
ToolFlowNet: Robotic Manipulation with Tools via
Predicting Tool Flow from Point Clouds

Daniel Seita, Yufei Wang†, Sarthak J. Shetty†, Edward Yao Li†, Zackory Erickson, David Held
†Equal contribution.

The Robotics Institute, Carnegie Mellon University, USA
Correspondence to: dseita@andrew.cmu.edu

Abstract: Point clouds are a widely available and canonical data modality which
convey the 3D geometry of a scene. Despite significant progress in classifica-
tion and segmentation from point clouds, policy learning from such a modality
remains challenging, and most prior works in imitation learning focus on learn-
ing policies from images or state information. In this paper, we propose a novel
framework for learning policies from point clouds for robotic manipulation with
tools. We use a novel neural network, ToolFlowNet, which predicts dense per-
point flow on the tool that the robot controls, and then uses the flow to derive the
transformation that the robot should execute. We apply this framework to imita-
tion learning of challenging deformable object manipulation tasks with continuous
movement of tools, including scooping and pouring, and demonstrate significantly
improved performance over baselines which do not use flow. We perform 50 phys-
ical scooping experiments with ToolFlowNet and attain 82% scooping success.
See https://tinyurl.com/toolflownet for supplementary material.

Keywords: Flow, Point Clouds, Tool Manipulation, Deformables

1 Introduction
Recently, learning-based techniques have become effective for improving the generalization capa-
bilities of robots for manipulation tasks such as grasping [1], reorienting [2], rearrangement [3], and
tossing [4]. Data observations tend to be either images [5, 6, 7] or state information such as joint
angles or end-effector poses [8], which are passed into a deep network to obtain an output vector
encoding an action, typically representing a change in end-effector pose or joint angles. While these
approaches have shown a wide range of successes, a fundamental limitation has to do with the nature
of the observation. Using images requires projecting information into a 2D space which might lose
valuable 3D information. Furthermore, learning from images in simulation often leads to a sim2real
gap [9] in performance. Although it is easy to access the internal robot states such as joint angles,
the robot does not necessarily have the ground-truth state of objects in the environment, which might
require complex state estimation systems [10]. Moreover, it is hard to define a state for deformable
objects like liquid and cloth [11, 12].

In this work, we propose a framework for learning robotic manipulation from point cloud obser-
vations. Point clouds are a canonical data modality and are widely available from camera sensors,
providing valuable information about the structure of the 3D space [13, 14]. However, policy learn-
ing from point clouds has been less explored compared to learning from images or state, potentially
owing to the difficulty of reasoning about raw 3D point cloud inputs. While there have been many
proposed architectures which are specialized for learning from point clouds [13, 15, 14, 16, 17],
these works tend to focus on computer vision tasks such as classification and segmentation. Policy
learning from point clouds, while feasible in some contexts [18, 19], remains challenging.

We study learning from point clouds for robotic manipulation tasks with tools. The input data is
a segmented point cloud which, for each point, contains its 3D coordinates and a one-hot vector

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://tinyurl.com/toolflownet

Figure 1: ToolFlowNet applied on a pouring task in simulation, where the tool is the box which contains water.
Given a point cloud (colored blue), ToolFlowNet learns dense per-point flow vectors (colored red), which
describe the intended 3D motion of each tool point. These are converted to translation and rotation actions.
Left: the tool moves upwards. Right: the tool rotates to pour water. We subsample the flow for visual clarity.

indicating the object class the point belongs to. Our key insight is to use dense representations and
flow to represent the tool action. We build upon dense point-cloud processing architectures [15]
and train the model to predict per-point output values which we call tool flow. This represents
the 3D movement of each tool point in a point cloud from one time step to the next, which is an
instance of scene flow [20]. Our model is trained with Behavioral Cloning on tool flow data, which
provides a dense per-point supervision. Given the set of tool flow vectors, we convert flow to an
SE(3) transformation, which represents the actual action a robot would execute. We call this model
ToolFlowNet and visualize it in Figure 1 for a pouring task in simulation. We compare this against
non-dense methods which directly regress to an action and demonstrate the benefits of tool flow as
an action representation. To summarize:

• We propose a general framework for learning from segmented point clouds for manipulation with
tools by utilizing a novel architecture, ToolFlowNet, which predicts per-point tool flow vectors.

• We show how to train ToolFlowNet for imitation learning and explore different loss functions for
training. We perform extensive ablation studies to validate these choices.

• We perform simulated imitation learning experiments on scooping and pouring tasks and show
the benefits of using ToolFlowNet over baselines which do not use flow.

• We demonstrate ToolFlowNet achieves 82% success rate on 50 physical scooping trials.

2 Related Work
Point Clouds and Flow Researchers have proposed a variety of architectures specialized for learn-
ing from point clouds [13, 15, 14, 21, 17, 22, 23]. We aim to explore policy learning for robotic
manipulation from point clouds, and the approach we propose is compatible with any architecture
producing per-point outputs from point clouds. Optical flow [24, 25] and its 3D counterpart, scene
flow [20, 26], are widely used in computer vision, particularly in autonomous driving setups where
the objective is to associate the movement of each pixel (or a point in 3D space) from one image (or
point cloud) to the next time step. We use flow as an action representation for robot manipulation,
and our method could integrate prior flow estimation techniques if necessary.

