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ABSTRACT

Neural tangent kernels (NTKs) provide a theoretical regime to analyze the learn-
ing and generalization behavior of over-parametrized neural networks. For a su-
pervised learning task, the association between the eigenvectors of the NTK kernel
and given data (a concept referred to as alignment in this paper) can govern the
rate of convergence of gradient descent, as well as generalization to unseen data.
Building upon this concept, we investigate NTKs and alignment in the context of
graph neural networks (GNNs), where our analysis reveals that optimizing align-
ment translates to optimizing the graph representation or the graph shift operator
in a GNN. Our results further establish the theoretical guarantees on the optimal-
ity of the alignment for a two-layer GNN and these guarantees are characterized
by the graph shift operator being a function of the cross-covariance between the
input and the output data. The theoretical insights drawn from the analysis of
NTKs are validated by our experiments focused on a multi-variate time series pre-
diction task for a publicly available dataset. Specifically, they demonstrate that
GNNs with cross-covariance as the graph shift operator indeed outperform those
that operate on the covariance matrix from only the input data.

1 INTRODUCTION

The remarkable success of deep learning frameworks for numerous inference tasks is well estab-
lished LeCun et al. (2015). Motivated by the practical implications of the gaps between the em-
pirical observations and theoretical foundations of deep learning, many recent works have explored
various approaches to rigorously understand the theory of deep learning models. Multi-layer neural
networks have been analyzed extensively in the mean-field regime Mei et al. (2018; 2019); Sirignano
& Spiliopoulos (2020). The random features model has also been studied to capture the effects of the
regime of parameterization and study phenomenon such as generalization, and “double descent” (see
e.g., Mei & Montanari (2022);Lin & Dobriban (2021);Adlam & Pennington (2020)). Among such
approaches, the NTKs, first introduced in Jacot et al. (2018), have commonly been used to study
the behavior of over-parameterized neural networks Cao et al. (2021b); Bietti & Mairal (2019); and
are informally defined next.

Neural Tangent Kernel. For any given predictor f(x;w) : Rn×1 ×Rp → R the NTK is the kernel
matrix Θ defined by the gradient of the predictor output, f(x;w), with respect to its learnable
parameters, w, as

Θ(xi,xj)(w) := ⟨∇wf(xi;w),∇wf(xj ;w)⟩ , (1)

where f(x;w) represents the predictor output for input data point x ∈ Rn×1 with the learnable
parameters represented by w ∈ Rp. The typical setting to study NTKs is that of neural networks in
the asymptote of infinite width, where the NTK is constant with respect to the learnable parameters
during training, in contrast to the finite-width scenario Jacot et al. (2018). This constancy of the NTK
is a result of certain neural networks transitioning to linearity as their width goes to infinity Liu et al.
(2020). NTKs have been leveraged to gain theoretical insights on the behavior of neural networks
such as over-parameterized neural networks achieving zero training loss over a non-convex loss
landscape Du et al. (2018), the spectral bias of neural networks Cao et al. (2021b) and the inductive
biases of different neural network architectures Bietti & Mairal (2019).

In particular, the eigenspectrum of the NTK kernel has been linked with the convergence rate of
gradient descent for an over-parameterized deep learning model Liu et al. (2022); Arora et al. (2019);
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Wang et al. (2022a). For instance, gradient descent can achieve faster convergence for a supervised
learning problem if the vector of output labels, y, aligns well with the dominant eigenvectors of the
NTK matrix Θ Arora et al. (2019); Wang et al. (2022a). For the regression problem pertaining to
predicting y from x, our analysis in Section 2 demonstrates that

Convergence of gradient descent ∝ yTΘy (2)

By leveraging the observation above as a motivation, we define yTΘy as Alignment A.

GNNs and NTKs. Given that the NTK Θ depends on input data x (see equation 1), the alignment A
inherently captures some version of covariance between output y and input x. Thus, if the NTK Θ
is ‘structured’ for a given predictor f , the alignment A could be leveraged to provide further insights
into the design of the predictor f . GNNs are an example of a class of predictors for which the NTK
is a function of the graph representation or the graph shift operator (GSO) and input data x Krish-
nagopal & Ruiz (2023). GNNs operating on covariance matrices derived from the input data have
been studied previously in Sihag et al. (2022), albeit without any consideration of the insights that
could be drawn from the NTKs regarding the choice of graph derived from the data for a supervised
learning problem. Many of the existing works that analyze NTKs for GNNs focus on explaining
empirically observed trends for GNNs (see Appendix B for expanded literature review).

In this paper, we leverage the structure of NTKs for GNNs to theoretically motivate the choice of
a particular GSO. Specifically, if the NTK Θ for a GNN is considered to be a function of the form
Θ(S,x) for a GSO S, the alignment can be represented as A(S,x,y), i.e., as a function of the input
data x, output data y and S. It is then apparent that optimizing the alignment A for a GNN can
inform the choice of the GSO S for a given dataset. A key observation made in this paper is that
the alignment A is characterized by the cross-covariance between the input and the output and as a
result, the optimal GSO for statistical inference is closely related to the cross-covariance.

Contributions. In this paper, we consider the setting where the predictor f is a GNN with graph
filter as the convolution operator Gama et al. (2020). Our theoretical contributions in this context
are summarized next.

• Our analysis of alignment A with graph filter as the predictor motivates cross-covariance between
the input and output data as the graph. More precisely, we pose an optimization problem with
alignment A as the objective function and demonstrate that using the cross-covariance as the GSO
maximizes a lower bound on this objective.

• We further extend the results from the graph filter to the scenario of a two-layer GNN as the
predictor. Our results show that under certain assumptions, the cross-covariance between the input
and the ouput optimizes a lower bound on the alignment for the GNN that has tanh activation
function. Thus, our analysis motivates using cross-covariance based graphs for a GNN as well.

We validated the insights drawn fron our theoretical results via experiments on the publicly available
resting state functional magnetic resonance imaging (rfMRI) data from the Human Connectome
Project-Young Adult (HCP-YA) dataset Van Essen et al. (2012). In particular, we considered the
task of time series prediction and observed that the GNNs that operated on the cross-covariance
between the input and output data achieved better convergence and generalization than those that
used the covariance matrix only from the input data.

2 ALIGNMENT AND CONVERGENCE OF GRADIENT DESCENT

In this section, we formalize the concept of alignment A and demonstrate its relationship with the
convergence of gradient descent for a regression problem. Consider a dataset {(xi,yi)}Mi=1, where
xi ∈ Rn×1, yi ∈ Rn×1. We aim to leverage the inputs xi to estimate the outputs yi using a
predictor denoted by f : Rn×1 × Rp → Rn. We use the notation h ∈ Rp to denote the vector
of all learnable parameters of the predictor. To emphasize the dependence of the predictor f on
the parameters h, we use the notation fxi

(h) for f(xi,h) subsequently. Also the parameters are
initialized randomly from a Gaussian distribution h(0) ∼ N (0, κ2I), where the constant κ controls
the magnitude of the initialized parameters. The objective is to minimize the mean squared error
(MSE) loss function, defined as

Φ(h) ≜ min
h∈Rp

1

2

M∑
i=1

||yi − fxi
(h)||22 . (3)
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For this purpose, we consider a gradient descent based optimization framework with a learning
rate η > 0. The evolution of the predictor output for a single input xi is given by

fxi
(h(t+1)) = fxi

(
h(t) − η · ∇Φ(h(t))

)
(4)

where t denotes the t-th step or epoch of gradient descent. To characterize the evolution of the
predictor output over the entire dataset, we provide the following definitions

f̃x(h) ≜
[
[fx1

(h)]
T
, [fx2

(h)]
T
, · · · , [fxM

(h)]
T
]T

, (5)

x̃ ≜
[
xT
1 , x

T
2 , · · · , xT

M

]T
, ỹ ≜

[
yT
1 , y

T
2 , · · · , yT

M

]T
(6)

where f̃x(h), x̃, and ỹ are vectors of length nM . We also define the NTK matrix
Θ̃(h) ∈ RnM×nM , which consists of M2 number of n × n blocks, such that, the (i, j)-th block
is the matrix Θ(xi,xj) ∈ Rn×n and is given by

Θ(xi,xj) ≜ Jfxi
(h(t))

(
Jfxj

(h(t))
)T

. (7)

In equation 7, Jfxi
(h) denotes the Jacobian matrix with its (a, b)-th entry being

(Jfxi
(h))ab =

∂(fxi
(h))a

∂hb
. If the step size η from equation 4 is sufficiently small, the function

fxi

(
h(t)) can be linearized at each step. In this scenario, the linearized version of the evolution

of the predictor output in equation 4 is

f̃x(h
(t+1)) = f̃x(h

(t))− η · Θ̃(h(t)) · (f̃x(h
(t))− ỹ) . (8)

A typical setting of interest in the existing literature is that of the NTK Θ̃(h(t)) being a constant with
respect to h(t). This is because the NTK converges to a constant for many neural networks in the
infinite width limit Liu et al. (2020). Theorem 1 characterizes the convergence of gradient descent
for the considered multivariate regression problem in this setting (also see Arora et al. (2019), Wang
et al. (2022a)). The NTK that is constant with respect to h(t) is denoted by Θ̃.
Theorem 1. In the multivariate regression setting, as described in the beginning of section 2, if the

NTK Θ̃(h(t)) is constant during training and κ = O(ε
√

δ
nM ), then with probability at least 1− δ,

the training error after t steps of gradient descent is bounded as

ỹT
(
I − 2tη · Θ̃

)
ỹ ±O(ε) ≤ ||f̃x(h

(t))− ỹ||22 ≤ ỹT
(
I − η · Θ̃

)
ỹ ±O(ε)

Remark 1. In this paper, we primarily consider two classes of predictors. The first class is that of a
linear predictor, for which the NTK is a constant given the definition in equation 7. The second class
of predictors is that of infinitely wide neural networks (GNNs in particular). We refer the reader
to Appendix F and Liu et al. (2020) for a detailed discussion of when and why the NTK can be a
constant for neural networks.

Since the term ỹTΘ̃ỹ characterizes the upper and lower bounds, the loss ||f̃x(h
(t)) − ỹ||22 is pro-

portional to this term. Based on Theorem 1, we formalize the alignment in Definition 1. A similar
definition can be found in Wang et al. (2022a) in the context of active learning.

Definition 1 (Alignment). The alignment between the output ỹ and NTK Θ̃ is defined as

A ≜ ỹTΘ̃ỹ

The alignment A can be perceived as a metric of correlation between output data and the NTK, and
is a characteristic of learning with gradient descent. Using Definition 1, Theorem 1 can be restated as

ỹTỹ − 2tη · A ± O(ε) ≤ ||f̃x(h
(t))− ỹ||22 ≤ ỹTỹ − η · A ± O(ε) (9)

Equation (9) shows that the convergence of gradient descent is positively correlated with A.

Recall that the NTK Θ̃ is a function of the input data x̃ and the learning model f , even when constant
with respect to h(t). Therefore, maximizing A is contingent on maximizing some kind of cross-
covariance between the output data ỹ and a function of the input data x̃, where the function depends
by the learning model f . This observation motivates us to study the setting where the predictor f is
a GNN, as a GNN architecture can provide appropriate structure to analyze the connection between
alignment, cross-covariance and the structure of the network.
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3 ALIGNMENT MOTIVATES CROSS-COVARIANCE IN GNNS

In this paper, we consider the GNNs for which the convolution operation is a graph filter. A graph
filter is characterized by a linear-shift-and-sum operation on the input data and is representative of a
large family of convolution operations in GNNs (see the section ‘implementation of GCNNs’ from
Gama et al. (2020)). We begin with the setting where fx(h) is a graph filter.

3.1 NTK AND ALIGNMENT FOR GRAPH FILTER MODEL

The formal definition for a graph filter is provided in Definition 1 Gama et al. (2020).
Definition 2 (Graph Filter). Consider a symmetric GSO S ∈ Rn×n. A graph filter processes an
input x ∈ Rn via a linear-shift-and-sum operation characterized by S, such that, its output is

fx(h) =

K−1∑
k=0

hkS
kx = H(S)x , where H(S) ≜

K−1∑
k=0

hkS
k , (10)

and h = {h0, h1, · · · , hK−1} is the set of scalars, also referred to as the filter taps or coefficients.

Recall from equation 7 that Θ̃(h(t)) is a function of the Jacobian matrix Jfxi
(h(t)), given by

Jfxi
(h(t)) =

[
xi|Sxi|S2xi| · · · |SK−1xi

]
. (11)

Using equation 11, for any pair of input vectors (xi,xj), the (i, j)-the block of the NTK Θ̃(h(t)) for
a graph filter is given by Θ(xi,xj)(h

(t)) =
∑K−1

k=0 Skxi(S
kxj)

T. Since the graph filter is a linear
model, Θ(xi,xj)(h

(t)) is independent of h(t). Consequently, the NTK Θ(xi,xj)(h
(t)) for a graph

filter is a constant with respect to h(t). Next, we provide the NTK for a graph filter.
Proposition 1 (NTK for a graph filter). The NTK for a graph filter is given by

Θ̃filt(h
(t)) =

K−1∑
k=0

S̃kx̃x̃TS̃k . (12)

where S̃ ∈ RnM×nM is a block diagonal matrix consisting of M blocks of matrix S on the diagonal
and zeros everywhere else.

Given equation 12, we further investigate the impact of shift operator S on the alignment A. Also
we define the data matrices X,Y where X is the input data matrix where the i-th column is equal to
xi and similarly for Y . From equation 12, note that the NTK is independent of the filter coefficients
h. As a consequence, A for a graph filter (denoted by Afilt) depends on the shift operator S and
dataset (X,Y ) as follows

Afilt(S,X, Y ) = ỹT

(
K−1∑
k=0

S̃kx̃x̃TS̃k

)
ỹ =

K−1∑
k=0

(
ỹTS̃kx̃

)2
=

K−1∑
k=0

(
tr(Y TSkX)

)2
(13)

The equivalence between different terms in equation 13 follows from the symmetry of S̃ and the fact
that ỹTS̃kx̃ is a scalar. Since a larger Afilt is correlated with faster convergence of gradient descent
(see equation 9), we further investigate whether the alignment Afilt can be optimized by appropriate
selection of shift operator matrix S. The objective to optimize Afilt can be stated as follows.

S∗ = argmax
S

K−1∑
k=0

(
ỹTS̃kx̃

)2
s.t. η · ||Θ̃filt||op < α . (14)

The constraint ||η · Θ̃filt||op < α, for some α > 0, in equation 14 is necessary to ensure the con-
vergence of gradient descent. This constraint also eliminates trivial solutions (such as multiplying a
given S with an arbitrarily large positive constant to inflate A in isolation). The optimization prob-
lem in equation 14, while meaningful, can be analytically intractable due to complications arising
from the polynomial functions of S and the objective function and the constraint being non-convex.
In order to provide an analytically tractable solution to S, we consider the lower bound on A next.
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Lemma 1. [Lower bound on Afilt.] The alignment Afilt satisfies Afilt(S,X, Y ) ≥ AL(S,X, Y ),
where

AL(S,X, Y ) ≜
( 1√

K
tr
((K−1∑

k=0

Sk
)
CXY

))2
, and CXY ≜

1

2
(XY T + Y XT) . (15)

Henceforth, we focus on characterizing S that maximizes AL(S,X, Y ). Our experiments in Sec-
tion 4 also demonstrate that the insights drawn from optimizing AL are practically meaningful. Next,
we provide a constraint that depends on the choice of GSO and not on the input data.
Lemma 2. If the degree K polynomial in the shift operator S has a bounded Frobenius norm, the
operator norm of the NTK matrix is also bounded as follows:∥∥∥∥∥

K−1∑
k=0

Sk

∥∥∥∥∥
F

≤
√

α/(ηM) ⇒ η ·

∥∥∥∥∥
K−1∑
k=0

S̃kx̃x̃TS̃k

∥∥∥∥∥
op

≤ α (16)

The constraint on the left in equation 16 is more straightforward to work with in the analysis since
it only depends on S, while also ensuring that the constraint in equation 14 is satisfied. Putting
together AL(S,X, Y ) and the revised constraint, we get the following optimization problem.

