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ABSTRACT

Personalizing text-to-image diffusion models involves integrating novel visual concepts
from a small set of reference images while retaining the model’s original generative ca-
pabilities. However, this process often leads to overfitting, where the model ignores the
user’s prompt and merely replicates the reference images. We attribute this issue to a funda-
mental misalignment between the true goals of personalization, which are subject fidelity
and text alignment, and the training objectives of existing methods that fail to enforce
both objectives simultaneously. Specifically, prior approaches often overlook the need to
explicitly preserve the pretrained model’s output distribution, resulting in distributional
drift that undermines diversity and coherence. To resolve these challenges, we introduce
a Lipschitz-based regularization objective that constrains parameter updates during per-
sonalization, ensuring bounded deviation from the original distribution. This promotes
consistency with the pretrained model’s behavior while enabling accurate adaptation to
new concepts. Furthermore, our method offers a computationally efficient alternative to
commonly used, resource-intensive sampling techniques. Through extensive experiments
across diverse diffusion model architectures, we demonstrate that our approach achieves
superior performance in both quantitative metrics and qualitative evaluations, consistently
excelling in visual fidelity and prompt adherence. We further support these findings with
comprehensive analyses, including ablation studies and visualizations.

1 INTRODUCTION

Recent advances in diffusion-based image generation models have led to remarkable progress in photorealistic
and diverse image synthesis (Dhariwal & Nicholl [2021} Ho et al.| [2020}|Song et al.| 2020a; [Nichol & Dhariwall
2021;|Ho & Salimans, [2022; Song et al., | 2020bj |[Karras et al.,|2022). In particular, text-to-image diffusion
models (Rombach et al., 2022} [Saharia et al., |2022; [Ramesh et al.| [2022; |Podell et al., [2023; [Esser et al.l, |2024))
have demonstrated the ability to synthesize high-quality images across a wide range of prompts, effectively
capturing the semantics of general descriptions such as “a dog in the snow”.

However, these models struggle when prompts involve user-specific or hard-to-describe subject details. In
real-world scenarios, users often wish to personalize generation with only a few reference images of their
own subjects, which makes the task fundamentally challenging. This motivates the need for personalization
methods that can adapt pretrained models to novel, user-specific concepts using only a small number of
images (Gal et al.| 2022 [Ruiz et al.,|2023)). The ultimate goal of personalization is to faithfully encode new
concepts (e.g., “my dog”) while preserving the model’s inherent ability to follow prompts (e.g., “in the
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snow”), thereby generating diverse and compositionally rich images such as “my dog in the snow”.
Unfortunately, learning new subjects from limited data often leads to overfitting where the model disregards
prompt content and collapses to simply reproducing the reference images.

To mitigate this issue, recent methods have attempted to constrain the adaptation process by freezing parts of
the network (Hu et al.; 2022} [Kumari et al., 2023; Tewel et al.l 2023) or limiting the magnitude or direction
of parameter updates (Qiu et al., [2023} |[Han et al.| [2023). While partially effective, these methods rely on
heuristic architectural constraints rather than explicitly considering distributional preservation. As a result,
they offer only indirect control over the preservation of the pretrained distribution. Moreover, such techniques
often introduce a trade-off between flexibility and stability: freezing too many parameters can prevent
proper adaptation to new subjects, while relaxing constraints increases the risk of overfitting and prompt
misalignment. These limitations make it difficult to precisely balance the dual objectives of personalization.

In contrast, our approach tackles this challenge at the objective level, providing an explicit mechanism to
regularize deviation from the pretrained model without relying on architectural heuristics. By formulating
the problem through Lipschitz-based regularization, we offer a principled and continuous control over
model updates, enabling better generalization. Figure [I]illustrates the trends arising from the differences
between existing and proposed objectives, which are further discussed in Section[4.3] We also show that this
formulation can be expressed as a variant of L2 regularization, making it simple to implement yet theoretically
grounded. Moreover, our approach does not require a pre-sampling stage for regularization, substantially
reducing training time.

We validate our approach through comprehensive experiments across multiple diffusion backbones and
baseline personalization methods. Our approach achieves superior performance in both quantitative metrics
and qualitative evaluations, excelling in visual fidelity as well as prompt consistency. It also reduces training
time by more than half, offering substantial efficiency gains in practice. Furthermore, we present intuitive
analyses through visualizations and ablation studies, providing empirical support for our theoretical claims.
Our contributions are summarized as follows:

* We identify an objective-level gap in existing personalization approaches and provide a theoretical
analysis of its implications.

* We propose a Lipschitz-based regularization objective that guarantees distributional preservation
during personalization. The proposed formulation is simple yet theoretically grounded, aligning the
training objective with the true goals of personalization.

* Our method demonstrates improvements in both subject fidelity and text alignment, together with
clear gains in training time efficiency. We also provide intuitive insights through visual analyses and
ablation studies that support the theoretical and empirical findings.

2 RELATED WORK

Personalized Text-to-Image Generation. A central question of few-shot personalization has been how to
adapt pretrained networks to new concepts with only a few subject-specific images. Textual Inversion (Gal
et al., [2022; [Voynov et al., |2023) encodes subject-specific information into learned text tokens, while
DreamBooth (Ruiz et al., [2023)) finetunes the entire network. However, instability in the training process
results in mode collapse and overfitting. Subsequent studies aim to improve stability and efficiency by
updating subsets of parameters (Meng et al., 2022; Kumari et al., 2023 Tewel et al., 2023) or by applying
low-rank adaptation (LoRA) (Hu et al.,|[2022; (Chen et al., 2024). In this context, SVDiff (Han et al.| 2023)
focuses updates on the singular values of weight matrices, whereas OFT (Qiu et al., 2023) restricts them
to angular components. While these enforced constraints help stabilize the training process and preserve
generative capacity, the reduced flexibility restricts the model’s expressiveness for personalized concepts.
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Figure 1: Visualization of training objective differences on the toy dataset for personalization, which are
further discussed in Section[d.3] The diffusion model is first trained on the pretrained dataset (five colors)
and then personalized with the target dataset (yellow). (a) represents the ideal scenario, where the target
data is learned while the original knowledge is preserved. (b) and (c), corresponding to Eqs. 2] and [3] fail
to preserve the distributions of all classes. In contrast, (d), which incorporates the proposed regularization,
better maintains the structure of the pretrained distribution and best matches the ideal case in (a).