Policy Learning from Point Clouds or Flow for Robotic Manipulation Learning from point
clouds has been explored in grasping [19, 27], in-hand manipulation (by voxelizing) [18], visual
navigation [28], and shaping 3D deformables [29]. Our work differs in that we study tasks that
involve manipulating a tool in 3D space from point cloud observations, and where we use tool flow
as the action representation to improve learning. While Qin et al. [30] extract tool point clouds
and learn keypoints for grasping and manipulating tools, we instead predict dense tool flow for
manipulating the tool. Some prior work has explored policy learning using flow for robot manipu-
lation, such as for fabric folding [31], manipulating articulated objects [32, 33], and manipulating
3D deformables [34]. This work differs in that we propose a more general framework that does
not assume a specific structure of the objects being manipulated, and which predicts flow on the
tool a robot controls instead of flow on a target object. Furthermore, unlike prior work [35] which
iteratively minimizes flow with pick and place actions, or other work [36] which uses optical flow
on tactile sensors, we use flow to derive continuous tool motions in 3D space from visual input. A
recent work [37] estimates optical flow using RGBD images from the current frame to the demon-

2

'LIIHUHQWLDEOH�
69'�/D\HU

6HJPHQWHG
���3RLQW�&ORXG

0DQLSXODWLRQ

6HJPHQWDWLRQ�
3RLQW1HW��
%DFNERQH

)ORZ�

3RLQW�3RVLWLRQ 3RLQW�&ODVV 7RRO�3RLQW

«

,QSXW�
)HDWXUHV

«

)ORZ�

«

7RRO
7UDQVIRUPDWLRQ

7RRO�)ORZ

Figure 2: The proposed ToolFlowNet framework learns from segmented point clouds, which form the input to
a dense point cloud network to produce per-point flow vectors. We extract just the tool points (bolded above
for clarity) and use those tool points to determine the transformation that the robot should apply to the tool. See
Section 3 for further details. Above, we show the physical scooping task; see Section 4.4 for details.

stration and extracts a transformation to align them. In contrast, we do not use flow for aligning
frames to demonstrations but for deriving the transformations the tool should follow.

Deformable Object Manipulation We apply our proposed tool flow framework on tasks with
continuous control of a tool for deformable object manipulation. Such manipulation is challeng-
ing for robots for reasons such as the difficulty in specifying a concise state representation for de-
formables and their complex dynamics [11, 12]. We test on scooping and pouring. Variants of these
tasks have been studied in prior work. For example, [38] use scooping as an example application for
task and motion planning, and [39] test scooping of granular media using a 2D image representation.
Unlike these works, our approach is a general framework for robots performing continuous control
of a tool to manipulate deformables in 3D space. Prior works [40, 41, 42, 43, 44] propose methods to
detect or model physics properties of granular media or liquids and test on scooping and pouring. In
contrast, we propose a general method of predicting 3D tool flow which does not require modeling
properties of deformables and is not specialized to scooping or pouring tasks, and which uses point
clouds as inputs instead of RGB images [45].

3 Method: ToolFlowNet for Behavioral Cloning from Point Clouds
We consider policy learning from segmented point cloud observations. A segmented point cloud Pt

at time t is an N ⇥ d array with N points, each with feature dimension d. The feature of the ith
point p(i) 2 Pt consists of its 3D coordinate position and a one-hot vector indicating the class of
the object to which p

(i) belongs. For ease of notation, we suppress the time subscript t and the point
index superscript i when the distinction is not needed. We study Behavioral Cloning (BC) [46] from
segmented point clouds. BC assumes access to a dataset D = {(ot,a⇤t)}Mt=1 of observation-action
pairs (ot,a⇤t) from a demonstrator, where ot indicates any type of observation (of which segmented
point clouds are one example). BC performs supervised learning to learn a policy ⇡ with parameters
✓ such that the predicted action ât = ⇡✓(ot) is close to the ground truth label a⇤t . While prone
to compounding errors at test time [47], BC has shown surprising effectiveness when compared
to more complex learning-based algorithms in some robotic manipulation contexts [48, 49], which
motivates further study on how it can be done with point cloud observations. In future work, we will
explore combining our method with other imitation learning algorithms [50, 51, 52].

3.1 Tool Flow As Action Representation

We propose to use tool flow as an internal representation for the action, where the flow f
(i) 2 R3

associated with point p(i) is a 3D vector. For a given tool point, we interpret its flow vector as
representing how the point will move in 3D space as a result of “applying” the flow. To form
the policy ⇡✓, we use a dense point cloud network (such as a segmentation PointNet++ [15]), which
given an input point cloud P produces per-point outputs. The point cloud input is already segmented
in that it contains, for each point, the 3D world position and a one-hot encoding of its class. With
an (N ⇥ d1)-sized point cloud P as input, the output F has dimension (N ⇥ d2), where d2 is the
output dimension (in our case, d2 = 3). We then extract from the output F the subset of N 0  N

3

Figure 3: A visualization of the proposed point matching loss (Eq. 3) and consistency loss (Eq. 4). The black
points visualize a simplified ladle’s point cloud, and the thin red arrows represent the flows on the tool points.

points in P corresponding to all points on the tool, while ignoring points belonging to other object
classes. This results in a set of predicted 3D tool flow vectors Ftool = {f (i)}N 0

i=1 with f
(i) 2 R3 for

each tool point.

