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Abstract
The rapid evolution of linear attention has led
to the proliferation of various novel methods in
recent years. However, the design and implemen-
tation process of linear attention mechanisms re-
mains inherently complex and cumbersome. Typ-
ically, this process is composed of four essential
stages: 1) Formulating the forward recursive ex-
pression; 2) Implementing the chunk-parallel ap-
proach for forward propagation; 3) Deriving the
recursive formulation for backpropagation; and
4) Implementing the chunk-parallel backpropa-
gation and finalizing the kernel implementation.
This multifaceted design pipeline represents a sig-
nificant impediment to the efficient development
and exploration of new linear attention variants.
In this paper, we demonstrate that both forward
and backward propagation in linear attention can
be expressed through a unified functional frame-
work. By manipulating the input parameters, the
function can yield either forward or backward
propagation results. This approach substantially
reduces the development effort associated with
linear attention kernel implementation. We vali-
date our method across multiple linear attention
variants, including constant decay, scalar decay,
and vector decay, within the context of language
modeling tasks. Despite the reduction in devel-
opment effort, experimental results demonstrate
that the kernels implemented using our approach
outperform the original implementations in both
speed and memory efficiency.

1. Introduction
The linear-complexity attention mechanism has become a
promising alternative to Transformer models in language
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modeling tasks, effectively reducing their inherent quadratic
computational complexity to linear without compromising
modeling performance. Multiple variants have been pro-
posed recently, including linear attention (Qin et al., 2024b;
Yang et al., 2023; Beck et al., 2024b; Zhang et al., 2024),
linear RNN (Qin et al., 2023; Orvieto et al., 2023), and state
space models (Gu et al., 2022; Gu & Dao, 2024; Dao & Gu,
2024).

Although these methods provide significant computational
benefits, their development and efficient implementation are
both complex and time-consuming. According to (Chou
et al., 2024; Yang et al., 2023), these methods can be unified
under a single framework, wherein each can be expressed
in a recursive form of the following structure:

st = ltst−1rt + ktv
⊤
t ,o⊤

t = q⊤
t st,

qt,kt, λt ∈ Rd, st ∈ Rd×e,vt, γt ∈ Re,

lt = diag(λt) ∈ Rd×d, rt = diag(γt) ∈ Re×e.

(1)

and qt,kt,vt are query, key, value, λt, γt are left decay and right
decay respectively, d is the q-k dimension, e is the v-o dimension,
and all these vectors are computed based on the input xt. The
development of a new linear-complexity attention mechanism fun-
damentally involves the design of a novel decay λt, γt (Peng et al.,
2023a;b; Qin et al., 2023).

After designing the linear attention, the next step is to design
the kernel. Typically, the process of developing a new linear-
complexity attention kernel entails four key stages (Yang et al.,
2023; Qin et al., 2024a; Dao & Gu, 2024; Beck et al., 2025):

• Formulating a forward recursive expression.
• Implementing the chunk-parallel version of the forward re-

cursive propagation.
• Deriving the backward recursive propagation formulation.
• Implementing the chunk-parallel version of the backward

recursive propagation.

This multi-stage pipeline requires researchers not only to propose
a novel forward recursive formulation but also to rigorously derive
the corresponding backward propagation algorithm. In practice,
this process is highly error-prone, as subtle mathematical inac-
curacies often go unnoticed until the end-to-end training phase,
where they may result in training instability, non-convergence, or
degraded model performance.

In this paper, we address these challenges by introducing a unified
formulation that seamlessly integrates both forward and backward
propagation for linear-complexity attention mechanisms. Specif-
ically, we conduct a detailed analysis of the computational char-
acteristics of a broad class of models, including linear attention,
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linear RNNs, and state space models (SSMs), and observe that
all essential computations, whether in recursive or chunk-parallel
form and whether for forward or backward propagation, can be ex-
pressed within a single unified function. This formulation enables
flexible manipulation of input parameters to produce either for-
ward or backward computations and facilitates smooth transitions
between recursive and parallel execution modes.

