
Skip the Equations: Learning Behavior of Personalized Dynamical Systems
Directly From Data

Krzysztof Kacprzyk 1 Julianna Piskorz 1 Mihaela van der Schaar 1

Abstract
While black-box approaches are commonly used
for data-driven modeling of dynamical systems,
they often obscure a system’s underlying behav-
ior and properties, limiting adoption in areas such
as medicine and pharmacology. A two-step pro-
cess of discovering ordinary differential equations
(ODEs) and their subsequent mathematical anal-
ysis can yield insights into the system’s dynam-
ics. However, this analysis may be infeasible for
complex equations, and refining the ODE to meet
certain behavioral requirements can be challeng-
ing. Direct semantic modeling has recently been
proposed to address these issues by predicting the
system’s behavior, such as the trajectory’s shape,
directly from data, bypassing post-hoc mathe-
matical analysis. In this work, we extend the
original instantiation, limited to one-dimensional
trajectories and inputs, to accommodate multi-
dimensional trajectories with additional personal-
ization, allowing evolution to depend on auxiliary
static features (e.g., patient covariates). In a se-
ries of experiments, we show how our approach
enables practitioners to integrate prior knowledge,
understand the dynamics, ensure desired behav-
iors, and revise the model when necessary.

1. Introduction
Personalized Dynamical Systems In machine learning
(ML), modeling dynamical systems is a core activity with
extensive applications in fields such as physics (Rudy et al.,
2017), biology (Chen et al., 2019), engineering (Brunton
& Kutz, 2022), and medicine (Lee et al., 2020). We call
a dynamical system personalized when its evolution func-
tion depends on certain observable features. It is similar
to dynamical systems that depend on a parameter (as stud-

1University of Cambridge, Cambridge, UK. Correspondence
to: Krzysztof Kacprzyk <kk751@cam.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ied, for instance, in bifurcation theory (Blanchard et al.,
2012)), but we emphasize the fact that we usually have
many such parameters, we can observe them, and they are
often linked to personal characteristics of individual peo-
ple. A primary example of a personalized dynamical system
(PDS) is the human body, which exhibits a lot of variability
when it comes to drug metabolisms, disease progressions,
or treatment effects. Beyond physiological systems, other
examples of PDS may involve the atmosphere (e.g., tem-
perature or pollution) based on a particular location or the
animal population in a particular environment.

Discovery of Closed-Form ODEs In practice, it is of-
ten essential to ensure the model’s behavior aligns with
domain-specific requirements. For instance, when develop-
ing drugs, researchers must verify that the pharmacokinetic
model (Mould & Upton, 2012) is biologically plausible
(e.g., ensuring non-negativity and eventual decay of drug
concentrations). Moreover, dosing recommendations may
depend on the drug’s maximum concentration and its timing
(Han et al., 2018). An effective way to achieve this level
of understanding is through the discovery of closed-form
ordinary differential equations (ODEs) (Bongard & Lipson,
2007), where an algorithm identifies a concise mathemat-
ical representation that can then be analyzed by experts.
More formally, a closed-form function is a function that can
be represented by a mathematical expression consisting of
a finite number of variables, constants, arithmetic opera-
tions (+,−,×,÷), and some well-known functions such as
trigonometric functions. Initial approaches to ODE discov-
ery (Bongard & Lipson, 2007; Schmidt & Lipson, 2009)
employed genetic programming (Koza, 1992) to search the
space of possible equations. More recently, ODEs are often
represented as linear combinations of terms from a pre-
specified library (Brunton et al., 2016b) which makes the
search much more efficient. This approach (generally called
SINDy) has been extended to various settings, including
implicit equations (Kaheman et al., 2020), equations with
control (Brunton et al., 2016a), and partial differential equa-
tions (Rudy et al., 2017). The extended discussion about
related works can be found in Appendix E.

Limitations of Two-Step Modeling Traditionally, to un-
derstand a dynamical system’s behavior, an ODE needs to

1

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

d𝐶depot

d𝑡
= −𝑘tr𝐶depot

d𝐶trans1
d𝑡

= 𝑘tr𝐶depot − 𝑘tr𝐶trans1

d𝐶trans2
d𝑡

= 𝑘tr𝐶trans1 − 𝑘tr𝐶trans2

d𝐶trans3
d𝑡

= 𝑘tr𝐶trans2 − 𝑘tr𝐶trans3

d𝐶cent
d𝑡

= 𝑘tr𝐶trans3 −
CL+ Q Ccent

𝑉1
+
𝑄𝐶peri

𝑉2
d𝐶peri

d𝑡
=
𝑄𝐶cent
𝑉1

−
𝑄𝐶peri

𝑉2

𝑡max

𝑥max

𝑡

𝑥

Syntactic representation Semantic representation

lim
𝑡→+∞

𝑥 𝑡 = 0

Analysis

(equations) (behavior)

Equation discovery

Data

EPISODE

Challenging
to edit

Figure 1. In two-step modeling, to learn the behavior of a dynamical system, we need to first discover closed-form governing equations
and then perform a time-consuming analysis to arrive at the semantic representation of the model. EPISODE allows us to skip equation
discovery and predict the semantic representation directly from data. The figure shows part of EPISODE trained on the Tacrolimus dataset
(see Section 5), where we know that the trajectory will always have the shown shape, and its properties, such as the maximum of the
trajectory, are described as generalized additive models. Each of the individual shape functions can be scrutinized and edited if necessary,
allowing for verification and enforcement of certain conditions, such as limt→∞ x(t) = 0.

be first discovered and then analyzed by humans (two-step
modeling). This process has many limitations. It is time-
intensive, demands substantial mathematical expertise, and
can be intractable for complex equations. Moreover, when
the discovered ODE fails to meet certain behavioral require-
ments, revising it is difficult because the link between the
form of the equation (its syntactic representation and its
behavior (its semantic representation) is rarely simple.

Direct Semantic Modeling To overcome these limita-
tions, direct semantic modeling (DSM), has recently been
proposed (Kacprzyk & van der Schaar, 2025). It predicts
a system’s semantic representation (its behavior) directly
from data, bypassing post-hoc analysis and enabling greater
flexibility. This allows for more intuitive model editing and
incorporation of prior knowledge. However, the current
instantiation of direct semantic modeling, Semantic ODE,
is limited to one-dimensional scenarios without personaliza-
tion (apart from the initial condition).

Contributions and Outline In this paper, we develop
EPISODE (Editing and Personalization In Semantic
Ordinary Differential Equations) that applies the principles
of DSM framework to modeling multi-dimensional PDS
(Figure 1). In Section 2, we formalize modeling PDS as
time series forecasting from static features (extending ODE
discovery), describe the principles of DSM, and present the
theoretical background necessary for our approach. In Sec-

tion 3, we describe the main ingredients of our model: the
composition map implemented as a decision tree, and the
property map constructed from a set of generalized additive
models. This complex architecture requires a novel training
algorithm, which we describe in Section 4. In Section 5,
we present a case study of how EPISODE can discover a
novel population pharmacokinetic model with better perfor-
mance than an expert-designed model from the literature.
We demonstrate how our approach enables practitioners to
integrate prior knowledge, understand the dynamics, verify
the model’s properties, and revise it if necessary. Finally,
we demonstrate the flexibility of our approach in a series of
experiments in Section 6.

2. Problem Formalism and Background
In this section, we formulate the problem of time series
forecasting from static features which provides a formal-
ism for modeling PDS that generalizes ODEs. Then, we
describe the principles of DSM and the theory behind Se-
mantic ODEs on which we build in Section 3.

Notation and Terminology Let tend ∈ R+ ∪ {+∞} and
T = (t0 = 0, tend) be the time domain. Let M ∈ N. We say
x : T → RM is an M -dimensional trajectory if for each
m ∈ [M] (where [M] = {1, . . . ,M}), xm ∈ C2(T), i.e.,
xm is twice continuously differentiable function on T . We
also denote it as x ∈ C2(T). We call any ML model whose
output is a trajectory a forecasting model.

2

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

2.1. Time Series Forecasting From Static Features

Definition We choose to formulate modeling PDS as time
series forecasting from static features. In this setting, we
have a dataset D = {v(d), (t

(d)
n ,y

(d)
n)Nd

n=1}Dd=1, where each
y
(d)
n ∈ RM represents a noisy measurement of some ground

truth trajectory x(d) ∈ C2(T) at time point t(d)n ∈ T , and
v ∈ V ⊂ RK are the static features. The goal is to find
a forecasting function F : V → C2(T) that predicts an
M -dimensional trajectory x : T → RM from the static
features v ∈ V . These features may include things like the
patient’s covariates, the type and dose of the treatment, the
city’s location, or initial values of any of the M trajectories.

Relationship with ODEs This setting accommodates and
extends the dominant approach to modeling dynamical sys-
tems: ODEs. Each system of ODEs f defines a forecasting
model F ODE through the initial value problem (IVP), i.e.,
for each initial condition x(0) = x0 ∈ RM , F ODE maps x0

to M trajectories governed by f satisfying this initial condi-
tion. Thus, ODE discovery can be treated as a special case of
fitting a forecasting model when the static features contain
only the initial measurements, i.e., v = x0. Importantly,
time series forecasting from static features also allows for
trajectories that are not governed by fully-observed ODEs or
which are only defined for a bounded domain (tend ̸= +∞).
It is also useful when we want to predict the whole tra-
jectory without access to the first observation (v does not
contain x0), and where we have more variability than can
be captured solely by the initial condition.1

2.2. Direct Semantic Modeling

The discovery of closed-form ODEs is a common way of
modeling dynamical systems in a way that potentially al-
lows us to understand the underlying behavior of the system
through a careful analysis of the found mathematical equa-
tion. However, not only do ODEs not cover all forecasting
settings, but the two-step process of first discovering an
equation and then analyzing it has many limitations. A
framework of DSM has recently been proposed to address
these limitations when fitting forecasting models. In our
work, we want to apply this framework to the particular
problem of time series forecasting from static features. First,
we outline the difference between syntactic and semantic
representation. Then, we explain the main principle of
DSM—prediction using a semantic predictor. Finally, we
introduce the definition of semantic representation used in
Semantic ODEs, which we use as a starting point in our
method.

1We note, however, that this last point could be accommodated
by discovering ODEs with control and treating static features as
constant control trajectories.

Forecasting Using Semantic and Trajectory Predictors
We assume that the main reason for discovering a closed-
form ODE is to obtain a model with a concise syntactic
representation (symbolic form) that can be subsequently
analyzed to obtain the semantic representation of the under-
lying forecasting model—description of how trajectory’s be-
havior, such as its shape and properties, changes as we vary
the input. Recently, DSM has been proposed as an alterna-
tive to this two-step process for modeling low-dimensional
dynamical systems (Kacprzyk & van der Schaar, 2025).
Instead of discovering an equation from data and then ana-
lyzing it to obtain its semantic representation, this approach
generates the semantic representation directly from data. In
general the forecasting model F is defined as a composition
F = Ftraj ◦ Fsem. Fsem directly predicts the semantic rep-
resentation of the trajectory (description of its behaviors),
which is passed to the trajectory predictor Ftraj that matches
this description to trajectories in a given hypothesis space.
No post-hoc mathematical analysis is required as the se-
mantic representation of F can be directly accessed through
Fsem. The model can be easily edited to enforce a specific
change in the semantic representation. Incorporating prior
knowledge is also streamlined and more intuitive.