Suppose that, at time t, the expert applies an action to the tool which is given by a ground-truth
transformation a⇤ = (R⇤

, t⇤) = T⇤ 2 SE(3). Let Ptool ✓ P be the set of 3D points on the tool.
Then the ground-truth tool flow is given by Fgt = T⇤Ptool �Ptool where T⇤Ptool is the result of
applying the transformation T⇤ on all points in Ptool. Thus, there is a one-to-one correspondence
between the transformation T⇤ and flow Fgt; nonetheless, we show in Section 4 that estimating the
tool flow leads to improved performance compared to estimating the transformation T⇤ directly.

Given the set of predicted 3D tool flow vectors Ftool, the next step is to extract a single overall action
â, where â is a transformation that represents the change in translation and rotation of the tool’s pose.
To compute the action, we consider the tool point clouds Ptool and P0

tool = Ptool +Ftool, where in
the latter, we move each point based on its estimated flow. Our objective is to estimate the best-fit
tool transformation T̂ = (R̂, t̂) which contains rotation and translation components, respectively, to
align Ptool and P0

tool, i.e., we want to find T̂ to minimize kT̂Ptool�P0
toolk2. To obtain the rotation

R̂, we first center the two tool point clouds to obtain P̄tool and P̄0
tool. We then input the centered

point clouds to a differentiable, parameter-less Singular Value Decomposition (SVD) layer [53, 54]
which computes the rotation which best aligns P̄tool and P̄0

tool with respect to mean square er-
ror (MSE). The change in translation t̂ can then be computed as t̂ = C(P0

tool) � R̂C(Ptool),
where C(P) denotes the centroid of the point cloud P. By combining the translation and rota-
tion components, we produce the full transformation T̂, which we treat as our action representation
for the policy. The outputs for the non-tool points are not supervised. We call the resulting point
cloud-to-action system as ToolFlowNet (see Figure 2), which can be used by a robot for manipula-
tion. Mathematically, let F✓ represent the segmentation PointNet++ that generates the flow vectors.
ToolFlowNet computes the tool transformation as follows:

â = (R̂, t̂) = ⇡✓(o) = SVD(Ftool) (1)

where SVD represents the parameter-less Singular Value Decomposition layer as described above,
and Ftool is the flow corresponding to the tool points in the estimated flow F = F✓(P).

3.2 Imitation Learning via Tool Point Matching and Consistency Losses

Point Matching Loss: Given the policy’s predicted action â = ⇡✓(o), a straightforward way to
imitate the ground truth action a⇤ = (R⇤

, t⇤) is to use the MSE loss:

Lmse(â,a
⇤) = �1||R̂�R⇤||2 + �2||t̂� t⇤||2, (2)

where �1 and �2 are weights for the translation and rotation components. Instead of trying to balance
the weights, in this paper, we use a point matching loss to reduce the discrepancy between â =
(R̂, t̂) and the ground truth action a⇤ = (R⇤

, t⇤). Given the predicted action, the transformation
(R̂, t̂) is applied on all the original N 0 tool points in the point cloud, and the loss function Lpoint
computes the Euclidean distance between the tool points transformed using the predicted action

4

(R̂, t̂) versus the tool points transformed using the ground-truth action (R⇤
, t⇤):

Lpoint(P, â,a⇤) =
1

N 0

N 0X

i=1

k(R̂p
(i) + t̂)� (R⇤

p
(i) + t⇤)k2, (3)

where p(i) iterates through the N 0 tool points in Ptool ✓ P, and we interpret R̂ and R⇤ as represent-
ing 3⇥ 3 rotation matrices. Prior work on 6D pose estimation [55, 56, 57] has used variants of this
loss function to jointly optimize for translation and rotation as compared to balancing the weights
on separate translation and rotation losses. Our usage of Lpoint is similar to that in Wang et al. [19]
where the matching loss is on tool points directly controllable by the robot.

Consistency Loss: While Lpoint should allow the policy ⇡✓ to learn SE(3) pose changes (and thus,
actions), its effect on optimizing the predicted flow vectors F happens via backpropagating through
a differentiable SVD layer which “compresses” all predicted flow vectors to produce a single trans-
formation (R̂, t̂). This compression means that there could be significant noise in the individual
flow vectors, even if they combine to form a reasonable action. Thus, we propose a consistency loss
Lconsistency which serves as a regularizer to ensure that the predicted flow vectors are similar to their
induced, SVD-projected flow vectors produced from the transformation encoded in â. The loss is:

Lconsistency(P, â) =
1

N 0

N 0X

i=1

k(R̂p
(i) + t̂� p

(i))� f
(i)k2, (4)

where for each of the N
0 tool points, we compute R̂p

(i) + t̂ � p
(i) as the induced flow from the

predicted transformation (R̂, t̂) after applying the SVD layer, and f
(i) is the flow predicted by the

network before the SVD layer. Note that the ground truth transformation (R⇤
, t⇤) does not appear

in this consistency loss. The consistency loss is only a function of a set of points and a set of
corresponding flow vectors on those points, and does not rely on any other ground truth signal. We
combine this with the point matching loss Lpoint to obtain the final loss function to optimize the
policy ⇡✓: Lcombo = Lpoint + � · Lconsistency, with hyperparameter � controlling the weight of the
consistency loss, which we set to � = 0.1. See Figure 3 for visuals. To distinguish our method
from traditional optical flow and scene flow methods, ToolFlowNet uses flow as a representation to
compute the transformation of the tool, and is trained using the ground-truth demonstration action.
It is not used to just estimate the flow.

