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ABSTRACT

Though vision-language models (VLMs) have demonstrated impressive capabili-
ties as general-purpose visual assistants, they still exhibit inferior performance on
knowledge-intensive tasks such as information-seeking visual question answer-
ing, primarily due to the challenge of accurately encoding all the associations
between visual objects and scenes to their corresponding entities and background
knowledge. While retrieval augmentation methods offer an efficient way to in-
tegrate external knowledge, extending them to vision-language domain presents
unique challenges in (1) precisely retrieving relevant information from external
sources due to the inherent discrepancy within the multimodal queries, and (2)
being resilient to the irrelevant, extraneous and noisy information contained in
the retrieved multimodal knowledge snippets. In this work, we introduce RORA-
VLM, a novel and robust retrieval augmentation framework specifically tailored
for VLMs, with two key innovations: (1) a 2-stage retrieval process with Image-
anchored Textual-query Expansion to synergistically combine the visual and tex-
tual information in the query and retrieve the most relevant multimodal knowl-
edge snippets; and (2) a robust retrieval augmentation method that strengthens
the resilience of VLMs against irrelevant information in the retrieved multimodal
knowledge by injecting adversarial noises into the retrieval-augmented training
process, and filters out extraneous visual information, such as unrelated entities
presented in images, via a query-oriented visual token refinement strategy. We
conduct extensive experiments to validate the effectiveness and robustness of our
proposed methods on three widely adopted benchmark datasets: OVEN, InfoS-
eek and Enc-VQA. Our results demonstrate that with a minimal amount of train-
ing instance, RORA-VLM enables the LLaVA-v1.5 model to achieve significant
performance improvement and constantly outperform state-of-the-art retrieval-
augmented VLMs on all benchmarks while also exhibiting a novel zero-shot do-
main transfer capability.

1 INTRODUCTION

Question: Who designed the 
tallest building in the picture?

Background 
Knowledge 

Entity: Freedom Tower


Retrieved Content: 
Freedom Tower is the 
main building of the 
rebuilt World Trade 
Center complex in Lower 
Manhattan, designed by 
David Childs of SOM.  

Answer: David Child

Figure 1: An example question for
information-seeking visual question an-
swering.

Vision-language models (VLMs) (Li et al., 2023;
Alayrac et al., 2022; Liu et al., 2023b; Dai et al.,
2023), built on pre-trained visual encoders and large
language models (LLMs), have achieved remarkable
progress across a range of visual perception and gen-
eration tasks (Antol et al., 2015; Marino et al., 2019;
Dai et al., 2024). However, despite these advance-
ments, recent studies (Chen et al., 2023d; Hu et al.,
2023; Mensink et al., 2023) reveal that VLMs still
face significant challenges in knowledge-intensive
tasks, such as visual entity grounding (Hu et al.,
2023) and information-seeking visual question an-
swering (Chen et al., 2023d), where VLMs must ef-
fectively link the visual objects and scenes to their corresponding entities and relevant background
knowledge. For instance, as illustrated in Figure 1, given the question “Who designed the tallest
building in the picture?” alongside an image of several buildings, VLMs need to accurately iden-
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tify the building based on its visual attributes and retrieve the associated background knowledge
encoded in LLMs. However, the vast and dynamic nature of visual knowledge in the open world
makes it impractical for VLMs to store all possible associations between visual appearances and
their corresponding entities and background knowledge in their parameters.

One promising solution is retrieval-augmented generation (RAG), which integrates knowledge re-
trieved from external sources with VLMs and has demonstrated success in improving text-based
knowledge-intensive tasks for LLMs (Guu et al., 2020; Lewis et al., 2020; Yoran et al., 2023). How-
ever, extending RAG to vision-language tasks presents several unique challenges: (1) Modality
Discrepancy: Vision-language tasks usually rely on both visual and textual information, and nei-
ther modality can fully substitute for the other due to their inherent discrepancy, thus formulating
precise retrieval queries is often difficult. For instance, textual inputs, such as “Who designed the
tallest building in the picture?”, usually contain generic terms or anaphoric references (“the tallest
building”) that lack specificity without visual context while visual information alone may not suffi-
ciently clarify the query’s intent, leading to ambiguity. This interplay between modalities makes it
challenging to precisely retrieve relevant information from external sources. (2) Information Noise:
Retrieved multimodal knowledge snippets, particularly those containing both images and text, often
introduce irrelevant or extraneous information. A common type of noise arises when the primary
entity in the retrieved image differs from the entity in the query image, leading to the retrieval of ir-
relevant textual knowledge. Another source of noise occurs within the retrieved images themselves,
where background elements or unrelated objects, such as Brookfield Place in Figure 1, may distract
the VLMs during perception and reasoning. This extraneous information can mislead the model and
reduce the accuracy of its response to the query.

To tackle these challenges, we introduce RORA-VLM, a robust retrieval-augmented framework
aiming at enhancing vision-language models on knowledge-seeking tasks. RORA-VLM consists
of three novel components, each of which is tailored to address a unique challenge outlined above.
To mitigate the modality discrepancy, we design IMAGE-ANCHORED TEXTUAL-QUERY EXPAN-
SION, a 2-stage retrieval method that synergistically integrate vision-language information for more
accurate and comprehensive vision-language retrieval. In the first stage, the query image, serving
as a visual anchor, is used to retrieve visually similar images. For each retrieved image, we ex-
tract its associated entity name and brief description to augment the textual query and disambiguate
the anaphoric references. The expanded query is then employed in the second stage to accurately
retrieve the most relevant answers from a textual knowledge base. This 2-stage retrieval process
ensures that the retrieved content is comprehensive and closely aligned with the multimodal query,
minimizing the risk of incomplete or modality-restricted results. With this 2-stage retrieval process,
we obtain multiple multimodal knowledge snippets to augment the VLMs, where each multimodal
knowledge snippet is the concatenation of an image and entity description from the first stage and
its corresponding retrieved texts from the second stage.

