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Abstract

We study the classic problem of prediction with expert advice under bandit feedback.1

Our model assumes that one action, corresponding to the learner’s abstention2

from play, has no reward or loss on every trial. We propose the confidence-rated3

bandits with abstentions (CBA) algorithm, which exploits this assumption to4

obtain reward bounds that can significantly improve those of the classical EXP45

algorithm. Our problem can be construed as the aggregation of confidence-rated6

predictors, with the learner having the option to abstain from play. We are the7

first to achieve bounds on the expected cumulative reward for general confidence-8

rated predictors. In the special case of specialists we achieve a novel reward9

bound, significantly improving previous bounds of SPECIALISTEXP (treating10

abstention as another action). We discuss how CBA can be applied to the problem11

of adversarial contextual bandits with the option of abstaining from selecting any12

action. We are able to leverage a wide range of inductive biases, outperforming13

previous approaches both theoretically and in preliminary experimental analysis.14

Additionally, we achieve a reduction in runtime from quadratic to almost linear in15

the number of contexts for the specific case of metric space contexts.16

1 Introduction17

We study the classic problem of prediction with expert advice under bandit feedback. The problem18

is structured as a sequence of trials. During each trial, each expert recommends a probability19

distribution over the set of possible actions. The learner then selects an action, observes, and incurs20

the (potentially negative) reward associated with that action on that particular trial. In practical21

applications, errors often lead to severe consequences, and consistently making predictions is neither22

safe nor economically practical. For this reason, the abstention option has gained a lot of interest23

in the literature, both in the batch and online setting [Chow, 1957, 1970, Hendrickx et al., 2021,24

Cortes et al., 2018]. Similarly to previous works, this paper is based on the assumption that one of the25

actions always has zero reward: such an action is equivalent to an abstention of the learner from play.26

Besides the rewards being bounded between [−1, 1], we make no additional assumptions regarding27

how the rewards or expert predictions are generated. In this paper, we present an efficient algorithm28

CBA (Confidence-rated Bandits with Abstentions) which exploits the abstention action to get reward29

bounds that can be dramatically higher than those of EXP4 [Auer et al., 2002]. In the worst case, our30

reward bound essentially matches that of EXP4 so that CBA can be seen as a strict improvement.31

Our problem can also be seen as that of aggregating confidence-rated predictors [Blum and Mansour,32

2007, Gaillard et al., 2014, Luo and Schapire, 2015] when the learner has the option of abstaining33

from taking actions. When the problem is phrased in this way, at the start of each trial, each predictor34

recommends a probability distribution over the actions (which now may not include an action with35

zero reward) but with a confidence rating. A low confidence rating can mean that either the predictor36

thinks that all actions are bad (so that the learner should abstain) or simply does not know which37
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action is the best. Previous works on confidence-rated experts measure the performance of their38

algorithm in terms of the sum of scaled per-trial rewards. In contrast to previous algorithms, our39

approach allows for the derivation of bounds on the expected cumulative reward of CBA.40

This formulation enables us to extend our work to the problem of adversarial contextual bandits with41

the abstention option, which has not been studied before. Previous work has considered the abstention42

option in the standard (context-free) adversarial bandit setting or in stochastic settings [Cortes et al.,43

2018, 2020, Neu and Zhivotovskiy, 2020], but not in the contextual and adversarial case. Moreover,44

their results and methods cannot be applied to confidence-rated predictors. To get more intuition on45

this setup, we can think of any deterministic policy that maps contexts into actions. Any such policy46

can be viewed as a classifier, with foreground classes associated with each action and a background47

class associated with abstaining. Our learning bias is represented by a set of information we refer to48

as the basis, which we formally define later. It encodes contextual structural assumptions that hold49

exclusively for the foreground classes and are provided to the algorithm a priori. A particular type50

of basis is generated by a set of potential clusters that can overlap. Alternatively, a basis can also51

be created using balls generated by any kind of distance function, which groups contexts believed52

to be close together. For this latter family of basis, we can also achieve a significant speedup in the53

per-trial time complexity of CBA.54

One specific scenario where prior algorithms can establish cumulative reward bounds is as follows:55

on any given trial, the predictors are specialists [Freund et al., 1997], having either full confidence56

(a.k.a. awake) or no confidence (a.k.a. asleep). The SPECIALISTEXP algorithm by Herbster et al.57

[2021], a bandit version of the standard specialist algorithm, achieves regret bounds with respect58

to any subset of specialists where exactly one specialist is awake on each trial. We differ from this59

work as abstention is an algorithmic choice. Instead of sleeping in the rounds where the specialist60

is not active, the specialist may vote for abstention, which is a proper action of our algorithm. In61

Section 5.2, we present an illustrative problem involving learning balls in a space equipped with a62

metric. This example demonstrates our capability to significantly improve SPECIALISTEXP, which63

treats abstention as just another action when our confidence-rated predictors are indeed specialists.64

For this problem, we also present subroutines that significantly speed up CBA.65

For a more detailed discussion of related work, refer to Appendix A.66

2 Problem formulation and notation67

We consider the classic problem of prediction with expert advice under bandit feedback. In this68

problem we have K + 1 actions, E experts, and T trials. On each trial t:69

1. Each expert suggests, to the learner, a probability distribution over the K + 1 actions.70

2. The learner selects an action at.71

3. The reward incurred by action at on trial t (which is in [−1, 1] and is selected by Nature72

before the trial) is revealed to the learner.73

The aim of the learner is to maximize the cumulative reward obtained by its selected actions. As74

discussed in Section 1, we consider the case in which there is an action (the abstention action) that75

incurs zero reward on every trial.76

We denote our action set by [K] ∪ {□} where □ is the abstention action. For each trial t ∈ [T ] we77

define the vector rt ∈ [−1, 1]K such that for all a ∈ [K] , rt,a is the reward obtained by action a on78

trial t. Moreover, we define rt,□ := 0 which is the reward of the abstention action □.79

It will be useful for us to represent probability distributions over the actions by vectors in the set:80

A := {s ∈ [0, 1]K | ∥s∥1 ≤ 1} .