Additional Implementation Details: To obtain ground truth tool flow Fgt in simulation, we de-
termine the 3D movement of each tool point as a result of applying the demonstrator’s action to
transform those points. In physical settings, we scan the tool to obtain a 3D model, from which we
extract tool point clouds Ptool. We perform a similar calculation where we detect the transformation
executed by the robot and apply it to obtain the flow for each tool point. This method of extract-
ing Fgt only requires access to the current observed point cloud and the corresponding action. In
particular, it does not require the perhaps more restrictive assumption of requiring one-to-one point
correspondence between two consecutive point cloud observations. In addition, this method to de-
tect flow means that it reflects the “intended” action from the robot, which may differ from the true
positions of the tool points in 3D space after the robot executes the action; for example, when a
collision happens with a wall, the tool points might not move, even though the robot intended for
them to move. We leave alternative techniques to extract tool flow to future work.

4 Experiments

4.1 Simulation Experiments
We build on top of SoftGym [58], which provides a suite of deformable manipluation tasks and uses
NVIDIA FleX [59] as the underlying physics engine. We use the simulator to obtain ground-truth
segmentation labels. For the tool, we use the “observable” point cloud at each time step, so there may
be occlusions. We test two tool-based simulation tasks, PourWater and ScoopBall, and for each, test
two action spaces: 3D and 6D for PourWater, and 4D and 6D for ScoopBall. In PourWater, the agent

5

Method Loss Dense N. Success N. Success N. Success N. Success Average
PN++? ScoopBall 4D ScoopBall 6D PourWater 3D PourWater 6D N. Success

PCL Direct Vector MSE 7 0.544±0.03 0.848±0.05 0.530±0.08 0.402±0.04 0.581
PCL Direct Vector PM 7 0.228±0.12 0.048±0.04 0.132±0.07 0.088±0.04 0.124
PCL Dense Transformation MSE 3 0.519±0.07 0.824±0.06 0.539±0.05 0.344±0.03 0.556
PCL Dense Transformation PM 3 0.367±0.07 0.360±0.10 0.583±0.03 0.049±0.02 0.340
D Direct Vector MSE 7 0.190±0.07 0.952±0.02 0.035±0.01 0.069±0.02 0.311
D+S Direct Vector MSE 7 0.734±0.11 0.928±0.03 0.777±0.03 0.304±0.03 0.686
RGB Direct Vector MSE 7 0.354±0.05 0.776±0.05 0.698±0.02 0.324±0.05 0.538
RGB+S Direct Vector MSE 7 0.671±0.07 0.944±0.02 0.804±0.04 0.353±0.03 0.693
RGBD Direct Vector MSE 7 0.418±0.10 0.920±0.02 0.733±0.07 0.353±0.02 0.606
RGBD+S Direct Vector MSE 7 0.734±0.10 0.968±0.02 0.830±0.03 0.481±0.03 0.753

ToolFlowNet, No Skip Conn. PM+C 3 0.987±0.08 0.304±0.06 0.000±0.00 0.000±0.00 0.323
ToolFlowNet, MSE after SVD MSE+C 3 0.089±0.04 0.792±0.09 0.494±0.02 0.913±0.05 0.572
ToolFlowNet, PM before SVD PM 3 0.785±0.08 0.880±0.05 0.618±0.04 0.677±0.05 0.740
ToolFlowNet, No Consistency PM 3 0.861±0.06 0.744±0.12 0.468±0.10 0.609±0.06 0.670

ToolFlowNet (Ours) PM+C 3 1.152±0.07 0.952±0.02 0.795±0.05 0.667±0.03 0.892

Table 1: Behavioral Cloning (BC) results in simulation. The first 10 rows are baselines, the next 4 are ablations
of our method, and the last row is our method. We report the loss functions used as MSE only, PM only (the
loss in Eq. 3), or if it also uses a consistency loss (+C, from Eq. 4). We also show whether the method uses a
segmentation PointNet++ (i.e., a dense architecture), and the normalized success rates (N. Success) across all
tasks over 5 independent BC runs. The last column averages the success across the four columns. We bold the
best numbers in the columns, plus any with overlapping standard errors.

controls a box which contains water and must pour the water into a fixed target box. In ScoopBall,
the agent controls a ladle and needs to scoop a ball. See Appendix A.1 for more details.

4.1.1 Baseline Methods

We compare the proposed method with the following baselines (see Section 4.3 for ablations):

• PCL Direct Vector. Uses a classification PointNet++ network to directly estimate a vector action
(with a translation and an axis-angle rotation). We test two variants, one which supervises with
the MSE loss and another which uses the Point Matching (PM) loss from Eq. 3 on tool points.

• PCL Dense Transformation. Uses a segmentation PointNet++, and directly predicts per-point
6D vectors (translation and axis-angle). Each point cloud has a designated point as the center
of rotation for the tool, and we use the output corresponding to that point as the vector action.
The outputs for the other points are not supervised. This baseline is designed to isolate any ben-
efits from using the segmentation version of PointNet++ instead of classification. As with Direct
Vector, we test two variants, with supervising using the MSE or PM losses.