To further address the challenges posed by irrelevant information in retrieved multimodal knowledge
snippets, we propose a two-fold approach, NOISE-RESILIENT RETRIEVAL-AUGMENTED GENERA-
TION. First, we introduce an adversarial noise injection training strategy for robust augmentation,
which encourages VLMs to selectively utilize retrieved knowledge for generation. Specifically, we
construct training instances by intentionally introducing irrelevant information into the retrieved
knowledge, compelling the model to become resilient to noises. By fine-tuning VLMs on a small
number of instances of knowledge-intensive tasks, the model implicitly learns to compare visual
nuances between the query image and retrieved images, thereby discarding irrelevant knowledge
associated with images containing non-matching entities. Second, to handle the extraneous visual
information, such as background objects or unrelated entities in images, we design a query-oriented
visual token refinement strategy. VLMs typically encode each input image into a sequence of n
visual tokens via a CLIP image encoder (Radford et al., 2021) and each token corresponds to a
distinct image patch. We refine the visual tokens of the query image by only keeping M tokens
(m ≪ n) that are most related to the text query based on their CLIP embeddings, and similarly, for
each retrieved image, we also identify and only keep the most relevant m tokens to the query image.

We conduct extensive experiments to evaluate the effectiveness and robustness of our proposed
framework on three widely adopted knowledge-seeking benchmarks: OVEN (Hu et al., 2023), In-
forSeek (Chen et al., 2023d), and Enc-VQA (Mensink et al., 2023). Our results demonstrate that,
with only a minimal number of training instances (e.g., 10,000), the framework achieves significant
improvements over baseline models, yielding up to 14.36% accuracy improvement, and consistently
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outperforms Wiki-LLaVA (Caffagni et al., 2024), the current state-of-the-art retrieval-augmented
VLM. Additionally, our extensive analysis reveals that: (1) The IMAGE-ANCHORED TEXTUAL-
QUERY EXPANSION method comprehensively leverages multimodal information to enhance query
intent understanding and improve retrieval accuracy in knowledge-intensive tasks, achieving up to
an 11.52% increase in retrieval precision compared to the general single-stage retrieval approach. (2)
The NOISE-RESILIENT RETRIEVAL-AUGMENTED GENERATION enables VLMs to identify valu-
able information relevant to the entity in query image from the retrieval knowledge and focus on
visual tokens that are closely related to the entity concerned in the input text query. (3) Pre-training
on entity-rich image-caption pairs (Burns et al., 2023) substantially enhances the VLMs’ perfor-
mance on information-seeking VQA tasks. (4) RORA-VLM also demonstrates strong zero-shot
transfer to knowledge-intensive tasks from unseen domains.

2 RELATED WORK

Vision-Language Models Recent advancements in vision-language models (VLMs), such as
BLIP-2 (Li et al., 2023), Flamingo (Alayrac et al., 2022), LLaVA (Liu et al., 2023b), and Instruct-
BLIP (Dai et al., 2023), have demonstrated remarkable performance on various visual perception
tasks, such as image captioning (Lin et al., 2014; Schuhmann et al., 2022; Chen et al., 2023a), visual
question answering (Antol et al., 2015; Marino et al., 2019; Schwenk et al., 2022), object detec-
tion (Lin et al., 2014; Everingham et al.), visual grounding (Hu et al., 2023; Kazemzadeh et al.,
2014), and visual relationship detection (Lu et al., 2016), etc. These models typically employ an
architecture consisting of a pre-trained visual encoder (Radford et al., 2021; Dosovitskiy et al.,
2021; Chen et al., 2024), a pre-trained large language model (Touvron et al., 2023; Almazrouei
et al., 2023), and a projection function that maps visual features to the text embedding space (Liu
et al., 2023b). However, this method often falls short in aligning visual features with the extensive
knowledge embedded in language models. Alternative architectures, such as the Q-former used in
BLIP-2 (Li et al., 2023) and the perceiver resampler in Flamingo (Alayrac et al., 2022), have been
proposed to enhance the perception of visual content. These architectures focus on improving the
models’ ability to understand the color, shape, and layout of objects and scenes. Despite these ad-
vancements, VLMs still struggle with knowledge-intensive tasks that require deep integration of
visual and textual information. This gap highlights the need for more sophisticated methods to align
visual features with the rich semantic knowledge stored in language models.

Retrieval-Augmented Generation Work Augmenting models with external knowledge sources
has proven effective in enhancing their performance on knowledge-intensive tasks. In the text-only
domain, models like REALM (Guu et al., 2020), RAG (Lewis et al., 2020), and RobustRAG (Yoran
et al., 2023) have demonstrated the benefits of retrieval-based augmentation. These models retrieve
relevant information from external sources to provide additional context for generating accurate re-
sponses. Applying retrieval-augmented generation to the vision-language domain presents unique
challenges due to modality discrepancies and differing model architectures (Wei et al., 2023). Sev-
eral recent studies (Gui et al., 2021; Lin et al., 2023; 2024) have explored multimodal retrieval to
enhance LLMs by retrieving textual knowledge from visual queries. However, they primarily fo-
cus on improving retrieval quality, while our research focuses more on addressing the fundamental
challenge of how to effectively and robustly leverage external knowledge to augment the reasoning
and generation of vision-language models. Given that the state-of-the-art retriever can only achieve
modest performance, e.g., lower than 0.2 for recall@1 on InfoSeek (Chen et al., 2023d), manag-
ing and denoising the noise becomes more crucial for VLMs. This work distinctively addresses
this challenge by introducing a robust retrieval augmentation framework. Our proposed RORA-
VLM framework distinctively addresses this challenge by mitigating retrieval-induced noise while
enhancing VLMs’ ability to handle interleaved visual-textual contexts, ultimately improving gener-
alizability to unseen entities, events, and scenes.

Knowledge-Intensive Tasks and Benchmarks Knowledge-intensive tasks pose significant chal-
lenges for VLMs, requiring them to connect visual appearances with semantic knowledge and
perform complex reasoning. Benchmarks such as OVEN (Hu et al., 2023) and InfoSeek (Chen
et al., 2023d) have been developed to evaluate VLMs on tasks like visual entity grounding and
information-seeking visual question answering. For instance, tasks like identifying the designer
of a building from an image require VLMs to recognize the building based on its visual proper-
ties and infer the designer using stored knowledge. Studies have shown that extensive fine-tuning
on knowledge-intensive task instances does not substantially improve VLMs’ performance (Chen
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Figure 2: Overview of architecture of RORA-VLM.

et al., 2023d; Hu et al., 2023; Mensink et al., 2023). This indicates that current architectures are
not sufficiently equipped to handle the dynamic and detailed nature of visual-semantic associations.
Our RORA-VLM framework aims to bridge this gap by explicitly aligning visual features with
internal knowledge and augmenting VLMs with external knowledge sources. By integrating both
visual and textual information more effectively, RORA-VLM seeks to improve VLMs’ capabilities
on knowledge-intensive tasks and set new benchmarks for performance in this domain.