2.2.1. SEMANTIC REPRESENTATION OF
ONE-DIMENSIONAL TRAJECTORY

To realize DSM, we need to formalize the semantic represen-
tation of a trajectory that allows us to uniquely match it to an
actual trajectory through a trajectory predictor Ftraj. Seman-
tic ODEs employ such a definition for a one-dimensional
trajectory. We will introduce it below as it will form a
starting point for our own definition. The semantic represen-
tation of trajectory x : (0, tend) → R (note that the original
formulation only allows for tend = +∞, so we extend it
here) is described as a pair (cx, px). cx is the composition
of x, i.e., its overall shape and px is the set of properties
describing this shape.

Composition More formally, a composition cx is a se-
quence of motifs where each motif describes the shape of
the trajectory on a particular interval, for instance “increas-
ing and strictly convex”. We have four bounded motifs and
six unbounded motifs. Each of them is of the form s±±∗,
i.e., is described by two symbols (each + or −) and one
letter from {b, u, h}. The symbols describe the signs of,
respectively, the first and second derivatives. The letter b
denotes a motif for a bounded time domains, whereas both
letter h and u are used for unbounded time domains. The
letter h is used for motifs that have a horizontal asymptote.
For instance, s+−h is an unbounded motif describing a func-
tion that is increasing (+), strictly concave (−), and with a
horizontal asymptote (h). An unbounded motif is always
the last motif in the composition (if tend = +∞). We also
call such composition unbounded. Compositions without an

3

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

unbounded motif (i.e., when tend ∈ R) are called bounded.
We call a set of all possible compositions C.

Properties px is the set of properties describing the com-
position cx. This includes the coordinates of the transition
points (points between two consecutive motifs, the point
at t = 0 and at tend if tend ∈ R). In addition, it also con-
tains information on the first derivative at the first transi-
tion point and the first and second derivative at the last
transition point. Finally, if tend = +∞, the set of prop-
erties also contains the properties of the unbounded mo-
tif. For instance, one of the properties of motif s+−h is
the value of the horizontal asymptote. Given a trajectory
x with a composition (s−−b, s−+h), its set of properties
is px = (t0, x(t0), t1, x(t1), ẋ(t0), ẋ(t1), ẍ(t1), h, t1/2),
where each (ti, x(ti)) is a transition point, and (h, t1/2)
are the properties of s−+h. We denote the set of all proper-
ties for a composition c as Pc and define P =

⋃
c∈C Pc. An

example of a trajectory and its semantic representation can
be seen in Figure 2.

𝑡

𝑥

(𝑠++𝑏, 𝑠+−𝑏, 𝑠−−𝑏, 𝑠−+ℎ)

motif

composition

Composition:
(𝑠++𝑏, 𝑠+−𝑏, 𝑠−−𝑏, 𝑠−+ℎ)

Transition points:
0,0.3 , 0.3,0.5 ,
0.4,0.9 , (0.5,0.6)

Derivatives:
ሶ𝑥 𝑡0 = 0.2, ሶ𝑥 𝑡3 = −5,
ሷ𝑥 𝑡3 = 0

Properties of 𝑠−+ℎ:
ℎ = 0.0, 𝑡1/2 = 0.9

Semantic representation of 𝑥

Figure 2. An example of a trajectory and its semantic representa-
tion. The semantic representation describes the composition of
the trajectory, (s++b, s+−b, s−−b, s−+h), the coordinates of the
transition points, some of the derivatives, and properties of the
unbounded motif s−+h.

3. EPISODE
The goal of this work is to realize the DSM framework
for the problem of time series forecasting from static fea-
tures and thus extending the original instantiation, Seman-
tic ODEs, that only works for one-dimensional dynamical
systems where the only input is the initial condition (i.e.,
M = 1, v = x0). In a setting where the input is one-
dimensional, every property is described by a univariate
function that can usually be plotted and understood directly
through its graph. For multivariate inputs, the task is much
harder as we need to employ and adapt transparent ML
models for multivariate regression and classification. We
first discuss the high-level structure of our model and then
describe its two main ingredients: multivariate composition
and property maps.

Each Dimension Separately We propose to treat each
dimension of the trajectory separately. As all information
needed to predict the whole M -dimensional trajectory is
encoded in the static features v, in particular v is sufficient
to predict any of the M dimensions. Our model does not
need to take the current values of the remaining dimen-
sions as input, which significantly simplifies the modeling
(and understanding) process. That means that our fore-
casting model F = Ftraj ◦ Fsem consists of M submodels
{Fm}Mm=1 each taking v ∈ V and predicting a univariate
trajectory x : T → R. Then each Fm can be defined as
Fm = Ftraj ◦ F (m)

sem , where Ftraj is the original trajectory pre-
dictor used in Semantic ODEs and F

(m)
sem is the new semantic

predictor that takes v ∈ V as input and outputs a semantic
representation of the mth dimension of the trajectory, i.e.,
(cxm

, pxm
), where (cx, px) is the semantic representation of

a one-dimensional trajectory as defined in Section 2.2.1. As
for each trajectory dimension m ∈ [M], we train a separate
semantic predictor F (m)

sem . Throughout the rest of this section,
we fix m and drop the superscript m to improve readability.
All that follows describes only one of M semantic predic-
tors. In contrast to the semantic predictor in Semantic ODEs,
each Fsem takes a multidimensional vector v ∈ V as input
instead of a single number. Thus, the comprehensibility of
Fsem is in no way guaranteed and requires careful choice
of the underlying architecture. As in Semantic ODEs, we
describe Fsem as a pair (Fcom, Fprop), where the former is a
composition map and the latter a property map. We describe
them in the next sections. A block diagram showing how a
single semantic predictor works is shown in Appendix C.

3.1. Composition Map

The goal of the composition map Fcom is to predict one part
of the semantic representation of the trajectory, namely the
composition c ∈ C′, where C′ ⊂ C is a set of all admissible
compositions chosen by the user. We can interpret Fcom as a
classification algorithm that takes the static features v ∈ V
and outputs one of the classes in C. To make the composi-
tion map as transparent as possible, we implement it as a
classification decision tree of small depth (Breiman, 2017).
This allows us to understand how the shape (composition)
of the trajectory depends on the static features. An example
of such a composition map can be seen in Figure 3, where
we show a trained composition map on the Tumor dataset
(details in Appendix D.1). Each internal node is a simple
condition checking if one of the features is above or below
a certain threshold. The leaves (terminal nodes without
children) predict one of the admissible compositions.

3.2. Property Map

Property Sub-Maps The goal of the property map Fprop :
V → P is to describe the properties of the particular compo-

4

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

Dose

Dose

≤ 0.19 > 0.19

≤ 0.48 > 0.48(𝑠++𝑢)

(𝑠−+𝑏, 𝑠++𝑢) (𝑠−+ℎ)

Figure 3. Example of a composition map found by our algorithm.
Not only did our method find a dose of the drug to be the most im-
portant feature determining the trajectory behavior, but it also deter-
mined the thresholds where the shape of the trajectory changes. For
low doses, the tumor grows exponentially (s++u), for higher doses,
it decreases at the beginning but then relapses (s−+b, s++u), and
finally, for very high doses the tumor is predicted to decay (s−+h).

sition of the trajectory. As our trajectory may have a differ-
ent composition depending on the static features v (as pre-
dicted by the composition map), the property map consists
of a few property sub-maps, each for a different composition
predicted by the composition map. For instance, a compo-
sition map shown in Figure 3 requires three property sub-
maps. We denote them as F s++u

prop , F s−+b,s++u
prop , and F

s−+h
prop ,

where each F c
prop : V → Pc. Formally Fprop(v) = F

Fcom(v)
prop .

Property Functions as GAMs Each property sub-
map F c

prop : V → Pc is a set of property func-
tions, each predicting a different property from px.
For instance if c = (s−+b, s++u), we need 8 prop-
erty functions for each of the property of px =
(t0, x(t0), t1, x(t1), ẋ(t0), ẋ(t1), ẍ(t1), d), where d is the
“asymptotic doubling time”. To keep these functions trans-
parent, we characterize as many of them as possible as gener-
alized additive models (GAMs) (Hastie & Tibshirani, 1986)
or simple transformations of GAMs. GAM is a fully trans-
parent model for a static regression setting where the output
is a sum of univariate functions (called shape functions),
each taking a different feature. It can be easily compre-
hended by just plotting all shape functions. As there are no
interactions between features, each of the shape functions
can be analyzed independently. They proved to be very flexi-
ble and transparent models in many real-world settings (Lou
et al., 2012; Caruana et al., 2015). Using GAMs, we can, for
instance, describe the x-coordinate of the second transition
point of (s−+b, s++u)—the minimum of the trajectory—as
x(t1) =

∑K
k=1 gk(vk) + g0, where g0 ∈ R is a bias term

and the individual gk’s can be plotted as seen in Figure 4.
Note that when we visualize a GAM, we center each shape
function such that its expected value over the marginal dis-
tribution is 0. These contributions get absorbed into the
bias term, which equals the expected value (g0 = E[x(t1)]).

Below each plot, we show the marginal distribution of the
corresponding feature in the training dataset. This gives an
indication of the confidence in each segment of the function.

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

20 40 60 80
age

0
10

Fr
eq

ue
nc

y

0.1

0.0

0.1

Sh
ap

e
fu

nc
tio

n

0.2 0.4
initial_tumor_volume

0
10

Fr
eq

ue
nc

y

0.200

0.205

0.210

0.215

0.220
Bi

as

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

40 60 80 100
weight

0
10

Fr
eq

ue
nc

y

0.050

0.025

0.000

0.025

Sh
ap

e
fu

nc
tio

n

0.2 0.3 0.4
dosage

0
10

Fr
eq

ue
nc

y

Figure 4. Shape functions of a GAM describing x(t1) of the com-
position (s−+b, s++u) (i.e., the minimum of the trajectory) trained
on the Tumor dataset. Each shape function is such that its expected
value over the marginal distribution of the feature is 0. The bias
(expected value) is equal to 0.212. We see that age and weight
do not impact the minimum tumor volume. The other two func-
tions let us observe that the minimum increases linearly with the
increase in the initial tumor volume and decreases as the dose of
the drug is increased.

4. Training
In this section, we describe the training process of a single
Fm = Ftraj ◦ F

(m)
sem , i.e., a forecasting model that takes

v ∈ V and outputs a one-dimensional trajectory x. We train
each Fm separately for all m ∈ [M]. For the remainder
of this section, we fix m and drop the superscripts (m) to
improve readability. As in Semantic ODEs, the trajectory
predictor Ftraj is fixed and not trainable. Its job is to match
a semantic representation (c, p) ∈ C × P to a trajectory x
such that (cx, px) = (c, p). A block diagram depicting the
training procedure of a single semantic predictor is shown
in Appendix C.

Sequential and Parallel Training As described in Sec-
tion 3, Fsem = (Fcom, Fprop). To train Fsem, we first train
Fcom and then train Fprop, i.e., we train each of the property
submaps F c

prop for all the compositions c that are predicted
by Fcom. After the composition map is fitted, all property
sub-maps can be trained in parallel.

4.1. Training the Composition Map

Fcom is a classification decision tree that takes a vector of
static features and predicts the composition c ∈ C′.