• {D, RGB, RGBD} Direct Vector. Processes images and uses a Convolutional Neural Network to
directly predict an action vector (translation and axis-angle) and supervises with MSE. The inputs
are either a depth image (D), the RGB image, or an RGBD image.

• {D+S, RGB+S, RGBD+S} Direct Vector. These are the same as the prior set of methods, except
that the input images have additional channels corresponding to binary segmentation masks. We
denote these new input images as: D+S, RGB+S, and RGBD+S. We include these baselines for a
fairer comparison due to assuming segmentation information in the point cloud observations.

4.1.2 Experiment Protocol and Evaluation

For each task, we use a scripted demonstrator to generate a fixed set of training demos and keep the
successful ones for Behavioral Cloning. We standardize on 500 training epochs for all methods and
average across 5 seeds. We evaluate every 25 training epochs on 25 testing configurations and use
the maximum success (averaged over 5 seeds) across the full training history, then divide this by the
demonstrator success rate to get the normalized performance. See Appendix A.2.2 for more details.

4.2 Simulation Results and Analysis

The results in Table 1 suggest that using ToolFlowNet outperforms the baselines on average across
the tasks. In particular, for ScoopBall 4D and PourWater 6D, it outperforms all other baselines, and

6

Figure 4: An example successful ScoopBall 4D rollout by a learned ToolFlowNet Behavioral Cloning policy.
We show subsampled RGB frames for visual clarity, though the policy only uses point clouds as input. For two
of the frames, we show the policy’s tool flow visualizations. The policy lowers the ladle (frames 1-3), rotates
and moves it in the direction of the ball (frames 4-5), lifts the ball (frame 6) and then rotates back to the starting
pose (frames 7-8). The policy’s flow visualizations for frames 2 and 7 suggest the ability to learn downward
and rotation movement, respectively. The predicted flow vectors, colored red, are slightly enlarged for clarity.

for ScoopBall 6D and PourWater 3D, it is on par with the best image-based baselines. This may
indicate that some tasks have a 3D nature which makes it more natural to learn policies from point
clouds. Figure 4 shows a qualitative example test-time rollout of ScoopBall 4D from the learned
ToolFlowNet policy. Figure 4 also visualizes the policy’s internal flow predictions (i.e., the per-
point flow vectors f

(i) before the SVD layer), showing that the network has learned surprisingly
clean per-point tool flow vectors. Furthermore, as the agent controls the ladle at its upper tip, when
rotating, the flow vectors also correctly predict longer flow vectors for the points located further
away from the origin of the tool pose.

4.3 Why Does ToolFlowNet Help Robot Learning?

We perform further experiments to determine why ToolFlowNet outperforms the baselines that di-
rectly regress to a transformation. Specifically, we create a variant of ScoopBall in which the action
space consists of translations only (no rotations); see Appendix B.1 for details. These experiments
reveal that ToolFlowNet does not outperform the baselines in translation-only settings, indicating
that the benefits of ToolFlowNet come from predicting rotations. We also test Direct Vector methods
with 4D (quaternions), 6D [60], 9D (rotation matrices) [54], and 10D [61] rotation representations
in Appendix B.12, and find that ToolFlowNet continues to obtain higher success rates.

We next study ablations of ToolFlowNet to understand which components are most critical:

• ToolFlowNet, No Skip Connections: removes skip connections in the segmentation PointNet++.
• ToolFlowNet, MSE after SVD: tests applying an MSE loss on the induced transformation from

SVD instead of point matching. We still use the consistency loss (Eq. 4).
• ToolFlowNet, Point Matching (PM) Before SVD: tests using the PM loss (Eq. 3) before the

SVD layer, so the loss does not back-propagate through the SVD layer.
• ToolFlowNet, No Consistency: tests removing the consistency loss (and just using Eq. 3).

We use the same experiment protocol as in Section 4.1.2 on all tasks. The results, also in Ta-
ble 1, suggest strong benefits to using the point matching loss, the consistency loss, and the standard
segmentation PointNet++ with skip connections. For example, across all tasks, ToolFlowNet perfor-
mance is worse without using a consistency loss. The utility of some design choices may be more
task-specific; removing skip connections leads to no successes on PourWater because removing it
made the model unable to predict any rotations (see Appendix B.4 for additional analysis), while it
is possible to succeed in ScoopBall without using rotations.

7

Figure 5: Physical experiments. (A) The Sawyer holds a ladle above a small box with water, which is enclosed
in a larger gray box to contain spills. (B) The scanned 3D model of the ladle with a representative tool flow vi-
sualization. (C) Example test-time trials with subsampled frames. Top row: successful tool movement towards
and lifting the target. Bottom row: collision failure due to repeatedly pushing against the container.

4.4 Physical Scooping Experiments

We test ToolFlowNet in the real world using a Sawyer robot with a standard consumer ladle which
we scan to obtain a 3D model, and a yellow ping-pong ball acting as the target item (see Figure 5).
The ladle is attached to the Sawyer’s end-effector. As in simulation, we obtain tool flow by record-
ing the change in end-effector pose and applying the transformations on the tool point cloud. A
Microsoft Azure Kinect camera captures top-down depth images to compute the ball’s point cloud.