3 METHOD

3.1 PROBLEM FORMULATION

In this work, we mainly focus on improving VLMs on knowledge-intensive VQA tasks via retrieval-
augmented generation. Given a text query q together with an image I , a VLM is expected to generate
a response y by leveraging the multimodal knowledge snippets R retrieved from an external database
as context. The objective of the retrieval-augmented generation can be formulated as:

y = argmax
y

P (y∣q, I,R), (1)

Figure 2 depicts an overview of our proposed framework, RORA-VLM, which consists of
two novel designs to robustly enhance VLMs with retrieval augmentation: (1) two-stage
vision-language retrieval with Image-anchored Textual-query Expansion; and (2) Noise-Resilient
Retrieval-Augmented Generation. We detail each design as follows.

3.2 IMAGE-ANCHORED TEXTUAL-QUERY EXPANSION

Queries in knowledge-intensive VQA tasks typically consist of complementary visual and textual
information—query images highlight the key entities concerned in the question, while query texts
express the intent of the question using generic terms or anaphoric references to those entities. To
comprehensively leverage the combined visual and textual information in the queries and retrieve
relevant knowledge effectively, we design a 2-stage retrieval process with image-anchored textual-
query expansion as follows. Figure 6 in Appendix A.10 also provides a detailed illustration of the
2-stage retrieved process.

Stage-1: Image-anchored Entity Retrieval In this stage, we utilize the input query image I , as
an anchor, to retrieve visually similar images Ĩre = {Ĩ1, Ĩ2, ...} from an image database. Specifically,
the image database is built upon WIT (Srinivasan et al., 2021) which contains 37.6 million entity-
rich image-text pairs, with each text providing the name and background information of the entity
depicted in the image, sourced from Wikipedia. To enable efficient retrieval, we encode each image
in WIT into a vector using the CLIP (Radford et al., 2021) image encoder, and construct a dense
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vector-search database1. In this database, the encoded image features zi = CLIP(Ĩi) ∈ Rd, where d
is the dimension of the CLIP embedding, serve as search indexes Z = {z1, z2, . . . , zN}, while the
corresponding entity names and background information for these images are stored as search values
E = {e1, e2, . . . , eN}, where ei denotes the entity name and background information for candidate
image Ĩi and N is the total number of entries in the database. Given a query image I , the image
retriever ϕimg computes the cosine similarity between the query image and all search indexes using
their CLIP embeddings and fetches the top-k most similar images along with their associated entity
name and background information. More details of the image retriever are provided in Appendix
A.1.

Stage-2: Query-expanded Text Retrieval With the entity name and description of each retrieved
image from the first stage, we further use them to expand the original text query and develop the sec-
ond stage query-expanded text retrieval with a Google Search2 engine, leveraging the vast resources
of the web to enhance retrieval accuracy. Specifically, given the original text query q and a retrieved
entity name and description ei, the text retriever ϕtxt searches for top-l textual knowledge snippets
that are most relevant to the expanded query:

ci = {ci,1, ci,2, . . . , ci,l} = ϕ
txt(q, ei), (2)

where ci denotes the set of textual knowledge snippets related to the entity description ei and the
retrieved image Ĩi.

Finally, we concatenate each retrieved image Ĩi from the first stage and the corresponding textual
knowledge snippets ci from the second stage as a sequence ri = [Ĩi ∶ ci], where ∶ denotes the
concatenation operation, and obtain the multimodal knowledge snippets R = {r1, r2, . . . , rk} to
later augment the VLMs.

3.3 NOISE-RESILIENT RETRIEVAL-AUGMENTED GENERATION

Since the retrieving process is not perfect, the retrieved multimodal knowledge snippets may contain
irrelevant information to the given query. In this section, we present NOISE-RESILIENT RETRIEVAL-
AUGMENTED GENERATION, a two-fold denoising approach that enables VLMs to selectively utilize
the retrieved knowledge for answer prediction and ignore irrelevant retrieval noise.

Adversarial Noise Injection for Robust Augmentation For training, we design a adversarial
noise injection for robust augmentation that intentionally introduces irrelevant information into the
retrieved knowledge, forcing the model to be robust to noises when leveraging the retrieved knowl-
edge for answer prediction. For each training instance, i.e., a text query alongside an image (I, q),
of the knowledge-intensive VQA task, we first retrieve the top-(k-1) multimodal knowledge snip-
pets R = {r1, r2} and randomly sample an irrelevant knowledge snippet3 r

′
= [Ĩ ′ ∶ c′] from the

retrieval database. We then concatenate them together with the original query to form a sequence
of interleaved images and text: [r1 ∶ r2 ∶ r′ ∶ I ∶ q], which is further fed as input to VLMs for
answer prediction. We fine-tune VLMs on such retrieval-augmented training instances with noise
and minimize the cross-entropy loss of predicting the target answers.

Query-oriented Visual Token Refinement Images often contain much noise, such as objects or
visual scenes that are unrelated to the concerned entities. To further filter out query-irrelevant visual
information within the retrieved images as well as the query image, we design a query-oriented
visual token refinement strategy4. Given a text query q alongside a query image I , we first encode
the text query using the CLIP text encoder, producing a text embedding xq ∈ Rd, where d is the
embedding dimension. Similarly, the image I is encoded into a sequence of visual embeddings XI =

{xI,1,xI,2, ...,xI,n} ∈ Rn×d, where xI,i ∈ Rd denotes a visual token embedding corresponding to

1We construct the vector-search database based on a hierarchical navigable small-world (HNSW)
graph (Malkov & Yashunin, 2018).