S∗ = argmax
S

AL(S,X, Y ) s.t.

∥∥∥∥∥
K−1∑
k=0

Sk

∥∥∥∥∥
F

≤
√

α/(ηM) . (17)

Theorem 2 (GSO in graph filter.). A GSO S∗ that satisfies
K−1∑
k=0

(S∗)k = µ · CXY , where µ =

√
α/(ηM)

||CXY ||F
. (18)

is the solution to the optimization problem in equation 17.

Theorem 2 clearly demonstrates the association between the optimal GSO that optimizes
AL(S,X, Y ) and CXY , which is a measure of cross-covariance. For instance, if K = 2, then it
can be concluded from equation 18 that

I + S∗ = µ · CXY ⇒ S∗ = µ · CXY − I (19)

The observation in equation 19 motivates the potential choice of a normalized cross-covariance
matrix as a GSO when graph filter is deployed as the predictor fx(h). Next, we discuss how this
observation extends to the setting where fx(h) is a GNN.

3.2 NTK AND ALIGNMENT FOR GNN

To start with, we formalize the GNN architecture that is the focus of our analysis. The ability to
learn non-linear mappings by GNNs is fundamentally based on concatenating an element-wise
non-linearity with a graph filter to form a graph perceptron, which is realized via a point-wise
non-linearity σ(·) as σ(H(S)x). In the remainder of this paper, we will focus on a two-layer GNN
that admits a single input feature x ∈ Rn and the GNN output is a vector of length n, as dictated
by the problem definition in Section 2. The general definition for a GNN, along with additional
experimental results for GNNs with depth larger than two layers, have been provided in Appendix H.

Two-Layer GNN Architecture (see Fig. 3). In the first layer, the input vector x ∈ Rn, is processed
by F graph perceptrons to output F n-dimensional outputs given by qf

(1),∀f ∈ {1, · · · , F}, as
follows

uf
(1) = Hf

(1)(S)x =

K−1∑
k=0

hf
(1),kS

kx,∀f ∈ {1, . . . , F}; and qf
(1) = σ

(
uf
(1)

)
. (20)

In the second layer, each of the outputs of the previous layer, qf
(1) are processed by a graph filter as

uf
(2) = Hf

(2)(S)q
f
(1) =

K−1∑
k=0

hf
(2),kS

kqf
(1),∀f =∈ {1, . . . , F} . (21)
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Finally, the terms uf
(2) are aggregated to get the output at the second layer (also the GNN output) as

fx(h) =
1√
F

F∑
f=1

uf
(2) (22)

The absence of a non-linearity in the final layer (equation 22) is necessary for having a constant
NTK in the infinite width limit (see Liu et al. (2020)).
Proposition 2 (NTK for a two-layer GNN). The NTK for the two-layer GNN is given by

Θ̃GNN (h) =
1

F

F∑
f=1

K−1∑
k=0

(
c
(1)
f,k

)(
c
(1)
f,k

)T
+

1

F

F∑
f=1

K−1∑
k=0

(
c
(2)
f,k

)(
c
(2)
f,k

)T
(23)

where c
(1)
f,k ≜ Hf (S̃) · diag(σ′(Gf (S̃)x̃)S̃

kx̃), and c
(2)
f,k ≜ S̃kσ

(
Gf (S̃)x̃

)
. (24)

In equation 24, c(ℓ)f,k ∈ RnM×1 is the vector determined by picking out the column that pertains to
the derivative of the network output with regards to the parameter indexed by (f, k, ℓ), namely, the
k-th coefficient of the f -th filter in layer ℓ, from every Jacobian matrices Jfxi

,∀i ∈ {1, · · ·M} and
stacking all these vectors together.

The NTK in equation 23 is an aggregation of two terms, where the first term is associated with the
first layer and the second term with the second layer. It follows from Definition 1 and equation 23
that the alignment for a two-layer GNN is also composed of two terms that represent the two layers.
Henceforth, we focus on the results pertaining to the second term in equation 23. This implies that
our results correspond to a two-layer GNN where only the parameters of the second layer are trained
and the parameters of the first layer are fixed. The analysis (and results) if we also consider the first
layer in this analysis is similar and has been relegated to Appendix G.

In the subsequent discussions, the notation Θ̃GNN denotes the second term in equation 23 when the
width of hidden layer approaches infinity i.e., F → ∞. Therefore, Θ̃GNN is given by

Θ̃GNN (h) = lim
F→∞

1

F

F∑
f=1

K−1∑
k=0

(
S̃kσ

(
Gf (S̃)x̃

))(
S̃kσ

(
Gf (S̃)x̃

))T
=

K−1∑
k=0

S̃k E
g∼N (0,I)

[
σ
(
G(S̃)x̃

)(
σ
(
G(S̃)x̃

))T]
S̃k =

K−1∑
k=0

S̃kES̃k (25)

The expectation matrix E ≜ E
g∼N (0,I)

[
σ
(
G(S̃)x̃

)(
σ
(
G(S̃)x̃

))T]
is instrumental for the analysis

of the alignment. Before proceeding, we provide the following remark pertinent to the analysis.

Remark 2. As a byproduct of the output layer being linear, the NTK Θ̃GNN in equation 25 does
not depend on the parameters of the second layer, i.e., hf ,∀f ∈ {1, · · · , F}. Hence, the NTK
in equation 25 could be considered a constant if only the second layer of GNN is trained. For
completeness, our discussion in Appendix F demonstrates further that as F → ∞, the NTK in
equation 23 also approaches a constant behavior.

From equation 25, the alignment can be written in terms of E as follows

A = ỹTΘ̃GNN ỹ = ỹT
(K−1∑

k=0

S̃kES̃k
)
ỹ = tr(QE) , (26)

where we have defined the matrix Q as Q ≜
∑K−1

k=0 S̃kỹỹTS̃k. Above, we used the cyclic property
of the trace and the fact that ỹTΘ̃GNN ỹ is a scalar. In order to evaluate E, we define the vec-

tors z(ℓ) ∈ RK×1 as z(ℓ) ≜
[
x̃ℓ, (S̃x̃)ℓ, · · · , (S̃K−1x̃)ℓ

]T
where ℓ ∈ {1, · · · , nM} and (S̃kx̃)ℓ

denotes the ℓ-th entry of the vector S̃kx̃ . Thus, the (a, b)-th entry of E, i.e., Eab, from equation 25 is

Eab = E
g∼N (0,I)

[
σ
(
⟨g, z(a)⟩

)
· σ
(
⟨g, z(b)⟩

)]
. (27)
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Linear GNNs. We next discuss the scenario when the function σ(·) is an identity function, i.e.,
σ(z) = z. The results drawn from this setting will be leveraged later in the setting when σ(·) is not
an identity function. When σ(z) = z, equation 27 reduces to

Eab = E
g∼N (0,I)

[
⟨g, z(a)⟩ · ⟨g, z(b)⟩

]
= ⟨z(a), z(b)⟩ (28)

We denote the matrix E in this linear setting by Blin, which is given by

(Blin)ab ≜ ⟨z(a), z(b)⟩ ⇒ Blin =

K−1∑
k=0

S̃kx̃x̃TS̃k (29)

Thus, the alignment in the linear setting is given by

Alin ≜ tr(QBlin) =

K−1∑
k=0

ỹT S̃kBS̃kỹ =

K−1∑
k=0

K−1∑
k′=0

ỹT S̃k+k′
x̃x̃T S̃k+k′

ỹ (30)

The analysis of alignment Alin in equation 30 using similar arguments as that for a graph filter in
Section 3.1 yields a similar condition on the GSO S as in Theorem 2. The corollaries provided next
formalize this observation. First, the following corollary provides a lower bound on Alin.
Corollary 1. [Lower bound on Alin] The term Alin = tr(QBlin) satisfies Alin ≥ AL′(S,X, Y ),

where AL′(S,X, Y ) ≜
( 1√

K
tr
((K−1∑

k=0

K−1∑
k′=0

(S∗)k+k′
)
CXY

))2
, (31)

Next, we present an optimization problem similar to the one for the graph filter in equation 17 next.

S∗ = argmax
S

AL′(S,X, Y ) s.t.

∥∥∥∥∥
K−1∑
k=0

K−1∑
k′=0

Sk+k′

∥∥∥∥∥
F

≤
√

α/(ηM) . (32)

The solution to the optimization problem in equation 32 is presented next.
Corollary 2. [Extension of Theorem 1 to linear GNN] The GSO S∗ that solves the optimization
problem in equation 32 must satisfy

K−1∑
k=0

K−1∑
k=0

(S∗)k+k′
= µ · CXY , where µ =

√
α/(ηM)

||CXY ||F
. (33)

Corollary 2 establishes that the cross-covariance CXY is instrumental to optimizing AL′ for the con-
sidered two-layer GNN architecture when σ(·) is an identity function. In general, this observation
holds for linear GNNs of any arbitrary depth.

GNNs with non-linear activation function. Next, we investigate the conditions under which the
observation in Corollary 2 extends to a more general setting, in which σ(·) is not an identity func-
tion. We will focus our theoretical analysis on the case where σ(z) = tanh(z) and from here on A
will denote the alignment for this case. The experimental results (see Appendix H) show that similar
results hold for some other activation functions like ReLU in practice. First, we evaluate the expec-
tation in equation 25. By leveraging the theory of Hermite polynomials 1, the Hermite expansions of
σ
(
⟨g, z(a)⟩

)
and σ

(
⟨g, z(b)⟩

)
enables the expansion of E and subsequently A. These expansions

are formalized next.
Lemma 3 (Expansion of E and A). The Hermite expansion of E is given by E = B +∆B, where
B ∈ RnM×nM represents the first non-zero term in the expansion and ∆B ∈ RnM×nM includes
all the subsequent terms. For the (a, b)-th element of B and ∆B, we have

Bab = α1β1 ·
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
, and (∆B)ab =

∞∑
i=3,5,···

αiβi ·
( ⟨z(a), z(b)⟩
||z(a)||2 · ||z(b)||2

)i
. (34)

Hence, the alignment A in equation 26 admits the expansion

A = tr(QE) = tr(QB) + tr(Q∆B) . (35)
1See the proof of Lemma 3 for an overview of the Hermite polynomials and how we utilized the Hermite

expansion.
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The scalar coefficients αi, βi in equation 34 depend on ||z(a)||2 and ||z(b)||2, respectively and the
choice of σ(·). The disintegration of the alignment into two terms in equation 35 is useful because
the second term can be shown to be relatively small and, using the observation that in the linear case
Eab = ⟨z(a), z(b)⟩, tr(QB) can be related to Alin. We next provide two lemmas relevant to this.
Lemma 4. Given a family of matrices S ∈ Sn×n that have a bounded norm, ||S||op ≤ ν, we have

tr(QB) ≥ ρAlin (36)

where ρ is a constant that depends on the choice of non-linearity function σ(·).

The next lemma shows that the elements of the matrix ∆B are smaller compared to corresponding
elements in B, which implies that the second term in equation 35 can’t decrease A too much.
Lemma 5. Each element of ∆B has the same sign as the corresponding element in B. Also, the
following element-wise inequality holds between the two matrices:

|∆B| ≤ β · |B| (37)

where β is a constant that depends on our choice of non-linearity and is determined from the proof.

Putting the above two lemmas together, we reach the following conclusion about the alignment of
the two-layer GNN with σ(·) as tanh.
Theorem 3. Given a family of matrices S ∈ Sn×n that have a bounded norm, ||S||op ≤ ν and that
satisfy Alin = tr (QBlin) ≥ ξ · ||Q||F ||Blin||F for some constant 0 < ξ ≤ 1, Alin lower bounds the
alignment for the two-layer GNN with tanh non-linearity, A, up to a constant as follows

A ≥
(
c− d

ξ

)
Alin , (38)

for some positive constants c and d.

Remark 3 (GSO in GNNs). Our key takeaway from Theorem 3 is that when maximizing Alin over
the family of shift operators that satisfy the assumption with a sufficiently large ξ , such that c− d/ξ
is a positive constant, we are essentially maximizing a lower bound on the alignment A of the
two-layer GNN. This observation, together with Corollary 3, motivates using the cross-covariance
matrix CXY as a GSO for the two-layer GNN.

Alignment, The NTK and Generalization Thus far, we have provided the theoretical results mo-
tivated by the fact that larger alignment can imply faster convergence of gradient descent during
training. However, the alignment and NTK are also closely related to generalization. Specifically,
the analyses pertaining to generalization from Arora et al. (2019) and Wang et al. (2022a) can be
extended to the case of graph filters, which leads to the conclusion that larger alignment could also
lead to smaller generalization error. Hence, the results on improved training and generalization to-
gether motivate models with larger alignment in practice. The analysis regarding generalization has
been provided in Appendix E.

4 EXPERIMENTS

In this section, we provide the experiments that validate the theoretical insights pertaining to the
cross-covariance matrix being an optimal GSO for GNN training and generalization with respect to
GSO derived only from the input data for a regression task. The dataset and inference task for this
purpose are described below.

Data. The HCP-YA dataset is a publicly available brain imaging dataset collected over a population
of 1003 healthy adults in the age range of 22–35 years Van Essen et al. (2012; 2013). In our experi-
ments, we leveraged the rfMRI data for each subject made available by HCP. This data consisted of
a multi-variate time series of 100 features, with each time series consisting of 4500 time points.

Inference task. Noting that the 100 features could be considered as 100 nodes of a graph, our
objective was to use the data at all nodes at the current time step for an individual to predict the data
at all nodes at a future time step. Specifically, given the signal value at time step t as z(t) ∈ R100

for an individual, we aimed to predict the signal value after ∆t time steps, i.e., z(t+∆t) ∈ R100.
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(a) Training loss for one individual in HCP-YA
dataset. (b) Test loss for the same individual as in (a).

(c) Generalization. The gap between the final test
error for CXY and CXX for different predictors
averaged over the complete dataset of individuals.

(d) Improvement in training error at different
epochs of gradient descent averaged over the com-
plete dataset of individuals.

Figure 1: Experimental Results

For every ∆t ∈ {1, 2, 3, 4, 5}, a separate training/test set of size Ntrain = 1000, Ntest = 100 was
created, such that, for the signal at a time point t, i.e., z(t) as the input, the signal after ∆t time steps
z(t+∆t) was the output to be predicted. For additional implementation details, see Appendix H.

Performance evaluation. We trained two sets of GNNs and two sets of graph filters using the time
series data of each individual for a given ∆t, where one set comprised of predictors with CXY

as the GSO and the other with CXX as the GSO. The GNNs with CXX as the GSO have been
studied before as VNNs in Sihag et al. (2022) and provide an appropriate baseline for comparison
as it is representative of GNNs with GSOs extracted only from the input data. Figures 8a and 8b
illustrate faster convergence of both training loss and test loss during gradient descent for predictors
with CXY as compared to those with CXX for one representative individual when ∆t = 1. This
observation was consistent for graph filters and GNNs. For each individual, the training process for
every architecture was repeated 10 times. The average of these runs is shown in Figures 8a and 8b.