ToolFlowNet in Real #Trials

Successes 41/50
Failures 9/50

Table 2: Physical scooping results.

A human operator manually moves the Sawyer’s arm via direct
touch to collect 125 demonstrations, with each comprising about 20
observation-action pairs. We use 100 demonstrations for training
ToolFlowNet, and use the remaining 25 for monitoring evaluation
MSE. We perform 50 physical scooping trials, where each trial be-
gins with the human dropping the ping-pong ball over the water at an
arbitrary location within the inner box shown in Figure 5. The trial is classified as successful if the
Sawyer raises the ball from the water surface to above the top of the smaller box. Results in Table 2
suggest that the Sawyer achieves 41/50 successes (82%), with 9 failures. All failures were due to
the ladle colliding with the small box. See Appendix C for more details. In future work we will do
physical experiments with more complex demonstrations.

4.5 Limitations and Failure Cases
In our experiments, we obtain the ground-truth tool flow data by applying the demonstrator’s actions
on a set of tool points and computing the change in the resulting tool point positions. The tool points
can be observed or derived via a tool model. In either case, we require access to the demonstrator’s
action, and future work could relax this assumption by extracting tool flow without explicit actions,
such as when a human provides a video. Possible approaches include using scene flow techniques.

A limitation of ToolFlowNet is that it may be susceptible to occlusions of the tool when a model
of the tool is not available. For physical scooping, we rely on a scanned model of the tool because
the Sawyer’s arm would occlude parts of the tool, but tool models might not always be available. In
future work, we will explore ways to address occlusions such as point cloud inpainting and tracking.
Finally, we test ToolFlowNet on two simulation tasks with two action spaces for each, and scooping
in real. We hope to test on more diverse tasks such as cloth or rope manipulation, and to address
failures from the physical experiments.

5 Conclusion
In this work, we propose a general technique for policy learning from point clouds for tool-based
manipulation tasks, which we demonstrate on scooping and pouring tasks. Our method, called
ToolFlowNet, predicts per-point tool flow vectors which are converted into actions. We hope this
research inspires future work on learning from point clouds.

8

Acknowledgments

This work was supported by LG Electronics and by NSF CAREER grant IIS-2046491. We thank Brian Okorn
and Chuer Pan for assistance with the differentiable SVD layer, and Mansi Agrawal, Sashank Tirumala, and
Thomas Weng for paper writing feedback.

References
[1] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and K. Goldberg. Learning

Ambidextrous Robot Grasping Policies. Science Robotics, 4(26), 2019.

[2] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba.
Learning Dexterous In-Hand Manipulation. In International Journal of Robotics Research (IJRR), 2019.

[3] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin, D. Duong,
V. Sindhwani, and J. Lee. Transporter Networks: Rearranging the Visual World for Robotic Manipulation.
In Conference on Robot Learning (CoRL), 2020.

[4] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser. TossingBot: Learning to Throw Arbitrary
Objects with Residual Physics. In Robotics: Science and Systems (RSS), 2019.

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end Training of Deep Visuomotor Policies. In
Journal of Machine Learning Research (JMLR), 2016.

[6] L. Pinto and A. Gupta. Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot
Hours. In IEEE International Conference on Robotics and Automation (ICRA), 2016.

[7] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plap-
pert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba,
and L. Zhang. Solving Rubik’s Cube with a Robot Hand. arXiv preprint arXiv:1910.07113, 2019.

[8] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel,
and S. Levine. Soft Actor-Critic Algorithms and Applications. arXiv preprint arXiv:1812.05905, 2018.

[9] N. Jakobi, P.Husbands, and I. Harvey. Noise and the Reality Gap: The use of Simulation in Evolutionary
Robotics. In European Conference on Advances in Artificial Life, 1995.

[10] O. Kroemer, S. Niekum, and G. Konidaris. A Review of Robot Learning for Manipulation: Challenges,
Representations, and Algorithms. arXiv preprint arXiv:1907.03146, 2019.

[11] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar. Robotic Manipulation and Sensing of
Deformable Objects in Domestic and Industrial Applications: a Survey. In International Journal of

Robotics Research (IJRR), 2018.

[12] J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi, D. Berenson, F. Ficuciello, K. Harada,
J. Kober, X. Li, J. Pan, W. Yuan, and M. Gienger. Challenges and Outlook in Robotic Manipulation of
Deformable Objects. arXiv preprint arXiv:2105.01767, 2021.

[13] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[14] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun. PointTransformer. In International Conference on

Computer Vision (ICCV), 2021.

[15] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space. In Neural Information Processing Systems (NeurIPS), 2017.

[16] Y. Zhou and O. Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[17] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic Graph CNN for
Learning on Point Clouds. ACM Transactions on Graphics (TOG), 2019.

[18] T. Chen, J. Xu, and P. Agrawal. A System for General In-Hand Object Re-Orientation. In Conference on

Robot Learning (CoRL), 2021.

9

[19] L. Wang, Y. Xiang, W. Yang, A. Mousavian, and D. Fox. Goal-Auxiliary Actor-Critic for 6D Robotic
Grasping with Point Clouds. In Conference on Robot Learning (CoRL), 2021.