Any vector s ∈ A represents the probability distribution over actions which assigns, for all a ∈ [K],81

a probability of sa to action a, and assigns a probability of 1−∥s∥1 to the abstention action □, where82

∥s∥1 denotes 1-norm of s. We write a ∼ s to represent that an action a is drawn from this probability83

distribution. We will refer to the elements of the set A as stochastic actions.84

A policy is any element of AT (noting that any such policy is a matrix in [0, 1]T×K). Any policy85

e ∈ AT defines a stochastic sequence of actions: on every trial t ∈ [T ] an action a ∈ [K] ∪ {□}86

being drawn as a ∼ et. Note that if the learner plays according to a policy e ∈ AT , then on each87
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trial t it obtains an expected reward of rt · et, where the operator · denotes the dot product. Note that88

each expert is equivalent to a policy. Thus, for all i ∈ [E] we denote the i-th expert by ei ∈ AT . At89

the start of each trial t ∈ [T ], the learner views the sequence ⟨eit | i ∈ [E]⟩.90

We can also view the experts as confidence-rated predictors over the set [K]: for each i ∈ [E] and91

t ∈ [T ], the vector eit can be viewed as suggesting the probability distribution eit/∥eit∥1 over [K], but92

with confidence ∥eit∥1. We denote this confidence by ct,i := ∥eit∥1 and write ct := (ct,1, . . . , ct,E).93

In this work, we will refer to the unnormalized relative entropy defined by:94

∆(u,v) :=
∑
i∈[E]

ui ln

(
ui
vi

)
− ∥u∥1 + ∥v∥1

for any u,v ∈ RE
+. We will also use the Iverson bracket notation JPREDK as the indicator function,95

meaning that it is equal to 1 if PRED is true, and 0 otherwise. All the proofs are in the Appendix.96

3 Main result97

Our main result is represented by the bound on the cumulative reward of our algorithm CBA. We98

note that any weight vector u ∈ RE
+ induces a matrix π(u) ∈ RT×K

+ defined by99

π(u) :=
∑
i∈[E]

uie
i,

which is the linear combination of the experts with coefficients given by u. However, only some of100

such linear combinations generate valid policies. Thus, we define101

V := {u ∈ RE
+ |π(u) ∈ AT }

as the set of all weight vectors that generate valid policies. Particularly, note that u ∈ V if and only102

if, on every trial t, the weighted sum of the confidences u · ct is no greater than one. Given some103

u ∈ V , we define104

ρ(u) :=
∑
t∈[T ]

rt · πt(u) ,

which would be the expected cumulative reward of the learner if it was to follow the policy π(u).105

We point out that the learner does not know V or the function π a-priori.106

The following theorem (proved in Appendix B) allows us to bound the regret of CBA with respect to107

any valid linear combination u of experts.108

Theorem 3.1. CBA takes parameters η ∈ (0, 1) and w1 ∈ RE
+ . For any u ∈ V the expected109

cumulative reward of CBA is bounded below by:110 ∑
t∈[T ]

E[rt,at
] ≥ E[ρ(u)]− ∆(u,w1)

η
− η(12K + 2)T ,

where the expectations are with respect to the randomization of CBA’s strategy. The per-trial time111

complexity of CBA is in O(KE).112

We now compare our bound to those of previous algorithms. Firstly, EXP4 can only achieve bounds113

relative to a u ∈ V with ∥u∥1 = 1 , in which case it essentially matches our bound but with 12K + 2114

replaced by 8K +8. Hence, for any u ∈ V the EXP4 bound essentially replaces the term ρ(u) in our115

bound by ρ(u)/∥u∥1. Note that ∥u∥1 could be as high as the number of experts which implies we116

can dramatically outperform EXP41.117

When viewing our experts as confidence-rated predictors, we note that previous algorithms for this118

setting only give bounds on a weighted sum of the per-trial rewards where the weight on each trial is119

u · ct for some u ∈ V . This is only a cumulative reward bound when u · ct = 1 for all t ∈ [T ], and120

finding such a u is typically impossible. When there does exist u that satisfies this constraint, the121

reward relative to u is essentially the same as for us [Blum and Mansour, 2007]. However, there will122

often be another value of u that will give us a much better bound, as we show in Section 5.2.123

1Precisely, If for each expert there exists a trial in which the confidence is 1, then we have 0 ≤ ∥u∥1 ≤ E.
Otherwise can be high as 0 ≤ ∥u∥1 ≤ E/c∗, where c∗ = maxt∈[T ] c

i
t.
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Algorithm 1 CBA(w1, η)

For t = 1, 2, . . . , T do:
1. For all i ∈ [E] receive eit
2. For all i ∈ [E] set ct,i ← ∥eit∥1
3. If ∥ct∥1 ≤ 1 then:

(a) Set w̃t ← wt

4. Else:
(a) By interval bisection find λ > 0 such that:∑

i∈[E]

ct,iwt,i exp(−λct,i) = 1

(b) For all i ∈ [E] set w̃t,i ← wt,i exp(−λct,i)
5. Set:

st ←
∑
i∈[E]

w̃t,ie
i
t

6. Draw at ∼ st
7. Receive rt,at

8. For all a ∈ [K] set:
r̂t,a ← 1− Ja = atK(1− rt,at

)/st,at

9. For all i ∈ [E] set w(t+1),i ← w̃t,i exp(ηe
i
t · r̂t)

4 The CBA algorithm124

The CBA algorithm is given in Algorithm 1. In this section, we describe its derivation via a125

modification of the classic mirror descent algorithm.126

Our modification of mirror descent is based on the following mathematical objects. For all t ∈ [T ]127

we first define:128

Vt := {v ∈ RE
+ | ∥πt(v)∥1 ≤ 1} ,

which is the set of all weight vectors that give rise to linear combinations producing valid stochastic129

actions at trial t. Given some t ∈ [T ], we define our objective function ρt : Vt → [−1, 1] as130

ρt(v) := rt · π(v) for all v ∈ Vt.