Further, we checked whether these observations were consistent across the dataset and for different
∆t. Figure 1c illustrates the gap between the test error for predictors with CXY and CXX and dif-
ferent values of ∆t, averaged across all individuals. Even as the accuracy of prediction diminished
with increasing ∆t, we observed a consistent gain in test performance when using CXY as com-
pared to CXX . Similarly, Fig. 1d shows that predictors with CXY achieved smaller training error
relative to those with CXX at each epoch of gradient descent, averaged across the dataset. Thus, the
observations in Fig. 1 validated the theoretical insights drawn from the analysis that argued for CXY

as an appropriate GSO for GNNs that can achieve smaller training error and better generalization.
We refer the reader to Appendix C for the conclusions, limitations, and potential future directions of
our work.
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5 REPRODUCIBILITY STATEMENT

Theoretical Proofs. The proofs for all theorems and lemmas in the main body of the paper can be
found in Appendix D.

Experiments. Additional experimental details and results have been provided in Appendix H.
In addition, the code and data for training the relevant models and producing results similar to
what is shown in Figures 8a and 8b for one individual from the HCP-YA dataset can be found in
https://github.com/shervinkh2000/Cross Covariance NTK. The complete HCP-YA dataset is pub-
licly available and accessible from https://db.humanconnectome.org/ as per the data use terms.

Additional Details. Comments made regarding the relation between the NTK and generalization
made in the main body of the paper have been thoroughly explained in Appendix E. Additional
necessary theoretical considerations that did not directly contribute to the main message of the paper,
namely, that the NTK of the GNN architecture that we analyzed is constant in the infinite-width limit,
and that training the first layer of the GNN leads to similar results to those we saw for the second
layer in section 3.2, have been discussed further in Appendices F and G respectively.
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by the McDonnell Center for Systems Neuroscience at Washington University.

B ADDITIONAL LITERATURE REVIEW

Analysis of GNNs with NTKs. Du et al. (2019) prove that the NTK for GNNs can learn a broad
class of functions on graphs. Sabanayagam et al. (2021) use the GNTK as a hyperparameter-free
surrogate for GNNs to empirically analyze the effect of increasing depth and using skip connections
on the performance of GNNs. They also show that the GNTK captures the performance trend of
the corresponding finite-width GNNs. Krishnagopal & Ruiz (2023) analyze how the graph size
affects the GNTK and shows that as the graph gets larger the GNTK converges to the graphon NTK.
Sabanayagam et al. (2022) use the GNTK to theoretically (and empirically) explain the effects of
different architecture choices such as symmetric vs row normalization and increasing depth on GNN
performance.

Empirical implications of theoretical insights derived using NTKs. Existing studies have used
the theoretical insights drawn from NTKs to understand practical observations and inform practi-
cal applications. The studies in Chen et al. (2021) and Zhu et al. (2022) leverage NTKs to study
theory-inspired neural architecture search protocols. Insights into convergence and generalization
properties of neural networks derived using NTKs are well known Jacot et al. (2018). The train-
ing dynamics of physics inspired neural networks were studied using NTKs in Wang et al. (2022b)
and an NTK-inspired gradient descent algorithm was proposed. Huang et al. (2022) utilize insights
gained from NTK-based analysis of the optimization of GNNs to explain the degrading performance
of GNNs as the number of layers increases. They further suggest a potential solution to this problem
through randomly dropping a certain percentage of the edges of the graph during training. Our work
is similar in spirit to such studies, where we draw upon the theoretical insights derived from NTKs
in the context of GNNs to motivate the choice of GSO for an inference task.

C DISCUSSION

In this paper, we have demonstrated that the analysis of NTKs in the context of GNNs motivates
cross-covariance graph as the GSO. Specifically, we have shown that for a two-layer GNN, choos-
ing the cross-covariance matrix between the input and output data as the GSO maximizes lower
bounds on the alignment (a function of correlation between the NTK and the available dataset) and
this alignment, in turn, governs the convergence rate and generalization properties of the predictor.
We have validated that the GNNs with cross-covariance graphs indeed outperform GNNs with co-
variance graphs (that are representative of GNNs with graphs obtained only using the input data)
in a time-series prediction task on the HCP-YA dataset. The cross-covariance based GNNs exhibit
faster convergence and smaller training and test errors and these empirical observations even extend
to GNNs deeper than the two-layer one that we have theoretically analyzed.

A main limitation of this work is the restricted focus on a dataset with input and output vectors of
the same dimensionalities. Such a setting lends itself well to using GNN architectures and makes
their theoretical analysis tractable. However, in general, the inputs and outputs for multi-variate
regression problems can often have different dimensionalities. Deriving similar results for such
cases is a potential avenue for future work. Another limitation of our theoretical contributions is the
lack of thorough analysis of the tightness of the lower bounds analyzed.

Cross-covariance graphs in GNNs for regression models could be tied in principle with the tradi-
tional statistical approaches for multi-variate regression approaches, such as partial least squares
(PLS) regression Höskuldsson (1988). Specifically, PLS regression relies on finding a hyperplane
that maximizes the cross-covariance between the latent spaces of input and output data for a regres-
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sion problem. While our work does not rely on any artificial dimensionality reduction, equivalence
between information processing using GNNs over covariance matrices and underlying principal
components have been demonstrated previously Sihag et al. (2022). In this context, establishing the
foundational analyses of GNNs that operate on cross-covariance graphs is of immediate interest.

D ADDITIONAL PROOFS

D.1 PROOF OF THEOREM 1

Proof. Gradient descent is deployed to minimize the following cost

Φ(h) ≜ min
h∈Rp

1

2

M∑
i=1

||yi − fxi
(h)||22 . (39)

The change in predictor output at the t-th step of gradient descent can be written as

fxi
(h(t+1)) = fxi

(
h(t) − η · ∇Φ(h(t))

)
(40)

Assuming η to be sufficiently small we can linearize fxi near the point h(t):

fxi

(
h(t) − η · ∇Φ(h(t))

)
= fxi

(
h(t)

)
− η · Jfxi

(h(t)) · ∇Φ(h(t)) , (41)

where Jfxi
(h(t)) is the Jacobian matrix of the vector-valued function fxi

, evaluated at point h(t).
We can also write the gradient of the loss function Φ(h) in terms of the Jacobians Jfxj

as follows:

∇Φ(h(t)) =

M∑
j=1

(
Jfxj

(h(t))
)T · (fxj (h

(t))− yj) (42)

Putting equation 40 and equation 41 and equation 42 together we get:

fxi(h
(t+1)) = fxi(h

(t))− η ·
M∑
j=1

Jfxi
(h(t))

(
Jfxj

(h(t))
)T · (fxj (h

(t))− yj)

= fxi
(h(t))− η ·

M∑
j=1

Θ(xi,xj) · (fxj
(h(t))− yj)

, (43)

where the n× n matrix Θ(xi,xj) is defined as the product of two Jacobian matrices (which corre-
sponds to the inner product of two gradient vectors that appears in the scalar output case; (see equa-
tion 1):

Θ(xi,xj) = Jfxi
(h(t))

(
Jfxj

(h(t))
)T

(44)

Further, equation 43 can be re-written in the vectorized form as follows

f̃X(h(t+1)) = f̃X(h(t))− η · Θ̃(h(t)) · (f̃X(h(t))− ỹ) (45)

If the NTK matrix Θ̃(h(t)) is constant or non-evolving with respect to epoch t, we can use equa-
tion 45 to analyze the evolution of gradient descent as follows:

f̃X(h(t+1))− ỹ = f̃X(h(t))− ỹ − η · Θ̃ · (f̃X(h(t))− ỹ)

= (I − η · Θ̃)(f̃X(h(t))− ỹ)

= (I − η · Θ̃)t+1(f̃X(h(0))− ỹ)

= −(I − η · Θ̃)t+1ỹ + (I − η · Θ̃)t+1f̃X(h(0))

, (46)

where we have used the notation Θ̃ to denote an NTK matrix with constant behavior. By choosing
the initialization to be small i.e., choosing a small κ, we can ensure that f̃X(h(0)) is sufficiently
close to 0. Recall that the parameters are initialized randomly as

h(0) ∼ N (0, κ2I). (47)
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We can thus say that the output at initialization is 0 in expectation and that the variance of each entry
of the output vector is also proportional to κ2:

E
[
f̃X(h(0))

]
= 0, E

[(
f̃X(h(0))

)2
ℓ

]
= O(κ2) (48)

where
(
f̃X(h(0))

)
ℓ

denotes the ℓ-th entry of the vector f̃X(h(0)). Since f̃X(h(0)) is a vector of

nM independently initialized entries we have E
[
||f̃X(h(0))||22

]
= O(nMκ2). Therefore, using

Markov’s inequality, we obtain

P
(
||f̃X(h(0))||22 ≥ nMκ2

δ

)
≤ δ (49)

If we choose κ = O(ε
√

δ
nM ) we have with probability at least 1− δ that ||f̃X(h(0))||2 < ε which

leads to the following:

||(I − η · Θ̃)t+1f̃X(h(0))||2 ≤ ||(I − η · Θ̃)t+1||op||f̃X(h(0))||2 ≤ (1− ηλmin)
t+1︸ ︷︷ ︸

O(1)

||f̃X(h(0))||2︸ ︷︷ ︸
O(ε)

(50)
Therefore ∥(I − η · Θ̃)t+1f̃X(h(0))∥2 has O(ε) behavior. Then from equation 46 we can write:

||f̃X(h(t+1))− ỹ||2 = ||(I − η · Θ̃)t+1ỹ||2 ±O(ε) (51)

Since ε can be chosen to be arbitrarily small, we subsequently focus only on the term (I−η·Θ̃)t+1ỹ.
From equation 46 we have

f̃X(h(t))− ỹ = −(I − η · Θ̃)t · ỹ ±O

(
ε

√
δ

nM

)
(52)

Because Θ̃ is symmetric with real valued entries, its eigen-decomposition, when rank(Θ̃) = r, is
given by

Θ̃ =

r∑
ℓ=1

λℓvℓv
T
ℓ (53)

equation 53 implies the following eigen-decomposition for (I − η · Θ̃):

I − η · Θ̃ =

r∑
ℓ=1

(1− ηλℓ)vℓv
T
ℓ +

nM∑
ℓ=r+1

1 · vℓv
T
ℓ (54)

Using equation 54 we rewrite equation 52 as

f̃X(h(t))− ỹ = −
( r∑

ℓ=1

(1− ηλℓ)vℓv
T
ℓ +

nM∑
ℓ=r+1

1 · vℓv
T
ℓ

)t

ỹ ±O

(
ε

√
δ

nM

)

= −
r∑

ℓ=1

((1− ηλℓ)
TvT

ℓ ỹ) vℓ −
nM∑

ℓ=r+1

(vT
ℓ ỹ) vℓ ±O

(
ε

√
δ

nM

) (55)

Using the fact that the eigenvectors form an orthonormal basis we can write the training loss after t
steps of Gradient Descent as

||f̃X(h(t))− ỹ||22 =

r∑
ℓ=1

(1− ηλℓ)
2t(vT

ℓ ỹ)
2 +

nM∑
ℓ=r+1

(vT
ℓ ỹ)

2 ±O(ε) (56)

In equation 56 we can see how the non-zero eigenvalues of the NTK and the corresponding eigen-
vectors characterize the training process:
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1. Of the two sums in equation 56,
∑nM

ℓ=r+1(v
T
ℓ ỹ)

2 remains constant during training. There-
fore it is the hard limit for the minimum achievable training error and cannot be optimized.

2. Each summand in
∑r

ℓ=1(1 − ηλℓ)
2t(vT

ℓ ỹ)
2, converges linearly to zero. The rate of con-

vergence is determined by (1− ηλℓ)
2 i.e., the larger λℓ is, the faster the convergence.

3. From the previous two points we can surmise that if ỹ is well-aligned with the eigenvectors
of the NTK that correspond to its larger eigenvalues i.e., (vT

ℓ ỹ)
2 is large whenever λℓ is

large, we’ll have faster convergence.

4. We know that since the eigenvectors form a basis,
∑nM

ℓ=1(v
T
ℓ ỹ)

2 = ||ỹ||22 which is constant.
Therefore the more of ỹ that is aligned with the eigenvectors of the NTK with non-zero
eigenvalues, the smaller the final training error ( after a large enough number of steps) will
be.

Next, we combine the above insights to derive the result in Theorem 1. First, for simplicity, we write
equation 56 as

||f̃X(h(t))− ỹ||22 =

nM∑
ℓ=1

(1− ηλℓ)
2t(vT

ℓ ỹ)
2 ±O(ε) (57)

keeping in mind that that only the first r eigenvalues are non-zero. Then we have:

∑nM
ℓ=1(1− ηλℓ)

2t(vT
ℓ ỹ)

2 ≤
nM∑
ℓ=1

(1− ηλℓ)(v
T
ℓ ỹ)

2

= ỹT

(
nM∑
ℓ=1

(1− ηλℓ)vℓv
T
ℓ

)
ỹ

= ỹT
(
I − η · Θ̃

)
ỹ

(58)

Equation 58 gives the desired upper bound. Now we move on to the lower bound for equation 57.
Using Bernoulli’s inequality which states (1 + x)m ≥ 1 + mx for every integer m ≥ 1 and real
number x > −1 we can write:

∑nM
ℓ=1(1− ηλℓ)

2t(vT
ℓ ỹ)

2 ≥
nM∑
ℓ=1

(1− 2tηλℓ)(v
T
ℓ ỹ)

2

= ỹT

(
nM∑
ℓ=1

(1− 2tηλℓ)vℓv
T
ℓ

)
ỹ

= ỹT
(
I − 2tη · Θ̃

)
ỹ

(59)

Note that in order for gradient descent to converge, η must be small enough so that for all ℓ, ηλℓ ≤ 1.
This leads to the condition for Bernoulli’s inequality to also be satisfied i.e., −ηλℓ ≥ −1. Putting
together the upper bound from equation 58 and the lower bound from equation 59 we can bound the
quantity in equation 57 from both sides:

ỹT
(
I − 2tη · Θ̃

)
ỹ ±O(ε) ≤

nM∑
ℓ=1

(1− ηλℓ)
2t(vT

ℓ ỹ)
2 ≤ ỹT

(
I − η · Θ̃

)
ỹ ±O(ε) (60)

which concludes the proof.
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D.2 PROOF OF LEMMA 1

Proof.

Afilt(S,X, Y ) =

K−1∑
k=0

(
ỹTS̃kx̃

)2
=

K−1∑
k=0

(
M∑
i=1

yT
i S

kxi

)2

=

K−1∑
k=0

(
tr(Y TSkX)

)2
(61)

Using the cyclic property of the trace (and symmetry of Sk) we can write:

tr(Y TSkX) = tr(SkXY T) = tr(XY TSk) = tr(SkY XT) (62)

Using the above and equation 61, we have:

Afilt(S,X, Y ) =

K−1∑
k=0

(
1

2

(
tr(SkXY T) + tr(SkY XT)

))2

(63)

=

K−1∑
k=0

(
tr(Sk · 1

2
(XY T + Y XT))

)2

(64)

=

K−1∑
k=0

(
tr(SkCXY )

)2 ≥

(
1√
K

K−1∑
k=0

∣∣tr(SkCXY )
∣∣)2

(65)

≥

(
1√
K

∣∣∣∣∣
K−1∑
k=0

tr(SkCXY )

∣∣∣∣∣
)2

=

(
1√
K

tr

((
K−1∑
k=0

Sk

)
CXY

))2

︸ ︷︷ ︸
AL

(66)

Above in equation 65 we used the triangle inequality and in equation 65 we used the fact that for
any vector z ∈ Rd: ||z||2 ≥ 1√

d
||z||1.2

D.3 PROOF OF LEMMA 2

Proof. Starting with the original constraint: ||
∑K−1

k=0 S̃kx̃x̃TS̃k||op < α. , we will use upper bounds
to get rid of the dependence on the data and to have a constraint that only depends on S:

||
K−1∑
k=0

S̃kx̃x̃TS̃k||op ≤
K−1∑
k=0

||S̃kx̃x̃TS̃k||op =
K−1∑
k=0

||S̃kx̃||22 (67)

Above, we used the fact that S̃kx̃x̃TS̃k is a rank one matrix with its only non-zero eigenvalue being
||S̃kx̃||22.