5

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

Matching Compositions to Observed Trajectories We
start, similarly to Semantic ODE, by checking how each of
the compositions in C′ matches each of our D samples. For
each sample (v(d), (t

(d)
n , y

(d)
n)Nd

n=1) (where y
(d)
n is the mth

coordinate of y(d)
n) and composition c ∈ C′ we calculate

e(d)[c] defined as

e(d)[c] = min
p∈Pc

1

Nd

Nd∑
n=1

(
Ftraj(c, p)(t

(d)
n)− y(d)n

)2

. (1)

We search the space Pc using the L-BFGS algorithm. To
improve the fit, before minimizing the mean squared error
(MSE) between the F 0

traj(c, p) and y(d), we first minimize
the Dynamic Time Warping distance (Müller, 2007). We ob-
served that this procedure performs better, especially when
the composition is long.

Fitting a tree Fitting a classification decision tree requires
a dataset of static features and classification labels. In our
setting, instead of a single label for each sample, we have
a whole vector of |C′| real numbers e(d). Instead of min-
imizing the classification error, we want to minimize the
following objective: 1

D

∑D
d=1 e

(d)[Fcom(v
(d))]. To find a

decision tree that minimizes such an objective, we perform a
greedy search where, at each node, we evaluate all possible
splits for all possible features (similarly to CART (Breiman,
2017)) and choose the one that gives the smallest error. In
practice, we put a few additional constraints to prevent a
composition map that is unnecessarily more complex with-
out a significant improvement in performance. We provide
more details in Appendix C.3.

4.2. Training a Property Sub-Map

Given a composition map Fcom, we partition our training set
depending on the composition predicted by Fcom. Then for
each c ∈ Im(Fcom), we fit a separate property sub-map F c

prop

on Dc = {(v(d), (t
(d)
n , y

(d)
n)Nd

n=1) |Fcom(v
(d)) = c}. The

property map is defined by weights W ∈ RL×K×B and
biases β ∈ RL, where B is the number of basis functions
describing each of the shape functions of a GAM, and L is
the number of properties. To simplify the presentation, we
assume that all variables are numerical.

Raw Shape Functions Property functions need to satisfy
many constraints to make sure that the properties predicted
by them actually describe a possible trajectory. For instance,
if we have a composition (s−+h), we need to make sure
that the derivative at t0 is negative. Or x(t0) < x(t1) if the
first motif is increasing. Our goal is to satisfy as many of
these constraints as possible by construction. Because of
that, we introduce a concept of raw shape functions. Given
L properties, we have K × L raw shape functions. Each
of them is represented as a linear combination of B basis

functions (e.g., B-Spline basis functions (de Boor, 1968)).
We define the raw shape function of the kth feature for the
lth property as ḡ(l)k =

∑B
b=1 Wl,k,bϕb,k, where ϕb,k is a bth

basis function for the kth feature.

From Raw Shape Functions to Properties We can now
get the properties from raw shape functions by appropriate
transformations. For instance, if we need to have a positive
property function (which is equivalent to having all shape
functions and bias positive as we show in Appendix B), it
is enough to apply a softplus function, denoted soft+ and
defined as soft+(z) = log(1+ ez), to each of the raw shape
functions. The resulting GAM for the lth property function
would be

∑K
k=1 soft+(ḡ

(l)
k (vk)) + soft+(β(l)). We discuss

other kinds of transformations in Appendix C.

Optimization Before optimization, we precompute
ϕk,b(vk) for all k ∈ [K] and b ∈ [B]. This allows us to
efficiently calculate the shape functions as simple matrix
products. Then the model is trained to find W and β that
minimize

1

D

D∑
d=1

1

Nd

Nd∑
n=1

(
x̂(t(d)n)− y(d)n

)2

(2)

where

x̂ = Ftraj

(
Fcom(v

(d)), F c
prop(v

(d);W ,β)
)
. (3)

We optimize it using the L-BFGS algorithm (Liu & Nocedal,
1989).

5. Case Study: Novel Pharmacokinetic Model
for Tacrolimus

In this study, we demonstrate the main advantages of our
proposed approach while developing a novel population
pharmacokinetic (PopPK) model for Tacrolimus.2 That in-
cludes incorporating semantic inductive biases (Section 5.2),
understanding the dynamics (Section 5.3), verifying the
properties (Section 5.4), and revising the model to guaran-
tee no unexpected behavior (Section 5.5). For that task, we
use a real Tacrolimus dataset (Woillard et al., 2011) con-
taining patient covariates, the dose of the drug, and drug
plasma concentration measured over time (for more details,
see Appendix D.1). We not only obtain a model perform-
ing better than the discovered ODEs and the expert-found
PopPK model from the literature, but we can certify that our
model is biologically plausible.

2Implementation of EPISODE is available at https://
github.com/krzysztof-kacprzyk/EPISODE.

6

https://github.com/krzysztof-kacprzyk/EPISODE
https://github.com/krzysztof-kacprzyk/EPISODE

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

5.1. Tacrolimus and PopPK Models

Tacrolimus is an immunosuppressive drug primarily used to
prevent organ rejection after kidney transplantation. PopPK
models predict the drug concentration over time for an indi-
vidual with particular characteristics. They are crucial for
understanding the variability in drug concentrations within
a patient population. This information is essential for op-
timizing drug dosing to improve drug safety and efficacy.
Although black-box models have been used for this task,
concerns remain about their lack of transparency and guar-
antees of appropriate behavior under every condition. ODE
discovery can potentially deliver a transparent model, but
getting insights, verifying the properties, and refining the
model is challenging, as we illustrate below.

5.2. Prior Knowledge

EPISODE allows us to incorporate semantic inductive bi-
ases, i.e., prior knowledge we have about the behavior of the
dynamical system. This is in contrast to syntactic inductive
biases (i.e., information about the structural form of the
equations) available in ODE discovery algorithms.

PopPK models describe the drug plasma concentration af-
ter the drug is administered as a function of time. Thus
we expect that the concentration should decay to 0 as
t → ∞ (assuming no additional doses). We incorpo-
rate this information directly in our model by choosing
the composition library C′ to only contain compositions
where the last motif is s−+h (decreasing, convex, and ap-
proaching a horizontal asymptote). As we also do not
expect many trend changes, we constrain our model to
the following four compositions: (s−+h), (s−−b, s−+h),
(s+−b, s−−b, s−+h), (s++b, s+−b, s−−b, s−+h).

Designing syntactic inductive biases is more challenging
because, in many complex settings, we often do not have
much knowledge about the structural form of the equation
describing the phenomenon. In a PDS like this one, it is far
from obvious whether the term vweightx(t) or v2creat should
appear in the final equation.

5.3. Understanding Dynamics

To understand the dynamics of our dynamical system we
need to access the semantic representation of our model.
Fortunately, this is readily available in the semantic predictor
Fsem. No additional mathematical analysis is necessary. We
can see that the composition map is very simple as it just
predicts the composition (s++b, s+−b, s−−b, s−+h) for all
samples (see Figure 5). We can now be sure that, no matter
for which patient we use our model, and what drug dose
we choose, the trajectory is always going to have a correct
shape. This, however, is not the only thing we need to verify
about our model. We discuss it further in Section 5.4.

(𝑠++𝑏, 𝑠+−𝑏, 𝑠−−𝑏, 𝑠−+ℎ)

Figure 5. Composition map found by our algorithm trained on the
Tacrolimus dataset.

The equation found by SINDy constrained to 5 terms
(SINDy-5) is the following.

ẋ(t) =0.321vHT − 21.543t− 6.42x(t)t

− 0.014vHTvHB + 19.065t2
(4)

Even though the equation is compact, it is not straightfor-
ward to understand the system dynamics without a careful
mathematical analysis. Even answering a simple question
of whether the concentration will increase at first cannot be
answered directly. Comprehending what the rest of the tra-
jectory looks like is even more challenging and the problem
compounds for longer expressions.

5.4. Verification

Expert PopPK models have a structural form inspired by
biological processes (e.g., movement of the drug between
different organs, natural decay, or excretion). This usually
guarantees that the models are biologically plausible. This,
however, is not guaranteed in data-driven models. For the
purpose of this section, we are just going to focus on two
conditions that a biologically plausible PopPK model needs
to adhere to.

• The concentration should initially increase after the drug
is administered and then fall as the drug decays.

• The concentration should decay to 0.

With our approach, verifying these two conditions is
straightforward. The composition map of the found
model is very simple and assigns the composition
(s++b, s+−b, s−−b, s−+h) to all samples. This is precisely
the shape we want. The function first increases, then de-
creases, and approaches a horizontal asymptote. We can
also verify whether it decays to 0. We can look at the GAM
that predicts the horizontal asymptote (all shape functions
can be seen in Figure 6 in Appendix A.1). We can see that
our model does not yet satisfy this condition. We will rectify
this in the next subsection.

Verifying these two conditions for a closed-form ODE is
potentially possible, but it may be time-consuming. Let
us consider Equation (4) found by SINDy-5. Assume that
the two conditions above hold. Then for some small x1

there exists t′ large enough such that we have ẋ(t) ≤ 0
and 0 ≤ x(t) < x1 for all t > t′. Then for t > t′, ẋ(t) >
0.321vHT−21.543t−6.42x1t−0.014vHTvHB+19.065t2 →

7

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

+∞ as t → +∞. So, there has to be t > t′ such that
ẋ(t) > 0, which contradicts our conditions.

5.5. Editing

Editing the model is useful for both improving performance
and satisfying some domain-specific criteria. In the previous
section, we established that the horizontal asymptote of our
model is not what it should be. We can just take one of the
property maps and set it to 0. However, this may deteriorate
performance, as it was not enforced during training. Instead,
we can first encourage the asymptote to be close to 0 and
only then set it to 0 exactly. As the semantic predictor
directly predicts the semantic representation of the trajectory,
we can put soft constraints on any aspect of the semantic
representations, such as the coordinates of the transition
points or the properties of the unbounded motif. In this case,
we refit our model after adding a penalty h2, where h is the
value of the horizontal asymptote. After training, we can see
that the bias term (the expected value) is −0.0019, which
is much closer to what we wanted (all shape functions can
be seen in Figure 7 in Appendix A.1). Now, we can safely
set the whole property map to 0 without a significant drop
in performance (see Figure 8). Finally, we implemented a
method to prune shape functions whose contribution (after
being centered) is smaller than 1e − 5. Part of the model
is visualized in Figure 1, and the property functions for
the maximum and the time it is achieved can be seen in
Figures 9 and 10 in Appendix A.2.

5.6. Performance

The performance of different methods, with different con-
straints, can be seen in Table 1. We use the following error
metric (lower is better).

1

D

D∑
d=1

√√√√ 1

Nd

Nd∑
n=1

(
1

M

∥∥∥F (v(d))
(
t
(d)
n

)
− y

(d)
n

∥∥∥2
2

)
(5)

Here, F is the predictive model (e.g., EPISODE), D is
the number of samples, M is the dimensionality of the
system, Nd is the number of measurements of the dth sample
(v(d), (t

(d)
n ,y

(d)
n)Nd

n=1). We choose this metric because for
M = 1 it reduces to the standard mean RMSE, i.e.,

1

D

D∑
d=1

√√√√ 1

Nd

Nd∑
n=1

(
F (v(d))

(
t
(d)
n

)
− y

(d)
n

)2

(6)

(used in Semantic ODE paper), and we normalize by M
so that it is easier to compare results between systems of
different dimensionalities. The error is calculated on a held-
out dataset of samples, whose trajectories are observed at
the same time points as the ones in the training dataset.
We observe that our method performs better than the found

Table 1. Results of fitting different models on the real Tacrolimus
dataset. Performance on a test dataset. Standard deviation of the
performance over the samples in brackets. Error measured using
Equation (5). Lower is better.