Like mirror descent, CBA maintains, on each trial t ∈ [T ], a weight vector wt ∈ RE
+. However,131

unlike mirror descent on the simplex, we do not keep wt normalized, but we will instead project it132

into Vt at the start of trial t, producing a vector w̃t. Also, unlike mirror descent, CBA does not use133

the actual gradient (which it does not know) of ρt at w̃t, but (inspired by the EXP3 algorithm) uses134

an unbiased estimator instead. Specifically, on each trial t ∈ [T ] , CBA does the following:135

1. Set w̃t ← argminv∈Vt
∆(v,wt).136

2. Randomly construct a vector gt ∈ RE such that E[gt] = ∇ρt(w̃t).137

3. Set wt+1 ← argminv∈RE
+
(ηgt · (w̃t − v) + ∆(v, w̃t)).138

This naturally raises two questions: how is at selected and how is gt constructed? On each trial139

t ∈ [T ] we define140

st :=
∑
i∈[E]

w̃t,ie
i
t ,

which is the stochastic action generated by the linear combination w̃t, and select at ∼ st. Note that:141

E[rt,at
] = ρt(w̃t) , (1)

which confirms that ρt is our objective function at trial t. Once rt,at is revealed to us we can proceed142

to construct the gradient estimator gt. It is important that we construct this estimator in a specific143

way. Inspired by EXP4 we first define a reward estimator r̂t such that for all a ∈ [K] we have:144

r̂t,a := 1− Ja = atK(1− rt,at
)/st,at

.
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This reward estimate is unbiased as:145

E[r̂t,a] = 1− Pr[a = at](1− rt,a)/st,a = rt,a .

We then define, for all i ∈ [E], the component:146

gt,i := eit · r̂t .
Note that for all i ∈ [E] we have:147

E[gt,i] = eit · E[r̂t] = eit · rt = ∂iρt(w̃t)

so that E[gt] = ∇ρt(w̃t) as required.148

Now that we defined the process by which CBA operates we must show how to compute w̃t and149

wt+1. First we show how to compute w̃t from wt. If ∥ct∥1 ≤ 1 it holds that wt ∈ Vt so we150

immediately have w̃t = wt. Otherwise we must find w̃t ∈ RE
+ that minimizes ∆(w̃t,wt) subject to151

the constraint:
∑

i∈[E] w̃t,ict,i = 1 , which is equivalent to the constraint that ∥π(w̃t)∥1 = 1. Hence,152

by Lagrange’s theorem there exists λ such that:153

∇w̃t

(
∆(w̃t,wt) + λ

∑
i∈[E]

w̃t,ict,i

)
= 0

which is solved by setting, for all i ∈ [E] :154

w̃t,i := wt,i exp(−λct,i) .
The constraint is then satisfied if λ is such that:155 ∑

i∈[E]

ct,iwt,i exp(−λct,i) = 1 .

Since this function is monotonic decreasing, λ can be found by interval bisection.156

Turning to the computation of wt+1 , since it is unconstrained it is found by the equation:157

∇wt+1(gt ·wt+1 + η−1∆(wt+1, w̃t)) = 0 .

which is solved by setting, for all i ∈ [E] :158

w(t+1),i := w̃t,i exp(ηgt,i) . (2)

5 Adversarial contextual bandits with abstention159

One main application of CBA is in the problem of adversarial contextual bandits with a finite context160

set. In this problem, we have a finite set of contexts X . A-priori nature selects a sequence:161

⟨(xt, rt) ∈ X × [−1, 1]K | t ∈ [T ]⟩ ,
but does not reveal it to the learner. For all t ∈ [T ] we define rt,□ := 0. On each trial t ∈ [T ] the162

learner observes the context xt, selects an action at ∈ [K] ∪ {□}, and sees and incurs the reward163

rt,at ∈ [−1, 1].164

We will assume that we are given, a-priori, a set B ⊆ 2X that we call the basis. We call each element165

of B a basis element (which is a set of contexts). We will later introduce various potential bases,166

determined by the nature of the context’s structure: points within a metric space, nodes within a167

graph, and beyond. Importantly, our method is capable of accommodating any type of basis and, thus,168

any potential inductive bias that might be present in the data.169

Given our basis we run our algorithm CBA with each expert corresponding to a pair (B, k) ∈ B×[K].170

The expert corresponding to each pair (B, k) will deterministically choose action k when the current171

context xt is in B, and abstain otherwise. We can therefore state the following theorem (Proved in172

Appendix C)173

Corollary 5.1. Given any basis B of cardinality N and any M ∈ N we can implement CBA174

such that for any sequence of disjoint basis elements ⟨Bj | j ∈ [M ]⟩ with corresponding actions175

⟨bj ∈ [K] | j ∈ [M ]⟩ we have:176 ∑
t∈[T ]

E[rt,at
] ≥

∑
t∈[T ]

∑
j∈[M ]

Jxt ∈ BjKrt,bj −
√
2M ln(N)(6K + 1)T .

The per-trial time complexity of this implementation of CBA is in O(KN).177
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(a) Two foreground classes and
background as abstained.

(b) Two foreground classes and
the background as another one.