K−1∑
k=0

||S̃kx̃||22 =

K−1∑
k=0

M∑
i=1

||Skxi||22 =

K−1∑
k=0

M∑
i=1

xT
i S

2kxi (68)

The eigen-decomposition of S is given by

S =

n∑
ℓ=1

γℓvℓv
T
ℓ . (69)

2A relevant question: When are these inequalities tight? whenever the terms tr(SkCXY ) are close to each
other for different values of k, the inequalities are tighter. If tr(SkCXY ) is the same for every value of k,
equality holds for both inequalities
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Inserting equation 69 into equation 68 leads to
K−1∑
k=0

M∑
i=1

xT
i S

2kxi =

K−1∑
k=0

M∑
i=1

n∑
ℓ=1

γ2k
ℓ (vT

ℓ xi)
2 (70)

Using the notation x̂i to denote vT
ℓ , we have

K−1∑
k=0

M∑
i=1

n∑
ℓ=1

γ2k
ℓ (vT

ℓ xi)
2 =

K−1∑
k=0

M∑
i=1

⟨γ⊙2k, x̂⊙2
i ⟩ (71)

By the linearity of the inner product and Holder’s inequality (keeping in mind that every element of
both vectors is non-negative),

K−1∑
k=0

M∑
i=1

⟨γ⊙2k, x̂⊙2
i ⟩ = ⟨

K−1∑
k=0

γ⊙2k,

M∑
i=1

x̂⊙2
i ⟩ ≤ ||

K−1∑
k=0

γ⊙2k||1 · ||
M∑
i=1

x̂⊙2
i ||∞ (72)

Since x̂i consists of the coefficients of xi projected onto the eigenspace of S, and recall that the
input dataset is normalized, i.e., ||x̂i||2 = ||xi||2 = 1, the term ||

∑M
i=1 x̂

⊙2
i ||∞ in equation 72 can

be upper bounded as

||
M∑
i=1

x̂⊙2
i ||∞ ≤

M∑
i=1

||x̂⊙2
i ||∞ ≤

M∑
i=1

||x̂⊙2
i ||1 =

M∑
i=1

||x̂i||22 ≤ M (73)

Using the upper bound from equation 73 we can further upper bound the quantity from equation 72:

K−1∑
k=0

M∑
i=1

⟨γ⊙2k, x̂⊙2
i ⟩ ≤ M · ||

K−1∑
k=0

γ⊙2k||1

= M · ||
K−1∑
k=0

γ⊙k||22

= M · ||
K−1∑
k=0

Sk||2F

(74)

Putting together equations equation 67 - equation 74 we get:

||
K−1∑
k=0

Sk||F ≤
√
α/(ηM) ⇒ η · ||

K−1∑
k=0

S̃kx̃x̃TS̃k||op ≤ α (75)

which concludes the proof.

D.4 PROOF OF THEOREM 2

Proof. We restate the optimization problem to be considered for the result in this theorem.

S∗ = argmax
S

(
1√
K

tr

((
K−1∑
k=0

Sk

)
CXY

))2

s.t. ||
K−1∑
k=0

Sk||F ≤
√
α/(ηM) (76)

The vectorized form of equation 76 is given by

vec(S∗) = argmax
vec(S)

(
1√
K

⟨vec(
K−1∑
k=0

Sk), vec(CXY )⟩

)2

s.t. ||vec(
K−1∑
k=0

Sk)||2 ≤
√
α/(ηM)

(77)

Thus, equation 77 is equivalent to maximizing the projection of the vector vec(
∑K−1

k=0 Sk) along the
direction of vec(CXY ) on an ℓ2-norm ball of radius

√
α/(ηM), which has the following solution

K−1∑
k=0

(S∗)k = µ · CXY (78)
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where µ =

√
α/(ηM)

||CXY ||F is a normalizing constant to ensure the Frobenius norm of
∑K−1

k=0 (S∗)k sat-
isfies our constraint. Note that while a solution S∗ satisfying equation 78 might not exist for some
values of K, When designing the architecture we could choose K in a way that equation 78 has a
solution. For example with K = 2 there is always a solution as given by equation 19.

D.5 PROOF OF LEMMA 3

Proof. From equation 27, we can write:

Eab = E
g∼N (0,I)

[
σ
(
⟨g, z(a)⟩

)
· σ
(
⟨g, z(b)⟩

)]
= E

g∼N (0,I)

[
σ

(
||z(a)||2 · ⟨g,

z(a)

||z(a)||2
⟩
)
· σ
(
||z(b)||2 · ⟨g,

z(b)

||z(b)||2
⟩
)] (79)

In order to analyze equation 79, we define two random variables u ≜ ⟨g, z(a)

||z(a)||2
⟩ an u′ ≜

⟨g, z(b)

||z(b)||2
⟩. It is evident that the random variables u, u′ are correlated, mean-zero Gaussian random

variables with their joint distribution given by

u, u′ ∼ N

[0
0

]
,Λ =

 1 ⟨z(a),z(b)⟩
||z(a)||2·||z(b)||2

⟨z(a),z(b)⟩
||z(a)||2·||z(b)||2

1

 (80)

Therefore from equation 79 we can write

Eab = E
u,u′∼N (0,Λ)

[
σ
(
||z(a)||2 · u

)
· σ
(
||z(b)||2 · u′

)]
(81)

In order to analyze Eab, we leverage Hermite polynomials, which are discussed next.

Hermite Polynomials. Hermite polynomials are a collection of functions (pj)j∈N which form an
orthonormal basis for the space of square-integrable functions. The first few of these polynomials
can be seen below:

p0(z) = 1, p1(z) = z, p2(z) =
z2 − 1√

2
, p3(z) =

z3 − 3z√
6

, . . . (82)

We can define the inner product between two square-integrable functions f and g as

⟨f, g⟩ =
∫ ∞

−∞
f(z) · g(z) · e−z2/2dz (83)

Keeping in mind that the Hermite polynomials are orthonormal with respect to the inner product
defined in equation 83, we can expand any function f(z) for which ⟨f, f⟩ is bounded, in terms of
these polynomials:

f(z) =

∞∑
ℓ=0

αℓ · pℓ(z) (84)

where we have

αℓ = ⟨f, pl⟩ =
∫ ∞

−∞
f(z) · pℓ(z) · e−z2/2dz (85)

In our analysis, we also leverage another property of these polynomials (O’Donnell, 2014, section
11.2), which is given by

E
(z,z′)

ρ-correlated

[pj(z)pk (z
′)] =

{
ρj if j = k,

0 if j ̸= k
(86)

Essentially, equation 86 establishes orthogonality of the polynomials pj(z) and pk (z
′) when (z, z′)

are a pair of ρ-correlated standard Gaussian random variables. It is straightforward to see that setting
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ρ = 1 in equation 86 recovers the orthonormality of the Hermite polynomials. Based on equation 85
can now write the Hermite expansion of the two functions in equation 81 as:

σ
(
||z(a)||2 · u

)
=

∞∑
ℓ=0

αℓ · pℓ(u), σ
(
||z(b)||2 · u′

)
=

∞∑
ℓ′=0

βℓ′ · pℓ′(u′) (87)

Inserting these into equation 81 we get

Eab = E
u,u′∼N (0,Λ)

[ ∞∑
ℓ=0

αℓ · pℓ(u)
∞∑

ℓ′=0

βℓ′ · pℓ′(u′)

]
(88)

=

∞∑
ℓ=0

∞∑
ℓ′=0

αℓβℓ′ E
u,u′∼N (0,Λ)

[pℓ(u)pℓ′(u
′)] (89)

=

∞∑
ℓ=0

αℓβℓ · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)ℓ (90)

where to get from equation 89 to equation 90 we used the orthogonality property of Hermite poly-
nomials from equation 86. Here, we remark that the coefficients αℓ, βℓ depend on the choice of
non-linear activation function and the magnitudes ||z(a)||2 and ||z(b)||2 respectively.

For the subsequent analysis, we consider the setting where the non-linear activation function is the
hyperbolic tangent function, i.e., σ(y) = tanh(y). Note that tanh is an odd function. Since the
Hermite polynomial pℓ(z) is odd for odd ℓ and even for even ℓ, for even ℓ we have

αℓ =

∫ ∞

−∞
σ(||za||2u) · pℓ(u) · e−u2/2du = 0 (91)

and similarly we have βℓ = 0. This leaves us with only the odd terms in the sum from equation 90,
therefore we can write Eab as

Eab = α1β1 ·
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2︸ ︷︷ ︸
Bab

+

∞∑
ℓ=3,5,···

αℓβℓ · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)ℓ︸ ︷︷ ︸

∆Bab

(92)

For conciseness moving forward, we define the matrices B ∈ RnM×nM which represents the first
non-zero term in the expansion and ∆B ∈ RnM×nM which includes all the subsequent terms. Now,
recalling equation 26 and replacing E with the expansion given in equation 92, the alignment A is
given by

A = tr(QE) = tr(QB) + tr(Q∆B) . (93)

Hence, we conclude the proof.

D.6 PROOF OF LEMMA 4

Proof. We begin with the analysis of the (a, b)-th entry of matrix B, i.e.,

Bab = α1β1 ·
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
(94)

For this purpose, we define the nonlinear function σ̂(·) as

σ̂(||za||22) ≜
α1

||za||2
(95)

=

∫∞
−∞ σ(||za||2u) · p1(u) · e−u2/2du

||za||2
(96)

Keeping in mind that (Blin)aa = ⟨za, za⟩ = ||za||22, we can write:
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Bab = σ̂((Blin)aa) · σ̂((Blin)bb) · (Blin)ab (97)

The element-wise equation in equation 97 implies the following:

B = σ̂(diag(Blin))Blinσ̂(diag(Blin)) (98)

where diag(Blin) is a square nM × nM matrix equal to Blin on the diagonal and zero everywhere
else. Next, we focus on the first term in the expansion of the alignment given in equation 35.

tr(QB) = tr

((
K−1∑
k=0

S̃kỹỹTS̃k

)
B

)
=

K−1∑
k=0

tr(QkB) (99)

where Qk ≜ S̃kỹỹTS̃k. Using equation 98 we can write:

tr (QkB) = tr (Qk · σ̂(diag(Blin))Blinσ̂(diag(Blin))) (100)

We note that Qk is a rank one matrix. Therefore QkB also has rank at most one. Keeping in mind
that σ̂(diag(Blin)) is a diagonal matrix (with non-negative entries) and therefore its eigenvalues are
the elements on its diagonal, calling the largest of these λmax(σ̂(diag(Blin))) or λmax for short and
the smallest one λmin, we can write:

λmintr (QkBlin) ≤ tr
(
QkBlin · σ̂(diag(B))

)
≤ λmaxtr (QkBlin)

⇒ λmintr (QkBlin) ≤ tr
(
Blin · σ̂(diag(Blin))Qk

)
⇒ λ2

mintr (QkBlin) ≤ tr
(
σ̂(diag(Blin))Blin · σ̂(diag(Blin))Qk

)
= tr (QkB)

(101)

We recall from equation 30 that

Alin = tr(QBlin) =

K−1∑
k=0

tr(QkBlin) (102)

Using equation 101 and equation 102 we get

λ2
minAlin ≤

K−1∑
k=0

tr (QkB) = tr(QB) (103)

Note that

λmin = min
a

σ̂(||z(a)||22) = min
a

σ̂(

K−1∑
k=0

(S̃kx̃)2a) = σ̂(max
a

K−1∑
k=0

(S̃kx̃)2a) , (104)

where we have used the fact that σ̂(.) is a non-increasing function (see Figure 2) to establish equa-
tion 104.

Further, because σ̂(.) is a non-increasing function, an upper bound on
∑K−1

k=0 (S̃kx̃)2a will give us
a corresponding lower bound on λmin. To find an upper bound on

∑K−1
k=0 (S̃kx̃)2a, we provide the

following analyses

max
a

K−1∑
k=0

(S̃kx̃)2a ≤ max
a′,i

K−1∑
k=0

(Skxi)
2
a′ (105)

≤ max
i

K−1∑
k=0

||Skxi||22 ≤ max
i

K−1∑
k=0

||Sk||2op||xi||22 (106)

≤
K−1∑
k=0

||Sk||2op =
K−1∑
k=0

||S||2kop (107)
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Figure 2: The function σ̂(·) in the case where σ(x) = tanh(x)

where in the last inequality we used the fact that for every sample xi in the dataset we have
||xi||2 ≤ 1. Therefore, we can write

λ2
min =

(
σ̂(max

a

K−1∑
k=0

(S̃kx̃)2a)

)2

≥

(
σ̂

(
K−1∑
k=0

||S||2kop

))2

(108)

Considering that, in practice, bounding the norm of the GSO S through normalization, (see Ap-
pendix H) ensures that the constraint ||η · Θ̃||op < α of our optimization problem is satisfied, we
next consider the mild assumption that ||S|| is upper bounded. Formally, this assumption is given
by

||S||op ≤ ν (109)
Using equation 109 and equation 108, we reach

λ2
min ≥ ρ (110)

where ρ ≜

(
σ̂

(
K−1∑
k=0

ν2k

))2

(111)

Thus, we can rewrite equation 103 in terms of ρ as
tr(QB) ≥ ρAlin (112)

which concludes the proof.

D.7 PROOF OF LEMMA 5

Proof. We start by defining the Hermite transform of the tanh functioon as gℓ for clarity in subse-
quent analysis and to emphasize that the ℓ-th coefficient αℓ is a function of ||z(a)||2.

gℓ(||z(a)||2) ≜
∫ ∞

−∞
tanh(||z(a)||2u) · pℓ(u) · e−u2/2du = αi (113)

From equation 34, we recall that

∆Bab =

∞∑
i=1

α2i+1β2i+1 · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)2i+1

=

∞∑
i=1

g2i+1(||z(a)||2) · g2i+1(||z(b)||2) · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)2i+1

(114)

It can readily be verified numerically that for a given index ℓ, we either have gℓ(y) ≥ 0, ∀y ≥ 0 or
gℓ(y) ≤ 0, ∀y ≥ 0.3 Consequently, we have g2i+1(||z(a)||2) · g2i+1(||z(b)||2) ≥ 0. We can further

3A simple Python script can be found in https://github.com/shervinkh2000/Cross Covariance NTK that
plots gℓ(y) against y for any given index ℓ. See the file ”numerical verification 1.py”
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conclude that ∆Bab and Bab have the same sign, which is given by sign(⟨z(a), z(b)⟩) since recall
that:

Bab = g1(||z(a)||2)g1(||z(b)||2) ·
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
(115)

Next, in the scenario ⟨z(a), z(b)⟩ ≥ 0, we have

∞∑
i=1

g2i+1(||z(a)||2) · g2i+1(||z(b)||2) · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)2i+1

≤
∞∑
i=1

g2i+1(||z(a)||2) · g2i+1(||z(b)||2) · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
) (116)

=

(∑∞
i=1 g2i+1(||z(a)||2) · g2i+1(||z(b)||2)

)
g1(||z(a)||2) · g1(||z(b)||2)

·Bab (117)

We established previously that g2i+1(||z(a)||2) and g2i+1(||z(b)||2) have the same sign for any i ≥ 0.