2We query Google search via the Serper service: https://serper.dev/
3We randomly sample an entity from our retrieval database, together with its image and corresponding

knowledge, as the irrelevant sample. We make sure the sampled entity is mismatched with the target entity.
4Figure 7 in Appendix A.11 provides an example to illustrate the query-oriented visual token refinement

process.
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an image patch, and n is the number of visual tokens. The details of the encoding process can be
found in Appendix A.2. For each visual token embedding xI,i, we calculate its similarity to the text
embedding by dot product: si = xI,i ⋅ xq . Then, the top-m most similar visual tokens are selected,
forming the refined visual token sequence X̂I ∈ Rm×d of the query image:

X̂I = Top-m ({xI,i

»»»»»»»»
si}

n

i=1

) . (3)

Similarly, we also encode each of the retrieved image Ĩi ∈ Ĩre into a sequence of visual token
embeddings XĨi = {xĨi,1,xĨi,2, ...,xĨi,n} ∈ Rn×d. For each visual token embedding xĨi,j ∈ Rd,
we compute its similarity to the query image by calculating the sum of its dot product with all of
the selected visual tokens of the query image: sj = ∑m

i=1(xI,i ⋅ xĨi,j) where xI,i ∈ X̂I . Then,
the top-m most relevant visual tokens of the retrieved image are selected, forming the refined visual
token sequence X̂Ĩi ∈ Rm×d for each of the query image:

X̂Ii = Top-m
⎛
⎜
⎝
{xĨi,j

»»»»»»»»

m

∑
i=1

sj)}
n

j=1

⎞
⎟
⎠
. (4)

4 EXPERIMENT SETUP

Evaluation Benchmarks To evaluate the effectiveness and robustness of RORA-VLM, we con-
duct experiments on three benchmark datasets, including OVEN (Hu et al., 2023) for visual entity
grounding, and InfoSeek (Chen et al., 2023d) and Encyclopedic-VQA (Mensink et al., 2023) for
information-seeking visual question answering. As the test sets of OVEN and InfoSeek are not
available at the time of submission, we report our results on their validation sets. More details of
these datasets can be found in Appendix A.8.

Evaluation Metrics We adopt evaluation metrics in line with previous studies (Hu et al., 2023;
Chen et al., 2023d; Mensink et al., 2023). For visual entity recognition task, we use the stan-
dard accuracy metric to assess the model’s capability to correctly identify entities in images. For
knowledge-seeking visual question answering (VQA) task, we apply two different metrics tailored
to the specific types of questions. For questions expecting a string-based response, such as entity
names, we report accuracy using the VQA accuracy metric (Antol et al., 2015). This metric al-
lows for multiple valid answers by considering slight variations in phrasing (e.g., “New York City”
and “NYC”) as correct. The model is evaluated based on whether its answer matches any of these
valid responses. For questions requiring numeric answers, we use relaxed accuracy (Methani et al.,
2020), which accounts for small deviations from the exact numerical value. This metric considers
an answer correct if it falls within an acceptable tolerance range around the ground truth.

Baselines We compare our framework with several state-of-the-art vision-language models.
LLaVA-v1.5 (Liu et al., 2023a) integrates pre-trained visual and language models for strong perfor-
mance in multimodal tasks, while LLaVA-v1.6 (Liu et al., 2024) introduces improved fine-tuning
techniques. PaLI-17B (Chen et al., 2023c) utilizes a 17-billion-parameter architecture, excelling in
image captioning and visual question answering, with PaLI-X (Chen et al., 2023b) improving per-
formance on vision-language tasks by scaling up the model size and incorporating a high-capacity
visual encoder. BLIP-2 (Li et al., 2023) introduces efficient visual grounding through a Q-former,
and InstructBLIP (Dai et al., 2023) enhances it for instruction-following tasks. CLIP2CLIP (Hu
et al., 2023) leverages a CLIP-based model for improved image captioning. Recent work Wiki-
LLaVA (Caffagni et al., 2024) is designed for entity-centric question answering, aligning visual
data with external knowledge from Wikipedia. PreFLMR Lin et al. (2024) introduces a robust mul-
timodal retriever pre-trained on a vision-language corpus comprising over ten million samples, en-
abling high-quality retrieval to augment the generation processes. RA-CM3 Yasunaga et al. (2023)
employs a cross-modality retrieval mechanism to access and leverage multimodal information to
enhance the performance of multimodal generation. To ensure a fair comparison, all the base-
line models are fine-tuned on the OVEN Hu et al. (2023), InfoSeek Chen et al. (2023d), and Enc-
VQA Mensink et al. (2023) datasets respectively, and then evaluated on the corresponding tasks.

Model Tuning Building on the pre-trained VLMs, we conduct an additional visual-knowledge
alignment pre-training on a knowledge-intensive multimodal dataset WikiWeb2M (Burns et al.,

6
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2023). We curated 1 million entity-rich image-text instances from the WikiWeb2M, and each in-
stance consists of a unique image depicting an entity, its corresponding image caption, and the title
and main content of the section associated with that image. For the training process, we treat each
image-text instance as a single-turn conversation by randomly sampling a language instruction Xq
from a pre-defined instruction pool, prompting the model to caption the image and provide back-
ground knowledge. The input for each training instance consists of an image and a query. The
ground-truth answer is formed by concatenating the original caption, section title, and section con-
tent. To align the visual appearance of entities and their background knowledge stored in LLM, we
only freeze the weights of the visual encoder during the training and optimize the parameters of
both the projection layer and the LLM. After pre-training, for each of the OVEN (Hu et al., 2023),
InfoSeek (Chen et al., 2023d), and Encyclopedic-VQA (Mensink et al., 2023) datasets, we further
randomly sampled 1,000 instances to perform a lightweight fine-tuning of the VLM on these sub-
sets for specific downstream knowledge-intensive VQA tasks. More implementation details are
shown in Appendix A.9

5 RESULT & DISCUSSION

Table 1: Evaluation results in accuracy (%). The best per-
formance is highlighted in bold.The Entity groups expect an
entity name as the target answer, while Query groups target a
general object name or concept as the answer. * denotes our
implementation of Wiki-LLaVA as its original source code is
not publicly available.