On the other hand, auxiliary conditioners have been employed without modifying the pretrained model. For
instance, BLIP-Diffusion (Li et al., [2023a) leverages pretrained vision—language models (Li et al.| [2022;
2023b), and IP-Adapter (Chen et al, 2023} [Zhang et al., 2023) introduces an adaptor network trained on
large-scale datasets. These approaches increase versatility, but they show limited performance on individual
personalized concepts. Moreover, they require substantial computational and external resources, making
them impractical in few-shot personalization scenarios. Whether through selecting trainable components or
designing auxiliary conditioners, these methods remain tied to specific backbone architectures and therefore
fall short of providing a general solution.

Objective Functions for Preserving Distribution. Objective-level formulations for distribution preservation
provide a principled direction for personalization. Prior Preservation Loss (Ruiz et al.| 2023) introduces a
regularization function via pre-sampling over the generic category of a novel subject, as detailed in Section 3]
Subsequent work extends this idea by constraining novel subjects not only at the generic concept level
but also at the image level (Qiao et al., [2024) and text level (Huang et al., [2025). However, preserving
category-level information does not necessarily imply the preservation of all other prior knowledge, a point
we discuss in Section@ Beyond personalization, diffusion-based applications (Poole et al., 2022; Hertz
et al.,|2023; Wang et al.,|2023) introduce objectives to align the output distribution of a learnable generator
with that of a pretrained diffusion model. Such methods incorporate pairwise supervision (Yin et al., [2024b))
or adversarial objectives (Yin et al., [2024a} Sauer et al.,2024). Their dependence on external datasets and
extensive optimization, however, restricts their applicability in personalization settings where only a handful
of subject images are available. The limited guarantees of prior methods, together with the poor applicability
of alternative approaches to few-shot personalization, point to the need for goal-aligned formulations.

3 BACKGROUND

Text-to-Image Diffusion Models. Diffusion models are trained to maximize an evidence lower bound
(ELBO) on the data log-likelihood log p(x) due to the intractability (Luol 2022; [Chan et al.,2024; Nakkiran
et al.,|2024)). The generative process is formulated over a sequence of latent variables (Sohl-Dickstein et al.}
2015)), which can be written as:

ey

X1
log p(x) = IOg/p(onT) dx1.0 2 Eg(xyr|x0) llOg p(1:r)] )

q(x1.7 | Xo)
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Rather than optimizing Eq. [I] directly, DDPM (Ho et al., [2020) adopts a surrogate loss for transition-noise
prediction. Text-to-Image diffusion frameworks (Rombach et al., [2022; [Saharia et al.| [2022; [Podell et al.,
2023) train the denoiser conditioned on a text prompt ¢, and the resulting conditional surrogate loss maximizes
the joint distribution py(x, c)ﬂ In detail, an encoder £ maps an image x to a latent z = £(x), and noisy latents
are generated as z; = \/a; z + /1 — &y €, where € ~ N'(0,1), ¢ ~ Uniform{1,...,T}, and &; denotes the
cumulative product of the noise schedule. Training then minimizes the conditional noise-prediction loss:

Cdenoise = ]Ez,c, €, tHe - GG(Zn C, t)H; 2)

Prior Preservation Loss. The combination of the personalization loss and the prior preservation loss has
become a conventional objective for personalization. For the personalization 10ss Lpersonalize» the target prompt
Crarget (€.8., “A photo of V* dog”) incorporates the special token V*, which guides the model to learn
subject-specific features. For the prior preservation 1oss Lpror, the class prompt cpass (€.8., “A photo of
a dog”) is used, and 100~200 class-prompt latents z; are sampled from the pretrained model. As both
objectives follow the conditional diffusion objective in Eq. 2} the combined formulation is:

ﬁtntal - ]Ez, 2’ Crarget, Celass s €; t [”E — €9 (Zty ctargeh t)||§ + )\prior ||6 — €9 (Z;, Cclass t) ||§ . (3)

4 METHOD

In this section, we investigate why the standard objective fails to enable effective learning in personalization.
Next, we explore how to provide a distributional bound tailored to preserving the generative capacity of the
pretrained distribution. Let x € X denote an image and ¢ € C its associated text prompt. The pretraining
dataset Dyye = {(24,¢;)}Y, is sampled i.i.d. from a distribution pyys (7, c) that closely approximates
the true data distribution p*(z, ¢). The personalization dataset Dper = {(x;, cj)}jj‘il, with M < N, has
underlying distribution pye(, ¢). Such assumptions are standard and align with practical settings, ranging
from large-scale pretraining on LAION-400M (Schuhmann et al. [2021};2022) to personalization datasets
with only 4~6 images per subject (Ruiz et al., 2023).

4.1 MOTIVATION: OBJECTIVE-GOAL MISALIGNMENT

The goal in personalization is not merely to fit the provided data distribution, but to preserve the generalization
capabilities of the pretrained model while incorporating novel subject information. We now demonstrate
a fundamental misalignment that standard personalization objectives lead to divergence from the original
distribution.

Theorem 1. Let p*(x, ¢) denote the reference distribution, and let the model parameters O, have distribution
Do, (T, ) satisfying, for any € > 0,

|p*(x,c) —pgw(x,cﬂ < e

Suppose there exists a measurable set D C X x C such that
padapt(D) =7, p* (D) = 57 v > 4> 0.

The model is adapted by gradient descent on the denoising 10ss Lgenoise from Eq. |2} trained on (z,c) ~ Dadapt:
9t+1 = et - nv0£den0ise(9t)7 where 90 = ebase-
After sufficient iterations t, po, — Dadap:, Under universal approximation and convergence assumptions.
Then
Drr(p* | pon.) < Drr(p”[Ipo,)-

"This follows from the conditional distribution log pe (x | ¢) = log pe(x, ¢)—log p(c) = log [ po(x,21.1,¢) dz1.7—
log p(c), where log p(c) is constant with respect to 6.
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Algorithm 1 Lipschitz-based Regularization for Personalization Personalization Time (s)
5000 )

Require: Pretrained €6, 50 » dataset Dhper, prompt Cper, weight A ® Prior Preserv.
Ensure: Personalized €g,, 4000 = Ours
L: s . 3000
2: HPa By \r”rl
3 o 2000
4: €gper < copyWeights(eq,, . ); Freeze eg .