Further, | g2i+1(||z(a)||2)
g1(||z(a)||2)

| is a non-decreasing function in ||z(a)||2 for any i ≥ 0 4. Hence, we can
continue from equation 117, such that, we have(∑∞

i=1 g2i+1(||z(a)||2) · g2i+1(||z(b)||2)
)

g1(||z(a)||2) · g1(||z(b)||2)
·Bab ≤ lim

y→∞

(
∑∞

i=1 g2i+1(y) · g2i+1(y))

g1(y) · g1(y)
·Bab

=

(
lim
y→∞

∑∞
i=1(g2i+1(y))

2

(g1(y))2

)
Bab

,

(118)
which implies that

∆Bab ≤ β ·Bab (119)

where

β ≜ lim
y→∞

∑∞
i=1(g2i+1(y))

2

(g1(y))2

=

∑∞
i=1

(∫∞
−∞(limy→∞ tanh(y · u)) · pℓ(u) · e−u2/2du

)2

(∫∞
−∞(limy→∞ tanh(y · u)) · p1(u) · e−u2/2du

)2 =
π − 2

2
≃ 0.57

(120)

Noting that all of the inequalities from equation 116 and equation 118 hold in the opposite direction
when Bab < 0, the proof is concluded.

D.8 PROOF OF THEOREM 3

Proof. From Lemma 5, we know that the first term in the expansion of the alignment i.e., tr(QB)
is lower bounded by Alin multiplied by a constant. Hence, it remains to analyze how the second
term, tr (Q∆B), can affect alignment. To begin with, we make the following assumption that the
alignment in the linear case is sufficiently large, i.e.,

Alin = tr (QBlin) ≥ ξ · ||Q||F ||Blin||F (121)

where 0 ≤ ξ ≤ 1, is some constant that quantifies how large the alignment is in the linear case. We
define the matrix W ∈ RnM×nM , such that, for any (a, b)-th entry of the matrices B,∆B, and W ,
the following holds

(∆B)ab = BabWab (122)

4A simple Python script can be found in https://github.com/shervinkh2000/Cross Covariance NTK that
plots | g2i+1(y)

g1(y)
| against y for any given index i. See the file ”numerical verification 2.py”
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Recall from Lemma equation 5 that for the (a, b)-th entries of B and ∆B, we have

|(∆B)ab| ≤ βBab and (∆B)abBab ≥ 0 (123)

Therefore, the entries of W must satisfy 0 ≤ Wab ≤ β.

Analysis of term tr (Q∆B). Based on the discussion above, we now analyze the term tr (Q∆B)
in the alignment.

tr (Q∆B) =
∑
a,b

Qab(∆B)ab

=
∑
a,b

QabBabWab

=
∑

QabBab≥0

QabBabWab +
∑

QabBab<0

QabBabWab

≥ β ·
∑

QabBab<0

QabBab

(124)

To achieve the last inequality, we consider the worst case scenario, i.e., the most negative value
possible for tr (Q · (∆B)). The worst case scenario corresponds to the setting when Wab = 0 for
all non-negative terms in the sum

∑
a,b QabBabWab, and Wab = β for all the negative terms. For

conciseness, we introduce the following notation:

tr (QB)+ =
∑

QabBab≥0

QabBab, and tr (QB)− =
∑

QabBab<0

QabBab (125)

Thus, we can write
tr (Q∆B) ≥ −β

∣∣tr (QB)−
∣∣ (126)

Next, we aim to provide an upper bound on
∣∣tr (QB)−

∣∣. Recall from equation 98 that

B = σ̂(diag(Blin)) ·Blin · σ̂(diag(Blin))

Hence, since σ̂(diag(Blin)) is a diagonal matrix, it readily follows that

λ2
min||Blin||F ≤ ||B||F ≤ λ2

max||Blin||F (127)

where λmax = maxi(σ̂(diag(Blin)))ii is the largest element on the diagonal of σ̂(diag(Blin)) and
therefore, also its largest eigenvalue. Similarly, λmin = mini(σ̂(diag(Blin)))ii is the smallest el-
ement on the diagonal of σ̂(diag(Blin)) and its smallest eigenvalue. Note that all elements on the
diagonal of Blin are non-negative. From equation 101, we have

tr (QB) ≥ λ2
mintr (QBlin)

≥ ξλ2
min||Q||F ||Blin||F

≥ ξ
λ2
min

λ2
max

||Q||F ||B||F

⇒ tr (QB) =
∣∣tr (Q ·B)+

∣∣− ∣∣tr (Q ·B)−
∣∣

≥ ξ
λ2
min

λ2
max

||Q||F ||B||F

(128)

Since changing the signs of individual elements of a matrix does not change the Frobenius norm of
said matrix, we can write ∣∣tr (Q ·B)+

∣∣+ ∣∣tr (Q ·B)−
∣∣ ≤ ||Q||F ||B||F (129)

From equation 128 and equation 129, we have the following∣∣tr (Q ·B)−
∣∣ ≤ 1/2(1− ξ

λ2
min

λ2
max

)||Q||F ||B||F (130)
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Next, recalling equation 126 and using equation 130, we have

tr (Q · (∆B)) ≥ −β/2(1− ξ
λ2
min

λ2
max

)||Q||F ||B||F

≥ −β/2(
λ2
max

ξλ2
min

− 1)tr (QB)

(131)

Using equation 131, we can lower bound A as follows

A = tr (QB) + tr (Q · (∆B))

≥
(
1− β/2(

λ2
max

ξλ2
min

− 1)

)
tr (QB)

≥ λ2
min

(
1− β/2(

λ2
max

ξλ2
min

− 1)

)
Alin

(132)

Now recall from the proof of Lemma 4 (Equations 104 to 110):

λ2
min =

(
σ̂(max

a

K−1∑
k=0

(S̃kx̃)2a)

)2

≥

(
σ̂

(
K−1∑
k=0

ν2k

))2

= ρ (133)

Similarly for λmax, using the fact that σ̂(.) is a non-increasing function:

λmax = max
a

σ̂(||z(a)||22) ≤ σ̂(0) ≤ 2.51 (134)

Using equation 133 and equation 134, from equation 132 we can continue to write:

A ≥

(
ρ

(
1 +

β

2

)
− β

2
·
(
2.51

ρ

)2

· 1
ξ

)
Alin (135)

Further, using the following definitions

c ≜ ρ

(
1 +

β

2

)
, and d ≜

β

2
·
(
2.51

ρ

)2

, (136)

we can rewrite equation 132 as

A ≥ (c− d

ξ
)Alin (137)

Thus, the proof is concluded.

D.9 PROOF OF LEMMA 9

Proof. Our approach is to upper bound the Rademacher complexity term in equation 190 for the
class of hypotheses H̃filt(B) where the vector of filter coefficients are close to some initialization.
Recall the definition of H̃filt(B) from equation 192:

H̃filt(B) ≜

{
fx(h) =

K−1∑
k=0

hkS
kx

∣∣∣∣ h ∈ RK , ||h− h(0)||2 ≤ B

}
We can write the complexity term from equation 190 as:

R(ℓ ◦ H̃filt ◦ S) =
1

M
E

σ∼{±1}M

[
sup

h∈H̃filt

M∑
i=1

σi · ℓ(f(xi),yi)

]
(138)

=
1

M
E

σ∼{±1}M

[
sup

||h−h(0)||2≤B

M∑
i=1

σi · ||
K−1∑
k=0

hkS
kxi − yi||22

]
(139)

Next, we provide the following lemma (an application of Lemma 26.9 from (Shalev-Shwartz &
Ben-David (2014))).
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Lemma 6 (Contraction lemma). Let ϕ : R → R be a ρ-Lipschitz function, i.e., we have
|ϕ(α)− ϕ(β)| ≤ ρ|α − β|,∀α, β ∈ R. For a ∈ Rm, let ϕ(a) denote the vector
[ϕ1 (a1) , . . . , ϕm (ym)] and let ϕ ◦A = {ϕ(a) : a ∈ A}. Then, we have

R(ϕ ◦ ℓ ◦ H ◦ S) ≤ ρR(ℓ ◦ H ◦ S).

We recall the assumption that ||
∑K−1

k=0 hkS
kxi − yi||2 ≤ ρ. Also note that the function ϕ(z) = z2

is ρ-Lipschitz continuous over the domain |z| ≤ ρ, therefore using Lemma 6 and equation 139 we
can write:

R(ℓ ◦ H̃filt ◦ S) ≤ ρ · 1

M
E

σ∼{±1}M

[
sup

||h−h(0)||2≤B

M∑
i=1

σi · ||
K−1∑
k=0

hkS
kxi − yi||2

]
(140)

Next, we re-state Corollary 4 from Maurer (2016) that enables us to bound the Rademacher com-
plexity for our setting when the hypothesis functions are vector valued.

Lemma 7. For a given set X = (x1, . . . , xn) ∈ Xn, a class of fucntions F , such that, f : X → ℓ2
and an L-Lispschitz function gi : ℓ2 → R, we have

E

[
sup
f∈F

∑
i

σigi (f (xi))

]
≤

√
2LE

sup
f∈F

∑
i,j

σijfj (xi)

 ,

where σij is an independent doubly indexed Rademacher sequence and fj (xi) is the j-th component
of f (xi).

The above lemma still holds if instead of f : X → ℓ2 we have f : X → Bn(ρ) ⊂ Rn where Bn(ρ)
is an ℓ2 norm ball in Rn of radius ρ centered at the origin.

In our case, we can take X = R × R. Note that {(xi,yi)}Mi=1 ∈ XM = (R × R)M and also
g(z) = ||z||2 which is L-Lipschitz with L = 1. Now we can apply Lemma 7 to upper bound
equation 140:

M/ρ ·R(ℓ ◦ H̃filt ◦ S) ≤
√
2E

 sup
||h−h(0)||2≤B

M∑
i=1

n∑
j=1

σij · (
K−1∑
k=0

hkS
kxi − yi)

 (141)

=
√
2 E
σi∼{±1}n

[
sup

||h−h(0)||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

hkS
kxi − yi⟩

]
(142)

Writing h = h(0) +∆h, we have

M/ρ ·R(ℓ ◦ H̃filt ◦ S) ≤
√
2 E
σi∼{±1}n

[
sup

||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

(h
(0)
k +∆hk)S

kxi − yi⟩

]
(143)

≤
√
2 E
σi∼{±1}n

[
sup

||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

h
(0)
k Skxi − yi⟩

]

+
√
2 E
σi∼{±1}n

[
sup

||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

∆hkS
kxi⟩

]
(144)

In equation 144, the first term does not depend on ∆h and hence, we can remove the supremum,
i.e.,

E
σi∼{±1}n

[
sup

||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

h
(0)
k Skxi − yi⟩

]
= E

σi∼{±1}n

[
M∑
i=1

⟨σi,

K−1∑
k=0

h
(0)
k Skxi − yi⟩

]
(145)

Further, using the linearity of expectations and inner products, we have
M∑
i=1

K−1∑
k=0

E
σi∼{±1}n

[
⟨σi, h

(0)
k Skxi − yi⟩

]
=

M∑
i=1

K−1∑
k=0

n∑
j=1

(h
(0)
k Skxi − yi)j E

σi∼{±1}n
[(σi)j ] = 0

(146)
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Thus, we can restate equation 144 as

M/ρ ·R(ℓ ◦ H̃filt ◦ S) ≤
√
2 E
σi∼{±1}n

[
sup

||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

∆hkS
kxi⟩

]
(147)

Focusing on the supremum in equation 147, we have

sup
||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

∆hkS
kxi⟩ = sup

||∆h||2≤B

M∑
i=1

K−1∑
k=0

⟨σi,∆hkS
kxi⟩ (148)

= sup
||∆h||2≤B

K−1∑
k=0

∆hk

(
M∑
i=1

⟨σi, S
kxi⟩

)
(149)

We introduce the notation ak ≜
∑M

i=1⟨σi, S
kxi⟩. Note that ak doesn’t depend on ∆h. Hence,

sup
||∆h||2≤B

K−1∑
k=0

∆hk

(
M∑
i=1

⟨σi, S
kxi⟩

)
= sup

||∆h||2≤B

K−1∑
k=0

∆hkak = sup
||∆h||2≤B

⟨∆h,a⟩ = B · ||a||2

(150)
Inserting equation 150 into equation 147, we have

M/ρ ·R(ℓ ◦ H̃filt ◦S) ≤
√
2 E
σi∼{±1}n

[B · ||a||2] =
√
2B E

σi∼{±1}n


√√√√K−1∑

k=0

(
M∑
i=1

⟨σi, Skxi⟩

)2


(151)
Further, using Jensen’s inequality in equation 151, we get

M/ρ ·R(ℓ ◦ H̃filt ◦ S) ≤
√
2B

√√√√√K−1∑
k=0

E
σi∼{±1}n

( M∑
i=1

⟨σi, Skxi⟩

)2
 (152)

=
√
2B

√√√√√√K−1∑
k=0

E
σi∼{±1}n


 M∑

i=1

n∑
j=1

(σi)j(Skxi)j

2
 (153)

=
√
2B

√√√√√K−1∑
k=0

E
σi∼{±1}n

 M∑
i=1

n∑
j=1

((σi)j)
2
((Skxi)j)

2

 (154)

=
√
2B

√√√√K−1∑
k=0

M∑
i=1

n∑
j=1

((Skxi)j)
2 (155)

=
√
2B

√√√√ M∑
i=1

K−1∑
k=0

||Skxi||22 (156)

In the above set of equations from equation 154 to equation 155, we have used the fact that (σi)j
are independent and therefore:

E [(σi)j(σk)ℓ] =

{
1 if i = k, j = l

0 o.w.
(157)

Finally, we provide an upper bound on the Rademacher complexity that is proportional to 1/
√
M .

From equation 156:

M/ρ ·R(ℓ ◦ H̃filt ◦ S) ≤
√
2B

√√√√ M∑
i=1

K−1∑
k=0

||Skxi||22 ≤
√
2B
√

MKmax
k,i

||Skxi||22 (158)

⇒ R(ℓ ◦ H̃filt ◦ S) ≤ Bρ

√
2Kmaxk,i ||Skxi||22

M
(159)

We thus conclude the proof.
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D.10 PROOF OF LEMMA 10

Proof. Our focus is on the setting where the NTK does not change during training. In such a case,
the “movement” of the parameters (i.e., how much the vector of parameters changes) during gradient
descent is directly related to the NTK.