Our approach streamlines the kernel development process by en-
abling researchers to concentrate on implementing a single core
function, rather than managing multiple interdependent algorithms.
This simplification significantly reduces development overhead
while improving code maintainability, readability, and extensibility.
Moreover, it facilitates rapid prototyping of new linear attention
variants, thereby promoting innovation in this fast-evolving field
of research.

To demonstrate the practical benefits of our approach, we reim-
plemented the forward and backward kernels for several linear
attention mechanisms, including constant decay (Qin et al., 2024b;
Sun et al., 2023), scalar decay (Dao & Gu, 2024; Beck et al.,
2024a), and vector decay (Yang et al., 2023; Qin et al., 2024c).
Experimental results indicate that our unified framework not only
reduces development complexity but also delivers improved per-
formance in terms of computational speed and memory efficiency.
Comprehensive evaluations on language modeling tasks further
confirm that kernels developed using our framework consistently
match or surpass the performance of their original counterparts
across all tested conditions.

2. Preliminary
In the following discussion, we assume the sequence length
is n, the chunk size is c, and X = [x1, . . . ,xn]

⊤ ∈ Rn×f

represents the matrix composed of vectors xt ∈ Rf , where
X ∈ {Q,K,V,O,dQ,dK,dV,dO,Λ,Γ}, and f ∈ {d, e}
is the corresponding feature dimension. We use Xt to represent
the t-th chunk of X.

2.1. Recursive form

Linear Attention encompasses SSMs (Gu et al., 2022; Gu & Dao,
2024; Dao & Gu, 2024), Linear RNNs (Qin et al., 2023; Orvieto
et al., 2023), and various linear attention variants (Katharopoulos
et al., 2020; Qin et al., 2024b; Yang et al., 2023; Beck et al., 2024b),
which can be expressed in the following unified form:

st = ltst−1rt + ktv
⊤
t ,o⊤

t = q⊤
t st. (2)

Different methods use different λt, γt, producing different types
of Linear Attention:

• Constant Decay models (e.g., TNL, RetNet): λt = λ, γt =
1, where λ ∈ R

• Scalar Decay models (e.g., Mamba2, RFA, xLSTM): λt =
λt, γt = 1, where λt ∈ R

• Vector Decay models (e.g., GLA, HGRN2, MetaLA): λt =
λt, γt = 1, where λt ∈ Rd

The complete mapping of mainstream methods is shown in Table 5.

Similar to the forward pass, the recursive backward pass is:

dst = ltdst+1rt + qtdo
⊤
t ,dq

⊤
t = do⊤

t s
⊤
t ,

dk⊤
t = v⊤

t ds⊤t ,dv
⊤
t = k⊤

t dst.
(3)

2.2. Chunk form

Although E.q. 2, 3 provide a complete representation of the forward
and backward computations in Linear Attention, their practical
computational efficiency remains suboptimal (Yang et al., 2023;
Qin et al., 2024b). To address this limitation, several studies (Hua
et al., 2022; Yang et al., 2023; Qin et al., 2024b; Dao & Gu, 2024;
Beck et al., 2025) have proposed a chunk-based approach. The
central idea behind this approach is to partition the sequence into
multiple chunks and decompose the computation into intra-chunk
and inter-chunk components. For the intra-chunk computation,
left multiplication is employed (i.e., computing QK⊤), while
for the inter-chunk computation, right multiplication is used (i.e.,
computing K⊤V). This strategy ultimately achieves linear time
and space complexity while fully leveraging GPU parallelism.
The computational process is divided into forward and backward
phases. Prior to discussing these computations, we first introduce
the relevant notation.

[M]ij =

{
1, i ≥ j

0, i < j
,Πij =

(i−1)c+j∏
t=(i−1)c+1

λt,Υij =

(i−1)c+j∏
t=(i−1)c+1

γt,

Π̄ij =

ic∏
t=(i−1)c+j

λt, Ῡij =

ic∏
t=(i−1)c+j

γt.