Personalization Phase: 1000
5: for step do
6: @ ~ Dper; z < E(x); ¢« TextEncoder (cper) o I- H Em N BN
7. t~~Unif({1,...,T}), e~N(0,I) . I N Y S I
8: Zri=+varz+ V1 —ay eé where oy = 1— ﬁu gvt =T as (@" ‘)Qx‘” Q\‘?'\' 55\5' Q*y\ & (704;\
9 L4 lle — cope (st 24N 3, 1105 — Olaell2 , ST e
10:  Update fper wort. VL Figure 2: Training efficiency of the
11: end for proposed method versus the baseline.
Proof. See Appendix [ O

Remark 1. Personalization based on the standard diffusion objective (Eq. [2) provides no guarantee of
preserving the pretrained distribution and may fail to preserve the generative capacity, which can potentially
lead to overfitting or mode collapse.

Corollary 1. Let p s be the sub-distribution of p(x, Ceass) used for prior preservation as described in
Section p[’,e,, a mixture of Pper and Pejass, Still satisfies M < N. Then,

Prer(D) =7, p*(D) <6 (7' >9).

By Theorem(l]
Drr(p* | o) < Drr(p” | ph,)-

Remark 2. Even when trained with prior-preservation samples based on the class prompt, as in Eq. 3] the
model still offers no guarantee of preserving the pretrained distribution.

A fundamental limitation of existing objectives is revealed by Remarks[I]and[2] highlighting the need for new
objectives that can achieve both subject adaptation and distributional preservation. It also explains why the
unintended distribution shift poses inherent challenges in personalization. This will be examined as illustrated

in Figures[Ib]and

4.2 LIPSCHITZ-BASED REGULARIZATION FOR DISTRIBUTION PRESERVATION

Motivated by Section[d.T} we investigate a Lipschitz-based regularization that provides an explicit bound on
distributional preservation. The following Theorem 2] provides the justification by showing that the generative

distribution of the model is bounded under the Lipschitz continuity of the noise prediction network. The
detailed proof is deferred to Appendix [G]

Theorem 2. [f the diffusion model €¢ is Lipschitz continuous in 0, for any two parameter sets 01 and 05, there
exists a constant \ > 0 such that

Dxr(po, | po,) < A+ 101 = O]l )
Proof sketch.

* Given that the composition of Lipschitz functions preserves Lipschitz continuity (Neyshabur et al.}
2015}, [Asadi et al} 2018)) and that attention mechanisms admit finite Lipschitz constants on compact
input domains (Castin et al.,|2024), we assume £¢(x, t) is Lipschitz in 6 with finite constant L.
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Table 1: Performance gains across backbone models.

Examples & Prompt

Ll

CD

CD+Ours LoRA LoRA+OQurs

Model Method DINO t CLIP-T t CLIP-I
—
DB 0.6028 0.2793 0.7881
“ +O0urs  0.6394 (+0.0366) 0.2976 (+0.0183)  0.7948 (+0.0067) a[V]catwitha
= D 0.5568 0.3154 0.7539 i the Totenound
2 +Ours  0.5638 (+0.0070) 0.3158 (+0.0004) 0.7550 (+0.0011)
DB-LoRA 0.5776 0.3108 0.7739
+Ours  0.6038 (+0.0262) 0.2975 (-0.0133)  0.7915 (+0.0176)
o D 0.5337 0.3239 0.7485
= +Ours  0.5493 (+0.0156)  0.3251 (+0.0012)  0.7540 (+0.0055)
2 DB-LoRA 0.6562 0.3099 0.7970 = Y
+Ours  0.6819 (+0.0257) 03014 (-0.0085)  0.8103 (+0.0133) a[V] dog
- CD 0.6168 0.3031 0.7929 a rainbon ezar
«5 +O0urs  0.6271 (+0.0103)  0.2955 (-0.0076)  0.8023 (+0.0094) ) ;
2  DB-LoRA 0.6043 0.3098 0.7823 Figure 3: Visual comparison of the proposed
+O0urs  0.6217 (+0.0174)  0.3103 (+0.0005)  0.7949 (+0.0126)

method and baselines across backbone models.

* By Tweedie’s formula (Efron, [2011)), the score is sg(x,t) = — eg(x,t)/0+ , and scalar multiplication
by 1/0; preserves Lipschitz continuity.

* The probability-flow ODE gives log pp(x) = logpr(zr) — fOT sg(xy,t) 92t dt

(Song & Ermon,
[2019), and since integration is a linear operator, it also preserves the Lipschitz bound.

dt

* Finally, the triangle inequality implies Dx 1, (po, || po,) < A [|6h — 02]|x, where A = cLg
for some ¢ > 0.

Remark 3. For k = 2, squaring the inequality yields a form directly connected to an L2 regularization term,
A-||01 — 62]]2 < N - |01 — 62]|3, where X accounts for the squared scaling.

Building on Theorem 2] we propose a novel objective that regularizes personalization relative to the pretrained
distribution based on Eq.[d} Remark [3|demonstrates that minimizing the L2 regularization term serves as
a relaxed form of the Lipschitz constraint. Although the L2 form is conventional, its use as a surrogate for
Lipschitz continuity in the context of personalization has not been utilized before. The full training procedure
with the proposed objective is summarized in Algorithm[I] As a result, the proposed formulation both learns
the new subject distribution and preserves the pretrained distribution, which the conventional objective is
unable to ensure.

The proposed objective also provides practical advantages. First, preserving the distribution through parameter
distance eliminates the need for additional datasets such as prior samples or external resources. As illustrated
in Figure 2] removing this requirement yields a considerable reduction in training time. Second, the Lipschitz-
based regularizer bounds the KL divergence from the pretrained distribution with a single hyperparameter ),
thereby quantifying the degree of distributional preservation during training and enabling explicit control as
discussed in Section[5.2} By providing a simplified yet explicit mechanism for control, our approach contrasts
with previous methods that addressed the issue only implicitly through heuristic strategies. The subsequent
experiments validate these advantages and highlight the practical impact of our objective.

4.3 Toy EXPERIMENT: METHOD VALIDATION

In this section, we present a visual analysis using toy data to validate the claims established in Theorems|T]
and 2] The experiment investigates how the proposed method influences the preservation of the pretrained
distribution when the model adapts to a new target, in comparison to existing approaches. We employ diffusion
models trained on 2D data sampled from Gaussians with shared variance and different means. As illustrated
in Figure[I] the leftmost figures show the pretrained distribution of five classes (top) and an introduced class to
be learned (in yellow, bottom). The other four figures present the outcomes of personalization under different
objectives.
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Dreambooth ~ Textual Custom . BLIP-
Examples Prompt Ours Dreambooth LoRA Inversion  Diffusion SVDiff Diffusion IP-Adaptor

a[V] dog
in a chef outfit

a[V]can
with a tree and
autumn leaves
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background

a[V]cat
on top of a
wooden floor

a[V] candle
with the Eiffel
Tower in the
background

a[V] dog
wearing a
santa hat

Figure 4: Visual comparison with baseline methods. Ours denotes DreamBooth with the proposed method.