Model Size (B) OVEN InfoSeek Enc-VQAEntity Query Entity Query
CLIP2CLIP 0.86 10.10 2.10 - - -
PaLI 17 12.40 22.40 16.00 20.70 -
PaLI-X 55 - - 20.80 23.50 -
BLIP-2 12 - - 13.30 14.50 -
InstructBLIP 12 - - 13.20 14.30 -
RA-CM3 7 - - 17.09 21.64 -
PreFLMR 7 - - 19.37 22.21 -
LLaVA-v1.6 7 3.72 24.55 14.16 15.98 13.54
LLaVA-v1.5 7 3.63 20.04 10.34 12.98 12.21

Wiki-LLaVA* 7 14.43 20.4 21.44 23.68 18.61
RORA-VLM 7 15.08 24.06 25.10 27.34 20.29

Main Results Table 1 presents
the main results for visual entity
grounding on the OVEN dataset
and information-seeking visual
question answering on the In-
foSeek and Encyclopedic-VQA
datasets. Though only with 7B
parameters and fine-tuned on
less than 10,000 instances per
dataset, RORA-VLM significantly
outperforms all baselines that are
with much larger model sizes
(including 17B and 55B models)
and fine-tuned on substantially
more instances (i.e., up to 1 mil-
lion) across nearly all benchmarks,
except for the Query subset of the
OVEN dataset. The Query subset
of OVEN primarily focuses on visual perception questions (e.g., “What is in the bowl?” with
the answer “egg”) that require less reliance on fine-grained entity knowledge (Hu et al., 2023).
Compared to our base model LLaVA-v1.5, LLaVA-v1.6 enhances its capacity to better perceive
details in images with higher-resolution image inputs and is trained on large-scale visual perception
datasets (Chen et al., 2023a). In contrast, our approach focuses on robust retrieval augmentation for
tasks that depend heavily on entity background knowledge, thus improving the visual perception
capabilities of VLMs is beyond the scope of our work.

Table 2: Ablation studies for query-
oriented visual token refinement (w/o
VK-Refinement) and noise-resilient
retrieval-augmented generation (text-
only RAG) on InfoSeek. Performance
is reported in accuracy (%).

Model Entity Query
RORA-VLM(ours) 24.56 26.33

- w/o VK-Refinement 23.94 24.85
- text-only RAG 17.29 19.28

Effect of Query-oriented Visual Token Refinement
We conduct an ablation study to demonstrate the ef-
fectiveness of Query-oriented Visual Token Refinement,
with the results presented in Table 2. In the “w/o VK-
Refinement” setting, we use the widely adopted average
pooling (kernel size of 2, stride of 2) to obtain the same
number of visual tokens as our refinement approach. The
details of the pooling process can be found in Appendix
A.3. As we can see, without explicitly filtering out the
irrelevant visual information, the performance drops on
both subsets of InfoSeek. In Figure 3, we show the qual-
itative results of the Query-oriented Visual Token Refine-
ment method. From the query image, we select m=144
visual tokens that are most related to the text query (i.e., the Question), while each visual token
corresponds to an image patch (highlighted in yellow). As we can see, this method effectively iden-
tifies and selects patches corresponding to the key visual entity, even with the presence of anaphoric
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Figure 3: Qualitative results for query-oriented visual token refinement.

references in the query. Similarly, for each retrieved image, we also select m=144 visual tokens
that are most related to the query image. For retrieved images containing the same entities as the
query image (highlighted with a green box), the selected patches tend to cluster around the key
entity. Conversely, when retrieved images contain different entities from those in the query image
(highlighted with a red box), the distribution of selected patches is more scattered. These qualitative
results underscore the effectiveness of our token refinement strategy in filtering out irrelevant visual
information, enabling the retrieval augmentation of VLMs more robust.

Effect of Adversarial Noise Injection for Robust Augmentation The essential assumption of
adversarial noise injection for robust augmentation is that by training with adversarial noise, VLMs
implicitly learn to compare the visual appearances of entities in the retrieved images and the query
image, thereby discarding irrelevant information from the textual knowledge snippets corresponding
to the irrelevant retrieved images. To validate this assumption and demonstrate that the performance
improvement is not solely due to the retrieved textual knowledge, we remove the retrieved images
from the multimodal knowledge snippets in RoRA-VLM during both training and inference, while
keeping all other hyperparameters and the 2-stage retrieval process identical. In this configuration,
the multimodal knowledge snippets are reduced to textual-only knowledge snippets, and we refer
to this setting as RoRA-VLM with textual-only RAG. During training, the model can still leverage
the retrieved textual knowledge to answer questions; however, without the presence of images, it
cannot learn to differentiate the relevance of the textual knowledge based on the visual appearances
of entities. As shown in Table 2, without retrieved images to provide visual cues for selecting
relevant knowledge, RORA-VLM with textual-only RAG exhibits significantly worse performance
compared to the standard RORA-VLM, despite having access to the same textual knowledge during
inference. Additionally, we analyze the robustness of RORA-VLM under varying levels of retrieval
noise, with the results presented in Appendix A.4.

To complement our findings on retrieval noise and better understand how RORA-VLM prioritizes
relevant information during inference, we visualize the attention scores assigned to each input token
during answer generation. As shown in Figure 4, the left column presents the input queries, images,
target answers, and RORA-VLM’s predictions. The middle column displays the retrieved images
along with their associated textual knowledge. The green highlights indicate the model’s attention
to individual tokens, with darker shades denoting higher attention scores. The right column pro-
vides a detailed breakdown of the attention distribution, with gray bars representing the positions
of the retrieved images. By examining these qualitative results, we observe that RORA-VLM ef-
fectively learns to focus on the textual knowledge corresponding to images containing entities that
match those in the query image. For instance, in the second row of Figure 4, RORA-VLM predom-
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Figure 4: Visualization of attention scores assigned to VLM input tokens during next-token genera-
tion. Tokens are highlighted in green, with darker shades indicating higher attention scores.

inantly focuses on the first two knowledge snippets, while disregarding the third, which pertains to
a completely different animal.

Table 3: Performance in accuracy (%)
for VLMs with or without knowledge-
intensive pre-training on InfoSeek.