(4)

Forward Pass

For the forward pass, we first define the common terms used across
computations:

Q̄t = Qt ⊙Πt, K̄t = Kt/Πt, K̃t = Kt ⊙ Π̄t,

V̄t = Vt/Υt, Ṽt = Vt ⊙ Ῡt.
(5)

Then we compute the output using the following equation:

Ōt = [[Q̄tK̄
⊤
t ]⊙M]V̄t + Q̄tSt,Ot = Ōt ⊙Υt. (6)

The state update formula is:

St+1 = diag(Πt+1,c)Stdiag(Υt+1,c) + K̃⊤
t+1Ṽt+1. (7)

We left the backward pass equation in A.

Based on the chunk formula, GLA, Mamba2, Lightning Attention,
xLSTM have implemented their respective algorithms. The core
idea is to leverage the above chunk-based formulation to reduce the
number of iterations from n to n/c, where c is the chunk size. This
chunking approach significantly improves computational efficiency
by enabling better utilization of GPU tensor cores. By processing
multiple tokens simultaneously within each chunk, these methods
achieve substantial speedups while maintaining the linear com-
plexity advantage. This optimization is particularly effective for
long sequences, where the reduction in iteration count leads to
dramatically improved throughput and better hardware utilization.

3. Method
In this section, we present a unified formulation that elegantly com-
bines the forward and backward computation of linear attention
into a single function.
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3.1. Unified Formulation

Upon careful examination, we observe that the forward and back-
ward computation formulas exhibit remarkable structural similarity.
Leveraging this insight, we define the function frecurrence in Al-
gorithm 3. With this unifying function, we can concisely express
both forward and backward computations:

O = frecurrence(Q,K,V,L,R,False),

dQ = frecurrence(dO,V,K,R,L,False),

dK = frecurrence(V,dO,Q,R,L,True),

dV = frecurrence(K,Q,dO,L,R,True).

(8)

To further enhance computational efficiency through paralleliza-
tion, we extend our unified framework to chunked processing. We
define a function fchunk in Algorithm 4. Similarly, our unified
chunk-parallel function fchunk accommodates both forward and
backward computations:

O = fchunk(Q,K,V,L,R,False),

dQ = fchunk(dO,V,K,R,L,False),

dK = fchunk(V,dO,Q,R,L,True),

dV = fchunk(K,Q,dO,L,R,True).

(9)

3.2. Efficient Implementation

Based on the unified formulation above, we can efficiently imple-
ment the forward and backward computation kernels for Linear
Attention, which we call Unified Linear Attention (ULA). Follow-
ing approaches similar to GLA, Lightning Attention, Mamba2 and
xLSTM (Yang et al., 2023; Qin et al., 2024b; Dao & Gu, 2024;
Beck et al., 2025), we decompose Algorithm 4 into two distinct ker-
nels: one kernel computes the states, and another kernel computes
the output.

For state computation, we employ a kernel function that achieves
parallelization across batch dimensions, attention heads, and
output-value dimensions. Within this kernel function, the algo-
rithm iteratively executes n/c times, updating the state matrix
during each iteration. For output computation, we similarly imple-
ment an efficient kernel function that enables parallel computation
across batch dimensions, attention heads, number of chunks, and
output-value dimensions. The internal computational mechanism
is systematically decomposed into intra-chunk and inter-chunk
components, thereby optimizing computational efficiency.

During the forward propagation phase, our algorithm first com-
putes the state matrices St, subsequently derives the output tensors
Ot, and strategically preserves St in memory to facilitate the back-
ward propagation process. In the backward propagation phase, the
cached state matrices St are utilized to compute the gradients dQt,
followed by the calculation of backward propagation states dSt,
and ultimately the derivation of the remaining gradient compo-
nents dKt and dVt. The complete algorithm is presented in the
Algorithm 1, 2, and its auxiliary algorithm is in Algorithm 5, 6, B.
We implemented four variants: no decay, constant decay, scalar
decay and vector decay, and collectively named the algorithm as
Unified Linear Attention (ULA).

4. Experiments
Our experiments are divided into two parts. The first part fo-
cuses on kernel benchmarking, where we compare the computation
time and memory consumption of kernels. We evaluated constant

Algorithm 1 ULA Forward Pass
Require: Q ∈ Rn×d,K ∈ Rn×d,V ∈ Rn×e,Λ ∈

Rn×d,Γ ∈ Rn×e, chunk size c.
Ensure: O ∈ Rn×e

1: Π = fpreprocess(Λ, false, c), Υ =
fpreprocess(Λ, false, c).