These results demonstrate that the proposed regularization preserves the pretrained distribution more effec-
tively than conventional objectives. When trained with Eq. [2] the pretrained distribution is not preserved.
Using Eq. [3| partially preserves the selected class (shown in deep blue), but the rest of the pretrained classes
are not maintained. In contrast, applying our method as in Algorithm[I]enables the model to better preserve
the original distribution while still adapting to the new data. This empirical result suggests that, unlike con-
ventional methods which primarily preserve the subject class (e.g., “dog” in “my dog in the snow”),
the proposed regularization retains broader contextual generality (e.g., “the snow”) during personalization.
It further demonstrates that the method can maintain the pretrained distribution without requiring explicit
access to the original training data, making it well-suited for personalization scenarios with limited data and
complex distributions.

5 EXPERIMENTS AND ANALYSIS

We evaluate the proposed method through qualitative and quantitative comparisons with baselines across
diverse backbones. We further conduct three ablation studies to examine the practical implications of the
proposed formulation in the context of personalized diffusion models. Further analysis, including failure
cases, is provided in Appendix [}

Implementation Details. We evaluate our method and baselines on the widely used personalization bench-
mark 2023), which includes 30 subjects, each with up to 6 example images. To assess the
generality of the proposed method, we evaluate it across different backbones, ranging from Stable Diffusion
v1.5 (SD-1.5) to Stable Diffusion-XL (SD-XL) (Podell et al., 2023) and Stable
Diffusion-3.0 (SD-3.0) 2024). Since both SD-XL and SD-3.0 discourage updating all parameters
due to computational inefficiency, we focus our evaluation on parameter-efficient methods. For baseline

comparisons, we consider DreamBooth (DB) (Ruiz et al,2023), Textual Inversion (Gal et al.,2022), Custom
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Table 2: Quantitative comparison of baseline methods. Examples ~ Prompt

Method DINOT CLIP-TtT CLIP-IT Rank a[V]cat
in the snow
Few-shot personalization methods
Ours 0.6394 0.2976 0.7948 1
DreamBooth 0.6028 0.2793 0.7881 3
DreamBooth-LoRA  0.5778 0.3095 0.7731 6 ‘:{};’i}:‘\fsﬁi“r:&‘
Textual Inversion 0.5342 0.2601 0.7539 9
Custom Diffusion 0.5568 0.3154 0.6479 7
SVDiff 0.3839 0.3194 0.6886 8
OFT 0.6320 0.2370 0.7850 4 o[V dogina
Conditioning with external resources frefiheroutt
BLIP-Diffusion 0.5943 0.2865 0.7935 5
IP-Adaptor 0.6304 0.2635 0.8318 2

Figure 5: Visual comparison by regularization strength.

Diffusion (CD) (Kumari et al.,|2023)), SVDiff (Han et al.,2023)), and OFT (Qiu et al.} 2023), as well as an
extension based on LoRA (Hu et al.|[2022). While we attempted to reproduce OFT using the official codebase,
it did not produce usable outputs under our setting. As a result, we report its performance based on the results
presented in the original paper. We also include BLIP-Diffusion (Li et al.| 2023a) and IP-Adapter (Chen
et al.| [2023)) for comprehensive comparisons. For more details on the setup and implementation of individual
experiments, please refer to Appendix [H]

Evaluation Methods. We evaluate each method based on the images generated from evaluation prompts. For
each subject, we use the 25 evaluation prompts provided in the benchmark, generating 4 images per prompt,
resulting in 100 images per subject and a total of 3,000 images across all 30 subjects. We evaluate model
performance using three metrics: DINO, CLIP-T, and CLIP-1. We use pretrained DINO ViT-S/16 (Caron
et al.|[2021) and CLIP ViT-B/32 (Radford et al.,[2021) models to extract image and text embeddings. CLIP-I
and DINO measure subject fidelity by computing the cosine similarity between each generated image and the
corresponding input reference images. CLIP-T evaluates text-image alignment based on cosine similarity
between the prompt and the generated image. A broader range of results is provided in Appendix [}

5.1 EXPERIMENTAL RESULTS

Comparisons across Backbone Networks. Table [I] presents quantitative results showing the effect of
replacing the baseline objective with the proposed objective across different backbones. The method improves
either both image fidelity and text alignment, or improves one without reducing the other. This is remarkable
since the two objectives are typically in conflict, where gains in one often lead to losses in the other. In
SD-1.5 with DB, the DINO score increases substantially, while the CLIP-T score also improves. Moreover,
we observe consistent improvements when the proposed objective is combined with other personalization
strategies. For example, CD in SD-1.5 and SD-XL, as well as DB-LoRA in SD-3.0, show gains across all
metrics, while the remaining settings still yield meaningful improvements.

A key aspect of the performance improvements is that our method substantially enhances image fidelity, while
maintaining text alignment at a high level (around 0.3). This indicates that the proposed method accelerates
the learning of novel concepts while preserving the knowledge encoded in the pretrained model. As shown in
Figure [3] both baseline and our method produce results that faithfully reflect the input prompts. However,
Figure@also shows that baseline methods fail to capture the characteristics of the reference image. For
example, in the case of CD with SD-XL, the identity of the dog is not preserved by the baseline, while our
method achieves a clear improvement. These observations are consistent with the quantitative improvements
and highlight that the proposed approach contributes both robustness and versatility.

Comparisons with Baseline Methods. As shown in Figure ] we compare the proposed method with various
baseline approaches. The proposed method demonstrates superior performance in both fidelity and prompt
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Figure 6: Trade-off curves between image fidelity and text alignment (left and middle) and qualitative output
variations (right), both evaluated across different A values.

alignment compared to the baselines. Among the baselines, DB and DB-LoRA show competitive performance.
However, DB either fails to incorporate the prompt or exhibits artifacts in the third row. DB-LoRA tends
to underrepresent subject identity in the first row. Other methods generally underperform. CD struggles to
capture fine-grained subject details. Textual Inversion and SVDiff tend to focus more on prompt alignment
than subject fidelity. BLIP-Diffusion and IP-Adapter yield results that preserve the overall subject structure
but often miss identity-specific features. In contrast, our method faithfully captures the fine-grained details of
the input images while reflecting the text prompts. We conduct the human evaluation in Appendix[J] providing
a detailed analysis across multiple criteria to assess perceptual aspects as well.