Model Entity Query
LLaVA-v1.5 10.34 12.98

- w/ WikiWeb2M 18.00 20.98

RORA-VLM (ours) 24.56 26.33
- w/o WikiWeb2M 20.68 23.41
- w/ ShareGPT4V 21.28 22.84

Effect of Knowledge-Intensive Pre-training To
demonstrate the effectiveness of our proposed
knowledge-intensive pre-training, we design two
sets of experiments and report the results in Table 3. For
the original LLaVA-v1.5 without retrieval augmentation,
by performing knowledge-intensive pre-training, the
performance is significantly improved on both InfoSeek.
Similar improvements are also observed by compar-
ing RORA-VLM to RORA-VLM w/o WikiWeb2M.
Additionally, we compare pre-training dataset between
WikiWeb2M and ShareGPT4V (Chen et al., 2023a)), a
generic image-caption dataset where the captions only describe the image context without many
fine-grained entities or entity descriptions. As we shown, the performance of RORA-VLM w/
ShareGPT4V is much lower than RORA-VLM pre-trained on WikiWeb2M, demonstrating the
benefit of knowledge-intensive pre-training on better aligning the visual appearance of objects to
their corresponding entities and entity background knowledge.

Table 4: Performance in accuracy (%) for do-
main transfer on Encyclopedic-VQA.

Model SFT Domain Transfer
LLaVA-v1.5 18.23 17.18
RORA-VLM(ours) 24.36 20.26

Domain Transfer Capability In this subsection,
we examine the generalizability of the proposed
RORA-VLM using the Encyclopedic-VQA dataset.
The iNaturalist subset of the Encyclopedic-VQA
dataset consists of questions concerning 11 cate-
gories (e.g., Plant, Insect, Lake, etc.) of entities. To
create a domain transfer setting, we select “Insect”
as the target domain, and modify the training set by filtering out instances from the “Insect” cat-
egory. We fine-tune both the baseline model and our RORA-VLM on the original training set of
the iNaturalist subset as well as the modified training set for domain transfer, and evaluate on the

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Qualitative results of 2-stage retrieval with image-anchored textual-query expansion.

complete test set of the iNaturalist subset. Table 4 shows the results, where “SFT” refers to models
fine-tuned on the full training set, while “Domain Transfer” refers to models fine-tuned on the mod-
ified training set for domain transfer. The results clearly show that, even without being fine-tuned
on the “Insect” category, RORA-VLM still outperforms the baseline model that is trained on the
complete training set. This demonstrates the generalizability of our proposed method, as it enables
the VLM to surpass its base model even without access to in-domain knowledge during training.

Table 5: Retrieval precision (%) for the first and
second stage of retrieval.

OVEN InfoSeek
Stage Entity Query Entity Query
First Stage 35.16 34.45 38.53 37.67
Second Stage - - 27.01 26.97

Evaluation of the Two-Stage Retrieval We
report the retrieval precision at each stage of
our proposed two-stage retrieval process in Ta-
ble 5. In the first stage, given a query image,
if the target entity shown in the query image
matches any of the retrieved m images, we take
it as correct. Similarly, in the second stage, if
the golden answer is included in any of the re-
trieved textual knowledge snippets, we also view it as correct. Figure 5 presents several examples for
qualitative analysis. Our retrieval method effectively identifies images that contain entities matching
those in the query images. Although the perspectives of the entities in the retrieved images differ
from those in the query images, the retrieved images provide sufficient visual attributes for entity
identification (e.g., the gap in the wall in Figure 5(a) and the shape of the leaves in Figure 5(c)).
Additionally, we performed an ablation experiment using only a single-stage retrieval method to
emphasize the effectiveness of our two-stage retrieval approach, with the results presented in Ap-
pendix A.5.

6 CONCLUSION

In this work, we introduce RORA-VLM, a novel and robust retrieval-augmented framework specif-
ically designed for VLMs to address two key challenges: (1) the intrinsic discrepancy between
multimodal queries, and (2) the presence of irrelevant and extraneous information embedded in the
retrieved multimodal knowledge snippets. RORA-VLM incorporates two technical innovations:
(1) a two-stage retrieval process with image-anchored textual-query expansion that synergistically
integrates visual and textual information for more comprehensive retrieval results, and (2) a robust
retrieval augmentation method that enhances the VLMs’ resilience against noise. Our experimental
results demonstrate that RORA-VLM achieves state-of-the-art performance on three widely adopted
benchmark datasets, including OVEN, InfoSeek, and Enc-VQA.
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Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP
tasks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
6b493230205f780e1bc26945df7481e5-Abstract.html.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: bootstrapping language-
image pre-training with frozen image encoders and large language models. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett

12

http://papers.nips.cc/paper_files/paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://proceedings.mlr.press/v119/guu20a.html
http://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.1109/ICCV51070.2023.01108
https://aclanthology.org/D14-1086
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

(eds.), International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp. 19730–19742.
PMLR, 2023. URL https://proceedings.mlr.press/v202/li23q.html.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru Coca, and Bill Byrne. Fine-grained late-
interaction multi-modal retrieval for retrieval augmented visual question answering. Advances in
Neural Information Processing Systems, 36:22820–22840, 2023.

Weizhe Lin, Jingbiao Mei, Jinghong Chen, and Bill Byrne. Preflmr: Scaling up fine-grained late-
interaction multi-modal retrievers. arXiv preprint arXiv:2402.08327, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. CoRR, abs/2310.03744, 2023a. doi: 10.48550/ARXIV.2310.03744. URL https://doi.
org/10.48550/arXiv.2310.03744.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Al-
ice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL https:
//llava-vl.github.io/blog/2024-01-30-llava-next/.

Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual relationship detection with
language priors. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 852–869. Springer, 2016.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824–836, 2018.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
question answering benchmark requiring external knowledge. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

Thomas Mensink, Jasper R. R. Uijlings, Lluı́s Castrejón, Arushi Goel, Felipe Cadar, Howard Zhou,
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A APPENDIX

A.1 IMAGE-ANCHORED ENTITY RETRIEVAL

In this stage, we utilize the input query image I , as an anchor, to retrieve visually similar images
Ĩre = {Ĩ1, Ĩ2, ...} from an image database. The image retriever ϕ

img leverages a non-parametric
function to measure the cosine similarity between the CLIP embedding of query image I and all
search indexes. The score of each candidate image Ĩi with search index zi can be expressed as:

P (Ĩi∣I,Z) =
exp (Sim(I, zi))

∑n
j=1 exp (Sim(I, zj))

,Sim(I, zi) =
CLIP(I)⊤zi

∥CLIP(I)∥∥zi∥
(5)

Based on this function, the image retriever ϕimg fetches the top-k images that are most similar to the
query image along with their associated entity name and background information.