2: S = fstate(K,V,Π,Υ, false, c),O =
fintra−inter(Q,K,V,S,Π,Υ, false, c).

3: return O ∈ Rn×e,S ∈ Rn/c×d×e.

Algorithm 2 ULA Backward Pass
Require: Q ∈ Rn×d,K ∈ Rn×d,V ∈ Rn×e,Λ ∈

Rn×d,Γ ∈ Rn×e,dO ∈ Rn×e, chunk size c.
Ensure: dQ ∈ Rn×d,dK ∈ Rn×d,dV ∈ Rn×e.

1: Π = fpreprocess(Λ, false, c), Π̄ =
fpreprocess(Λ, true, c),Υ =
fpreprocess(Λ, false, c),Υ = fpreprocess(Λ, true, c).

2: dS = fstate(Q,dO,Π,Υ, false, c),dQ =
fintra−inter(dO,V,K,S⊤,Υ,Π, c).

3: dK = fintra−inter(V,dO,Q,dS⊤, Ῡ, Π̄, c),dV =
fintra−inter(K,Q,dO,dS, Π̄, Ῡ, c).

4: return O.

decay, scalar decay, vector decay, and no decay configurations,
benchmarking against GLA (Yang et al., 2023; Yang & Zhang,
2024), Mamba2 (Dao & Gu, 2024), Lightning Attention (Qin et al.,
2024b), and xLSTM (Beck et al., 2025).

The second part validates the end-to-end convergence properties
of the kernel through a series of language modeling experiments
using the fineweb-edu-10B (Penedo et al., 2024) dataset. We
compare the performance of several models with different kernels,
including Linear Transformer (Katharopoulos et al., 2020) (no
decay), TNL (Qin et al., 2024b) (constant decay), Mamba2 (Dao
& Gu, 2024) (scalar decay), HGRN2 (Qin et al., 2024c) (vector
decay).

Our experiments involve training language models of varying pa-
rameter sizes, specifically 160M, 1.45B, and 2.8B parameters.
Detailed configurations for these models are provided in Table 4.
We employ the GPT2-Tokenizer for tokenization.

The training process is governed by several key hyperparameters:
a global batch size of 256, a sequence length of 2048, and the
AdamW optimizer with β1 = 0.9 and β2 = 0.999. The learning
rate is set to 3× 10−4. We utilize the WSD scheduler (Hu et al.,
2024) and train the models for 20,000 steps.

For the kernel part, we implement based on Triton (Tillet et al.,
2019), and all benchmarks are conducted on a single A100 GPU.
For the language model part, we base our implementation on
Flame (Zhang et al., 2025) and PyTorch (Paszke et al., 2019)
frameworks. All models are trained using 8 NVIDIA A100 GPUs.
Upon completion of training, we evaluate the models using lm-
eval-harness (Gao et al., 2021) to perform zero-shot testing.

4.1. Kernel Benchamrk
We conduct a comprehensive evaluation of our proposed method
ULA against state-of-the-art linear attention kernels, analyzing
both computational efficiency and memory utilization. Our ex-
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Table 1. Performance comparison of different model architectures across various model sizes, where implementations without a star
represent official implementations, while those with a star represent our implementations. AVG represents the average perplexity value
(lower is better) or average correct score (higher is better). As shown in the table, our implemented versions are comparable to official
ones in terms of both loss and zero-shot capabilities.