Black box models Closed-form expressions

NeuralODE 0.263(.111) SINDy-5 0.337(.144)
ANODE 0.268(.113) SINDy-20 0.331(.131)
LatentODE 0.281(.100)

Direct semantic modeling WSINDy-5 0.348(.182)

EPISODE 0.255(.113) WSINDy-20 0.526(.531)
EPISODE-verified 0.257(.109) Expert PopPK 0.351(.177)

ODEs and the expert model from the literature. It is also
slightly better than unverifiable black-box approaches.

6. Flexibility
Although the most crucial aspects of our method are its
transparency, verifiability, and editability, it is instructive
whether it can also deliver a good performance in practice.

Baselines In this section, we compare our method against
two ODE discovery approaches, SINDy (Brunton et al.,
2016b) and WSINDy (Reinbold et al., 2020; Messenger &
Bortz, 2021a) (as implemented in PySINDy (de Silva et al.,
2020), in two different variants: up to 5 terms (compact)
and up to 20 terms (not compact). Smaller equations are
easier to interpret but may not be as flexible as long expres-
sions. We also compare our approach to three black box
approaches: Neural ODE (Chen et al., 2018), ANODE
(Dupont et al., 2019), and Latent ODE (Rubanova et al.,
2019) (non-probabilistic variant).

EPISODE For EPISODE, we choose a generous set of
compositions without much prior knowledge. We consider
all compositions up to length 4 (or length 8 for the Bike
sharing dataset) except for compositions where two con-
secutive transition points are inflection points. This ends
up being, respectively, 26 and 34 compositions. To demon-
strate the power of how easily we can incorporate prior
knowledge into our model, we also compare against our
method with inductive bias about the possible compositions
of the trajectory. We call this variant EPISODE*. The ex-
act composition libraries used for each dataset are shown
in Appendix D.3. Although the training process consists
of two steps (training the composition map and then the
property maps), the whole pipeline is end-to-end, and there
is no manual intervention in experiments performed in this
section.

Datasets We test the methods on a variety of datasets.
To show that we can model traditional multi-dimensional

8

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

Table 2. Comparison between different methods tested on several synthetic and real datasets. † means that the method has not converged
to a solution in at least one trial. The table shows means from 5 random dataset splits and seeds. Standard deviations in brackets. Error
measured using Equation (5). Lower is better.

SIR HIV PK Tumor Tacrolimus Bike sharing
σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 real real

Black box models

NeuralODE 0.021(.006) 0.102(.001) 0.188(.009) 0.214(.006) 0.156(.006) 0.182(.006) 0.300(.063) 0.334(.048) 0.267(.034) 0.178(.013)
ANODE 0.017(.003) 0.101(.001) 0.188(.008) 0.214(.005) 0.147(.005) 0.184(.009) 0.317(.049) 0.335(.049) 0.250(.011) 0.154(.011)
LatentODE 0.016(.002) 0.101(.001) 0.183(.006) 0.213(.006) 0.145(.004) 0.172(.003) 0.310(.051) 0.338(.052) 0.260(.013) 0.149(.006)

Closed-form expressions

SINDy-5 0.014(.001) 0.135(.007) 0.175(.070) 0.284(.006) 0.211(.013) 0.249(.010) 0.095(.018) 0.151(.012) 0.316(.032) 0.267(.010)
SINDy-20 0.015(.001) 0.142(.003) † † 0.180(.007) † 0.062(.015) 0.138(.013) 0.346(.040) 0.250(.012)

WSINDy-5 0.026(.025) 0.120(.006) 0.246(.082) † 0.279(.009) 0.309(.016) 0.094(.024) 0.145(.017) 0.415(.190) †
WSINDy-20 0.016(.001) 0.144(.010) † † † † 0.056(.014) 0.129(.008) 0.816(.670) 0.310(.069)

Direct semantic modeling

EPISODE 0.026(.004) 0.103(.001) 0.088(.006) 0.143(.007) 0.088(.008) 0.132(.013) 0.144(.032) 0.290(.147) 0.256(.007) 0.192(.013)

EPISODE* 0.012(.000) 0.100(.001) 0.089(.006) 0.142(.007) 0.095(.039) 0.146(.037) 0.098(.014) 0.165(.016) 0.256(.007) 0.195(.029)

systems, we test the models on the SIR epidemiological
model and HIV model (Hill et al., 2018). We also test
on synthetic tumor growth (Tumor) and pharmacokinetic
system (PK) as well as on real Tacrolimus and Bicycle
sharing datasets. For synthetic datasets, we consider two
different noise settings: low (σ = 0.01) and high (σ = 0.1).
Details about all datasets can be found in Appendix D.1.

Results The results can be seen in Table 2. The error met-
ric used is the same as in Section 5.6, i.e., Equation (5). We
show sample trajectories predicted by EPISODE on those
datasets in Figure 11 in Appendix A.3. We can see that
EPISODE or EPISODE* outperforms other approaches on
most datasets. Performance on the SIR datasets shows that
it can compete even on problems where ODE-based meth-
ods have an advantage (a system of ODEs describing the
dynamics in the search space of SINDy). It is promising that
EPISODE can outperform even black-box approaches in
certain settings. This can be explained by some of the induc-
tive biases playing the role of regularizers (e.g., enforcing
smoothness or a small number of inflection points).

7. Discussion
Applications EPISODE revolutionizes the modeling of
personalized dynamical systems by making them transpar-
ent, editable, and intuitive. Unlike traditional ODE discov-
ery, EPISODE skips complex analysis, directly predicting
system behavior for rapid validation and real-time adjust-
ments. This empowers experts to refine models dynamically,
ensuring accuracy, reliability, and trust—crucial for high-
stakes applications. By bridging machine learning with
human intuition, EPISODE makes scientific modeling not
just powerful, but truly usable.

Limitations and Open Challenges Although EPISODE
resolves one of the biggest shortcomings of Semantic ODEs,

making DSM applicable in settings with multi-dimensional
inputs, some of the original issues remain. That includes
restriction to finite compositions which prevents modeling
systems with oscillatory or periodic behavior. Fitting the
composition map remains the most time-consuming part of
the training due to the necessity of matching every composi-
tion to each sample. Future research should focus on finding
more efficient methods of fitting the composition map.

Acknowledgements
This work was supported by Roche and AstraZeneca. We
would like to thank Harry Amad, Benjamin Lapostolle, Vic-
tor Baillet, and anonymous reviewers for their useful com-
ments and feedback on earlier versions of this work.

Impact Statement
This paper presents a new method to improve understanding
of a dynamical system’s behavior through direct semantic
modeling in personalized dynamical systems. Enhancing
transparency in machine learning models is essential for
tasks such as debugging, meeting domain-specific regula-
tions, and mitigating potential biases. However, if not used
correctly, these techniques may create a misleading sense of
security regarding model outputs or be used merely for nom-
inal compliance with regulations. Given that our method is
relevant to critical fields like medicine and pharmacology,
it is crucial to perform a comprehensive evaluation before
implementing the model in these sensitive areas. Such as-
sessments should confirm that the model’s performance
aligns with ethical standards and does not result in decisions
that could harm individuals’ health and well-being.

9

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2019.

Bertsimas, D. and Gurnee, W. Learning sparse nonlinear
dynamics via mixed-integer optimization. Nonlinear Dy-
namics, 111(7):6585–6604, 2023.

Biggio, L., Bendinelli*, T., Neitz, A., Lucchi, A., and Paras-
candolo, G. Neural Symbolic Regression that Scales. In
38th International Conference on Machine Learning, July
2021.

Blanchard, P., Devaney, R. L., and Hall, G. R. Differential
Equations. Cengage Learning, July 2012. ISBN 978-1-
133-38808-1.

Bongard, J. and Lipson, H. Automated reverse engi-
neering of nonlinear dynamical systems. Proceedings
of the National Academy of Sciences, 104(24):9943–
9948, June 2007. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.0609476104.

Breiman, L. Classification and Regression Trees. Routledge,
2017.

Brunton, S. L. and Kutz, J. N. Data-Driven Science and
Engineering: Machine Learning, Dynamical Systems,
and Control. Cambridge University Press, May 2022.
ISBN 978-1-00-911563-6.

Brunton, S. L., Proctor, J. L., and Kutz, J. N. Discov-
ering governing equations from data by sparse identi-
fication of nonlinear dynamical systems. Proceedings
of the National Academy of Sciences, 113(15):3932–
3937, April 2016a. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.1517384113.

Brunton, S. L., Proctor, J. L., and Kutz, J. N. Sparse Identi-
fication of Nonlinear Dynamics with Control (SINDYc).
IFAC-PapersOnLine, 49(18):710–715, January 2016b.
ISSN 2405-8963. doi: 10.1016/j.ifacol.2016.10.249.

Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., and
Elhadad, N. Intelligible Models for HealthCare: Pre-
dicting Pneumonia Risk and Hospital 30-day Readmis-
sion. In Proceedings of the 21th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, pp. 1721–1730, Sydney NSW Australia,
August 2015. ACM. ISBN 978-1-4503-3664-2. doi:
10.1145/2783258.2788613.

Chen, R. T. Q. Torchdiffeq, 2018.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duve-
naud, D. K. Neural Ordinary Differential Equations. In
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018.

Chen, Y., Angulo, M. T., and Liu, Y.-Y. Revealing Complex
Ecological Dynamics via Symbolic Regression. BioEs-
says, 41(12):1900069, 2019. ISSN 1521-1878. doi:
10.1002/bies.201900069.

Cranmer, M. PySR: Fast & parallelized symbolic regression
in Python/Julia. Zenodo, September 2020.

D’Ascoli, S., Kamienny, P.-A., Lample, G., and Charton,
F. Deep symbolic regression for recurrence prediction.
In Proceedings of the 39th International Conference on
Machine Learning, pp. 4520–4536. PMLR, June 2022.

de Boor, C. On uniform approximation by splines. Journal
of Approximation Theory, 1(2):219–235, September 1968.
ISSN 00219045. doi: 10.1016/0021-9045(68)90026-9.

de Silva, B., Champion, K., Quade, M., Loiseau, J.-C., Kutz,
J., and Brunton, S. PySINDy: A Python package for
the sparse identification of nonlinear dynamical systems
from data. Journal of Open Source Software, 5(49):2104,
2020. doi: 10.21105/joss.02104.

Dupont, E., Doucet, A., and Teh, Y. W. Augmented Neural
ODEs. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Fanaee-T, H. Bike sharing. UCI Machine Learning Reposi-
tory, 2013.

Han, Y. R., Lee, P. I., and Pang, K. S. Finding Tmax and
Cmax in Multicompartmental Models. Drug Metabolism
and Disposition, 46(11):1796–1804, November 2018.
ISSN 0090-9556, 1521-009X. doi: 10.1124/dmd.118.
082636.