Recall that the NTK matrix Θ̃(h) ∈ RnM×nM consists of M2 blocks, each of which is an n ×
n matrix Θ(xi,xj) = Jfxi

(h(t))
(
Jfxj

(h(t))
)T

(see equation 7). Hence, assuming that the NTK
does not change during training is equivalent to assuming that the Jacobian matrices Jfxi

(h(t)) are
constant. Also, for ease of notation, we define the big Jacobian matrix J̃ ∈ RnM×p that consists of
all the Jacobian matrices Jfxi

stacked on top of one another. Therefore, we have

Θ̃(h) = (J̃(h))(J̃(h))T (160)

Again, we note that in general both J̃ (and consequently, Θ̃) can depend on the parameters h but we
are considering cases where they do not.5

Similar to section 2, we denote the vector of all parameters of the predictor as h ∈ Rp. For the t-th
step of gradient descent we can write:

h(t+1) = h(t) − η · ∇Φ(h(t)) (161)

Also, we can write the gradient in terms of the Jacobian evaluated at different input points as follows

∇Φ(h(t)) =

M∑
j=1

(
Jfxj

)T · (fxj
(h(t))− yj) (162)

Further, using the linearization of fxj
around the initialization h(0), we have

fxj
(h(t))− yj = fxj

(h(0)) + Jfxj
· (h(t) − h(0))− yj (163)

Since Jfxj
is assumed to be constant, we can further replace fxj (h

(0)) with a linearization around
h = 0, such that, we have

fxj
(h(0)) = fxj

(0) + Jfxj
h(0) = Jfxj

h(0) (164)

In equation 164, we used the fact that the output of the predictor is zero when all its parameters are
set to zero. By inserting equation 164 into equation 163, we get

fxj (h
(t))− yj = Jfxj

h(t) − yj (165)

And inserting equation 165 into equation 162, we have

∇Φ(h(t)) =

M∑
j=1

(
Jfxj

)T · (Jfxj
h(t) − yj) (166)

Replacing the gradient of the loss ∇Φ(h(t)) in equation 161 by equation 166 leads to

h(t+1) = h(t) − η ·
M∑
j=1

(
Jfxj

)T · (Jfxj
h(t) − yj) , (167)

which implies

Jfxi
h(t+1) = Jfxi

h(t) − η ·
M∑
j=1

Jfxi

(
Jfxj

)T · (Jfxj
h(t) − yj) (168)

5This is the case for any linear predictor like the graph filter as we saw in section equation 3 and it is also
the case for some neural networks with infinite width in every layer. See Appendix F and Liu et al. (2020) for
details.
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Introducing the notation r
(t)
i to denote Jfxi

h(t), we can rewrite equation 168 as

r
(t+1)
i = r

(t)
i − η ·

M∑
j=1

Θ(xi,xj) · (r(t)j − yj) (169)

Similar to the procedure in equation 5, we can stack all the vectors r(t)i together in one tall vector
r̃(t) ∈ RnM×1 and rewrite equation 169 in the vectorized form as follows

r̃(t+ 1) = r̃(t)− η · Θ̃(r̃(t)− ỹ) (170)

⇒ r̃(t+ 1)− ỹ = r̃(t)− ỹ − η · Θ̃(r̃(t)− ỹ) (171)

⇒ r̃(t)− ỹ = (I − η · Θ̃)t(r̃(0)− ỹ) (172)

Now, writing equation 167 in terms of the big Jacobian matrix J̃

h(t+1) = h(t) − η · J̃
T
(r̃(t)− ỹ) (173)

and replacing (r̃(t)− ỹ) by the quantity from equation 172 we get

⇒ h(t+1) = h(t) + η · J̃
T
(I − η · Θ̃)tỹ − η · J̃

T
(I − η · Θ̃)tr̃(0) (174)

⇒ h(∞) − h(0) = η

∞∑
t=0

J̃
T
(I − η · Θ̃)tỹ − η

∞∑
t=0

J̃
T
(I − η · Θ̃)tr̃(0) (175)

We write the eigen-decomposition of Θ̃ (assuming it has rank r) as

Θ̃ =

r∑
ℓ=1

λℓvℓv
T
ℓ

which implies the following eigen-decomposition for (I − η · Θ̃).

I − η · Θ̃ =

r∑
ℓ=1

(1− ηλℓ)vℓv
T
ℓ +

nM∑
ℓ=r+1

1 · vℓv
T
ℓ (176)

Keeping in mind that λℓ = 0 for ℓ > r we use the eigen-decomposition in equation 176 to write

⇒ h(∞) − h(0) = η

∞∑
t=0

nM∑
ℓ=1

J̃
T
(1− ηλℓ)

tvℓv
T
ℓ ỹ − η

∞∑
t=0

nM∑
ℓ=1

J̃
T
(1− ηλℓ)

tvℓv
T
ℓ r̃(0) (177)

Note that

for j > r, Θ̃vj =

r∑
ℓ=1

λℓvℓv
T
ℓ vj = 0 . (178)

Hence, from equation 160 and equation 178, we have for j > r:

J̃ · J̃
T
vj = 0 (179)

Assuming that J̃ ∈ RnM×p is full-column rank, equation 179 implies that

for j > r, J̃
T
vj = 0 (180)

Hence, we can write equation 177 as

h(∞) − h(0) = η

∞∑
t=0

r∑
ℓ=1

J̃
T
(1− ηλℓ)

tvℓv
T
ℓ ỹ − η

∞∑
t=0

r∑
ℓ=1

J̃
T
(1− ηλℓ)

tvℓv
T
ℓ r̃(0) (181)

= η

r∑
ℓ=1

J̃
T 1

ηλℓ
vℓv

T
ℓ ỹ − η

r∑
ℓ=1

J̃
T 1

ηλℓ
vℓv

T
ℓ r̃(0) (182)

= J̃
T
Θ̃†ỹ − J̃

T
Θ̃†r̃(0) (183)
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Now, similar to what we saw in the proof of Theorem 1 (equation 47 - equation 50), if we choose the

parameter controlling the magnitude of initialization to be κ = O(ε
√

δ
nM ), then with probability at

least 1− δ we have r̃(0) = O
(
ε
√

δ
nM

)
and ||r̃(0)||2 = O(ε).

||h(∞) − h(0)||2 =

√
ỹTΘ̃†J̃ · J̃

T
Θ̃†ỹ ±O(ε) (184)

=

√
ỹTΘ̃†Θ̃Θ̃†ỹ ±O(ε) (185)

Finally, since Θ̃† acts as a weak inverse, we get

∥h(∞) − h(0)∥2 =

√
ỹTΘ̃†ỹ ±O(ε) (186)

Thus, we’ve concluded the proof by showing that the “movement” of the parameters, ||h(∞) −
h(0)||2, is directly related to the NTK. (More precisely, the pseudo-inverse of the NTK Θ̃†)

E ALIGNMENT, THE NTK AND GENERALIZATION

In this section, we will briefly go over how alignment relates to generalization. We start by providing
a few definitions from Shalev-Shwartz & Ben-David (2014). Consider a function class F and a
function f ∈ F and a distribution D from which we sample data points z. Also consider a set
S = {z1, z2, · · · , zM} of M samples, sampled i.i.d from D. The population average LD(f) and
sample average LS(f) of the function f are then defined as follows:

LD(f) ≜ Ez∼D[f(z)], LS(f) ≜
1

M

M∑
i=1

f(zi) (187)

Also, the Rademacher complexity of class F with respect to S is defined as:

R(F ◦ S) ≜ 1

M
E

σ∼{±1}M

[
sup
f∈F

M∑
i=1

σif (zi)

]
(188)

where each element of the random vector σ is either 1 or -1 with equal probability.

Now consider class of functions (called hypotheses here) H and some loss function ℓ(h, z). In an
empirical risk minimization problem, our goal is to find the function h∗ ∈ H that minimizes the
sample loss LS(ℓ(h)):

h∗ = ERMH(S) = argmin
h∈H

LS(ℓ(h)) = argmin
h∈H

1

M

M∑
i=1

ℓ(h, zi) (189)

But minimizing the sample loss does not necessarily lead to a small population loss LD(ℓ(h)) =
Ez∼D[ℓ(z, h)]. The gap between these two losses is called the generalization error. We present the
following lemma which upper bounds the generalization error for a class of functions H based on
the Rademacher complexity of the class:
Lemma 8 (Theorem 26.5 from Shalev-Shwartz & Ben-David (2014)). Assume that for all z and
h ∈ H we have that |ℓ(h, z)| ≤ c. Then with probability of at least 1− δ, for all h ∈ H,

LD(ℓ(h))− LS(ℓ(h)) ≤ 2R(ℓ ◦ H ◦ S) + 4c

√
2 ln(4/δ)

M
(190)

where ℓ(h, z) is some loss function. In particular, this holds for h = ERMH(S) which is the solution
of the empirical risk minimization problem.

In the case of the multivariate regression problem that we consider in this paper, each point z is an
input output pair of vectors (xi,yi) and the loss function is quadratic. Also the set H in our case
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corresponds to the set of all possible predictors or the set of possible parameter vectors h ∈ Rp and
the set S is our training set.

From Lemma equation 8, we can surmise that if the complexity of the function class ℓ ◦ H
is sufficiently small, our trained model generalizes to unseen input output pairs sampled from the
same distribution as the training set. Henceforth in this section we will only be considering the
hypothesis class of graph filters with K filter taps:

Hfilt ≜

{
fx(h) =

K−1∑
k=0

hkS
kx

∣∣∣∣ h ∈ RK

}
(191)

First, in the next lemma, we will be considering the subset H̃filt ⊂ Hfilt, for which the vector of
filter coefficients is close to some initialization h(0). Formally:

H̃filt(B) ≜

{
fx(h) =

K−1∑
k=0

hkS
kx

∣∣∣∣ h ∈ RK , ||h− h(0)||2 ≤ B

}
(192)

The following lemma gives us an upper bound for the complexity of H̃filt:

Lemma 9. Consider the class of hypotheses H̃filt(B) defined in equation 192. Assuming that
||
∑K−1

k=0 hkS
kxi − yi||2 ≤ ρ, ∀(xi,yi) ∈ S,h ∈ H̃filt, the Rademacher complexity of H̃filt can

be upper bounded as follows:

R(ℓ ◦ H̃filt ◦ S) ≤ Bρ

√
2Kmaxk,i ||Skxi||22

M
(193)

where the loss function is quadratic ℓ(h, z = (xi,yi)) = ||
∑K−1

k=0 hkS
kxi − yi||22.

For proof of Lemma 9 see subsection D.9. In order to meaningfully utilize Lemma 9, we next bound
the movement of the vector of parameters (in this case the filter coefficients) from initialization using
a straightforward extension of a result from Arora et al. (2019).

Lemma 10. Consider the prediction task defined in section 2. If the NTK Θ̃(h(t)) is constant

during training and κ = O(ε
√

δ1
nM ), then with probability at least 1− δ1, The change in the vector

of parameters, h, after infinitely many steps of gradient descent is related to the NTK matrix, Θ̃, as
follows:

||h(∞) − h(0)||22 =

√
ỹTΘ̃†ỹ ±O(ε) 6 (194)

For proof of Lemma 10 see subsection D.10. Motivated by the above lemma we define the class
of functions Htrained which includes the family of graph filters where the coefficients have been
initialized randomly to some vector h(0) and subsequently updated using an arbitrary number of
gradient descent steps:

Htrained ≜

fx(h) =

K−1∑
k=0

hkS
kx

∣∣∣∣∣ h ∈ RK initialized to h(0) with κ = O

(
ε

√
δ1
nM

)
,

then updated using Gradient Descent


(195)

Finally, putting the previous Lemmas 8, 9 and 10 together we get the result that relates generalization
to the NTK:
Theorem 4. Consider the prediction task defined in section 2 and the hypothesis class Htrained

of graph filters trained using Gradient Descent. Under the assumption that |ℓ(h, z)| =

||
∑K−1

k=0 hkS
kxi − yi||22 ≤ ρ2, ∀(xi,yi) ∈ S,h ∈ Htrained, with probability of at least 1− δ, for

all h ∈ Htrained, we have

LD(ℓ(h))− LS(ℓ(h)) ≤ 2ρ

√
2K · (maxk,i ||Skxi||22) · (ỹTΘ̃†ỹ)

M
+ 4ρ2

√
2 ln(4/δ2)

M
(196)

6If Θ̃ is full rank then this becomes
√

ỹTΘ̃−1ỹ
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where δ = δ1 + δ2. In particular, equation 196 holds for h = ERMH(S) which is the solution of
the empirical risk minimization problem.

Theorem 4 reveals that the upper bound on generalization error is proportional to the term√
ỹTΘ̃†ỹ. While maximizing the alignment i.e., A = ỹTΘ̃ỹ and minimizing the term ỹTΘ̃†ỹ

are clearly not identical objectives, there is a close relationship between the two as formalized in the
following result (Theorem 2 from Wang et al. (2022a)):

ỹTỹ

A(X,Y, S)
≤ ỹTΘ̃†ỹ ≤ λmax(Θ̃)

λmin(Θ̃)

ỹTỹ

A(X,Y, S)
(197)

7 equation 197 tells us that for a class of predictors where the ratio of the largest and smallest
eigenvalues of the NTK i.e. λmax(Θ̃)

λmin(Θ̃)
is more or less constant between different predictors, the

generalization error bound given in Theorem 4 is governed by 1/A(X,Y, S). This means within
such a class, predictors with larger alignment are likely to have a smaller generalization error. The
question remains that for the classes of predictors discussed within the paper, namely Graph filters
and two-layer GNNs, how much does λmax(Θ̃)

λmin(Θ̃)
vary between predictors. This is an avenue for

potential future work.

F WHY THE NTK IS CONSTANT FOR A TWO-LAYER GNN WITH INFINITE
WIDTH

We start this section with the following proposition from Liu et al. (2020):
Proposition 3 ((Small Hessian norm implies small change in tangent kernel)). Given a point w0 ∈
Rp and a ball B (w0, R) := {w ∈ Rp : ∥w −w0∥ ≤ R} with fixed radius R > 0, if the Hessian
matrix satisfies ∥H(w)∥ < ϵ, where ϵ > 0, for all w ∈ B (w0, R), then the tangent kernel K(w)
of the model, as a function of w, satisfies∣∣K(x,z)(w)−K(x,z) (w0)

∣∣ = O(ϵR), ∀w ∈ B (w0, R) ,∀x, z ∈ Rd

Remark 4. It will now suffice to show that the norm of the Hessian matrix ||H|| is sufficiently small
if we choose our network width F large enough. This means if F is chosen to be large enough, the
NTK will be almost constant within a ball of arbitrary fixed radius R around initialization.

Note that the above proposition is given for the case where the network output f is a scalar and
an element of the NTK is defined as K(xi,xj)(w) := ∇fxi(w)T∇fxj (w). Since for a GNN the
output is a vector fx(h), we will consider the Hessian of a network with a scalar output equal to the
first element of this vector which we’ll call f1(h). Also for illustration purposes, we will consider a
GNN where each filter only has a single coefficient (e.g. the i-th filter in the first layer: Gi(S) = giS
and the j-th filter in the second layer: Hj(S) = hjS). Similar end results hold for GNNs with filters
that have K > 1 coefficients. We now derive the different elements of the Hessian.