Method Loss PPL ↓ Accuracy ↑
Wiki LMB AVG PIQA Hella Wino ARC-e ARC-c OBQA SOQA AVG

1.45B
LA 2.63 25.2 34.6 29.9 69.6 43.1 53.4 63.1 30.4 34.0 39.5 47.6
LA* 2.63 25.1 34.6 29.8 68.6 43.4 52.8 63.8 30.1 35.2 39.1 47.6
TNL 2.57 24.1 28.4 27.1 69.8 46.0 51.7 64.9 31.6 34.4 39.6 48.3
TNL* 2.57 24.1 30.1 28.1 69.9 46.0 54.4 65.6 31.9 37.6 40.0 49.3
Mamba2 2.60 23.9 27.5 25.7 69.7 45.0 51.8 63.4 31.2 34.6 39.9 47.9
Mamba2* 2.60 23.9 28.5 26.2 69.2 44.9 51.4 63.6 30.6 34.8 39.7 47.7
HGRN2 2.56 23.3 24.7 24.0 69.4 46.6 51.1 66.3 30.8 36.8 40.4 48.8
HGRN2* 2.56 23.3 24.7 24.0 70.0 46.3 52.2 65.7 30.6 35.0 39.7 48.5

28 29 210 211 212 213 214 215 216

Sequence Length (log scale)

0

20

40

60

80

100

120

140

Ba
ck

wa
rd

 P
as

s T
im

e 
(m

s)

Backward Pass Speed Comparison
Lightning
ULA-Cd

28 29 210 211 212 213 214 215 216

Sequence Length (log scale)

0

20

40

60

80

100

120

Ba
ck

wa
rd

 P
as

s T
im

e 
(m

s)

Backward Pass Speed Comparison
Mamba2
xLSTM
GLA-Sd
ULA-Sd

28 29 210 211 212 213 214 215 216

Sequence Length (log scale)

0

50

100

150

200

Ba
ck

wa
rd

 P
as

s T
im

e 
(m

s)

Backward Pass Speed Comparison
GLA
ULA-Vd

Figure 1. Quantitative analysis of our proposed method with state-of-the-art linear attention kernels, organizing the comparison into three
parts: constant decay (Cd) versus Lightning Attention (left figure); scalar decay (Sd) versus Mamba2, xLSTM, and GLA-Sd (middle
figure); and vector decay (Vd) versus GLA (right figure). We conducted tests on both the forward pass and the backward pass. As
demonstrated by the figures, our method achieves faster speeds in almost all scenarios.

perimental comparison is structured into three distinct categories
based on the decay mechanism:

• Constant decay (CD) variants compared against Lightning
Attention;

• Scalar decay (SD) implementations benchmarked against
Mamba2, xLSTM, and GLA-Sd;

• Vector decay (VD) formulations evaluated against GLA;

For each kernel variant, we rigorously measure both forward pass
and backward pass performance to provide a complete assessment
of training and inference capabilities. The quantitative results,
as shown in Figure 1, 3 and Figure 2, demonstrate that despite
simplifying the kernel implementation, our method outperforms
current state-of-the-art approaches in both speed and memory
usage across all sequence lengths. This further emphasizes the
effectiveness of our proposed method.

We notice that our method exhibits only marginal differences in
performance compared to GLA in the speed comparison experi-
ment. We hypothesize that this limited impact may stem from the
fact that a portion of the vector decay computation does not utilize
tensor cores (Yang et al., 2023).

4.2. Language Modeling

We evaluated several Linear Attention methods in language mod-
els, specifically examining Linear Transformer (no decay), TNL

(constant decay), Mamba2 (scalar decay), and HGRN2 (vector
decay) models. Our testing included both official implementa-
tions—such as Lightning Attention for Linear Transformer and
TNL, the Mamba kernel for Mamba2, and the GLA kernel for
HGRN2—as well as custom kernel implementations. The results,
presented in Table 1, 3, show that our implementations deliver
performance comparable to the official versions in terms of loss
and zero-shot effectiveness, with certain models even surpassing
their official counterparts. These findings highlight the end-to-end
convergence of our kernel implementations.