Figure 1: Illustrative example of abstention where we cover the foreground and background classes
with metric balls. We consider two clusters (blue and orange) as the foreground and one background
class (white), using the shortest path d∞ metric. Using abstention, we can cover two clusters with
one ball for each and abstain the background with no balls required (Fig. 1(a)). In contrast, if we
treat the background class as another class, it would require significantly more balls to cover the
background class, as seen other 10 gray balls in Fig. 1(b). This increase in the number of balls would
lead to a significantly worse bound that involves the number of balls.

We briefly comment on the term:178 ∑
j∈[M ]

Jxt ∈ BjKrt,bj ,

that appears in the theorem statement. If xt does not belong to any of the sets in ⟨Bj | j ∈ [M ]⟩ then179

this term is equal to zero (which is the reward of abstaining). Otherwise, since the sets are disjoint,180

xt belongs to exactly one of them and the term is equal to the reward induced by the action that181

corresponds to that set. In other words, the total cumulative reward is bounded relative to that of182

the policy that abstains whenever xt is outside the union of the sets and otherwise selects the action183

corresponding to the set that xt lies in.184

Note the vast improvement of our reward bound over that of SPECIALISTEXP with abstention as one185

of the actions. Let’s assume our context set is a metric space and our basis is the set of all balls. In186

order to get a reward bound for SPECIALISTEXP, the sets in which the specialists are awake must187

partition the set X . This means that we must add to our M balls a disjoint covering (by balls) the188

complement of the union of the original M balls. Note that the added balls correspond to the sets189

in which the specialists predicting the abstention action are awake. Typically this would require a190

huge number of balls so that the total number of specialists is huge (much larger than M ); this huge191

number of specialists essentially replaces the term M in our reward bound (we illustrate an example192

in Figure 1).193

Furthermore, in Appendix F, we show that the same implementation of CBA is capable of learning a194

weighted set of overlapping basis elements, as long as the sum of the weights of the basis elements195

covering any context is bounded above by one, which SPECIALISTEXP cannot do in general.196

As we will see below, the practical bases we propose have a moderate size of |B| = O(|X |2) leading197

to a per-step runtime of O(K|X |2) for CBA in this contextual bandit problem. In Section 5.2, we198

show how to significantly improve the runtime for a broad family of bases.199

5.1 A lower bound200

In this section, we show that CBA is, up to an O(ln(|B|)) factor, essentially best possible on this201

contextual bandit problem:202

Proposition 5.2. Take any learning algorithm. Given any basis B and any M ∈ N, for any203

sequence of disjoint basis elements ⟨Bj | j ∈ [M ]⟩ there exists a sequence of corresponding actions204

⟨bj ∈ [K] | j ∈ [M ]⟩ such that an adversary can force:205 ∑
t∈[T ]

∑
j∈[M ]

Jxt ∈ BjKrt,bj −
∑
t∈[T ]

E[rt,at
] ∈ Ω

(√
MKT

)
.
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(a) Stochastic Block Model
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(b) Gaussian graph
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(d) LastFM Asia graph

Figure 2: Results regarding the number of mistakes over time. In this context, D1, D2, and D-INF
represent the p-norm bases, LVC represents the community detection basis, and INT represents the
interval basis. The baselines, EXP3 for each context, Contextual Bandit with similarity, and GABA-II,
are denoted as EXP3, CBSim, and GABA, respectively, and are represented with dashed lines.

5.2 Efficient learning with balls206

In practice we can often quantify the similarity between any pair of contexts. That is, the contexts207

form a metric space, equipped with a distance function d : X × X → R+ known to the learner208

a-priori. For example, contexts could have feature vectors in Rm (and the metric is the standard209

Euclidean distance or cosine similarity) or be nodes in a graph with the metric given by the shortest-210

path distance. A natural basis for this situation is the set of metric balls. Specifically, a ball is any set211

B ⊆ X in which there exists some x ∈ X and δ ∈ R+ with:212

B = {z ∈ X | d(x, z) ≤ δ} .

For this broad family of bases2 we can achieve the following speed-up, relying on a sophisticated213

data structure based on binary trees.214

Theorem 5.3. Let N := |X |. Given any M ∈ N we can implement CBA such that for any sequence215

of disjoint balls ⟨Bj | j ∈ [M ]⟩ with corresponding actions ⟨bj ∈ [K] | j ∈ [M ]⟩ we have:216 ∑
t∈[T ]

E[rt,at
] ≥

∑
t∈[T ]

∑
j∈[M ]

Jxt ∈ BjKrt,bj −
√
4M ln(N)(6K + 1)T .

The per-trial time complexity of this implementation of CBA is in O(KN ln(N)).217

As there are at mostO(N2) metric balls, this improves the runtime of the direct CBA implementation218

from O(KN2) to O(KN ln(N)), that is almost linear per step. All the details are in Appendix D.219

6 Preliminary experiments220

As mentioned above, the bases used in our algorithm can be constructed arbitrarily, allowing to221

encompass different inductive biases based on applications. Thus, we consider some representative222

bases used on learning tasks on graphs before, each leading to different inductive priors on the223

contexts. We provide a short description of the bases here and refer to Appendix G for more details.224

Effective p-resistance basis dp: Balls given by the metric

dp(i, j) :=

(
min
u∈RN

ui−uj=1

∑
s,t∈V

|us − ut|p
)−1/p

.