These qualitative observations are consistent with the quantitative results summarized in Table[2} When
ranking models jointly on fidelity (DINO and CLIP-I) and alignment (CLIP-T), our method is ranked first.
This indicates that the proposed approach provides a more balanced improvement across all metrics compared
to the baselines. Since other baselines achieve higher scores on one metric but lower on the other, no
baseline simultaneously offers comparable performance on both. For example, while SVDiff achieves the
highest CLIP-T score, its overall ranking remains low. These observations reveal a clear trade-off between
text-image alignment and subject fidelity. Nonetheless, our method alleviates this trade-off and achieves
superior performance in both quantitative and qualitative evaluations.

5.2 ABLATION STUDIES

Balancing Adaptation and Preservation. We analyze how the proposed regularization affects the quality
of personalized outputs. Figure [5]shows the effect of varying the regularization weight A. With higher A,
the generated images align more closely with the prompt but often miss key subject attributes. With lower
A, they capture subject-specific features, but may collapse to imitating the input images or introduce visual
artifacts. A similar pattern is quantitatively confirmed in Figure[6] These experiments investigate the behavior
of image fidelity and text alignment under varying regularization strengths. A larger A increases CLIP-T,
indicating stronger text alignment and greater preservation of the pretrained distribution. In contrast, a smaller
A leads to higher DINO and CLIP-I scores, indicating closer adaptation to the target subject in terms of visual
fidelity. This observation suggests that the proposed objective simultaneously addresses both adaptation and
preservation while enabling a controllable balance between them.

Empirical Validation of the Lipschitz Condition. We assess whether diffusion models follow our claim
during personalization under the assumptions. To examine whether the Lipschitz continuity holds in diffusion
models, we measure the parameter deviation A# and the corresponding output difference Ae between the
pretrained and personalized models. Figure[6]illustrates the effect of applying Lipschitz regularization to
the personalized diffusion model. As the regularization strength X increases, both Af and Ae decrease
proportionally. This behavior indicates that the change in the output of the model is bounded by the change in
parameters. The result provides empirical support for our theoretical claim.
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Training Efficiency. We measure the training time required for personalization to assess the proposed method
compared to prior regularization across different backbones. Figure [2]reports averaged results from 10 trials
under the same environment for each method. The results shows that our approach is substantially more
efficient than methods relying on pre-sampling. The prior preservation strategy consumes the majority of
training time for generating prior samples, whereas our algorithm does not require this bottleneck as outlined
in Algorithm [T} The improvement is particularly evident in parameter-efficient baselines. Their shorter
training time renders the cost of pre-sampling dominant. In SDXL-CD, the training time is reduced to less
than one-fifth of the baseline. Other baselines also achieve more than a twofold reduction. As training
efficiency is essential for the feasibility of real-world applications (Cho et al.,[2024;|Chen et al., [2025), such
improvements represent a key advantage of the proposed method alongside its performance gains.

6 CONCLUSION

In this paper, we demonstrate that existing personalization objectives are misaligned for preventing distri-
butional drift when adapting to novel concepts. Therefore, we introduce a Lipschitz-based regularization
objective that bounds distributional shift under a Lipschitz constraint. The proposed formulation is simple
yet theoretically grounded, aligning the training objective with the true goals of personalization. Through
extensive experiments across diverse backbones and baselines, we validate consistent improvements in both
subject fidelity and text alignment. Ablation and visual analyses further highlight the necessity of the regular-
ization, while the method requires no additional time-consuming stages and provides explicit control over
the adaptation—preservation trade-off. In conclusion, we contribute a principled approach to personalization
that integrates new concepts without unintended deviation from the pretrained distribution. We hope our
findings provide a practical reference for balancing adaptation and preservation in post-training across diverse
domains.

LIMITATIONS AND FUTURE WORK

Although our work advances over prior limitations and improves overall performance, it does not guarantee
consistent gains across every metric, prompt, or subject. This is because the required degree of adaptation to
a novel concept and the level of preservation needed to maintain pretrained behavior can vary across subjects
and backbones. Future methods should move beyond retaining prior knowledge and instead focus on better
integrating novel subject characteristics to enable more effective and generalizable personalization. These
challenges highlight the need for adaptive personalization training strategies (Xuhong et al., 2018} |Asadi
et al.,[2022). One potential direction is to adaptively weight regularization across parameters. In particular,
EWC (Kirkpatrick et al.l 2017) can assign more precise adaptive weights using the Fisher information F; for
each parameter ¢;. However, F; is computed (or approximated) from the log-likelihood gradients evaluated
on the original training dataset Dpyctrain and the corresponding pretrained parameters O etrain- Because the
original pretraining data are not available in practical personalization scenarios, this approach is difficult to
apply in practice. Nevertheless, if Fisher information could be estimated reliably in this setting, it would
provide further benefits for adaptive optimization.
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APPENDIX

A ROLE OF A AND PRACTICAL REGULARIZATION IN PERSONALIZATION

Although ) is motivated by the Lipschitz property described in Theorem 2] its practical value in personalization
is determined by the characteristics of each subject. As shown in line 9 of Algorithm (1| the regularizer
coefficient A balances the new learning signal and the preservation of the pretrained capacity. Since learning
dynamics differ across subjects, the optimal A varies as well. Moreover, computing the Lipschitz constant
of 0 requires access to the pretrained data distribution, whereas personalization provides only a handful of
subject images, making it challenging to recover distributional characteristics necessary for estimating the
exact Lipschitz constant. This limitation highlights the need for empirical tuning in practice.

We attempt to estimate the Lipschitz constant using a Monte Carlo approximation over x and ¢, combined
with a randomized singular-value estimate of the Jacobian for SD1.5. The estimated Lipschitz constant
is approximately 184. As shown in Figure [5] this magnitude tends to prioritize image fidelity over text
alignment. Figure[6]further shows that choosing an appropriate value of \ is important for balancing these
two aspects. This estimated constant is smaller than the reported A = 500. We note that this difference arises
because, as shown in Algorithm 1, the coefficient A serves not only as a Lipschitz-motivated term but also
as a balancing factor between preserving pretrained capacity and learning subject-specific guidance. For
this reason, personalization may require using a larger A\, and doing so does not violate Theorem [2| We
also noticed that the theoretical Lipschitz A and the practical objective coefficient \ were used with a bit of
overlap in terminology, and we will clarify this distinction. We note that choosing a different A only changes
the strength of the regularization and does not violate the bound on distribution preservation established in
Theorem 2

Finally, we discuss the norm choice related to Remark [3] We adopt the ¢ norm as clarified in Remark [3] We
observed that using the raw absolute norm |- leads to unstable updates, whereas using |-|3 consistently yields
stable training. This observation suggests that our formulation shares a degree of similarity with |[Kirkpatrick
et al. (2017), as the squared /2 norm yields larger gradients for larger parameter differences and thus provides
a mild form of parameter-wise adaptivity.