5. Conclusion
In conclusion, this paper introduces a unified functional framework
for both forward and backward propagation in linear complexity
attention mechanisms, simplifying the design and implementation
process. By consolidating the traditionally complex and time-
consuming stages into a single function, our approach significantly
reduces development effort. Experimental results across various
linear attention variants demonstrate that our method not only
streamlines kernel implementation but also improves performance
in terms of both speed and memory efficiency, surpassing existing
implementations. Through end-to-end training of language models
and zero-shot testing, we verified the correctness and robustness
of the kernel implementation. This work paves the way for more
efficient exploration and development of new linear attention meth-
ods.
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Appendix

Table 2. Mapping of mainstream linear attention methods to our unified formulation. This table shows how different linear
complexity sequence models can be expressed using the unified form st = ltst−1rt + ktv

⊤
t ,o⊤

t = q⊤
t st. For each method, we show

the corresponding Query (qt), Key (kt), Value (vt), Left Decay (lt), and Right Decay (rt) components.
Methods Query Key Value Left Decay Right Decay

Linear Attention (Katharopoulos et al., 2020) qt kt vt 1 1
TNL/RetNet (Qin et al., 2024b; Sun et al., 2023) qt kt vt λ 1
RFA/xLSTM (Beck et al., 2025; Peng et al., 2021) qt kt vt λt 1
Mamba2 (Dao & Gu, 2024) Ct Bt xt At 1
RWKV (Peng et al., 2023b) Rt kt vt diag(wt) 1
GLA (Yang et al., 2023) qt kt vt diag(γt) 1
HGRN2/MetaLA (Chou et al., 2024; Qin et al., 2024c) qt 1− λt vt diag(λt) 1
DFW (Mao, 2022) qt kt vt diag(λt) diag(γt)

A. Linear Attention Backward Pass
Similarly, for the backward pass, we first the common terms used across all gradient computations:

dŌt = dOt ⊙Υt, dÕt = dOt/Ῡt, Q̃t = Qt/Π̄t. (10)

We then compute the gradients with respect to Q, K, and V using these terms:

dQ̄t = [[dŌtV̄
⊤
t ]⊙M]K̄t + dŌtS

⊤
t ,dQt = dQ̄t ⊙Πt,

dK̄t = [[dŌtV̄
⊤
t ]⊙M]⊤Q̃t + ṼtdS

⊤
t ,dKt = dK̄t ⊙ Π̄t,

dV̄t = [[Q̃tK̃
⊤
t ]⊙M]⊤dÕt + K̃tdSt,dVt = dV̄t ⊙ Ῡt.

(11)

The state gradient is computed recursively:

dSi = diag(Π̄i,c)dSi+1diag(Γ̄i,c) + Q̄idŌ
⊤
i . (12)

B. Algorithm

Algorithm 3 Recurrence Linear Attention Function frecurrence

Input: Q ∈ Rn×d,K ∈ Rn×d,V ∈ Rn×e,Λ ∈ Rn×d,Γ ∈ Rn×e, reverse ∈ {True,False}
Output: O ∈ Rn×e

1: Initialize s0 or sn+1 as zero matrix;
2: lt = diag(λt), rt = diag(γt);
3: if reverse = False then
4: Initialize s0 as zero matrix, ∆ = 1, t = 1.
5: else
6: Initialize sn+1 as zero matrix, ∆ = −1, t = n.
7: end if
8: for i = 1 to n do
9: st = ltst−∆rt + ktv

⊤
t ,o

⊤
t = q⊤

t st, t = t+∆.
10: end for
11: return O

7
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Algorithm 4 Chunk-Parallel Linear Attention Function fchunk

Require: Q ∈ Rn×d,K ∈ Rn×d,V ∈ Rn×e,Λ ∈ Rn×d,Γ ∈ Rn×e, reverse ∈ {True,False}
Ensure: O ∈ Rn×e

1: Divide sequence into chunks of size c: {Qi,Ki,Vi,Λi,Γi} for i = 1, . . . ,m,m = n/c.
2: for all i = 1, . . . ,m in parallel do
3: Πi = exp(cumsum(logΛi, reverse)),Υi = exp(cumsum(logΓi, reverse)),
4: Q̄i = Qi ⊙Πi, K̄i = Ki/Πi, V̄i = Vi/Υi, K̃i = Ki ⊙ (Πi,c/Πi), Ṽi = Vi ⊙ (Υi,c/Υi).
5: end for
6: if reverse = False then
7: Initialize S0 as zero matrix, Mij = 1, i ≥ j; 0, j < i,∆ = 1, t = 1.
8: else
9: Initialize Sm+1 as zero matrix, Mij = 1, i ≤ j; 0, j > i,∆ = −1, t = m.