{(Ĩ1, e1), (Ĩ2, e2), . . . , (Ĩk, ek)} = ϕ
img(I,Z,E), (6)

A.2 DETAILS OF THE CLIP MODEL ENCODING

In this section, we provide a detailed description of how we encode an image into a sequence of
visual embeddings using CLIP.

Image Encoding with CLIP: In the CLIP model, the visual encoder is based on the Vision Trans-
former (ViT) architecture. Given an image, the visual encoder processes it as a whole and encodes
it into a feature representation of shape [576, 1024]. This representation can be interpreted as 576
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vectors, each with a dimensionality of 1024. The 576 vectors correspond to patches of the input im-
age, where the image is internally divided into a grid of patches during the encoding process. This
division is not explicit; rather, it is an inherent part of the ViT architecture, which computes patch-
level embeddings directly through a convolutional embedding layer applied to the full image. The
resulting intermediate patch embeddings collectively form the image’s representation in the model’s
latent space.

Dimensionality of Visual Embeddings: After passing through the vision transformer (ViT) lay-
ers, each patch is represented as a feature vector with a dimensionality of 1024. To further process
these features, we utilized the final visual projection layer of the original CLIP model. This projec-
tion layer, which is also used for the pooled [CLS] token in the original implementation, is applied
to all 576 patch-based feature vectors in our approach. The projection reduces the dimensionality of
each feature vector from 1024 to 768. To clarify further, the visual projection layer is part of CLIP’s
original implementation. While it is typically applied only to the pooled [CLS] token to produce
the image-level feature representation, in our work, we extend its application to all 576 patch-level
feature vectors. As a result, the output is a feature representation of shape [576, 768], where 576 cor-
responds to the number of patches and 768 is the dimensionality of the projected patch embeddings.

After computing the patch embeddings, for each text query, we derive a 768-dimensional vector
from the [CLS] token of the CLIP text encoder. We then compute the similarities between the
text embedding and the image patch embeddings to select the top-m relevant patches, which are
subsequently projected into the LLM’s latent space using the LLaVA projector.

A.3 DETAILS OF THE POOLING PROCESS

As detailed in the Appendix A.2, each image is processed into a feature matrix with shape [576,
768] by the CLIP visual encoder and the LLaVA projector. Our proposed Visual Token Refinement
method further selects the top 144 visual tokens that are most relevant to the query, constructing a
feature matrix of shape [144, 768]. This selection process enables the VLM to focus more effectively
on query-relevant image content while mitigating the influence of irrelevant noise, such as image
backgrounds or query-irrelevant entities present in the image. To conduct an ablation study of
the Visual Token Refinement method, we replace it with a simple average-pooling-based baseline,
which also takes in the original [576, 768] visual patch vectors as input, downsample and convert
them into [144, 768] vectors to ensure a fair comparison with our Visual Token Refinement method.
Specifically, we first reshape the first dimension of the feature matrix (i.e., 576) into a 2D grid with
dimensions 24 × 24, corresponding to the spatial arrangement of patches in the original image, then
apply a 2D average pooling operation with a kernel size of 2 × 2 and a stride of 2. This pooling
reduces the spatial resolution from 24 × 24 to 12 × 12, yielding 144 patch vectors in total while
each patch vector has a dimensionality of 768. By reducing the number of feature vectors from 576
to 144, this process ensures compatibility with the limited sequence length of the LLM and aligns
the number of input tokens for the average pooling baseline with that of our visual token refinement
method. This alignment allows for a direct and fair comparison of the two approaches in the ablation
study.

A.4 ROBUSTNESS OF RORA-VLM UNDER VARYING LEVELS OF RETRIEVAL NOISE

To further analyze the ability of our RoRA-VLM to handle noisy retrieval and validate its robust-
ness, we conducted additional ablation studies involving controlled retrieval noise scenarios. The
key challenge in ideally proving the effectiveness of our model in ignoring retrieval noise is the
lack of gold-standard labels for the retrieval process in the evaluation datasets. Specifically, we
do not have precise relevancy labels between input queries and all candidate samples for retrieval,
making it infeasible to construct an experiment with exactly one relevant sample and two randomly
sampled irrelevant samples. Therefore, we designed an alternative experiment with varying levels
of retrieval noise. During the inference stage, instead of using the top-3 retrieved entity images
and their corresponding knowledge snippets, we tested a setting where we used the top-1 retrieved
entity image and its knowledge snippet along with two randomly sampled irrelevant entity images
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and their knowledge snippets. This random sampling process was repeated twice, resulting in two
distinct sets of irrelevant entity images and knowledge snippets for the same input instance. Addi-
tionally, we tested another setting using only the top-1 retrieved entity image and its corresponding
knowledge snippet for generation augmentation. Using these four configurations of retrieved entity
images and knowledge snippets, we evaluated retrieval augmentation on the InfoSeek dataset. The
results are summarized in the Table 6. From the results, we observe that the model’s performance
remains relatively stable regardless of which two noise samples were chosen, demonstrating to some
extent the model’s ability to identify useful information from the retrieved samples while ignoring
irrelevant ones. However, due to the absence of ground-truth labels for the retrieval process, there
is no guarantee that the top-1 retrieval output is always correct. Consequently, it is reasonable to
observe a slight performance degradation when irrelevant entities are used to replace the top-2 and
top-3 retrieved samples. Moreover, when comparing the variant using only the top-1 retrieval for
augmentation with the variants including irrelevant retrieval noise, we note that the inclusion of
irrelevant samples does not significantly degrade overall performance. These results highlight the
robustness of our method to retrieval noise and its ability to leverage relevant knowledge snippets
for improved inference.

Table 6: Performance in accuracy (%) for
RORA-VLM with varying levels of retrieval
noise on InfoSeek.

Model Entity Query
Top-1 Retrieval 20.49 22.19
Top-1 Retrieval + 2 Noises (1) 19.61 21.97
Top-1 Retrieval + 2 Noises (2) 19.63 22.02
Top-3 Retrieval 25.10 27.34

Table 7: Performance in accuracy (%) for
VLMs with or without knowledge-intensive
pre-training on InfoSeek.