Hastie, T. and Tibshirani, R. Generalized additive models.
Statistical Science, 1(3):297–318, 1986.

Hill, A. L., Rosenbloom, D. I. S., Nowak, M. A., and Sili-
ciano, R. F. Insight into treatment of HIV infection from
viral dynamics models. Immunological Reviews, 285(1):
9–25, 2018. ISSN 1600-065X. doi: 10.1111/imr.12698.

Holt, S., Qian, Z., and van der Schaar, M. Deep Genera-
tive Symbolic Regression. The Eleventh International
Conference on Learning Representations, 2023.

Holt, S. I., Qian, Z., and van der Schaar, M. Neural Laplace:
Learning diverse classes of differential equations in the
Laplace domain. In International Conference on Machine
Learning, pp. 8811–8832. PMLR, 2022.

10

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

Kacprzyk, K. and van der Schaar, M. Shape Arithmetic
Expressions: Advancing Scientific Discovery Beyond
Closed-form Equations. In Proceedings of The 27th Inter-
national Conference on Artificial Intelligence and Statis-
tics. PMLR, 2024.

Kacprzyk, K. and van der Schaar, M. No Equations Needed:
Learning System Dynamics Without Relying on Closed-
Form ODEs. In The Thirteenth International Conference
on Learning Representations, 2025.

Kacprzyk, K., Qian, Z., and van der Schaar, M. D-CIPHER:
Discovery of Closed-form Partial Differential Equations.
In Advances in Neural Information Processing Systems,
volume 36, pp. 27609–27644, December 2023.

Kacprzyk, K., Holt, S., Berrevoets, J., Qian, Z., and van
der Schaar, M. ODE Discovery for Longitudinal Het-
erogeneous Treatment Effects Inference. In The Twelfth
International Conference on Learning Representations,
2024a.

Kacprzyk, K., Liu, T., and van der Schaar, M. Towards
Transparent Time Series Forecasting. In The Twelfth
International Conference on Learning Representations,
2024b.

Kaheman, K., Kutz, J. N., and Brunton, S. L. SINDy-PI: A
robust algorithm for parallel implicit sparse identification
of nonlinear dynamics. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences,
476(2242):20200279, October 2020. doi: 10.1098/rspa.
2020.0279.

Kaptanoglu, A. A., de Silva, B. M., Fasel, U., Kaheman,
K., Goldschmidt, A. J., Callaham, J., Delahunt, C. B.,
Nicolaou, Z. G., Champion, K., Loiseau, J.-C., Kutz,
J. N., and Brunton, S. L. PySINDy: A comprehensive
Python package for robust sparse system identification.
Journal of Open Source Software, 7(69):3994, 2022. doi:
10.21105/joss.03994.

Kermack, W. O., McKendrick, A. G., and Walker, G. T. A
contribution to the mathematical theory of epidemics.
Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physi-
cal Character, 115(772):700–721, January 1997. doi:
10.1098/rspa.1927.0118.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization, January 2017.

Koza, J. R. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. Complex
Adaptive Systems. MIT Press, Cambridge, Mass, 1992.
ISBN 978-0-262-11170-6.

Lee, C., Yoon, J., and van der Schaar, M. Dynamic-
DeepHit: A Deep Learning Approach for Dynamic Sur-
vival Analysis With Competing Risks Based on Longitu-
dinal Data. IEEE Transactions on Biomedical Engineer-
ing, 67(1):122–133, January 2020. ISSN 1558-2531. doi:
10.1109/TBME.2019.2909027.

Liu, D. C. and Nocedal, J. On the limited memory BFGS
method for large scale optimization. Mathematical pro-
gramming, 45(1):503–528, 1989.

Lou, Y., Caruana, R., and Gehrke, J. Intelligible models for
classification and regression. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’12, pp. 150–158, New
York, NY, USA, August 2012. Association for Computing
Machinery. ISBN 978-1-4503-1462-6. doi: 10.1145/
2339530.2339556.

Martius, G. S. and Lampert, C. Extrapolation and learning
equations. In 5th International Conference on Learning
Representations, ICLR 2017-Workshop Track Proceed-
ings, 2017.

Messenger, D. A. and Bortz, D. M. Weak SINDy:
Galerkin-Based Data-Driven Model Selection. Multi-
scale Modeling & Simulation, 19(3):1474–1497, January
2021a. ISSN 1540-3459, 1540-3467. doi: 10.1137/
20M1343166.

Messenger, D. A. and Bortz, D. M. Weak SINDy for partial
differential equations. Journal of Computational Physics,
443:110525, October 2021b. ISSN 00219991. doi: 10.
1016/j.jcp.2021.110525.

Mould, D. and Upton, R. Basic Concepts in Population
Modeling, Simulation, and Model-Based Drug Develop-
ment. CPT: Pharmacometrics & Systems Pharmacology,
1(9):6, 2012. ISSN 2163-8306. doi: 10.1038/psp.2012.4.

Müller, M. Dynamic time warping. Information retrieval
for music and motion, pp. 69–84, 2007.

Petersen, B. K., Larma, M. L., Mundhenk, T. N., Santiago,
C. P., Kim, S. K., and Kim, J. T. Deep Symbolic Regres-
sion: Recovering Mathematical Expressions From Data
via Risk-seeking Policy Gradients. In ICLR 2021, 2021.

Qian, Z., Kacprzyk, K., and van der Schaar, M. D-CODE:
Discovering Closed-form ODEs from Observed Trajec-
tories. The Tenth International Conference on Learning
Representations, 2022.

Quade, M., Abel, M., Shafi, K., Niven, R. K., and Noack,
B. R. Prediction of dynamical systems by symbolic re-
gression. Physical Review E, 94(1):012214, July 2016.
ISSN 2470-0045, 2470-0053. doi: 10.1103/PhysRevE.
94.012214.

11

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

Raissi, M. and Karniadakis, G. E. Hidden physics models:
Machine learning of nonlinear partial differential equa-
tions. Journal of Computational Physics, 357:125–141,
March 2018. ISSN 0021-9991. doi: 10.1016/j.jcp.2017.
11.039.

Reinbold, P. A. K., Gurevich, D. R., and Grigoriev, R. O.
Using noisy or incomplete data to discover models of
spatiotemporal dynamics. Physical Review E, 101(1):
010203, January 2020. ISSN 2470-0045, 2470-0053. doi:
10.1103/PhysRevE.101.010203.

Rubanova, Y., Chen, R. T. Q., and Duvenaud, D. K. Latent
Ordinary Differential Equations for Irregularly-Sampled
Time Series. In Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc., 2019.

Rudy, S. H., Brunton, S. L., Proctor, J. L., and Kutz, J. N.
Data-driven discovery of partial differential equations.
Science Advances, 3(4):e1602614, April 2017. ISSN
2375-2548. doi: 10.1126/sciadv.1602614.

Sahoo, S., Lampert, C., and Martius, G. Learning Equations
for Extrapolation and Control. In Proceedings of the
35th International Conference on Machine Learning, pp.
4442–4450. PMLR, July 2018.

Schmidt, M. and Lipson, H. Distilling Free-Form Natural
Laws from Experimental Data. Science, 324(5923):81–
85, April 2009. ISSN 0036-8075, 1095-9203. doi: 10.
1126/science.1165893.

Stephens, T. Gplearn: Genetic programming in python, with
a scikit-learn inspired and compatible api, 2022.

Udrescu, S.-M. and Tegmark, M. AI Feynman: A physics-
inspired method for symbolic regression. Science Ad-
vances, 6(16):eaay2631, April 2020. ISSN 2375-2548.
doi: 10.1126/sciadv.aay2631.

Udrescu, S.-M., Tan, A., Feng, J., Neto, O., Wu, T., and
Tegmark, M. AI Feynman 2.0: Pareto-optimal symbolic
regression exploiting graph modularity. 34th Confer-
ence on Neural Information Processing Systems (NeurIPS
2020), 2021.

Wilkerson, J., Abdallah, K., Hugh-Jones, C., Curt, G.,
Rothenberg, M., Simantov, R., Murphy, M., Morrell,
J., Beetsch, J., Sargent, D. J., Scher, H. I., Lebowitz,
P., Simon, R., Stein, W. D., Bates, S. E., and Fojo, T.
Estimation of tumour regression and growth rates dur-
ing treatment in patients with advanced prostate can-
cer: A retrospective analysis. The Lancet Oncology,
18(1):143–154, January 2017. ISSN 1470-2045. doi:
10.1016/S1470-2045(16)30633-7.

Woillard, J.-B., de Winter, B. C. M., Kamar, N., Mar-
quet, P., Rostaing, L., and Rousseau, A. Population
pharmacokinetic model and Bayesian estimator for two
tacrolimus formulations–twice daily Prograf and once
daily Advagraf. British Journal of Clinical Pharmacol-
ogy, 71(3):391–402, March 2011. ISSN 1365-2125. doi:
10.1111/j.1365-2125.2010.03837.x.

12

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

Table of supplementary materials
1. Appendix A: additional empirical results

2. Appendix B: theoretical results

3. Appendix C: implementation details

4. Appendix D: experimental details

5. Appendix E: extended related works

6. Appendix F: additional discussion

A. Additional Results
A.1. Horizontal Asymptote

Figure 6 shows a GAM describing the horizontal asymptote of the composition (s++b, s+−b, s−−b, s−+h) of the original
EPISODE trained on the Tacrolimus dataset. Figure 7 shows how this property function changes as we add a penalty term
encouraging the asymptote to be close to 0. Finally, Figure 8 shows the property function after it is set to 0 to make the
model biologically plausible.

0.00075

0.00050

0.00025

0.00000

Sh
ap

e
fu

nc
tio

n

2.5 5.0 7.5 10.0
DOSE

0
10

Fr
eq

ue
nc

y

0.00010

0.00005

0.00000

Sh
ap

e
fu

nc
tio

n

7.5 10.0 12.5 15.0
HB

0
5

Fr
eq

ue
nc

y

0.3

0.2

0.1

0.0

0.1

Sh
ap

e
fu

nc
tio

n

0.25 0.50 0.75
DV_0

0
10

Fr
eq

ue
nc

y

6

4

2

0

Sh
ap

e
fu

nc
tio

n

1e 19

200 400 600 800
CREAT

0
25

Fr
eq

ue
nc

y

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

0 1
SEX

0
25

Fr
eq

ue
nc

y

0.02

0.01

0.00

0.01

0.02

Sh
ap

e
fu

nc
tio

n

0 1
CYP

0
25

Fr
eq

ue
nc

y

0

1

2

Sh
ap

e
fu

nc
tio

n

1e 12

60 80 100
WEIGHT

0
10

Fr
eq

ue
nc

y

0.02

0.01

0.00

0.01

0.02

Sh
ap

e
fu

nc
tio

n

0 1
FORM

0
25

Fr
eq

ue
nc

y

0.1

0.0

Sh
ap

e
fu

nc
tio

n

20 30 40
HT

0
5

Fr
eq

ue
nc

y
0.215

0.220

0.225

0.230

0.235

Bi
as

Figure 6. The original GAM describing the horizontal asymptote of the composition (s++b, s+−b, s−−b, s−+h) trained on the Tacrolimus
dataset. To make it biologically plausible, it should have an asymptote equal to 0. We describe how to fix it in Section 5.5

A.2. Maximum of the Trajectory

Figure 9 shows the property function describing the maximum of the trajectory for the model trained on the Tacrolimus
dataset. Figure 10 describes the time at which it is achieved. Both GAMs have been pruned to remove shape functions that
contribute less than 1e− 5.