10: end if
11: for i = 1, . . . ,m do
12: St = diag(Πt,c)St−∆diag(Υt,c) + K̃⊤

t Ṽt, t = t+∆.
13: end for
14: for all t = 1, . . . ,m in parallel do
15: Ōt = Q̄tSt + [[Q̄tK̄

⊤
t ]⊙M]V̄t,Ot = Ōt ⊙Υt.

16: end for
17: return O = [O⊤

1 ; . . . ;O
⊤
m]⊤.

Algorithm 5 Chunk Decay Preprocess Function fpreprocess

Require: Λ ∈ Rn×d, reverse ∈ {True,False}, chunk size c.
Ensure: Π ∈ Rn×d

1: Divide sequence into chunks of size c: {Λt} for t = 1, . . . ,m,m = n/c.
2: for all t = 1, . . . ,m in parallel do
3: Πt = exp(cumsum(logΛt, reverse)).
4: end for
5: return Π.

Algorithm 6 Chunk State Function fstate

Require: K ∈ Rn×d,V ∈ Rn×e,Π ∈ Rn×d,Υ ∈ Rn×e, reverse ∈ {True,False}, chunk size c.
Ensure: State ∈ Rn/c×d×e.

1: Divide sequence into chunks of size c: {Kt,Vt,Πt,Υt} for t = 1, . . . ,m,m = n/c.
2: if reverse = False then
3: Initialize S0 as zero matrix.
4: else
5: Initialize Sm+1 as zero matrix.
6: end if
7: for i = 1, . . . ,m do
8: K̃t = Kt ⊙ (Πt,c/Πt), Ṽt = Vt ⊙ (Υt,c/Υt),
9: St = diag(Πt,c)St−∆diag(Υt,c) + K̃⊤

t Ṽt, t = t+∆.
10: end for
11: return S = [S1, . . . ,Sm].

8
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Algorithm 7 Chunk Intra Inter Function fintra−inter

Require: Q ∈ Rn×d,K ∈ Rn×d,V ∈ Rn×e,S ∈ Rn/c×d×e,Π ∈ Rn×d,Υ ∈ Rn×e.
Ensure: O ∈ Rn×e

1: Divide sequence into chunks of size c: {Qt,St,Πt,Υt} for t = 1, . . . ,m,m = n/c.
2: if reverse = False, Mij = 1, i ≥ j; 0, j < i, else Mij = 1, i ≤ j; 0, j > i.
3: for all t = 1, . . . ,m in parallel do
4: Q̄t = Qt ⊙Πt, K̄t = Kt/Πt, V̄t = Vt/Υt,
5: Ōt = [[Q̄tK̄

⊤
t ]⊙M]V̄t + Q̄tSt,Ot = Ōt ⊙Υt.

6: end for
7: return O = [O⊤

1 ; . . . ;O
⊤
m]⊤.

C. More Experiments
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Figure 2. Quantitative analysis of our proposed method with state-of-the-art linear attention kernels in terms of memory efficiency, dividing
the analysis into three parts: constant decay (Cd) versus Lightning Attention (left figure); scalar decay (Sd) versus Mamba2, xLSTM, and
GLA-Sd (middle figure); and vector decay (Vd) versus GLA (right figure). We measured memory consumption during both forward pass
and backward pass operations. The results clearly demonstrate that our method achieves lower memory usage in nearly all scenarios.
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Figure 3. Quantitative analysis of our proposed method with state-of-the-art linear attention kernels, organizing the comparison into three
parts: constant decay (Cd) versus Lightning Attention (left figure); scalar decay (Sd) versus Mamba2, xLSTM, and GLA-Sd (middle
figure); and vector decay (Vd) versus GLA (right figure). We conducted tests on both the forward pass and the backward pass. As
demonstrated by the figures, our method achieves faster speeds in almost all scenarios.