We use d1, d2, and d∞ [Herbster and Lever, 2009].225

2Actually, we require a weaker condition. We only use the fact that for each context z ∈ X we have a set
Bz = {Bz

1 , . . . , B
z
ℓ } of monotonically increasing basis elements, that is, Bz

i ⊆ Bz
j for i < j, and the whole

basis is formed by the union of these B =
⋃

z∈X Bz .
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Louvain method basis (LVC): Communities returned by the Louvain method [Blondel et al., 2008],226

processed by the greedy peeling algorithm [Lanciano et al., 2024].227

Geodesic intervals basis (INT): All sets of the form I(x, y) := {z ∈ X | z is on a shortest x-y path}228

for all x, y ∈ X [Pelayo, 2013, Thiessen and Gärtner, 2021].229

Let N be the cardinality of |X |. For all three basis types, we immediately get an O(KN2) runtime230

per step of CBA as there areO(N2) basis elements. Moreover, for dp balls and the LVC basis we can231

use the more efficient O(KN lnN) implementation through Theorem 5.3. We empirically evaluate232

our approach in the context of online multi-class node classification on a given graph with bandit233

feedback. At each time step, the algorithm is presented with a node chosen uniformly at random and234

must either predict an action from the set of possible actions [K] or abstain. The node can accept235

(resulting in a positive reward) or reject (resulting in a negative reward) the suggestion based on its236

preferred class with a certain probability.237

We compare our approach CBA using each of these bases on real-world and artificial graphs against238

the following baselines: an implementation of CONTEXTUALBANDIT from Slivkins [2011], the239

GABA-II algorithm proposed by Herbster et al. [2021], and an EXP3 instance for each data point.240

We use the following graphs for evaluation.241

Stochastic block model. This graph, inspired by Holland et al. [1983], is generated by spawning an242

arbitrary number of disjoint cliques representing the foreground classes. Then an arbitrary number of243

background points are generated and connected to every possible point with a low probability. In244

Figure 2(a) are displayed the results for the case of F = 160 nodes for each foreground class and245

B = 480 nodes for the background class. Connecting each node of the background class with a246

probability of 1/
√
FB.247

Gaussian graph. The points on this graph are generated in a two-dimensional space using five248

different Gaussian distributions with zero mean. Four of them are positioned at the corners of the249

unit square, representing the foreground classes and having a relatively low standard deviation.250

Meanwhile, the fifth distribution, representing the background class, is centered within the square251

and is characterized by a larger standard deviation. The points are linked in a k-nearest neighbors252

graph. In Figure 2(b) are displayed the results for 160 nodes for each foreground class and a standard253

deviation of 0.2, 480 nodes for the background class with a standard deviation of 1.75, along with a254

7-nearest neighbors graph.255

Real-world dataset. We tested our approach on the Cora dataset [Sen et al., 2008] and the LastFM256

Asia dataset [Leskovec and Krevl, 2014]. While both of these graphs contain both features and a257

graph, we exclusively utilized the largest connected component of each graph, resulting in 2485258

nodes and 5069 edges for the Cora graph and 7624 nodes and 27806 edges for the LastFM Asia259

graph. Subsequently, we randomly chose a subset of three out of the original seven and eighteen260

classes, respectively, to serve as the background class. Additionally, we selected 15% of the nodes261

from the foreground classes randomly to represent noise points, and we averaged the results over262

multiple runs, varying the labels chosen for noise. Both in Figures 2(c) and 2(d) we averaged over 5263

different label sets as noise. For the LastFM Asia graph, we exclusively tested the LVC bases, as it is264

the most efficient one to compute given the large size of the graph.265

Results. The results from both synthetically generated tests (Figures 2(a) and 2(b)) demonstrate266

the superiority of our method when compared to the baselines. In particular, d∞-balls delivered267

exceptional results for both graphs, implying that d∞-balls effectively cover the foreground classes268

as expected. For the Cora dataset (Figure 2(c)), we observed that our method outperforms GABA-269

II only when employing the community detection basis. This similarity in performance is likely270

attributed to the dataset’s inherent lack of noise. Worth noting that the method we employed to inject271

noise into the dataset may not have been the optimal choice for this specific context. For the LastFM272

Asia dataset, our objective was to assess the practical feasibility of the model on a larger graph. We273

tested the LVC bases as they were the most promising and most efficient to compute. We outperform274

the baselines in our evaluation as shown in Figure 2(d) and further discussed in Appendix H.275

In summary, our first results confirm what we expected: our approach excels when we choose basis276

functions that closely match the context’s structure. However, it also encounters difficulties when the277

chosen basis functions are not a good fit for the context. In Appendix H, the results for a wide range278

of different parameters used to generate the previously described graphs are displayed.279
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A Additional related works346

The non-stochastic multi-armed bandit problem, initially introduced by Auer et al. [2002], has been347

a subject of significant research interest. Auer et al. [2002] also introduced the multi-armed bandit348

problem with expert advice, introducing the EXP4 algorithm. EXP4 evolved the field of multi-armed349

bandits to encompass more complex scenarios, particularly the contextual bandit [Lattimore and350

Szepesvári, 2020]. Contextual bandits are an extension of the classical multi-armed bandit framework,351

where an agent makes a sequence of decisions while taking into account contextual information. We352

also mention that our work is also related to the multi-class classification with bandit feedback, called353

weak reinforcement [Auer and Long, 1999]. An action in our bandit setting corresponds to a class in354

the multi-class classification framework.355

As discussed in the introduction, a key aspect of this work is the option to abstain from making any356

decision. In the batch setting [Chow, 1957, 1970], this option is usually referred to as “rejection”.357

These works study whether to use or reject a specific model prediction based on specific requests358

(see Hendrickx et al. [2021] for a survey). In online learning, “rejection” can be the possibility of359

abstention by the learner. These works usually rely on a cost associated with the abstention action.360

Neu and Zhivotovskiy [2020] studied the magnitude of the cost associated with abstention in an361

expert setting with bounded losses. They state that if the cost is lower than half of the amplitude of362

the interval of the loss, it is possible to derive bounds that are independent of the time. In Cortes et al.363

[2018], a non-contextual and partial information setting with the option of abstention is studied. The364

sequel model [Cortes et al., 2020] regards this model as a special case of their stochastic feedback365

graph model. Schreuder and Chzhen [2021] studied the fairness setting when using the option of366

abstaining as it may lead to discriminatory predictions.367

B CBA analysis368

Here we prove Theorem 3.1 from the modification of mirror descent (and the specific construction of369

gt) given in Section 4. Whenever we take expectations in this analysis they are over the draw of at370

from st for some t ∈ [T ]. As for mirror descent, our analysis hinges on the following classic lemma:371

Lemma B.1. Given any convex set C ⊆ RE
+ , any convex function ξ : RE

+ → R , any q ∈ C and any372

z ∈ RE
+ with:373

q = argminv∈C(ξ(v) + ∆(v, z)) ,

then for all u ∈ C we have:374

ξ(u) + ∆(u, z) ≥ ξ(q) + ∆(u, q) .