B DISCUSSION

We provide a further discussion on the relationship between evaluation metrics and the claims made in
diffusion-based personalization models. Our method introduces a flexible mechanism to balance image
fidelity and text alignment. As a result, we observe model variants that score higher in either image fidelity
or text alignment. While the main paper is structured around results that show improvements across all
metrics, we also observed that some variants with slightly lower text-alignment scores nevertheless produced
images that appeared qualitatively satisfactory and well aligned with the prompts. Although this observation
is subjective, it raises an interesting dilemma. Demonstrating superior performance over baselines on every
metric does not guarantee improved qualitative alignment, and this misalignment highlights a core challenge
in personalization. While the proposed approach successfully manages the trade-off between metrics and
often produces results that appear qualitatively superior, we emphasized improvements across all quantitative
measures to highlight numerical gains. This underscores a broader challenge in diffusion research: the
ambiguity and limitations of current metrics. We believe this calls for a deeper examination of how evaluation
metrics are used and interpreted in generative modeling.

C ETHICS STATEMENT

Although our work takes an analytical approach, the broader field of personalized image generation requires
careful consideration due to possible misuse. These models could be used to create misleading or harmful
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images, which may negatively affect individuals or society. This highlights the need to consider ethical
implications alongside technical progress in this area of research.

D REPRODUCIBILITY STATEMENT

We ensured a controlled and transparent experimental environment to support fair comparison and repro-
ducibility. For baseline comparisons, we followed the original hyperparameter settings and code configurations
whenever possible. We fixed random seeds during training and evaluation to further enhance reproducibility.
Additional details are provided in Appendix [Hl We will release the code together with the paper.

E LLM USAGE

We employed large language models (LLMs) in a supportive role. We used them primarily for translation,
literature search and verification, and for prototyping code consistent with our intentions. The underlying
ideas and design were conceived and developed by the authors.
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F PROOF OF THEOREM 1

Theorem 1. Let p*(z, ¢) denote the reference distribution, and let the model parameters 6,50 have distribution
Doy... (2, ¢) satisfying, for any & > 0,

|p*(:z:,c) - po,... (, C)| < e.

Suppose there exists a measurable set D C X x C such that

Padapt (D) = 7, p*(D) =4, v>6>0.
The model is adapted by gradient descent on the denoising 10ss Lgenoise from Eq.[2} trained on (x, ¢) ~ Padapt:

041 = 0 — NVoLpenoise(0r), where 0y = Opase.
After sufficient iterations ¢, pg, — Padapt, Under universal approximation and convergence assumptions.
Then

Dri(p” | Pov...) < Drr(p”llpo,)-
Proof. By the three-point property of Bregman divergences Nielsen et al.[(2007), we get
Dir(p"llpe.) = Drr(p” || Poya.) + Drcz (Do || Po:) + (P = Poyces 108(po,) — log(pe,..))-

Applying the Cauchy—Schwarz inequality to the rightmost term,
|<p* — Dbpase> IOg(pet) - log(pebasc)>‘ < ||p* ~ Pbyase

[ log(pe,) — log(py... ) l-

It follows from the convergence assumption that

[ log(po,) — log(po,...) Il <M (M < oo).
Then,

19" = Poyace |l 1 108(po, ) —log(pey,... )| <&M,

the inner-product term is negligible.

Hence,

Dir(p* Ipe,) = Drr(p* | Poyes.) + Dicr (Poyae || P, )-

Applying Pinsker’s inequality |(Cover & Thomas|on the biased region D we obtain
po,) > 2(y—0)>

Dk (po,...
Then,

Dir(p* | Ponse) + Pz (Poyae | P8.) = Drr(p* || Poya..) +2 (v —6)*.

Putting everything together, we obtain
Dir(p"Ipe.) = Drr(p" | Poyae) + Drr (Povace 1 P0,) + (D" = Popaces Db, — Py, )-
Dir(p" || Pyace) + DL (Do || P8,
Dicr, (0" | Poyae) +2(7 = 8)°
Drr(p" || oy )-

Q

VoIV

Then,
Dkr(p" | poy...) < Drr(p*lps,),
as claimed. O
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G PROOF OF THEOREM 2

Theorem 2. If the diffusion model € is Lipschitz continuous in 6, then for any two parameter sets ¢, and 65,
there exists a constant A > 0 such that

Dk (pe, Ipe,) < A+ 01 — O]l ®)

Proof. Given that the composition of Lipschitz functions preserves Lipschitz continuity (Neyshabur et al.,
2015;|Asadi et al., [2018)) and that attention mechanisms admit finite Lipschitz constants on compact input
domains (Castin et al.,[2024), we assume e¢(z, t) is Lipschitz in  with finite constant L. Hence for all z, ¢
and any 61, 6,

Hsel (I,t) — €0, (xat)H <L ”01 - 92”k

By Tweedie’s formula Efron| (2011); Ho et al.[(2020); [Song et al.[(2020b),

eg(x,t
so(z,t) = —%.
t

Scalar multiplication preserves Lipschitz continuity, so
156, (x,t) — s0,(x, 8)[| < L"[|01 — 02|
It follows that s is Lipschitz in 6 with constant L' = Lsup, o;
By the probability-flow ODE formulatio Song et al.|(2020b)); Song & Ermon|(2019),

d.]?t

T
logpa(z) = ogpr(zr) = [ saer,

0
Since log pr(zr) is constant with respect to ¢ and integration preserves Lipschitz continuity,

|log pg, (x) —logpe, (x)| < L"[|61 — Oollx  for Vo e X

holds with L” = [ L'dt = L [ o7 'dt.
Applying the triangle inequality to the definition of KL divergence then gives

Dict (o, lpo,) = / po, () (log po, (z) — log pp, (z)) dx

< [ o (@) o, () ~ ogpay )] d
< L"|01 — 02
This completes the proof with A = L”. O

%In practice, o is never exactly zero: implementations either avoid the endpoint(s) or enforce a small floor o >
Oomin > 0 for numerical stability. Hence sup, o, ! < oo in our setting.