Table 3. Performance comparison of different model architectures across various model sizes, where implementations without a star
represent official implementations, while those with a star represent our implementations. AVG represents the average perplexity value
(lower is better) or average correct score (higher is better). As shown in the table, our implemented versions are comparable to official
ones in terms of both loss and zero-shot capabilities.

Method Loss PPL ↓ Accuracy ↑
Wiki LMB AVG PIQA Hella Wino ARC-e ARC-c OBQA SOQA AVG

0.16B
LA 3.06 45.9 174.5 110.2 63.2 30.8 50.9 52.4 25.3 30.0 36.1 41.3
LA* 3.06 45.7 156.3 101.0 63.3 30.7 51.0 52.7 23.5 29.8 35.8 41.0
TNL 2.98 41.4 112.0 79.6 63.8 32.3 48.7 53.7 25.6 30.6 36.2 41.6
TNL* 2.98 40.6 108.3 75.1 63.9 32.4 48.9 53.2 24.7 29.8 37.3 41.4
Mamba2 2.96 39.1 95.0 67.0 64.3 33.0 50.1 51.8 25.9 32.6 36.3 42.0
Mamba2* 2.96 38.8 103.4 71.1 63.4 32.4 51.9 52.7 25.3 31.6 37.4 42.1
HGRN2 2.98 41.4 108.8 75.1 65.1 32.4 51.5 53.2 26.6 31.4 37.7 42.6
HGRN2* 2.98 41.4 111.5 76.4 64.0 32.2 49.7 53.2 25.9 30.8 38.1 42.0

2.8B
LA 2.52 22.6 26.5 24.6 70.3 47.5 50.7 67.0 33.2 36.0 40.2 49.3
LA* 2.51 22.3 25.6 24.0 70.2 47.5 52.4 66.9 32.2 36.4 39.9 49.4
TNL 2.47 21.5 22.0 21.9 70.3 50.0 54.5 68.4 34.0 35.6 41.8 50.6
TNL* 2.46 21.6 22.3 21.7 71.1 49.6 55.3 66.9 32.6 37.2 39.6 50.3
Mamba2 2.53 21.9 23.6 22.8 71.1 48.6 53.4 64.8 32.2 38.2 39.2 49.6
Mamba2* 2.53 21.9 23.5 22.7 69.5 48.5 54.7 66.7 31.9 35.4 39.8 49.5
HGRN2 2.45 20.9 19.7 20.3 70.6 50.5 53.0 68.9 34.8 39.0 40.4 51.0
HGRN2* 2.45 20.9 20.0 20.4 70.7 50.6 52.8 68.8 32.7 38.4 40.1 50.6

Table 4. Model configurations for different parameter sizes, where we show the parameters for 0.16B, 1.45B, and 2.8B models, in which
L.R. represents learning rate.

Params(B) Layers Hidden Dim Num Heads L.R. Batch Size SeqLen GPUs

0.16 12 768 12 3E-04 32 2048 8
1.45 24 2048 16 3E-04 32 2048 8
2.8 32 2560 20 3E-04 32 2048 8
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D. Illustration
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Figure 4. Kernel development workflow diagram. Left: Traditional design pipeline, progressing from forward recursive, to O’s forward
chunk-parallel, followed by backward recursive, and finally to the backward chunk-parallel for dQ, dK, and dV. Right: Proposed
design pipeline, transitioning from recursion to chunk-parallelism, streamlining both forward and backward propagation within a unified
function.
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Figure 5. ULA is detailed in its algorithmic schematic. For ease of understanding, here we only show the version without decay.
reverse=False indicates iteration from small to large indices, while reverse=True indicates iteration from large to small indices. Left
figure: During the t-th iteration, the tiling blocks of matrices Kt and Vt are transferred from High Bandwidth Memory (HBM) to Static
Random-Access Memory (SRAM). Within the SRAM, the State St is updated, then written back from SRAM to HBM. Right figure: After
computing and storing the States, the matrix Qt is loaded in parallel from High Bandwidth Memory (HBM) to Static Random-Access
Memory (SRAM). Ointra and Ointer are computed independently, finally producing the output Ot, which is written back from SRAM
to HBM.
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