Proof. Theorem 9.12 in Beck [2017] shows that the theorem holds if ∆ is Bregman divergence. In375

our case ∆ is indeed a Bregman divergence: that of the convex function f : RE
+ → R for all v ∈ RE

+376

defined by:377

f(v) :=
∑
i∈[E]

vi ln(vi),

which concludes the proof.378

Choose any u ∈ V and t ∈ [T ]. We immediately have V ⊆ Vt by definition, and therefore u ∈ Vt.379

Hence, by setting ξ such that ξ(v) := 0 for all v ∈ RE
+ , setting C ∈ Vt and setting z = wt in Lemma380

B.1 we have q = w̃t so that:381

∆(u,wt) ≥ ∆(u, w̃t) . (3)
Alternatively, by setting ξ such that ξ(v) := ηgt · (w̃t − v) for all v ∈ RE

+ , setting C = RE
+ and382

setting z = w̃t in Lemma B.1 we have q = wt+1 so that:383

ηgt · (w̃t − u) + ∆(u, w̃t) ≥ ηgt · (w̃t −wt+1) + ∆(u,wt+1) . (4)

Since E[gt] = ∇ρt(w̃t) and ρt is linear we have:384

E[gt · (w̃t − u)] = ρt(w̃t)− ρt(u) . (5)

In what follows we use the fact that for all x ≤ 1 we have:385

x(1− exp(x)) ≥ −2x2 . (6)
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For all i ∈ [E] , we have, by definition, that gt,i = eit · r̂t so by Equation (2) we have:386

gt · (w̃t −wt+1) =
∑
i∈[E]

w̃t,ie
i
t · r̂t(1− exp(ηeit · r̂t)) .

Since, for all a ∈ [K] , we have r̂t,a ≤ 1 and hence, as η < 1 and, for all i ∈ [E] we have ∥eit∥1 ≤ 1 ,387

we can invoke Equation (6), which gives us:388

ηgt · (w̃t −wt+1) ≥ −2
∑
i∈[E]

w̃t,i(ηe
i
t · r̂t)2 . (7)

By definition of r̂t we have, for all i ∈ [E] , that:389

eit · r̂t = ∥eit∥1 + eit,at
(1− rt,at)/st,at ≤ ct,i + 2eit,at

/st,at

so that since, for all a ∈ [K] , we have Pr[at = a] = st,a we also have:390

E[(eit · r̂t)2] ≤ c2t,i +
∑

a∈[K]

(2eit,act,i + 4(eit,a)
2/st,a) . (8)

Since, for all i ∈ [E] and a ∈ [K], we have eit,a ≤ 1 and ct,i ≤ 1 and hence also c2t,i ≤ ct,i we then391

have:392

E[(eit · r̂t)2] ≤ (2K + 1)ct,i + 4
∑

a∈[K]

eit,a/st,a . (9)

Note that since w̃t ∈ Vt we have:393 ∑
i∈[E]

w̃t,ict,i ≤ 1 . (10)

Also, by definition of st we have:394 ∑
i∈[E]

w̃t,i

∑
a∈[K]

eit,a/st,a =
∑

a∈[K]

1

st,a

∑
i∈[E]

w̃t,ie
i
t,a =

∑
a∈[K]

1

st,a
st,a = K . (11)

Multiplying Inequality (9) by w̃t,i , summing over all i ∈ [E] , and then substituting in Inequality395

(10) and Equation (11) gives us:396 ∑
i∈[E]

w̃t,iE[(eit · r̂t)2] ≤ (2K + 1) + 4K = 6K + 1 . (12)

Taking expectations on Inequality (7) and substituting in Inequality (12) (after taking expectations)397

gives us:398

E[ηgt · (w̃t −wt+1)] ≥ −η2(12K + 2) . (13)

Taking expectations (over the draw at ∼ st) on Inequality (4), substituting in Inequalities (3), (5)399

and (13), and then rearranging gives us:400

∆(u,wt)− E[∆(u,wt+1)] ≥ η(ρt(u)− ρt(w̃t))− η2(12K + 2) .

Summing this inequality over all t ∈ [T ] , taking expectations (over the entire sequence of action401

draws) and noting that ∆(u,wT+1) > 0 gives us:402

∆(u,w1) ≥ η
∑
t∈[T ]

E[ρt(u)− ρt(w̃t)]− η2(12K + 2)T .

Substituting in Equation (1) and rearranging then gives us, by definition of ρ and ρt, the required403

goal:404 ∑
t∈[T ]

E[rt,at
] ≥ E[ρ(u)]−∆(u,w1)/η − η(12K + 2)T .

■405
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C Corollary proof406

Corollary C.1. Given any basis B of cardinality N and any M ∈ N we can implement CBA407

such that for any sequence of disjoint basis elements ⟨Bj | j ∈ [M ]⟩ with corresponding actions408

⟨bj ∈ [K] | j ∈ [M ]⟩ we have:409 ∑
t∈[T ]

E[rt,at ] ≥
∑
t∈[T ]

∑
j∈[M ]

Jxt ∈ BjKrt,bj −
√
2M ln(N)(6K + 1)T .