[20] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. Three-dimensional Scene Flow. In International

Conference on Computer Vision (ICCV), 1999.

[21] Z. Liu, H. Tang, Y. Lin, and S. Han. Point-Voxel CNN for Efficient 3D Deep Learning. In Neural

Information Processing Systems (NeurIPS), 2019.

[22] W. Wu, Z. Qi, and L. Fuxin. PointConv: Deep Convolutional Networks on 3D Point Clouds. In Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2019.

[23] X. Liu, M. Yan, and J. Bohg. MeteorNet: Deep Learning on Dynamic 3D Point Cloud Sequences. In
International Conference on Computer Vision (ICCV), 2019.

[24] B. K. Horn and B. G. Schunck. Determining Optical Flow. Technical report, USA, 1980.

[25] P. Fischer, A. Dosovitskiy, E. Ilg, P. Hausser, C. Hazırbaş, V. Golkov, P. van der Smagt, D. Cremers, and
T. Brox. FlowNet: Learning Optical Flow with Convolutional Networks. In International Conference on

Computer Vision (ICCV), 2015.

[26] Z. Teed and J. Deng. RAFT-3D: Scene Flow using Rigid-Motion Embeddings. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2021.

[27] Y.-H. Wu, J. Wang, and X. Wang. Learning Generalizable Dexterous Manipulation from Human Grasp
Affordance. In Conference on Robot Learning (CoRL), 2022.

[28] K. Lobos-Tsunekawa and T. Harada. Point Cloud Based Reinforcement Learning for Sim-to-Real and
Partial Observability in Visual Navigation. In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2020.

[29] B. Thach, B. Y. Cho, A. Kuntz, and T. Hermans. Learning Visual Shape Control of Novel 3D Deformable
Objects from Partial-View Point Clouds. In IEEE International Conference on Robotics and Automation

(ICRA), 2022.

[30] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese. KETO: Learning Keypoint Representations for Tool
Manipulation. In IEEE International Conference on Robotics and Automation (ICRA), 2020.

[31] T. Weng, S. Bajracharya, Y. Wang, K. Agrawal, and D. Held. FabricFlowNet: Bimanual Cloth Manipula-
tion with a Flow-based Policy. In Conference on Robot Learning (CoRL), 2021.

[32] S. Pillai, M. R. Walter, and S. Teller. Learning Articulated Motions From Visual Demonstration. In
Robotics: Science and Systems (RSS), 2014.

[33] B. Eisner, H. Zhang, and D. Held. FlowBot3D: Learning 3D Articulation Flow to Manipulate Articulated
Objects. In Robotics: Science and Systems (RSS), 2022.

[34] B. Shen, Z. Jiang, C. Choy, L. J. Guibas, S. Savarese, A. Anandkumar, and Y. Zhu. ACID: Action-
Conditional Implicit Visual Dynamics for Deformable Object Manipulation. In Robotics: Science and

Systems (RSS), 2022.

[35] A. Goyal, A. Mousavian, C. Paxton, Y.-W. Chao, B. Okorn, J. Deng, and D. Fox. IFOR: Iterative Flow
Minimization for Robotic Object Rearrangement. In Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2022.

[36] S. Dong, D. K. Jha, D. Romeres, S. Kim, D. Nikovski, and A. Rodriguez. Tactile-RL for Insertion:
Generalization to Objects of Unknown Geometry. In IEEE International Conference on Robotics and

Automation (ICRA), 2021.

[37] M. Argus, L. Hermann, J. Long, and T. Brox. FlowControl: Optical Flow Based Visual Servoing. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.

[38] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning Compositional Models of Robot
Skills for Task and Motion Planning. In International Journal of Robotics Research (IJRR), 2019.

[39] C. Schenck, J. Tompson, D. Fox, and S. Levine. Learning Robotic Manipulation of Granular Media. In
Conference on Robot Learning (CoRL), 2017.

[40] C. Schenck and D. Fox. Towards Learning to Perceive and Reason About Liquids. In International

Symposium on Experimental Robotics (ISER), 2016.

10

[41] C. Schenck and D. Fox. Visual Closed-Loop Control for Pouring Liquids. In IEEE International Confer-

ence on Robotics and Automation (ICRA), 2017.

[42] C. Schenck and D. Fox. SPNets: Differentiable Fluid Dynamics for Deep Neural Networks. In Conference

on Robot Learning (CoRL), 2018.

[43] S. Clarke, T. Rhodes, C. G. Atkeson, and O. Kroemer. Learning Audio Feedback for Estimating Amount
and Flow of Granular Material. In Conference on Robot Learning (CoRL), 2018.

[44] C. Matl, Y. Narang, R. Bajcsy, F. Ramos, and D. Fox. Inferring the Material Properties of Granular Media
for Robotic Tasks. In IEEE International Conference on Robotics and Automation (ICRA), 2020.

[45] G. Salhotra, I.-C. A. Liu, M. Dominguez-Kuhne, and G. S. Sukhatme. Learning Deformable Object
Manipulation from Expert Demonstrations. In IEEE Robotics and Automation Letters (RA-L), 2022.

[46] D. A. Pomerleau. Efficient Training of Artificial Neural Networks for Autonomous Navigation. Neural

Comput., 3, 1991.