∂2f1
∂gi∂gj

=

{
1√
F
(hiSdiag (diag (σ′′ (giSx))Sx)Sx)1 , if i = j

0, otherwise
(198)

∂2f1
∂hi∂hj

= 0 (199)

∂2f1
∂gi∂hj

=

{
1√
F
(Sdiag (σ′ (giSx)Sx))1 , if i = j

0, otherwise
(200)

The Hessian can be written as follows:
7Since in our case Θ̃ isn’t full-rank, by λmin(Θ̃) we mean the smallest eigenvalue of Θ̃ that is greater than

0.
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H =

[
Hgg Hgh

(Hgh)
T Hhh

]
(201)

where each of the sub-matrices Hgg, Hgh are diagonal F × F matrices and Hhh = 0.

||H|| = ||
[

Hgg 0
0 0

]
+

[
0 Hgh

(Hgh)
T 0

]
|| ≤ ||

[
Hgg 0
0 0

]
||+ ||

[
0 Hgh

(Hgh)
T 0

]
||

(202)

= max
i

|(Hgg)ii|+max
i

|(Hgh)ii| = max
i

|
(
∂2f1
∂2gi

)
|+max

i
|
(

∂2f1
∂gi∂hi

)
| (203)

⇒ ||H|| ≤ max
i

|
(
∂2f1
∂2gi

)
|+max

i
|
(

∂2f1
∂gi∂hi

)
| (204)

We will assume the following. The function σ(.) is twice differentiable and the magnitude of its
second derivative is at most Bσ (e.g. tanh or Sigmoid). We also recall that our input data has been
normalized such that ||x||2 ≤ 1. We will also assume ||S||op ≤ ν.

max
i

|
(
∂2f1
∂2gi

)
| = max

i
| 1√

F
(hiSdiag (diag (σ′′ (giSx))Sx)Sx)1 | (205)

≤ max
i

|| 1√
F
hiSdiag (diag (σ′′ (giSx))Sx)Sx||∞ (206)

≤ max
i

1√
F
hi||Sdiag (diag (σ′′ (giSx))Sx)S||op||x||2 (207)

≤ max
i

1√
F
hi||S||2op||diag (diag (σ′′ (giSx))Sx) ||op (208)

For the rightmost term in equation 208 we can write:

||diag (diag (σ′′ (giSx))Sx) ||op ≤ ||diag (σ′′ (giSx))Sx||∞ ≤ Bσ||S||op||x||2 (209)

using equation 208 and equation 209 we get:

max
i

|
(
∂2f1
∂2gi

)
| ≤ (max

i
hi)

1√
F
Bσ||S||3op = O(

1√
F
) (210)

We can similarly show that maxi |
(

∂2f1
∂gi∂hi

)
| = O( 1√

F
). using these and equation 204 we conclude:

||H|| = O(
1√
F
) (211)

The important take away is the order of ||H|| in terms of F . note that even if we set aside the
simplifying assumption that each filter has only a single coefficient, it still won’t be too difficult
to show that ||H|| = O( 1√

F
) since H will be similarly sparse with O(K) number of non zero

diagonals, and aside from the factor of 1√
F

, none of its elements depend on F . Going back to
proposition 3 we conclude that for the two-layer GNN discussed in this paper, as F → ∞ the NTK
converges to a constant matrix.

G TRAINING THE FIRST LAYER

The NTK, and subsequently the alignment, for the case where we train the filter coefficients of both
layers is equal to the sum of the cases where we train only the first layer and only the second layer
respectively. We analyzed alignment when training the second layer in Section 3. For completeness,
here we analyze the alignment when only training the first layer to show that similar results hold.
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The NTK for the two-layer GNN where we randomly initialize all filter coefficients by sampling
i.i.d from a Gaussian distribution and then only train the filter coefficients in the first layer, is the
first term of the NTK in Proposition 2. It is re-stated here as follows.

Θ̃
(1)
GNN (h) =

1

F

F∑
f=1

K−1∑
k=0

(
c
(1)
f,k

)(
c
(1)
f,k

)T
(212)

where we recall from equation 23 that:

c
(1)
f,k = Hf (S̃) · diag(σ′(Gf (S̃)x̃)S̃

kx̃) (213)

In the asymptote of the width of the hidden layer, i.e., F → ∞, we have

Θ̃
(1)
GNN (h) = lim

F→∞

1

F

F∑
f=1

K−1∑
k=0

(
Hf (S̃) · diag(σ′(Gf (S̃)x̃)S̃

kx̃)
)(

Hf (S̃) · diag(σ′(Gf (S̃)x̃)S̃
kx̃)
)T

(214)

= E
g∼N (0,I), h∼N (0,I)

[
K−1∑
k=0

(
H(S̃) · diag(σ′(G(S̃)x̃)S̃kx̃)

)(
H(S̃) · diag(σ′(G(S̃)x̃)S̃kx̃)

)T]
(215)

We begin by focusing on the expectation over h, such that,

Θ̃
(1)
GNN (h) =

K−1∑
k=0

E
g∼N (0,I)

[
E

h∼N (0,I)

[(
K−1∑
k′=0

hk′ S̃k′
diag(σ′(G(S̃)x̃)S̃kx̃)

)

×

(
K−1∑
k′′=0

hk′′ S̃k′′
diag(σ′(G(S̃)x̃)S̃kx̃)

)T
 (216)

We first evaluate the inner expected value from equation 216 with respect to h:

E
h∼N (0,I)

(K−1∑
k′=0

hk′ S̃k′
diag(σ′(G(S̃)x̃)S̃kx̃)

)(
K−1∑
k′′=0

hk′′ S̃k′′
diag(σ′(G(S̃)x̃)S̃kx̃)

)T

(217)

=

K−1∑
k′=0

K−1∑
k′′=0

E
h∼N (0,I)

[
hk′hk′′

(
S̃k′

diag(σ′(G(S̃)x̃)S̃kx̃)
)(

S̃k′′
diag(σ′(G(S̃)x̃)S̃kx̃)

)T]
(218)

=

K−1∑
k′=0

(
S̃k′

diag(σ′(G(S̃)x̃)S̃kx̃)
)(

S̃k′
diag(σ′(G(S̃)x̃)S̃kx̃)

)T
(219)

Above, in equation 219 we used the fact that E
h∼N (0,I)

[hkhk′ ] = δkk′ . Now we can replace the inner

expectation with respect to h in equation 216 with the quantity from equation 219 to get

Θ̃
(1)
GNN (h) =

K−1∑
k=0

E
g∼N (0,I)

[
K−1∑
k′=0

(
S̃k′

diag(σ′(G(S̃)x̃)S̃kx̃)
)(

S̃k′
diag(σ′(G(S̃)x̃)S̃kx̃)

)T]
(220)

=

K−1∑
k′=0

S̃k′
E

g∼N (0,I)

[
K−1∑
k=0

(
diag(σ′(G(S̃)x̃)S̃kx̃)

)(
diag(σ′(G(S̃)x̃)S̃kx̃)

)T]
S̃k′

(221)
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Now we turn our attention to the expectation in equation 221 which we shall call E(1) ∈ RnM×nM 8.

E(1) = E
g∼N (0,I)

[
K−1∑
k=0

(
diag(σ′(G(S̃)x̃)S̃kx̃)

)(
diag(σ′(G(S̃)x̃)S̃kx̃)

)T]
(222)

⇒ (E(1))ab = E
g∼N (0,I)

[
σ′
(
⟨g, z(a)⟩

)
· σ′
(
⟨g, z(b)⟩

)]
·
K−1∑
k=0

(S̃kx̃)a(S̃
kx̃)b (223)

= E
g∼N (0,I)

[
σ′
(
⟨g, z(a)⟩

)
· σ′
(
⟨g, z(b)⟩

)]
· ⟨z(a), z(b)⟩ (224)

Similar to our analysis in subsection 3.2, we begin by considering the case where the non-linearity
is an identity function, i.e., σ(z) = z which implies that σ′(z) = 1:

σ′
(
⟨g, z(a)⟩

)
= σ′

(
⟨g, z(b)⟩

)
= 1 (225)

For this linear case, we shall name the expectation from equation 222, B(1)
lin ∈ RnM×nM . Using

equation 224 and equation 225 we can write the elements of B(1)
lin as

(B
(1)
lin )ab = ⟨z(a), z(b)⟩ (226)

Thus, our analysis in this context renders equation 226, which is the same conclusion as that for the
alignment when we only train the second layer (see equation 29).

Next, we analyze the expectation matrix E(1) when σ(·) is non-linear. In this non-linear case, for
each element of E(1) we have from equation 224:

(E(1))ab = E
u,u′∼N (0,Λ)

[
σ′
(
||z(a)||2 · u

)
· σ′
(
||z(b)||2 · u′

)]
· ⟨z(a), z(b)⟩ (227)

The Hermite expansion of the two functions in equation 227 is given by

σ′
(
||z(a)||2 · u

)
=

∞∑
ℓ=0

αℓ · pℓ(u), and σ′
(
||z(b)||2 · u′

)
=

∞∑
ℓ′=0

βℓ′ · pℓ′(u′) (228)

Inserting equation 228 into equation 227, we get

(E(1))ab =

∞∑
ℓ=0

∞∑
ℓ′=0

αℓβℓ′ E
u,u′∼N (0,Λ)

[pℓ(u)pℓ′(u
′)] · ⟨z(a), z(b)⟩ (229)

=

∞∑
ℓ=0

αℓβℓ · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)l · ⟨z(a), z(b)⟩ (230)

We recall that for simpler analysis, we are analyzing the case where the non-linearity is the tanh
function therefore the derivative of the activation i.e., σ′(z) = 1

cosh2(z)
, is an even function. This

further leads to the Hermite expansion coefficients αℓ, βℓ being zero whenever ℓ is odd. With this in
mind we divide the expansion from equation 230 into the two following parts and name them B(1)

and ∆B(1) respectively:

(E(1))ab = α0β0 · ⟨z(a), z(b)⟩︸ ︷︷ ︸
(B(1))ab

+

∞∑
ℓ=2,4,···

αℓβℓ · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)ℓ · ⟨z(a), z(b)⟩︸ ︷︷ ︸

(∆B(1))ab

(231)

Now, recalling equation 26 the alignment, which we will call A(1) here to emphasize that we are
only training the first layer, becomes:

A(1) = tr(QE(1)) = tr(QB(1)) + tr(Q∆B(1)) (232)

8The superscript (1) denotes that these matrices are defined for the analysis of the NTK for the first layer in
contrast to those defined in the main body of the paper
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Focusing on the first term in equation 232, we define the family of hermite transforms of the function
1

cosh2(||z(a)||2u)
as τl(·) for l = 0, 1, 2, · · · :

τℓ(||z(a)||22) ≜
∫ ∞

−∞

1

cosh2(||z(a)||2u)
· pℓ(u) · e−u2/2du = αℓ (233)

Note that τ0(·) is similar in functionality to the function σ̂(·) defined in equation 95. Now, using the
fact that (Blin)aa = ⟨z(a), z(a)⟩ = ||z(a)||22, we have

(B(1))ab = τ0((Blin)aa) · τ0((Blin)bb) · (Blin)ab (234)

⇒ B(1) = τ0(diag(Blin)) ·Blin · τ0(diag(Blin)) (235)

Therefore, similar to equation 103 from the proof of Lemma 4, we have

λ2
minAlin ≤ tr(QB(1)) (236)

where λmin ≜ mina τ0(||z(a)||22). From equations 104-108 and with the assumption from equa-
tion 109 i.e. ||S||op ≤ ν we have:

λ2
min ≥ ρ(1) (237)

where ρ(1) ≜

(
τ0

(
K−1∑
k=0

ν2k

))2

(238)

which together with equation 236 gives us the following similar to Lemma 4:

tr(QB(1)) ≥ ρ(1)Alin (239)

Next, we aim to show that a result similar to Lemma 5 holds for this scenario, as this allows us
to conclude that Theorem 3 also holds for the case when alignment is optimized based on the first
layer. We will now check to see whether the element-wise inequality from lemma 5 also holds here.

From equation 231 and using the definition from equation 233, we have

(∆B(1))ab = ⟨z(a), z(b)⟩
∞∑
i=1

α2iβ2i ·
(

⟨z(a), z(b)⟩
||z(a)||2 · ||z(b)||2

)2i

(240)

= ⟨z(a), z(b)⟩
∞∑
i=1

τ2i(||z(a)||22) · τ2i(||z(b)||22) ·
(

⟨z(a), z(b)⟩
||z(a)||2 · ||z(b)||2

)2i

(241)

Similar to the family of functions gℓ, it can readily be verified numerically that for a given ℓ, we
either have τℓ(y) ≥ 0, ∀y ≥ 0 or τℓ(y) ≤ 0, ∀y ≥ 0.9 Hence, τ2i(||z(a)||22) · τ2i(||z(b)||22) ≥ 0 and
we can conclude that (∆B(1))ab and (B(1))ab have the same sign, which is the sign of ⟨z(a), z(b)⟩.
Now, for the case where ⟨z(a), z(b)⟩ ≥ 0, we have:

∞∑
i=1

τ2i(||z(a)||22) · τ2i(||z(b)||22) ·
(

⟨z(a), z(b)⟩
||z(a)||2 · ||z(b)||2

)2i

· ⟨z(a), z(b)⟩

≤
∞∑
i=1

τ2i(||z(a)||22) · τ2i(||z(b)||22) · ⟨z(a), z(b)⟩ (242)

=

(∑∞
i=1 τ2i(||z(a)||22) · τ2i(||z(b)||22)

)
τ0(||z(a)||22) · τ0(||z(b)||22)

· (B(1))ab (243)

9A simple Python script can be found in https://github.com/shervinkh2000/Cross Covariance NTK that
plots τℓ(y) against y for any given index ℓ. See the file ”numerical verification 3.py”
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It is straightforward to check numerically that
∣∣∣ τ2i(||z(a)||22)
τ0(||z(a)||22)

∣∣∣ is increasing in ||z(a)||2, ∀i ≥ 1.10

Hence, we can continue from equation 240 and equation 243 to have

(∆B(1))ab ≤
(∑∞

i=1 τ2i(||z(a)||22) · τ2i(||z(b)||22)
)

τ1(||z(a)||22) · τ1(||z(b)||22)
·Bab (244)

≤
(∑∞

i=1(τ2i((||z||22)max))
2

(τ0((||z||22)max))2

)
(B(1))ab (245)

= β(1) · (B(1))ab (246)
where

β(1) ≜

(∑∞
i=1(τ2i((||z||22)max))

2

(τ0((||z||22)max))2

)
(247)

and (||z||22)max = maxa′(||za′ ||22). In the proof of Lemma 5, we made no further assumptions and
considered the worst case upper bound on ∆Bab when (||z||22)max is infinitely large. But a similar
approach cannot be adopted here since the limit of the sum limy→∞

∑∞
ℓ=1(τ2i(y))

2 is unbounded.
However, given the assumptions on the data and the shift operator S so far and with some additional
mild assumptions, it is possible to upper bound (||z||22)max and thus, derive a meaningful expression
for constant β. Recall the definition of zℓ ∈ RK :

zℓ ≜
[
x̃ℓ, (S̃x̃)ℓ, · · · , (S̃K−1x̃)ℓ

]T
(248)

For the k-th element of zℓ we can write:
(S̃kx̃)ℓ ≤ max

i
||Skxi||∞ ≤ max

i
||Skxi||2 ≤ max

i
||Sk||op||xi||2 ≤ ||Sk||op (249)

⇒ ||zℓ||22 ≤
K−1∑
k=0

||Sk||2op (250)

In order to give an upper bound on the maximum possible value for ||zℓ||22, we need an upper
bound on ||S||op. To see why such an upper bound makes sense, recall the constraint from Lemma
2: ||

∑K−1
k=0 Sk||F ≤

√
α/(ηM). One straightforward way to make sure that this constraint is

satisfied, is to normalize the shift operator S, such that its Frobenius norm is bounded (which
is indeed the method used in the experiments for this paper. See Appendix E). Assuming that
||S||F ≤ 1

K

√
α/(ηM) ≤ 1, we have

||
K−1∑
k=0

Sk||F ≤
K−1∑
k=0

||Sk||F ≤
K−1∑
k=0

||S||kF ≤ K||S||F ≤
√
α/(ηM) (251)

Since in practice we don’t know precisely what the constant α should be, we opt to simply normalize
S so that ||S||F = 1. Therefore:

||S||op ≤ ||S||F = 1 ⇒ ||zℓ||22 ≤
K−1∑
k=0

||Sk||2op ≤ K ⇒ (||z||2)max ≤
√
K (252)

Going back to equation 247, with the assumption in equation 252 we have

β(1) =

(∑∞
i=1(τ2i(K))2

(τ0(K))2

)
(253)

The above constant can be numerically evaluated for different values of K. For example, for K = 3,
we have β(1) = 0.7320 which is close to the constant we had when training only the second layer
(β = 0.57, see equation 120). Now that we’ve shown similar results to Lemma 4 and Lemma 5 (see
equation 239 and equation 247 respectively) for this case where we train only the first layer, we can
conclude with a result similar to Theorem 3 which we shall present as the following corollary:

10A simple Python script can be found in https://github.com/shervinkh2000/Cross Covariance NTK that
plots | τ2i(y)

τ0(y)
| against y for any given index i. See the file ”numerical verification 4.py”
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Corollary 3. Under the assumption Alin = tr (QBlin) ≥ ξ · ||Q||F ||Blin||F , Alin lower bounds the
alignment for the two-layer GNN with tanh non-linearity where we only train the first layer, A(1),
up to a constant as follows

A(1) ≥
(
b− s

ξ

)
Alin , (254)

for some constants positive constants b and s and 0 ≤ ξ ≤ 1.

H ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

H.1 CONVERGENCE OF TRAINING ERROR.

We recall that there was a time series associated with each of the 100 features in the rfMRI time series
data for an individual. For each individual, these 100 time series were utilized in the experiments.
For a given individual, we denote the time series across 100 nodes at time step t as the vector
z(t) ∈ R100×1.

For each individual, we created Ntrain = 1000 and Ntest = 100 training and test samples respec-
tively by randomly sampling (without replacement) pairs of vectors z(t), z(t+1) from the time series
of length N = 4500. Next, the normalized sample covariance and sample cross covariance matrices
were constructed using only the training data:

Cnormalized
XX =

XtrainX
T
train

||XtrainXT
train||

, Cnormalized
XY =

XtrainY
T
train

||XtrainY T
train||

(255)

Afterwards, batch stochastic gradient descent with the Adam optimizer Kingma & Ba (2014) and
the Pytorch library Paszke et al. (2019) were used to train the following four models:

• Two-layer GNN with K = 2, F = 50 and GSO S = Cnormalized
XY

• Two-layer GNN with K = 2, F = 50 and GSO S = Cnormalized
XX

• Single graph filter with K = 2 and GSO S = Cnormalized
XY

• Single graph filter with K = 2 and GSO S = Cnormalized
XX

Regarding the choices of the parameters, K = 2 was chosen as equation 19 directly motivates
using CXY as the GSO for the K = 2 case. Note that using CXY − I and CXY is essentially the
same since in the graph filter polynomial

∑K−1
k=0 hkS

kx we always have the term h0I regardless
of the choice of GSO. Furthermore, in subsection H.3 and Fig. 5, we observed that changing K
does not have a noticeable impact on the model performance. Therefore, K = 2 is a reasonable
choice for the experiments here. For choosing the number of features in the hidden layer, F , and the
learning rate η for training the GNN models, the Optuna hyperparameter optimization framework
was leveraged Akiba et al. (2019). The learning rate η1 = 0.0125 was chosen for training the GNN
models and η2 = 50 · η1 for training the graph filters. For each individual, the training process was
run 10 times with different permutations of the training and test sets, and the average over these was
computed for all of the individual training and test error plots.

We also acknowledge that the GNN and Graph filter architectures were implemented using the
Alelab Graph Neural Network library for Python based on the work of Gama et al. (2019).

H.2 GOING DEEPER THAN TWO LAYERS.

Here, we provide the experimental results for the setting when the GNNs may have more than two
layers. Before that, we formalize a multi-layer GNN architecture with a graph filter as the building
block and that has multiple-input-multiple-output (MIMO) information processing functionality.

Multi-layer GNN. We recall that the ability to learn non-linear mappings by GNNs are funda-
mentally based on addition of an element-wise non-linearity to a graph filter to form a graph per-
ceptron, which is realized via a point-wise non-linearity σ(·) as σ(H(S)x). We can further build
upon the expressivity (and therefore, representational power) of a graph perceptron by concate-
nating multiple graph perceptrons to form a multi-layer GNN architecture. In this scenario, the
relationship between the input q(l−1) and the output q(ℓ) of the ℓ-th layer of the GNN is given by
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q(ℓ) = σ(H(ℓ)(S)q(ℓ−1)). Based on the definitions of a graph perceptron and a multi-layer GNN,
we next formalize the GNN architecture with MIMO functionality.
Definition 3 (Multiple-Input-Multiple-Output Graph Neural Network). Gama et al. (2020) We can
substantially increase the representation power of GNNs by incorporating multiple parallel features
per layer. These features are the result of processing multiple input features with a parallel bank of
graph filters. Let us consider Fℓ−1 n-dimensional inputs q1

(ℓ−1), . . . ,q
Fl−1

(ℓ−1) at layer ℓ. Each input,
qg
(ℓ−1) for g ∈ {1, . . . , Fℓ−1} is processed in parallel by Fℓ different graph filters to output the Fℓ

n-dimensional outputs denoted by ufg
(ℓ) with the following relationships

ufg
(ℓ) = Hfg

(ℓ)(S)q
g
(ℓ−1) =

K∑
k=0

hfg
(ℓ),kS

kqg
(ℓ−1), f ∈ {1, . . . , Fℓ}.

The outputs ufg
(ℓ) are subsequently summarized along the input index g to yield the aggregated out-

puts

uf
(ℓ) =

Fl−1∑
g=1

Hfg
(ℓ)(S)q

g
(ℓ−1), f ∈ {1, . . . , Fℓ}.

The aggregated outputs uf
(ℓ) are finally passed through a non-linearity σ(·) to compute the ℓ-th layer

output as follows
qf
(ℓ) = σ

(
uf
(ℓ)

)
, f ∈ {1, . . . , Fℓ}.

A GNN in its complete form is a concatenation of L such layers, in which each layer computes the
above operations.

In the main paper, we theoretically analyzed a two-layer GNN without non-linearity in the final
layer, with F0 = F2 = 1 (since we only have one input and one output feature vector in each
sample), and F number of features in the hidden layer i.e., F1 = F (see Fig. 3).

Figure 3: The two layer GNN architecture defined in section 3.2

Experiment results. To assess the effect of increasing the depth of the GNN in the experiments,
we present results for two-layer, three-layer and four-layer GNNs that had been trained for one
individual in the HCP-YA dataset. The training and test loss for the gradient descent for these
models is illustrated in Fig. 4. It can be seen that regardless of the depth of the GNNs, the training
loss and test loss for the GNN with S = CXY converged faster as compared to those with S = CXX

and to a smaller final value.
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(a) Training loss during GD for two layer GNN;
F0 = 1, F1 = 50, F2 = 1

(b) Test loss during GD for two layer GNN;
F0 = 1, F1 = 50, F2 = 1

(c) Training loss during GD for three layer GNN;
F0 = 1, F1 = 50, F2 = 50, F3 = 1

(d) Test loss during GD for three layer GNN;
F0 = 1, F1 = 50, F2 = 50, F3 = 1

(e) Training loss during GD for four layer GNN;
F0 = 1, F1 = 50, F2 = 50, F3 = 50, F4 = 1

(f) Test loss during GD for four layer GNN;
F0 = 1, F1 = 50, F2 = 50, F3 = 50, F4 = 1

Figure 4: The effect of increasing depth of the GNN
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H.3 THE EFFECT OF CHANGING THE NUMBER OF GRAPH FILTER TAPS K

We recall our motivation for using the cross-covariance graph as the GSO from Theorem 2 where we
concluded that the optimal GSO S∗ should satisfy

∑K−1
k=0 (S∗)k = µ·CXY . For the case K = 2, this

leads to S∗ being proportional to CXY (see equation 19). However, for K > 2, while the optimal
GSO is still clearly a function of the cross-covariance CXY , solving equation 18 to find a closed
form expression for S∗ is not trivial. In this context, we investigated empirically whether S = CXY

was a better choice than S = CXX when K > 2. The plots in Fig. 5 illustrate the training error for
GNN and graph filter models with different values of K for one individual in the HCP-YA dataset.
Clearly, GNNs with S = CXY outperformed those with S = CXX as GSO. These experiments
indicate that the cross-covariance matrix is still a better choice as a GSO for GNNs when K > 2.

(a) Training loss during GD for Models with K = 2 (b) Training loss during GD for Models with K = 4

(c) Training loss during GD for Models with K = 6 (d) Training loss during GD for Models with K = 8

Figure 5: The effect of changing the number of filter taps K
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H.4 THE EFFECT OF CHANGING THE NON-LINEAR ACTIVATION FUNCTION σ(·).

Our theoretical results hold for tanh function as the non-linearity σ(·). In this section, we investi-
gated empirically whether the cross-covariance matrix was a better choice as a GSO than the covari-
ance matrix for different choices of σ(·). The plots in Fig. 6 demonstrate the results from training
for GNN and graph filter models with different activation functions, for a single individual. Aside
from the setting where the activation function was the ReLU function (for which the convergence
depends highly on the initialization thus the variance in the training process between different runs
is too high to conclude anything meaningful), the experiments for other activation functions showed
that the GNNs with S = CXY converged faster and to a smaller final value as compared to GNNs
with S = CXX . This observation suggests that the theoretical insights drawn from the scenario of
σ = tanh extends empirically to settings with the choice of other activation functions.

(a) Training loss during GD for Models with the
Leaky ReLU activation function

(b) Training loss during GD for Models with the
tanh activation function

(c) Training loss during GD for Models with the Sig-
moid activation function

(d) Training loss during GD for Models with the
ReLU activation function

Figure 6: The effect of changing the non-linear activation function σ(·) on GNN performance. (Graph filter
curves are only plotted for comparison)
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H.5 TIME-SERIES PREDICTION USING MORE THAN JUST THE PREVIOUS TIME STEP

In the experiments in the main paper, we considered a prediction task where we use the value of
the signal at just the previous time step to predict the current signal. However, in practice, the time
series forecasting algorithms typically use information from a longer history, i.e., more than just
the previous time step. Here, we investigate a time-series prediction model that uses the model in
Section 4 as the building block to form predictions from an arbitrary set of time steps in the past.

In this design, we used D separate graph filters to process the signal values at the previous D time
steps and aggregated the outputs of the filters to form the final prediction:

f(z(t−1), z(t−2), · · · , z(t−D)) =

K−1∑
k=0

hk,1S
k
1z

(t−1) + · · ·+
K−1∑
k=0

hk,DSk
Dz(t−D) (256)

This methodology can be extended to the two-layer GNN architecture by replacing each graph filter
in the GNN with multiple graph filters as per Equation 256. Note that we do not restrict are not
restricted to use the same graph shift operator in these filters. For example, for processing the signal
value from d time steps ago, we could utilize the cross-covariance between signal values with a
distance of d time steps i.e.

Sd = E
[
z(t)(z(t−d))T

]
(257)

To gauge the usefulness of this setting, we consider the multiple filter model in equation 256 for
D = 1, 2, 3, 4, 5. The result can be seen in Figures 7a, 7b. It can be observed that there is a
significant gain in increasing from D = 1 to D = 2. However increasing D further does not seem
to yield better test performance, at least for this dataset. Note that the cross-covariance matrix was
used for all the models in Figure 7.

Next we set D = 2 to compare the cross-covariance and covariance graph constructions in this
setting. The results can be seen in Figures 7c, 7d. It can be observed that in this setting as well,
models with cross-covariance graph shift operator outperform those with covariance graphs. This
holds for both the graph filter models and the two-layer GNNs. Also note that increasing D to 2,
results in better performance for the two-layer GNN in addition to the Graph filter models However
similar to the results observed for the graph filter, increasing D further for the GNNs did not result
in any observable gains.

H.6 OTHER GRAPHS CONSTRUCTED BASED ON THE INPUT DATA

In our experiments in the main paper, we have considered the cross-covariance matrix as the graph
shift operator to be representative of the class of graphs constructed from only the input data. In
order to further emphasize on the advantages offered by cross-covariance graphs, we also consider
the two following additional methods of constructing a graph from the input data (See Qiao et al.
(2018) for a detailed review of different methods of graph construction used in the literature). The
first method is based on Euclidean distance between values of the signals on each node of the graph
and using the nonlinear Gaussian kernel, the weight between node i and j of the graph is quantified
as follows:

Sij = e
−

||xi−xj ||
2
2

2ϱ2 , (258)
where ϱ = 1 in our experiments.

The second method for graph construction set the weights of the adjacency matrix proportional to
the Pearson’s correlation coefficient between two nodes. In this case, the weight between node i and
j of the graph is

Sij =
(xi − x̄i)

T (xj − x̄j)

||xi − x̄i||2||xj − x̄j ||2
(259)

where in both Equation 258 and Equation 259, xi, xj ∈ RNtrain×1 are the i-th and j-th columns of
the input data matrix Xtrain ∈ Rn×Ntrain respectively.

The results corresponding to these two choices of graph construction for one individual have been
illustrated in Fig. 8. It is observed that while the performance of the models with different input-
based graph constructions vary, they are all consistently outperformed by the models with the cross-
covariance based graph. This trend is consistent across different individuals in the dataset.
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(a) Training loss during GD for Time-series pre-
diction using D previous time steps.

(b) Test loss during GD for Time-series prediction
using D previous time steps.

(c) Training loss during GD for Time-series pre-
diction using D = 2 previous time steps.

(d) Test loss during GD for Time-series prediction
using D = 2 previous time steps.

Figure 7: Time-series prediction using D previous time steps

As an additional baseline, we have also included the result for a Fully connected two layer neural
network (FCNN) for comparison. The FCNN and the two layer GNN with cross-covariance graph
exhibit comparable performance in terms of test final test error, while the GNN converges faster than
FCNN. In general, for the complete HCP-YA dataset, the FCNN often has slightly smaller final test
error, which is achieved at the expense of complexity as it has almost 100 times larger number of
trainable parameters as compared to GNN models.

(a) Training loss during GD when using different con-
structions for the graph shift operator

(b) Test loss during GD when using different construc-
tions for the graph shift operator

Figure 8: Comparison between GNN models with cross-covariance graphs and GNN models with graphs
constructed according to different construction methods. The models compared here are two-layer GNNs.
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H.7 OTHER DATASETS

We use a similar setup as described in Appendix H.1 to conduct some preliminary experiments on
two other public datasets. These two datasets have been previously investigated in Cao et al. (2021a),
although for a different variation of forecasting task.

Traffic Flow Dataset. We utilize the PEMS07 traffic flow dataset Chen et al. (2001) for traffic flow
prediction. The data collected is from the California Department of Transportation network. It is
an n = 228-dimensional time-series with N = 12671 time steps. The time interval between each
consecutive point in the time series is 5 minutes.

ECG dataset We utilize the ECG5000 dataset from UCR time-series classification archive Chen
et al. (2015). The data is an n = 140 dimensional ECG time series with N = 5000 time steps.

For each dataset, we created Ntrain = 1000 and Ntest = 100 training and test samples respectively
by randomly sampling pairs of vectors z(t), z(t+∆t) from the respective time series. Next, the
normalized sample covariance and sample cross covariance matrices were constructed using only
the training data. Note that for small values of ∆t, since the signals z(t) and z(t+∆t) tended to
be very similar, which led to very similar covariance and cross-covariance matrices. Therefore,
although the cross-covariance based models achieved better performance for all tested values of
∆t, we showcase our results for a relatively large value of ∆t (∆t = 1000 for the ECG dataset and
∆t = 20 for the PEMS07 dataset) such that, the performance improvements are observable. As seen
in Figure 9, for both datasets, the cross-covariance based models converge faster and to a smaller
final test error, which is a consistent observation with HCP-YA dataset and has been predicted by
our theoretical results.

(a) Training loss for time series prediction task on the
PEMS07 dataset.

(b) Test loss for time series prediction task on the
PEMS07 dataset.

(c) Training loss for time series prediction task on the
ECG5000 dataset.

(d) Test loss for time series prediction task on the
ECG5000 dataset.

Figure 9: Experimental results for different datasets
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