The per-trial time complexity of this implementation of CBA is in O(KN).410

Proof. The choice of experts for CBA that leads to Theorem 5.1 is defined by the set of pairs so that411

E = N2K and for each B ∈ B and action a ∈ [K] there exists an unique i ∈ [E] such that for all412

t ∈ [T ] and b ∈ [K] we have:413

eit,b := Jxt ∈ BKJb = aK .

By choosing w1,i =M/N2 for all i ∈ [E] , and choosing414

η := (M ln(N)/(6K + 1)T )−1/2 ,

Theorem 3.1 implies the reward bound in Corollary 5.1. The per-trial time complexity of a direct415

implementation of CBA for this set of experts would be O(KN).416

D Efficient implementation proof417

We here prove the time complexity of Theorem 5.3. The per-trial time complexity of a direct418

implementation of CBA for this set of experts would be O(KN2). We now show how to implement419

CBA in a per-trial time of only O(KN ln(N)). To do this first note that we can assume, without loss420

of generality, that for all q, x, z ∈ X with x ̸= z we have d(q, x) ̸= d(q, z) since ties can be broken421

arbitrarily and balls can be duplicated.422

Given x, z ∈ X , a ∈ [K] and t ∈ [T ] we let yt,a(x, z) := wt,i and ỹt,a(x, z) := w̃t,i where i is the423

index of the expert corresponding to the ball-action pair with ball: {q ∈ X | d(x, q) ≤ d(x, z)}, and424

action a. Given x, z ∈ X let E(x, z) := {q ∈ X | d(x, q) ≥ d(x, z)} . It is straightforward to derive425

the following equations for the quantities in CBA at trial t ∈ [T ]. First we have:426

∥ct∥1 =
∑

a∈[K]

∑
x∈X

∑
z∈E(x,xt)

yt,a(x, z) .

For all x, z ∈ X and a ∈ [K] we have the following:427

• If ∥ct∥1≤1 or z /∈ E(x, xt) then ỹt,a(x, z)=yt,a(x, z).428

• If ∥ct∥1 > 1 and z ∈ E(x, xt) then ỹt,a(x, z) = yt,a(x, z)/∥ct∥1.429

For all a ∈ [K] we have:430

st,a =
∑
x∈X

∑
z∈E(x,xt)

ỹt,a(x, z) .

Finally, for all x, z ∈ X and a ∈ [K] we have the following:431

y(t+1),a(x, z) =

{
ỹt,a(x, z) if z /∈ E(x, xt) ,

ỹt,a(x, z) exp(ηe
i
t · r̂t) if z ∈ E(x, xt) .

Hence, to implement CBA we need, for each x ∈ X and a ∈ [K] , a data structure that implicitly432

maintains a function h : X → R+ and has the following two subroutines, that take parameters q ∈ X433

and p ∈ R+.434

1. QUERY(q): Compute
∑

z∈E(x,q) h(z).435

2. UPDATE(q, p): Set h(z)← ph(z) for all z ∈ E(x, q).436
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Algorithm 2 QUERY(q)

1. For all i ∈ [n] ∪ {0} let γi be the ancestor of q at depth i in D
2. Set σn ← ψ(γn)ϕ(γn)
3. Climb D from γn−1 to γ0. When at γi do as follows:

(a) If γi+1 = ◁(γi) then set σi ← ϕ(γi)(σi+1 + ψ(▷(γi))ϕ(▷(γi)))
(b) If γi+1 = ▷(γi) then set σi ← ϕ(γi)σi+1

4. Return σ0

Algorithm 3 UPDATE(q, p)

1. For all i ∈ [n] ∪ {0} let γi be the ancestor of q at depth i in D
2. Descend D from γ0 to γn−1. When at γi set:

(a) ϕ(◁(γi))← ϕ(γi)ϕ(◁(γi))
(b) ϕ(▷(γi))← ϕ(γi)ϕ(▷(γi))
(c) ϕ(γi)← 1

3. For all i ∈ [n− 1] ∪ {0}, if γi+1 = ◁(γi) then set ϕ(▷(γi))← pϕ(▷(γi))
4. Set ϕ(γn)← pϕ(γn)
5. Climb D from γn−1 to γ0. When at γi set:
ψ(γi)← ψ(◁(γi))ϕ(◁(γi)) + ψ(▷(γi))ϕ(▷(γi))

Now fix x ∈ X and a ∈ [K]. Let h be as above. On each trial t ∈ [T ] and for all z ∈ X , h(z) will437

start equal to yt,a(x, z) and change to ỹt,a(x, z) and then y(t+1),a(x, z) by applying the UPDATE438

subroutine.439

We now show how to implement these subroutines implicitly in a time of O(ln(N)) as required.440

Without loss of generality, assume that N = 2n for some n ∈ N. Our data structure is based on a441

balanced binary tree D whose leaves are the elements of X in order of increasing distance from x.442

This implies that for any z ∈ X we have that E(x, z) is the set of leaves that do not lie on the left of443

z. Given a node v ∈ D we let ⇑(v) be the set of ancestors of v and let ⇓(v) be the set of all z ∈ X444

which are descendants of v. For any internal node v let ◁(v) and ▷(v) be the left and right children of445

v respectively.446

We maintain functions ϕ, ψ : D → R+ such that for all v ∈ D we have:447

ψ(v)
∏

v′∈⇑(v)

ϕ(v′) =
∑

z∈⇓(v)

h(z) . (14)

The pseudo-code for the subroutines QUERY and UPDATE are given in Algorithms 2 and 3 respectively.448

We now prove their correctness. We first consider the QUERY subroutine with parameter q ∈ X .449

From Equation (14) we see that, by (reverse) induction on i ∈ [n] ∪ {0}, we have:450

σi
∏

v′∈⇑(γi)\{γi}

ϕ(v′) =
∑

z∈⇓(γi)∩E(x,q)

h(z) .