A.3. Examples Trajectories

Figure 11 shows sample trajectories predicted on three datasets used in Section 6.

B. Theory
To realize direct semantic modeling, we need the following three ingredients.

1. Definition of the semantic representation of an M -dimensional trajectory x ∈ C2(T).

13

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

0.0

0.5

1.0

1.5

Sh
ap

e
fu

nc
tio

n
1e 5

2.5 5.0 7.5 10.0
DOSE

0
10

Fr
eq

ue
nc

y

0.0000

0.0025

0.0050

0.0075

0.0100

Sh
ap

e
fu

nc
tio

n

7.5 10.0 12.5 15.0
HB

0
5

Fr
eq

ue
nc

y

0.04

0.02

0.00

0.02

Sh
ap

e
fu

nc
tio

n

0.25 0.50 0.75
DV_0

0
10

Fr
eq

ue
nc

y

6

4

2

0

Sh
ap

e
fu

nc
tio

n
1e 19

200 400 600 800
CREAT

0
25

Fr
eq

ue
nc

y

0.1

0.0

0.1

Sh
ap

e
fu

nc
tio

n

0 1
SEX

0
25

Fr
eq

ue
nc

y

0.10

0.05

0.00

0.05

0.10

Sh
ap

e
fu

nc
tio

n

0 1
CYP

0
25

Fr
eq

ue
nc

y

0

1

2

Sh
ap

e
fu

nc
tio

n

1e 12

60 80 100
WEIGHT

0
10

Fr
eq

ue
nc

y

0.05

0.00

0.05

Sh
ap

e
fu

nc
tio

n

0 1
FORM

0
25

Fr
eq

ue
nc

y

0.015

0.010

0.005

0.000

Sh
ap

e
fu

nc
tio

n

20 30 40
HT

0
5

Fr
eq

ue
nc

y

0.00200

0.00195

0.00190

0.00185

0.00180

Bi
as

Figure 7. GAM describing the horizontal asymptote of the composition (s++b, s+−b, s−−b, s−+h) trained on the Tacrolimus dataset
after adding a penalty term encouraging the horizontal asymptote to be close to 0. We can now safely set it to 0 without worrying too
much about lost performance.

2. Trajectory predictor Ftraj that output a trajectory x given a semantic representation of this trajectory.
3. Semantic predictor Fsem that outputs a semantic representation of x given a vector of static features v ∈ V .

More formally, the semantic representation of an M -dimensional trajectory x is defined as follows.
Definition B.1 (Semantic representation of x). Let x be an M -dimensional trajectory. The semantic representation of x is
a pair (cx,px), where cx and px are vectors of entries defined as (cx)m = cxm and (px)m = pxm .

We can similarly define Ftraj.
Definition B.2 (Trajectory predictor). The mth coordinate of the trajectory x predicted by the trajectory predictor Ftraj is
defined as xm = F

(m)
traj (c,p) = Ftraj(cm, pm).

Of course, such trajectory predictor is consistent, i.e., the semantic representation of the trajectory predicted by the trajectory
predictor is equal to the original semantic representation.
Proposition B.3 (Consistency of trajectory predictor). Let (c,p) be a semantic representation of some trajectory. Let
x = Ftraj(c,p). Then (cx,px) = (c,p).

Proof. From Definition B.2, xm = F
(m)
traj (c,p) = Ftraj(cm, pm). From xm = Ftraj(cm, pm) and by the original definition of

Ftraj, we get that (cxm
, pxm

) = (cm, pm). From Definition B.1, cxm
= (cx)m and pxm

= (px)m. Thus (cx)m = cm and
(px)m = pm for each m. Therefore (cx,px) = (c,p).

Positive GAMs
Proposition B.4. Let h(v) =

∑K
k=1 gk(vk) + g0 be a GAM. Let us assume that h is positive and continuous for all possible

inputs from a hyperbox input domain V = [a1, b1] × . . . × [aK , bK]. Then h can be represented using positive shape
functions and a positive bias term.

Proof. Let γk = minv∈[ak,bk] gk(v) for each k ∈ [K]. If h is positive and continuous for all possible inputs from a hyperbox
then there exists ϵ > 0 such that h(v) > ϵ for all v ∈ V . Let us define new shape functions as

ḡk(vk) = gk(vk)− γk + ϵ/(K + 1) (7)

Then the new bias term needs to be equal to

ḡ0 = g0 −
K∑

k=1

(ḡk(vk)− gk(vk)) (8)

14

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

2.5 5.0 7.5 10.0
DOSE

0
10

Fr
eq

ue
nc

y

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

7.5 10.0 12.5 15.0
HB

0
5

Fr
eq

ue
nc

y

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

0.25 0.50 0.75
DV_0

0
10

Fr
eq

ue
nc

y

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

200 400 600 800
CREAT

0
25

Fr
eq

ue
nc

y

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

0 1
SEX

0
25

Fr
eq

ue
nc

y

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

0 1
CYP

0
25

Fr
eq

ue
nc

y

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

60 80 100
WEIGHT

0
10

Fr
eq

ue
nc

y

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

0 1
FORM

0
25

Fr
eq

ue
nc

y

0.050

0.025

0.000

0.025

0.050

Sh
ap

e
fu

nc
tio

n

20 30 40
HT

0
5

Fr
eq

ue
nc

y

0.050

0.025

0.000

0.025

0.050

Bi
as

Figure 8. GAM describing the horizontal asymptote of the composition (s++b, s+−b, s−−b, s−+h) trained on the Tacrolimus dataset
after setting it to 0.

Thus ḡ0 = g0 −
∑K

k=1(−γk + ϵ/(K + 1)). This means

ḡ0 = g0 +

K∑
k=1

γk − ϵ× K

K + 1
(9)

As V is a hyperbox then it must hold that
∑K

k=1 γk + g0 > ϵ. That means that

ḡ0 > ϵ×
(
1− K

K + 1

)
= ϵ/(K + 1) > 0 (10)

Thus all shape functions and the bias term are positive.

C. Implementation
C.1. Block diagrams

Figure 12 shows a block diagram of how a single semantic predictor works. Figure 13 shows the overall training procedure
of a single semantic predictor.

C.2. Code

The code of the implementation and the experiments is available at https://github.com/krzysztof-kacprzyk/
EPISODE and https://github.com/vanderschaarlab/EPISODE.

C.3. Composition map

To find a decision tree that minimizes such an objective, we perform a greedy search where, at each node, we evaluate all
possible splits for all possible features and choose the one that gives the smallest error. Consider a leaf of a partially fitted
tree and a subset of [D] denoted I such that all v(d) for d ∈ I satisfy all conditions from root to this leaf. We define the
current error at the leaf to be E(I) = minc∈C

1
|I|

∑
d∈I e(d)[c]. The goal is to find a feature split that divides I into I1 and

I2 such that |I1|
|I| E(I1) + |I2|

|I| E(I2) < E(I). In practice, we put a few additional constraints to prevent a composition map
that is unnecessarily more complex without a significant improvement in performance. For instance, we set a maximum
depth of the tree or a minimum relative improvement for a split to occur. We also penalize longer compositions. We set a
minimum number of samples in a leaf so that we have enough data to train a property sub-map for the composition predicted
by that leaf. Finally, we train trees for different maximum depths and choose the one with the lowest validation loss to
prevent overfitting.

15

https://github.com/krzysztof-kacprzyk/EPISODE
https://github.com/krzysztof-kacprzyk/EPISODE
https://github.com/vanderschaarlab/EPISODE

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

0.0

0.5

1.0

1.5

2.0
Sh

ap
e

fu
nc

tio
n

1e 5

2.5 5.0 7.5 10.0
DOSE

0
10

Fr
eq

ue
nc

y

0.10

0.05

0.00

0.05

0.10

Sh
ap

e
fu

nc
tio

n

0 1
CYP

0
25

Fr
eq

ue
nc

y

0.25

0.00

0.25

0.50

Sh
ap

e
fu

nc
tio

n

0.25 0.50 0.75
DV_0

0
10

Fr
eq

ue
nc

y

0.05

0.00

0.05

Sh
ap

e
fu

nc
tio

n

0 1
FORM

0
25

Fr
eq

ue
nc

y

0.10

0.05

0.00

0.05

0.10

Sh
ap

e
fu

nc
tio

n

0 1
SEX

0
25

Fr
eq

ue
nc

y

0.975

1.000

1.025

1.050

Bi
as

0

1

2

3

Sh
ap

e
fu

nc
tio

n

1e 5

7.5 10.0 12.5 15.0
HB

0
5

Fr
eq

ue
nc

y

Figure 9. GAM describing the maximum value of the composition (s++b, s+−b, s−−b, s−+h) trained on the Tacrolimus dataset. This
property function has been pruned to remove shape functions that contribute less than 1e− 5

C.4. Property map

Property functions need to satisfy many constraints to make sure that the properties predicted by them actually describe a
possible trajectory. For instance, property functions describing x(t0) and x(t1) need to satisfy x(t0) < x(t1) for all possible
v if the first motif is increasing. To achieve that, we design the property maps so that they satisfy most of these constraints
by construction. For instance, instead of fitting the property function for x(t1) directly, we fit a GAM for the difference
between x(t0) and x(t1). As long as we make this difference positive (or negative if the first motif is decreasing), we can
add this GAM to the one describing x(t0) and get a valid property function. How can we get a GAM that is always positive?
We observe that if a GAM is positive for all possible inputs (from a hyperbox input domain), then it is always possible to
represent it using only positive shape functions and a positive bias (proof in Appendix B). Thus, we can limit ourselves to
only such shape functions. Ultimately the property function for x(t1) evaluated at v is given by

K∑
k=1

soft+
(
ḡ
(1)
k (vk)

)
+ soft+(β1) + x(t0) (11)

This not only guarantees that x(t1) > x(t0) but, crucially, as x(t0) is also described by (unconstrained) GAM, x(t1) is still
a GAM where the kth shape function is given by

soft+
(
ḡ
(1)
k (vk)

)
+ ḡ

(0)
k (vk) (12)

and the bias term is equal to soft+(β1) + β0.

Works Well With Categorical Features Because GAMs work very naturally with categorical features (gk just assigns a
different value to each category), this makes our model much more appropriate than ODEs in settings where categorical
features are present. ODEs, by default, can only work with numerical variables, and one-hot encoding categorical features
may result in complicated equations.