Model Entity Query
LLaVA-v1.5 10.34 12.98
RA-CM3 (single-stage) 17.09 21.64
RoRA-VLM (single-stage) 21.9 23.87
RoRA-VLM (2-stage) 25.10 27.34

A.5 ABLATION STUDY ON SINGLE-STAGE RETRIEVAL

We performed an ablation experiment using only a single-stage retrieval method to emphasize the
effectiveness of our two-stage retrieval approach. Specifically. In the single-stage configuration, we
utilized the CLIP embedding of the query image to retrieve the most similar entity images in our
retrieval database, and thereby obtain the corresponding entity names and background knowledge.
This differs from our two-stage approach in that it bypasses the secondary textual retrieval phase,
which normally uses the entity name and input query to refine the knowledge selection. Instead,
the single-stage method directly employs the retrieved entity background contexts as knowledge
snippets for retrieval-augmented generation. We compare this single-stage retrieval method with
our proposed two-stage retrieval method in Table 7. For a more comprehensive comparison, we also
included RA-CM3 Yasunaga et al. (2023) for comparison as it employed a single-stage retrieval
method.

A.6 EFFECT OF THE NUMBER OF RETRIEVED KNOWLEDGE SNIPPETS

We investigate the impact of the number of textual knowledge snippets returned for each image dur-
ing the second stage of retrieval, i.e., l in Equ. 2, and show the results on the InfoSeek dataset in
Table 8. LLaVA-v1.5 with 4 or 8 snippets denotes the LLaVA-v1.5 fine-tuned with retrieval aug-
mentation but without visual token refinement and knowledge-intensive pertaining. As shown in the
table, expanding the retrieval from top-4 to top-8 snippets results in marginal improvements, demon-
strating the less sensitivity of our 2-stage retrieval strategy on the number of retrieved knowledge
snippets.

A.7 EFFECT OF TRUNCATION

We implement a truncation strategy for each retrieved knowledge snippet during tokenization to con-
struct the multimodal interleaved input, preventing longer preceding retrieved knowledge snippets
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Table 8: Performance comparison in accu-
racy (%) for VLMs with different numbers
of retrieval knowledge snippets on the InfoS-
eek.

Model Entity Query
LLaVA-v1.5

- 4 snippets 20.68 23.41
- 8 snippets 20.84 23.34

RORA-VLM(ours)
- 4 snippets 24.56 26.33
- 8 snippets 25.10 27.34 Table 9: Position distribution of the target en-

tity name within retrieved knowledge snip-
pets.

from dominating the limited input sequence space, thereby ensuring that subsequent retrieved infor-
mation is preserved. However, this raises an important question: how much valuable information is
lost due to this truncation?

To assess the potential loss of critical information, we examine instances where the retrieved knowl-
edge snippets explicitly mention the target entity name. We count the number of tokens that appear
before this mention and visualize the positional distribution of key information (i.e., the target entity
name) within the retrieved snippets, as shown in Figure 9. As depicted, in most cases, the entity
name appears within the first 200 tokens of the retrieved passages, whereas our truncation is ap-
plied at the 400-token mark for each passage. This buffer ensures a high retention rate of valuable
information, minimizing the risk of discarding critical content due to truncation.

A.8 DATASETS

OVEN (Hu et al., 2023) OVEN is an entity recognition dataset constructed by repurposing 14
existing datasets, comprising over 5 million instances. All labels in OVEN are mapped onto a
unified label space of Wikipedia entities. Each instance consists of an entity image paired with
its corresponding entity name. The tasks in OVEN require vision-language models (VLMs) to
recognize visual entities from a pool of six million possible Wikipedia entities.

InfoSeek (Chen et al., 2023d) InfoSeek is a large-scale visual question answering (VQA) dataset
focused on knowledge-seeking queries. It consists of over 1.35 million image-text pairs, each posing
various questions about objects, scenes, and actions that require external knowledge—such as factual
information—rather than solely relying on the visual content.

Encyclopedic-VQA (Mensink et al., 2023) Encyclopedic-VQA is a knowledge-intensive VQA
dataset containing over 221,000 image-text instances that require deep reasoning and access to ex-
ternal knowledge. It is well-suited for evaluating a model’s ability to answer questions that extend
beyond the image content.

A.9 IMPLEMENTATION DETAILS

We adopt LLaVA-v1.5-7B (Liu et al., 2023a) as the backbone model for our RORA-VLM. In our
experiments, limited by the input sequence length, we set the retrieval parameters as follows: k = 3
and l = 3 for image-anchored textual-query expansion, and m = 144 for our query-oriented visual
token refinement method. All models are trained using 8 NVIDIA H100 GPUs. Both pre-training
and fine-tuning processes follow the hyperparameters specified in the original LLaVA (Liu et al.,
2023a) setup, ensuring consistency with previous work.
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Two-Stage Retrieval
with Image-anchored Textual-query Expansion

Knowledge	from	Stage-2:Entity	from	Stage-1:

The	fort	was	originally
built	after	the	...

	Jan	van	Riebeeck's
arrival	on	6	April	...

Built	by	the	Dutch	East
India	Company	...

Castle	of	
Good	Hope

Cape	Town

Fort
Scratchley

Input	Image Input	Query

In	which	year	was
this	building	built?

Data	Source

Retriever	output:

Built	by	the	Dutch
East	India	Company
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originally	built	after
the	...

Figure 6: Overview of the Image-anchored Textual-query Expansion
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this	building	built?

Input	Query

In	which	year	was
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Input	Image

Retrieved	Entity	Images
Refined	Visual

Tokens
Query-oriented Visual Token Refinement

Figure 7: Overview of the Query-oriented Visual Token Refinement

A.10 SCHEMATIC DIAGRAM OF THE 2-STAGE RETRIEVAL

We include Figure 6 to provide a more intuitive explanation of our proposed 2-stage retrieval.

A.11 SCHEMATIC DIAGRAM OF THE QUERY-ORIENTED VISUAL TOKEN REFINEMENT

We include Figure 7 to provide a more intuitive explanation of the query-oriented visual token
refinement.
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