT-OUTPUT EXAMPLES FOR DA

1. Key-Value Recall (DA):
Input text: The value of key e6395973 is?
Target text: 8219acf2

2. PopQA (DA):
Input text: Question: What is New Lands’s author? The answer is:
Target text: Charles Fort

3. TriviaQA (DA):
Input text: Which city does David Soul come from? The answer is:
Target text: Chicago

B.5.2 INPUT-OUTPUT EXAMPLES FOR DM

1. Knowledge-Pile (DM ):
Input text:
Complete the following partial passage: Processing hyperspectral images allows you to
decode images and recognize objects in the scene on the base of analysis of spectrums. In
some problems, information about the spectra may not be sufficient. In this case, visualiza-
tion of data sets may use, for object recognition, by use additional non-formalized external
attributes
Target text:
(for example, indicating the relative position of objects). Target visualization is a visual-
ization adapted to a specific task of application. The method discussed in this chapter uses
a way to visualize a measure of similarity to the sample. As a result of the transformation,
the hyperspectral (multichannel) image is converted ...

2. Arxiv-Pile (DM ):
Input text:
Complete the following partial passage:
— abstract: ’The purpose of this article is to study the problem of finding sharp lower
bounds for the norm of the product of polynomials in the ultraproducts of Banach spaces
(Xi)U. We show that, under certain hypotheses, there is a strong relation between this
problem and the same
Target text:
problem for the spaces Xi.’ address: ’IMAS-CONICET’ author: - Jorge Tomás Rodrı́guez
title: On the norm of products of polynomials on ultraproducts of Banach spaces — In-
troduction ============ In this article we study the factor problem in the context of
ultraproducts of Banach spaces. This problem can be stated as ...

3. FineWeb (DM ):
Input text:
Complete the following partial passage: *sigh* Fundamentalist community, let me pass on
some advice to you I learned from the atheistic community: If you have set yourself on
fire, do not run. Okay? Okay?? Please? Look, D, you had two months to say to Harvard in
private emails, ”I’m sorry, I shouldn’t have been using
Target text:
that animation in my paid presentations. I wont use it again. I really do like ’Inner Life’,
though, and would love to use it in classroom presentations, from the BioVisions site, if that
is acceptable.” I sat here, for two months, waiting for that to happen, anything to happen,
and ...

4. Random Word Sequence (DM ):
Input text:
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Memorize the following random-string passage:
pliosaur bismuth assertoric decentralization emerse redemonstrate sleepwaker Coracias
thirstland Stercorariinae Cytherean autobolide pergamentaceous ophthalmodynamometer
tensify tarefitch educement wime cockneity holotype spreng justiciary unseparate ascogo-
nial chirimen Styphelia emotivity heller hystazarin unthinkable Corinth vicianose incom-
municative sorcerous lineograph dochmiacal heresiographer interrenal anes mercal em-
bryogenic swoon diptote funniness unwreathed contection rhapsodical infolding colorature
multifurcate
Target text:
pliosaur bismuth assertoric decentralization emerse redemonstrate sleepwaker Coracias
thirstland Stercorariinae Cytherean autobolide pergamentaceous ophthalmodynamometer
tensify tarefitch educement wime cockneity holotype spreng justiciary unseparate ascogo-
nial chirimen Styphelia emotivity heller hystazarin unthinkable Corinth vicianose incom-
municative sorcerous lineograph dochmiacal heresiographer interrenal anes mercal em-
bryogenic swoon diptote funniness unwreathed contection rhapsodical infolding colorature
multifurcate

B.6 DATASET DETAILS

We examine the strict overlap of knowledge entities between PopQA, TriviaQA, and the generic data
used for mixing. By extracting knowledge entity pairs from the questions and target answers, we
calculate the exact overlap between these pairs. The overlap percentage among PopQA, TriviaQA,
and the generic data is less than 1.3%.

B.7 PROBING RESULTS
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Figure 11: Probing of the Key-Value Recall task. x-axis: layer index. y-axis: the normalized
frequency of the correct token occurring in the top-10 tokens probed at each layer.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

15 20 25 30
0

10

20

30

15 20 25 30
0

10

20

30

No Mixing Mix = None / K-Pile (success) Mix = K-Pile / None (fail)

T
r
iv

ia
Q

A
 T

o
k
e
n
 P

r
e
d
ic

t
io

n
 i
n
 T

o
p
-
1
0
 (

%
)

LAMA Entity Questions

Figure 12: Probing of the TriviaQA task. x-axis: layer index. y-axis: the normalized frequency of
the correct token occurring in the top-10 tokens probed at each layer.
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