16

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

0.000

0.005

0.010

0.015

0.020
Sh

ap
e

fu
nc

tio
n

2.5 5.0 7.5 10.0
DOSE

0
10

Fr
eq

ue
nc

y

0.0875

0.0900

0.0925

0.0950

Bi
as

0.01

0.00

Sh
ap

e
fu

nc
tio

n

0.25 0.50 0.75
DV_0

0
10

Fr
eq

ue
nc

y

0.010

0.005

0.000

0.005

0.010

Sh
ap

e
fu

nc
tio

n

0 1
SEX

0
25

Fr
eq

ue
nc

y

0.002

0.001

0.000

0.001

0.002

Sh
ap

e
fu

nc
tio

n

0 1
CYP

0
25

Fr
eq

ue
nc

y

0.005

0.000

0.005

Sh
ap

e
fu

nc
tio

n

0 1
FORM

0
25

Fr
eq

ue
nc

y

Figure 10. GAM describing the time at which the maximum is obtained of the composition (s++b, s+−b, s−−b, s−+h) trained on the
Tacrolimus dataset. This property function has been pruned to remove shape functions that contribute less than 1e− 5

D. Experimental Details
D.1. Datasets

SIR The SIR dataset is a synthetic dataset based on an SIR epidemiological model (Kermack et al., 1997). It is a
three-dimensional dynamical system governed by the following system of ODEs,

dS

dt
= −βSI (13)

dI

dt
= βSI − γI (14)

dR

dt
= γI, (15)

and initial conditions

S(0) = S0 (16)
I(0) = I0 (17)

R(0) = R0. (18)

We set β = 0.3 and γ = 0.1. We sample S0 uniformly from (0.6, 1.0), I0 uniformly from (0.01, 0.1, R0 uniformly from
(0.0, 1.0). We generate 500 trajectories, each measured at 20 equally spaced time points between 0 and 100. Finally, we add
Gaussian noise to each measurement with σ = 0.01 and divide the time points by 100 to scale them to interval (0, 1). The
set of static features contains only the initial conditions, i.e., v = (S0, I0, R0).

PK The PK dataset is a synthetic dataset based on a pharmacokinetic model published by Woillard et al. (2011). It predicts
the drug concentration over time based on patient covariates and the dose of the drug. It has a form of a system of ODEs and
covariate models describing the parameters of the ODEs in terms of patients’ covariates. It consists of the following system

17

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

SIR dataset

PK dataset

HIV dataset

Figure 11. Sample trajectories predicted by EPISODE*. top row: SIR dataset (σ = 0.01), middle row: PK dataset (σ = 0.01), bottom
row: HIV dataset (σ = 0.01).

of ODEs.

dCdepot

dt
= −ktrCdepot (19)

dCtrans1

dt
= ktrCdepot − ktrCtrans1 (20)

dCtrans2

dt
= ktrCtrans1 − ktrCtrans2 (21)

dCtrans3

dt
= ktrCtrans2 − ktrCtrans3 (22)

dCcent

dt
= ktrCtrans3 − ((CL+Q) ∗ Ccent/V1) + (Q ∗ Cperi/V2) (23)

dCperi

dt
= (Q ∗ Ccent/V1)− (Q ∗ Cperi/V2) (24)

18

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

𝑣 ∈ ℝ𝐾

(𝒔++𝒃, 𝒔+−𝒉)

𝐹𝑠𝑒𝑚
(𝑚)

𝐹𝑐𝑜𝑚

(𝒔++𝒃, 𝒔+−𝒉)

𝐹𝑝𝑟𝑜𝑝

𝐹𝑝𝑟𝑜𝑝
(𝒔++𝒃,𝒔+−𝒉) 𝐹𝑝𝑟𝑜𝑝

(𝒔−+𝒉)

0.0,0.4,1.8,1.4
0.3,0.7,0.0
2.8,2.9

Semantic representation of 𝑥𝑚

Composition: (𝒔++𝒃, 𝒔+−𝒉)

Transition points: 0,0.4 , (1.8,1.4)

Derivatives: ሶ𝑥 𝑡0 = 0.3, ሶ𝑥 𝑡1 = 0.7, ሷ𝑥 𝑡1 = 0

Properties of 𝑠+−ℎ: ℎ = 2.8, 𝑡1/2 = 2.9

Figure 12. Block diagram depicting a single semantic predictor

The initial conditions are:

Cdepot(0) = vDOSE (25)
Ctrans1(0) = 0 (26)
Ctrans2(0) = 0 (27)
Ctrans3(0) = 0 (28)

Ccent(0) = vDV0 ×
V1

1000
(29)

Cperi(0) =
V2

V1
× Ccent(0). (30)

The parameters are described as follows.

CL = TVCL ×
(vHT

35

)HTCL
× CYPCLvCYP (31)

V1 = TVV1 × STV1vFORM (32)
Q = TVQ (33)
V2 = TVV2 (34)
ktr = TVKTR × STKTRvFORM (35)

19

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

argmin
𝑤,𝑏

1

|𝒟2|

𝑑

1

𝑁𝑑
𝐹traj (𝐹com 𝒗 𝑑 , 𝐹prop

𝑐2 (𝒗(𝑑); 𝑤, 𝑏)) − 𝒚(𝑑)

2

2

𝒟 𝐹com

For each (𝒗 𝑑 , 𝒕 𝑑 , 𝒚(𝑑)) ∈ 𝒟:

For each 𝑐 ∈ 𝒞′:

𝑒(𝑑) 𝑐 = min
𝑝∈𝒫𝑐

1

𝑁𝑑
𝐹traj 𝑐, 𝑝 𝒕 𝑑 − 𝒚 𝑑

𝟐

𝟐

Divide 𝒟 according to 𝐹com

For each 𝑐𝑖 ∈ Im(Fcom):

𝒟𝑐𝑖 = 𝒗 𝑑 , 𝒕 𝑑 , 𝒚 𝑑 𝐹com 𝒗 𝑑 = 𝑐𝑖}

𝒟𝑐1

𝒟𝑐2

Fit property submap

Fit property submap

𝐹prop
𝑐1

𝐹prop
𝑐2

𝐹prop

𝐹sem

Fit a decision tree 𝐹com

that minimizes
1

|𝒟|
σ𝑑=1
𝐷 𝑒(𝑑) 𝐹com(𝒗

𝑑)

Figure 13. Block diagram depicting the general training procedure

The constants are defined as follows.

TVCL = 21.2 (36)
TVV1 = 486 (37)

TVQ = 79 (38)
TVV2 = 271 (39)

TVKTR = 3.34 (40)
HTCL = −1.14 (41)
CYPCL = 2.00 (42)
STKTR = 1.53 (43)

STV1 = 0.29 (44)
(45)

We generate 500 patients by uniformly sampling the static features from the ranges described in Table 3. Then we solve the
initial value problem to get all trajectories but return (observe) only Ccent. We then convert to proper units by multiplying by
1000
V1

. Each trajectory is measured at 20 equally spaced time points between 0 and 24. Then we divide the time points by
24 and the trajectories by 20 to get them in a range (0, 1). We also divide vDV0 by 20 as it corresponds to the initial value.
Finally, we add Gaussian noise with σ = 0.01.

Tumor The Tumor dataset is a synthetic dataset used by Kacprzyk et al. (2024b). It is based on the tumor growth model
proposed by Wilkerson et al. (2017). It is described by the following equation.

x(t) = ϕ exp(−dt) + (1− ϕ) exp(gt)− 1 (46)

Where ϕ, d, g are defined as follows.

g = g0 ∗ (vage/20.0)
0.5

d = d0 ∗ vdosage/vweight

ϕ = 1/(1 + exp(−vdosage ∗ ϕ0))

(47)

20

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

Table 3. Feature ranges in PK dataset

Feature Range

vDOSE (1,10)
vDV0 (0,20)
vSEX 0,1

vWEIGHT (45,110)
vHT (20,47)
vHB (6,16)

vCREAT (60,830)
vCYP 0,1
vFORM 0,1

And where g0, d0, ϕ0 are set to

g0 = 2.0

d0 = 180

ϕ0 = 10.

(48)

We generate 500 samples by uniformly sampling the static features from the feature ranges described in Table 4. Each
trajectory is measured at 20 equally spaced points on (0, 1). Finally, we add Gaussian noise with σ = 0.01.

Table 4. Feature ranges in Tumor dataset

Feature Range

vage (20,80)
vweight (40,100)

vintitial-tumor-volume (0.1,0.5)
vdose (0.0,1.0)

Tacrolimus We take the drug concentration curves of two tacrolimus formulations obtained by (Woillard et al., 2011). The
static features include sex, weight, hematocrit, hemoglobin, creatinine, dose, CYP3A5 genotype, and formulation. We also
supplement it with the initial concentration of the drug in the blood. After preprocessing, we end up with 90 samples, each
with 10 measurements on average. As not all trajectories are measured at exactly the same time points, we perform linear
interpolation for each trajectory and sample it at the following time points: 0, 0.33, 0.67, 1, 1.5, 2, 3, 4, 6, 9, 12. Finally, we
divide the time points by 12 and the trajectories by 20 to bring both of them into a (0, 1) range. We also divide the initial
condition by 20.

Bike sharing We use a real bike-sharing dataset from the UCI repository (Fanaee-T, 2013). We perform preprocessing so
that each sample corresponds to one day measured 24 times (every hour). As features vweathersit, vtemp, vhum, and vwindspeed
change throughout the day, we take their average to make them into static features. We also round vweathersit to keep it a
categorical variable. We also add the value at t = 0 as an additional feature. At the end we have the following features: vx0

,
vseason, vmonth, vworkingday, vweathersit, vtemp, vhum, vwindspeed. We divide the trajectories and vx0 by 500 to scale it and the time
points by 23 to bring them to (0, 1) range.

D.2. Baselines

SINDy We use SINDy (Brunton et al., 2016b) as implemented in PySINDy package (de Silva et al., 2020; Kaptanoglu
et al., 2022). We pass the variable t and the static features v as control variables. We use a library with all polynomial
terms up to the second degree, including interaction between different variables. We use Mixed-Integer Optimized Sparse
Regression (MIOSR) (Bertsimas & Gurnee, 2023) for optimization as it allows us to choose a sparsity level—the number of

21

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

terms in the equation. In our experiments, we consider two variants of SINDy, that we denote SINDy-5 and SINDy-20,
enforcing the maximum number of terms to be, respectively, 5 and 20. We tune the parameters α of MIOSR that describes
the strength of L2 penalty (between 1e − 3 and 1), and the derivative estimation algorithm using Optuna (Akiba et al.,
2019) for 30 trials. We choose between the following techniques: finite difference, spline, trend filtered, and smoothed finite
difference as available in PySINDy. The parameter ranges we consider for each of them are shown in Table 5.

Table 5. Hyperparameter ranges for each of the derivative estimation methods.

Method Hyperparameter ranges

finite difference k ∈ {1, . . . , 5}
spline s ∈ (1e− 3, 1)
trend filtered order ∈ {0, 1, 2}, α ∈ (1e− 4, 1)
smoothed finite difference window length ∈ {1, . . . , 5}

WSINDy We use WSINDy (Reinbold et al., 2020; Messenger & Bortz, 2021a) based on (Reinbold et al., 2020) as
implemented in PySINDy package (de Silva et al., 2020; Kaptanoglu et al., 2022). We pass the variable t and the static
features v as control variables. We use a library with all polynomial terms up to the second degree, including interaction
between different variables. We use Mixed-Integer Optimized Sparse Regression (MIOSR) (Bertsimas & Gurnee, 2023) for
optimization as it allows us to choose a sparsity level—the number of terms in the equation. In our experiments, we consider
two variants of WSINDy, that we denote WSINDy-5 and WSINDy-20, enforcing the maximum number of terms to be,
respectively, 5 and 20. We tune the parameter α of MIOSR that describes the strength of the L2 penalty (between 1e− 3 and
1) using Optuna (Akiba et al., 2019) for 30 trials. We choose the parameter K (the number of domain centers) to be 200.