3Following standard practice, we omit the prompt c and write €4 (, t) and log pe (x). All statements extend directly
to the conditional case by replacing e¢(x, t) with g9(x, ¢, t) and log pe () with log pe(z, ¢).
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H ADDITIONAL IMPLEMENTATION DETAILS

Ours. All experiments are conducted on a single NVIDIA RTX 3090 GPU. We use the special token sks, or
newl depending on the baseline. For the proposed Lipschitz-bound regularization, we compare both the L
and Lo norm variants and observe no meaningful difference in performance; accordingly, we adopt the more
widely used Lo, norm. We also experiment with integrating DreamBooth’s prior-preservation loss but do not
obtain improvements, suggesting a conflict between the objectives.

In experiments across different methods, we primarily used DreamBooth on SD 1.5, as this backbone is the
most widely adopted and thus provides a fair basis for comparing diverse approaches. The corresponding
hyperparameters are listed above, and other methods were also evaluated on the same backbone for consistency.
For DreamBooth, we re-implemented the official codebase to allow more detailed experimentation. This
ensured fixed random seeds and controlled variables for fair comparison. Finally, to measure the time required
for the personalization process, we performed ten runs for each backbone—method combination and report the
average.

In experiments across different backbones, we aimed to evaluate the effect of the proposed objective under
comparable settings using existing codebases. The hyperparameters were as follows. For DreamBooth on
SD-1.5, we set the regularization weight to A = 500, trained with a batch size of 1 and a learning rate of
2 x 106 for 1,000 iterations. For Custom Diffusion on SD-1.5, we used A = 175 with a learning rate
of 3 x 107° for 250 iterations. For SD-XL, we considered two settings: A = 50 with a learning rate of
5 x 1075 for 250 iterations, and A = 10 with a learning rate of 8 x 10~°. For SD-3.0, we used a learning
rate of 1 x 107%, A = 10.1, and 500 iterations. For LoRA, the settings were as follows: on SD-1.5, we
used a learning rate of 1 X 107%, A =1 x 1077, and 500 iterations; on SD-XL, a learning rate of 5 x 1074,
A =1 x 1075, and 500 iterations; and on SD-3.0, a learning rate of 4 x 104, A = 15, and 680 iterations.
The choice of backbone and personalization method leads to different hyperparameter settings and training
behaviors.

Baselines. We provide additional implementation details for the baselines used in our experiments in Section[5]
The proposed method and DreamBooth are implemented and trained based on the Diffusers library’l For
Textual Inversion |Gal et al. (2022E], Custom Diffusion |[Kumari et al. (2023ﬂ SVDiff[Han et al. (2023))'} and
LoRA Hu et al. (2022ﬂ we use available implementations and follow their default training settings. OFT |Qiu
et al. (2023is trained using the official codebase, but we observed poor performance and were unable to
fully reproduce the reported results; hence, we cite the numbers from the original paper. BLIP-Diffusion |Li
et al. (2023am and IP-Adapter Chen et al. (2023{'-] are evaluated using the released model weights on our
benchmark through direct inference.

Moreover, experiments with different backbone models are conducted using the Diffusers library. For Stable
Diffusion-XL (Podell et al.l [2023)), we follow the same Custom Diffusion reference as above. Since no
official implementation of Custom Diffusion for Stable Diffusion-3.0 (Esser et al.,|2024) is available, we

Yhttps://github.com/huggingface/diffusers
Shttps://github.com/huggingface/diffusers/tree/main/examples/textual
inversion
%https://github.com/huggingface/diffusers/tree/main/examples/custom_diffusion
"nttps://github.com/mkshing/svdiff-pytorch
$https://github.com/huggingface/peft/tree/main/examples/lora_dreambooth
‘https://github.com/zqiu24/oft
Yhttps://github.com/salesforce/LAVIS/tree/main/projects/blip-diffusion
Uhttps://github.com/tencent-ailab/IP-Adapter
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reimplemented this variant ourselves. For the LoRA version of Stable Diffusion-3.0, we followed the official
implementatio

Ablation Studies. We provide additional implementation details for the ablation studies on our proposed
personalization process in Section[5.2] Following the same training configuration as in Section[5} we fix the
learning rate and number of training iterations, varying only the regularization strength A for the experiments
measuring changes from the pretrained model (i.e., Af and Ae). For Ae, we measure the L2 distance between
outputs generated using the unconditional class token from the pretrained and personalized models. The
reported value is the accumulated L2 distance over all sampled outputs.

Toy Experiment. We validate our method using the toy 2D conditional diffusion model as described in
Section The setup generates 1,000 samples per class from 2D Gaussian distributions with a standard
deviation of 0.5. Class labels range from 0 to 4, positioned at the vertices of a regular pentagon. A new sixth
class (class 5) supports finetuning. The noise schedule follows a cosine-based formulation with 7' = 100
timesteps. The model uses a one-hidden-layer MLP with ReLU activation and class/time embeddings.
Initial training runs for 1,000 iterations to capture the base distribution effectively. Training for the new
class is conducted for 5,000 iterations to ensure convergence within the experimental setup. We adopt a
DreamBooth-like setup by jointly training the new class with class O (deep blue) data. Considering the
problem’s complexity, we assign a large weight 100 to class 0 in order to clearly observe the effect of different
objectives. When using smaller weights, the other classes tend to collapse toward the new data distribution.
However, with weight 100, the objective’s influence on class 0 becomes apparent. For our proposed method,
we apply Lipschitz regularization with respect to the pretrained weights, using a regularization strength of
A = 50. Even with a relatively small weight (e.g., 1) on the regularization term, its effect is clearly observable
in this setup as shown in Section[l]

Phttps://github.com/huggingface/diffusers/blob/main/examples/dreambooth/
train_dreambooth_lora_sd3.py
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I ABLATION ON THE TOY EXPERIMENT

We conduct an ablation on the toy experiment introduced in Section [4.3]to visualize the trend of the proposed
method. As shown in Figure[7] the relationship between the newly learned distribution and the original one
varies with the regularization strength A. Without Lipschitz regularization, all classes tend to collapse toward
the newly introduced distribution. Notably, even with A\ = 1, the regularization effect becomes evident. In
addition, increasing A progressively enforces preservation of the original distribution, and the newly learned
class is mapped closer to one of the existing modes. These results demonstrate that the proposed objective
effectively encourages distribution preservatlon and supports the balancing behavior observed in Section[5.2]
Figure 8| provides additional visual comparisons across different values of A. Similar to the earlier analysis,
these results highlight how the regularization interpolates between adapting to new concepts and preserving
prior distributions.