[47] S. Ross, G. J. Gordon, and J. A. Bagnell. A Reduction of Imitation Learning and Structured Predic-
tion to No-Regret Online Learning. In International Conference on Artificial Intelligence and Statistics

(AISTATS), 2011.

[48] S. Dasari, J. Wang, J. Hong, S. Bahl, Y. Lin, A. Wang, A. Thankaraj, K. Chahal, B. Calli, S. Gupta,
D. Held, L. Pinto, D. Pathak, V. Kumar, and A. Gupta. RB2: Robotic Manipulation Benchmarking with
a Twist. NeurIPS 2021 Datasets and Benchmarks Track, 2021.

[49] P. Florence, C. Lynch, A. Zeng, O. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mordatch, and
J. Tompson. Implicit Behavioral Cloning. In Conference on Robot Learning (CoRL), 2021.

[50] E. Johns. Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demonstration. In IEEE

International Conference on Robotics and Automation (ICRA), 2021.

[51] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters. An Algorithmic Perspective on
Imitation Learning. Foundations and Trends in Robotics, 7, 2018.

[52] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A Survey of Robot Learning From Demonstra-
tion. Robotics and Autonomous Systems, 57, 2009.

[53] O. Sorkine-Hornung and M. Rabinovich. Least-Squares Rigid Motion Using SVD. Technical report,
ETH Zurich, 2016.

[54] J. Levinson, C. Esteves, K. Chen, N. Snavely, A. Kanazawa, A. Rostamizadeh, and A. Makadia. An
Analysis of SVD for Deep Rotation Estimation. In Neural Information Processing Systems (NeurIPS),
2020.

[55] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. PoseCNN: A Convolutional Neural Network for 6D
Object Pose Estimation in Cluttered Scenes. In Robotics: Science and Systems (RSS), 2018.

[56] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. DeepIM: Deep Iterative Matching for 6D Pose Estimation.
In European Conference on Computer Vision (ECCV), 2018.

[57] C. Wang, D. Xu, Y. Zhu, R. Martı́n-Martı́n, C. Lu, L. Fei-Fei, and S. Savarese. DenseFusion: 6D Object
Pose Estimation by Iterative Dense Fusion. In Conference on Computer Vision and Pattern Recognition

(CVPR), 2019.

[58] X. Lin, Y. Wang, J. Olkin, and D. Held. SoftGym: Benchmarking Deep Reinforcement Learning for
Deformable Object Manipulation. In Conference on Robot Learning (CoRL), 2020.

[59] M. Macklin, M. Muller, N. Chentanez, and T.-Y. Kim. Unified Particle Physics for Real-Time Applica-
tions. ACM Trans. Graph., 33(4), July 2014.

[60] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the Continuity of Rotation Representations in Neural
Networks. In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[61] V. Peretroukhin, M. Giamou, D. M. Rosen, W. N. Greene, N. Roy, and J. Kelly. A Smooth Representation
of Belief over SO(3) for Deep Rotation Learning with Uncertainty. In Robotics: Science and Systems

(RSS), 2020.

[62] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In International Conference on

Learning Representations (ICLR), 2015.

11

[63] D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Goldberg, and A. Zeng. Learning to
Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. In IEEE

International Conference on Robotics and Automation (ICRA), 2021.

[64] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep Reinforcement Learning
that Matters. In Association for the Advancement of Artificial Intelligence (AAAI), 2018.

[65] A. Srinivas, M. Laskin, and P. Abbeel. CURL: Contrastive Unsupervised Representations for Reinforce-
ment Learning. In International Conference on Machine Learning (ICML), 2020.

[66] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop

on Representation Learning on Graphs and Manifolds, 2019.

[67] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. Johnson, and G. Gkioxari. Accelerating 3D
Deep Learning with PyTorch3D. arXiv:2007.08501, 2020.

[68] J. Chen, Y. Yin, T. Birdal, B. Chen, L. Guibas, and H. Wang. Projective Manifold Gradient Layer for
Deep Rotation Regression. In Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[69] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan, A. Sendonaris,
G. Dulac-Arnold, I. Osband, J. Agapiou, J. Z. Leibo, and A. Gruslys. Deep Q-learning from Demonstra-
tions. In Association for the Advancement of Artificial Intelligence (AAAI), 2018.

[70] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming Exploration in Rein-
forcement Learning with Demonstrations. In IEEE International Conference on Robotics and Automation

(ICRA), 2018.

[71] L. Rozo and V. Dave. Orientation Probabilistic Movement Primitives on Riemannian Manifolds. In
Conference on Robot Learning (CoRL), 2021.

[72] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. Online Movement Adaptation Based on Previous
Sensor Experiences. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2011.

[73] J. Urain, D. Tateo, and J. Peters. Learning Stable Vector Fields on Lie Groups. In IEEE Robotics and

Automation Letters (RA-L), 2021.

[74] Y. Huang, F. J. Abu-Dakka, J. Silverio, and D. G. Caldwell. Toward Orientation Learning and Adaptation
in Cartesian Space. In IEEE Transactions on Robotics, 2020.

[75] M. Liu, X. Li, Z. Ling, Y. Li, and H. Su. Frame Mining: a Free Lunch for Learning Robotic Manipulation
from 3D Point Clouds. In Conference on Robot Learning (CoRL), 2022.

[76] Zeromq. URL https://zeromq.org/.

12

https://zeromq.org/