NeuralODE We implement a NeuralODE (Chen et al., 2018) model using torchdiffeq library (Chen, 2018). We
parametrize the ODE as a neural network that takes x, t, and v as inputs and outputs an M -dimensional vector. We then
append a vector of zeros of size K to account for the static features being constant (having derivative 0). The network
consists of fully connected layers. The categorical variables are one-hot-encoded before training and the data is standardized.
We set the batch size to 32 and train for 200 epochs using Adam optimizer (Kingma & Ba, 2017). We tune hyperparameters
using Optuna (Akiba et al., 2019) for 20 trials. Ranges for the hyperparameters are shown in Table 6.

Table 6. Hyperparameter ranges used for tuning Neural ODE.

Hyperparameter Range

learning rate (1e-5,1e-1)
number of layers (1,3)
units in each layer (separately) (16,128)
dropout rate (0.0,0.5)
weight decay (1e-6,1e-2)
activation function ELU, Sigmoid

ANODE We implemented ANODE (Dupont et al., 2019) similarly to NeuralODE with the difference that we augment
the x by a few dimensions and evolve this extended dynamical system. We set the initial conditions for these additional
dimensions to 0. We train and tune in the same way as NeuralODE with the only difference being that we also tune the
number of additional dimensions. We consider a range between 1 and 10.

LatentODE We implement a non-probabilistic variant of LatentODE (Rubanova et al., 2019). It is similar to NeuralODE
with the difference being that the ODE is solved in the latent space, so we also learn an encoder and decoder. We tune
hyperparameters using Optuna (Akiba et al., 2019) for 20 trials. Ranges for the hyperparameters are shown in Table 7.

D.3. EPISODE

The composition libraries used in EPISODE* depend on the particular dataset and are as follows.

22

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

Table 7. Hyperparameter ranges used for tuning Latent ODE.

Hyperparameter Range

learning rate (1e-5,1e-1)
number of layers in the encoder (1,3)
units in each layer of the encoder (separately) (16,128)
number of layers in decoder (1,3)
units in each layer of decoder (separately) (16,128)
number of layers in the derivative (1,3)
units in each layer of derivative (separately) (16,128)
latent dimension (1,10)
dropout rate (0.0,0.5)
weight decay (1e-6,1e-2)
activation function ELU, Sigmoid

• SIR. m = 1: {(s−−b, s−+h)}, m = 2: {(s++b, s+−b, s−−b, s−+h)}, m = 3: {(s++b, s+−h}.

• PK. m = 1: {(s++b, s+−b, s−−b, s−+h)}.

• Tumor. m = 1: {(s++u), (s−+b, s++u), (s−+h), (s−−b, s−+h)}.

• Tacrolimus. m = 1: {(s++b, s+−b, s−−b, s−+h)}.

• Bike sharing. m = 1: {(s++b, s+−b, s−−b, s−+b), (s++b, s+−b, s−−b, s−+b, s++b, s+−b, s−−b, s−+b)}

D.4. Computational Cost and Complexity

As mentioned in Section 7, training the composition map is the most time-consuming process, as it requires a preprocessing
step of fitting every admissible composition to each sample (this can be parallelized). The actual time to fit the decision
tree is negligible in our experiments. This preprocessing step has time complexity O(DM |C′|) where D is the number of
samples, M is the dimensionality of the trajectory, and |C′| is the number of admissible compositions. Crucially, this time
does not depend on K (the dimensionality of static features V).

Table 8 shows the time needed to train the composition map for each dataset. We currently use a computationally intensive
procedure of minimizing a Dynamic Time Warping (DTW) distance and then the standard MSE error. There is a trade-off
between the accuracy of fit and the computation time. Practitioners may opt for more approximate fits (e.g., by not using
DTW).

Table 8. Time needed to train the composition map for each of the datasets. All experiments were performed on 18-core Intel Core
i9-10980XE with 60GB of RAM.

Dataset Noise Time (min) # compositions # samples Time per sample (s) Time per composition (s) Time per single fit (s)

SIR 0.01 233.67 26 500 28.04 539.24 0.36
SIR 0.1 178.66 26 500 21.44 412.28 0.27
PK 0.01 68.73 26 500 8.25 158.60 0.32
PK 0.1 66.65 26 500 8.00 153.80 0.31
Tumor 0.01 77.33 26 500 9.28 178.45 0.36
Tumor 0.1 66.37 26 500 7.96 153.16 0.31
Tacrolimus real 8.65 26 90 5.77 19.96 0.22
Bike sharing real 462.27 34 655 42.35 815.77 1.25
HIV 0.01 259.33 26 500 31.12 598.44 0.40
HIV 0.1 194.33 26 500 23.32 448.45 0.30

The advantage of training the composition map separately from the property map is that the errors table e(d)[c] (Equation (1))
can be computed once, saved, and then reused for different training settings of the composition decision tree and the property
maps. This makes introducing changes to the model much quicker.

23

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

Table 9 shows the overall computational cost for all methods on all datasets (including five runs and hyperparameter tuning).
Note that we calculate the errors table e(d)[c] (Equation (1)) once for all five seeds and then subsample the results based on
the split.

Table 9. Computation time (in minutes) for all experiments (five runs with hyperparameter tuning). All experiments were performed on
18-core Intel Core i9-10980XE with 60GB of RAM.

SIR PK Tumor Tacrolimus Bike sharing HIV
Noise σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 real real σ = 0.01 σ = 0.1

NeuralODE 86.07 215.03 94.09 521.42 49.90 56.70 9.57 146.17 265.32 152.75
ANODE 94.79 185.77 94.36 291.19 56.09 62.32 10.95 187.07 139.76 140.12
LatentODE 67.63 149.08 56.64 64.77 46.66 51.05 6.92 94.78 79.56 57.19
SINDy-5 14.87 26.11 40.91 44.43 8.96 23.39 14.03 25.22 81.38 91.08
SINDy-20 15.99 23.21 57.63 82.76 8.19 19.51 32.68 60.86 105.65 93.98
WSINDy-5 12.74 13.58 26.41 13.00 10.83 11.16 32.06 15.62 42.56 29.51
WSINDy-20 11.60 13.36 44.76 115.38 10.05 10.39 38.83 39.06 42.04 27.96
EPISODE (property maps) 100.20 75.64 118.07 44.96 31.62 55.84 35.12 104.84 166.23 169.67
EPISODE (composition maps) 233.67 178.66 68.73 66.65 77.33 66.37 8.65 462.27 259.33 194.33
EPISODE (whole) 333.87 254.30 186.80 111.61 108.95 122.21 43.77 567.11 425.55 364.00
EPISODE* (property maps) 98.04 82.87 55.15 53.35 23.02 24.42 34.34 85.57 152.04 156.83
EPISODE* (composition maps) 8.99 6.87 2.64 2.56 11.90 10.21 0.33 27.19 26.60 19.93
EPISODE* (whole) 107.03 89.74 57.79 55.91 34.92 34.64 34.67 112.76 178.63 176.76

E. Extended Related Works
Symbolic Regression and Discovery of Differential Equations The identification of differential equations is often
viewed as part of the larger field known as symbolic regression. This area of machine learning aims to express data through
a closed-form mathematical expression. Traditionally, genetic programming has been employed for symbolic regression
(Stephens, 2022; Cranmer, 2020), but recent advancements have seen the integration of neural networks. This involves
methods such as directly representing equations within neural networks by modifying activation functions (Martius &
Lampert, 2017; Sahoo et al., 2018), leveraging neural networks to narrow down the search space (Udrescu & Tegmark,
2020; Udrescu et al., 2021), exploring equations through reinforcement learning (Petersen et al., 2021), and employing
large pre-trained transformers (Biggio et al., 2021; D’Ascoli et al., 2022; Holt et al., 2023). Standard symbolic regression
can be adapted for ordinary differential equation (ODE) discovery by estimating derivatives from data to treat them as
targets (Quade et al., 2016). Despite this, several specialized ODE discovery techniques have emerged. Among these, the
Sparse Identification of Nonlinear Dynamical Systems (SINDy) (Brunton et al., 2016b) stands out, describing derivatives
as linear combinations of functions from a predetermined library. This has led to various extensions, including those for
implicit equations (Kaheman et al., 2020), controlled equations (Brunton et al., 2016b), and treatment effect estimation
(Kacprzyk et al., 2024a). Alternative approaches utilize weak formulations of ODEs, circumventing the need for derivative
estimation (Messenger & Bortz, 2021a; Qian et al., 2022). Additionally, methods specifically designed for discovering
partial differential equations (PDEs) have been developed, as standard ODE discovery methods cannot be directly applied to
PDEs (Rudy et al., 2017; Raissi & Karniadakis, 2018; Messenger & Bortz, 2021b; Kacprzyk et al., 2023). The challenge of
finding comprehensible and well-fitting closed-form expressions inspired Shape Arithmetic Expressions (Kacprzyk & van
der Schaar, 2024) that extend the prespecified set of well-known functions (e.g., trigonometric or exponential functions)
in symbolic regression by flexible and learnable univariate functions. Those functions do not necessarily have a compact
symbolic representation but are supposed to be understood by looking at their line plot.

Black Box Approaches for Modeling Dynamical Systems Black-box approaches to modeling dynamical systems have
gained significant attention due to their ability to learn complex dynamics without requiring explicit governing equations.
Neural Ordinary Differential Equations (Neural ODEs) (Chen et al., 2018) introduced a model that parameterizes differential
equations using neural networks, enabling flexible trajectory modeling. Building upon this, Augmented Neural ODEs
(Dupont et al., 2019) addresses the limitations of Neural ODEs in handling complex dynamics by expanding the state
space, allowing for more expressive representations. Latent ODEs (Rubanova et al., 2019) further extend this framework by
inferring latent representations of time-series data. Neural Laplace (Holt et al., 2022) generalizes Neural ODEs by learning
solutions in the Laplace domain, offering improved performance for systems governed by diverse types of differential
equations.

24

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data

F. Additional Discussion
F.1. Sensitivity to the Choice of C′

The results in Table 2 (EPISODE) are for a generous set of compositions. We consider all compositions up to length 4
(or length 8 for the Bike sharing dataset) except for compositions where two consecutive transition points are inflection
points. This results in 26 and 34 compositions, respectively. Thus, EPISODE achieves competitive results for a relatively
large choice of compositions (and minimum prior knowledge). EPISODE* uses prior knowledge about the shape of the
compositions, constraining the set to between 1 and 4 compositions depending on the dataset (details in Appendix D.3). We
can see that it significantly improves the performance in some settings (Tumor dataset), but often has no significant impact
(Bike sharing, Tacrolimus, HIV). In these settings, EPISODE is able to autonomously determine which compositions should
be used in the composition map.

F.2. Extending to Periodic or Oscillating Trajectories

EPISODE could, in the future, be extended to periodic or oscillating trajectories by extending the definition of semantic
representation to accommodate periodic compositions. Let us assume that we know that the trajectories are described by an
infinite composition consisting of repeating (s+−c, s−−c, s−+c, s++c). Then we can describe this composition segment
using properties like “amplitude” or “frequency”. For each trajectory in our training dataset, we can extract additional
trajectories describing how these properties change over time. We can now model these auxiliary trajectories using a
framework similar to EPISODE. However, we leave a full exposition of this idea for a future paper.

25