A=0 A=1 A=10 A= 1k A= 10k
i m} *

Figure 7: Visualization results under different regularization strengths .

Examples Prompt A=0.0 A =0.5k

a [V] backpack
on the beach

a[V] dog
in the snow

a[V] toy
in the jungle

Figure 8: Additional visual comparison by regularization strength.
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J USER PREFERENCE STUDY
We conducted a user preference study to further support the proposed method.
J.1 SETUP

A total of 35 participants were asked to select the most preferred image among the model outputs generated
from the given test prompts: 35 for general preference and 15 for the detailed criteria evaluation. We
designed 30 questions covering all classes in the dataset Ruiz et al.|(2023)), and randomized the order
of the models for each class when presenting them to the participants. We compared four models: our
method, DreamBooth (DB) Ruiz et al.| (2023)), DreamBooth LoRA (DB LoRA) Hu et al.| (2022), and the
conditioner-based IP-Adaptor|Chen et al.[(2023), chosen based on their competitive quantitative performance.

The evaluation criteria were explained to the participants in advance, and they were instructed to consider the
following aspects comprehensively:

* Identity Preservation: whether the identity of the user-specified object is well preserved.
* Prompt Coherence: whether the condition described in the prompt is accurately reflected.
* Image Quality: whether the image is free of artifacts or distortions.

* Opverall Preference: jointly considers the three criteria above.

J.2 EXPERIMENTAL RESULTS

The results of the user preference study are shown in Table [3] Our method achieved the highest overall
preference at 45.81%, while IP-Adaptor recorded the lowest preference at 11.53%. This is in contrast to their
positions on the DINO score, where both models ranked among the highest in the quantitative experiment of
our submission. We attribute this discrepancy to the IP-Adaptor’s inability to accurately represent the target
identity, as shown in Figure |4 of our manuscript. DB and DB-LoRA received preference scores of 25.14%
and 17.52%, respectively.

The detailed criteria enable a more fine-grained interpretation of the overall preference and reveal clear
tendencies of each method. DB shows strong preference in identity preservation but lower prompt adherence.
In contrast, DB-LoRA shows lower identity preservation but twice higher prompt adherence. As discussed
in Section [3} these tendencies are consistent with the known behaviors of the two methods: DB tends to
overfit, whereas DB-LoRA tends to underfit. IP-Adaptor produces good image quality but remains weak in
personalization. Our method maintains a balanced performance across all criteria. This suggests that the
proposed objective captures subject-specific information while preserving the pretrained distribution, leading
to consistent and stable results.

Table 3: User study results across four criteria (all values in %).

Method Identity Preservation Prompt Coherence Image Quality Overall Preference
Ours 44.22 43.78 44.44 45.81
DB 33.33 23.11 24.89 25.14
DB-LoRA 11.78 22.67 13.11 17.52
IP-Adaptor 10.67 10.44 17.56 11.53
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K ADDITIONAL COMPARISON WITH DREAMBOOTH

We conduct an additional experiment using DreamBooth. It is the most comparable method since it fine-tunes
all parameters as our method does. To compare the effect of the objective, we unify all hyperparameters
except the loss. We set the learning rate of DreamBooth to 2 x 1079, the same as ours, instead of its default
5 x 1075, The results are shown in Table@ Lowering the learning rate in DreamBooth leads to an imbalanced
outcome. It improves the CLIP-T score, but lowers both DINO and CLIP-I scores. This suggests reduced
image fidelity. As shown in Figure[9] the visual results fail to preserve subject identity in Rows 1 and 3,
although this is not always the case, as seen in Row 2. These findings highlight the difference in objectives.
Our method achieves better trade-offs and is more suitable for personalization.

Table 4: Additional quantitative comparison of personalization methods. All scores are identical to those
reported above, except for the last row.

Method DINO1 CLIP-Tt CLIP-I}
Ours 0.6394  0.2976 0.7948
DreamBooth 0.6028  0.2793 0.7881

DreamBooth (LR 2 x 107%)  0.5707 0.3104 0.7695

Examples Prompt Ours Dreambooth

a [V] backpack
on the beach

a[V] dog
in the snow

a[V]toy
in the jungle

Figure 9: Additional visual comparison with other baselines.
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L ADDITIONAL VISUAL COMPARISON AND FAILURE CASES

We present additional qualitative results and failure cases. As shown in Figure[T0] our method captures both
subject-specific features and prompt semantics. In contrast, DreamBooth often produces artifacts or fails
to reflect the prompt, while DB-LoRA tends to preserve the prompt but underrepresents subject identity.
Other baseline methods generally struggle to produce coherent results. We also highlight representative
failure cases. Figure[[T]shows a case that struggles with cartoon-style minor concepts. The model learns the
subject’s color but fails to reconstruct its structural identity similar to other methods. In Figure[I2] the model
fails to properly apply the prompt to the subject. This further shows that prompts requiring changes in the
subject’s appearance are difficult to handle. These cases indicate that our method also faces challenges in
generating certain subject—prompt combinations. As discussed in Section 6} this underscores the importance
of incorporating the distributional structure of both the pretrained model and the target subject.

We also present additional results on SD-XL and SD-3.0 in Figure[T3] Both backbone models are advanced
architectures, and the overall image quality is generally high. For SD-XL, Custom Diffusion fails to preserve
subject identity, which is reflected in the low image fidelity scores. While CD+Ours shows improvements,
certain cases (e.g., the first row) remain insufficient. Similarly, LoRA exhibits identity shifts in the first
row, whereas LoRA+Ours successfully preserves the subject identity, consistent with the improved image
fidelity scores. Although CLIP-T remains stable even when it drops in Table[I] some failure cases can still be
observed. For example, in Figure[13} the second row of SD-3.0 with CD+Ours does not reflect the prompt,
and the third row shows only partial adherence. A similar pattern appears in SD-XL LoRA+Ours, where the
prompt is partially captured in the third row. These examples illustrate situations where the text alignment
weakens during personalization, which aligns with the observed drop in CLIP-T. We note that although our
method improves most metrics and visual results, careful handling is still required across different models
and subjects.

Dreambooth  Textual

Examples Prompt Ours Dreambooth -LoRA Inversion

a[V] toy

on top of pink Custom . BLIP-
fabric Diffusion SVDiff Diffusion IP-Adaptor

Figure 10: Additional visual Comparison with other baselines.
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Figure 11: Visual comparison of failure cases across baselines.
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Figure 12: Visual comparison of failure cases across baselines 2.
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Figure 13: Visual comparison of failure cases across different backbones.
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