Since γ0 is the root of D, we have σ0 =
∑

z∈E(x,q) h(z) as required. Now consider the UPDATE451

subroutine with parameters q ∈ X and p ∈ R+. Let h be the implicitly maintained function before452

the subroutine is called. For Equation (14) to hold after the subroutine is called we need:453

ψ(v)
∏

v′∈⇑(v)

ϕ(v′) =
∑

z∈⇓(v)

h′(z) . (15)

where for all z ∈ X we have:454

h′(z) := Jz /∈ E(x, q)Kh(z) + Jz ∈ E(x, q)Kph(z) .
We shall now show that Equation (15) does indeed hold after the subroutine is called, which will455

complete the proof. To show this we consider each step of the subroutine in turn. After Step 2 we456

have (via induction) that:457

• For all v ∈ ⇑(q) we have ϕ(v) = 1.458
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• For all v ∈ D \ ⇑(q) we have:459

ψ(v)
∏

v′∈⇑(v)

ϕ(v′) =
∑

z∈⇓(v)

h(z) .

So, since E(x, q) is the set of all z ∈ X that do not lie to the left of q in D we have that, after Step 4460

of the algorithm, the following holds:461

• For all v ∈ ⇑(q) we have ϕ(v) = 1,462

• For all v ∈ D \ ⇑(q) we have:463

ψ(v)
∏

v′∈⇑(v)

ϕ(v′) =
∑

z∈⇓(v)

h′(z) .

Hence, by induction, we have that, after Step 5 of the algorithm, it is the case that for all v ∈ ⇑(q) we464

have: ψ(v) =
∑

z∈⇓(v) h
′(z) . So since ϕ(v) = 1 for all v ∈ ⇑(q) and Step 5 does not alter ϕ(v) or465

ψ(v) for any v ∈ D \ ⇑(q) we have Equation (15). ■466

E Lower bound proof467

Proposition E.1. Take any learning algorithm. Given any basis B and any M ∈ N then for any468

sequence of disjoint basis elements ⟨Bj | j ∈ [M ]⟩ there exists a sequence of corresponding actions469

⟨bj ∈ [K] | j ∈ [M ]⟩ such that an adversary can force:470 ∑
t∈[T ]

∑
j∈[M ]

Jxt ∈ BjKrt,bj −
∑
t∈[T ]

E[rt,at
] ∈ Ω(

√
MKT )

Proof. In this scenario, at each time step, either a single expert (i.e., the basis element containing the471

current context xt) is active, making predictions based on its label, or no expert is active, prompting472

the learner to abstain and thus incur zero reward or cost.473

Therefore we define T ′ = {t ∈ [T ] |
∑

j∈[M ]Jxt ∈ BjK = 1} as the set of timesteps in which the474

learner is going to play. Since the concept of abstention is that our algorithm is not going to pay475

anything for the timesteps in which we abstain, we can see that:476

∑
t∈[T ]

∑
j∈[M ]

Jxt ∈ BjKrt,bj −
∑
t∈[T ]

E[rt,at ] =
∑
t∈T ′

rt,bj −
∑
t∈T ′

E[rt,at ] ,

For any ball j ∈ [M ], we define Tj = {t ∈ [T ′] | Jxt ∈ BjK}. Following the ideas of Seldin477

and Lugosi [2016], for any of the sets Tj we can create a multi-armed bandit instance as the one478

described in the lower bound by Auer et al. [2002]. Note that in the lower bound construction, the479

abstention arm would be a forehand known suboptimal arm, which results in a lower bound of the480

order c
√
(K − 1)T , for the constant c =

√
2−1√

32 ln(4/3)
> 0. Since the presented context xt is chosen481

adversarially at each time step, we can ensure that each basis element is activated for |T ′|/M time482

steps, obtaining:483

∑
j∈[M ]

∑
s∈T ′

j

rs,bj −
∑
s∈T ′

j

E[rs,as
]

 ≥ ∑
j∈[M ]

c
√

(K − 1)|T ′
j |

=
∑

j∈[M ]

c
√
(K − 1)|T ′|/M

= c
√
M(K − 1)|T ′|

As we can choose |T ′| to be any fraction of T, we end up with the desired lower bound of the order484

Ω(
√
MKT ), which matches, up to logarithmic factors, the cumulative reward bound presented in485

Theorem 5.3.486
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F Overlapping balls extension487

In this section, we present the theorem that allows us to present the results of overlapping balls as488

expressed in Section 5.2. Note that Theorem 5.3 is the special case of Theorem F.1 when the balls are489

disjoint and uj = 1 for all j ∈ [M ].490

Theorem F.1. Let M ∈ N and {(Bj , bj , uj) | j ∈ [M ]} be any sequence such that Bj is a ball,491

bj ∈ [K] is an action, and uj ∈ [0, 1] is such that for all x ∈ X we have:492 ∑
j∈[M ]

Jx ∈ BjKuj ≤ 1 .

For all t ∈ [T ] define:493

r∗t :=
∑

j∈[M ]

Jxt ∈ BjKujrt,bj ,

which represents the reward of the policy induced by {(Bj , bj , uj) | j ∈ [M ]} on trial t. The regret494

of CBA, with the set of experts given in Section 5.2 and with correctly tuned parameters, is then495

bounded by:496 ∑
t∈[T ]

r∗t −
∑
t∈[T ]

E[rt,at
] ∈ O

√
ln(KN)KT

∑
j∈[M ]

uj

 .

Its per-trial time complexity is:497

O(KN ln(N)) .

Proof. Direct from Theorem 3.1 using the experts (with efficient implementation) given in Section498

5.2499

G The details of the graph bases500

This section expands the definition and explanations for the bases we used in the Experiment.501

Remember that we refer to any set of experts that correspond to set-action pairs of the form (B, k) ∈502

2X × [K] as a basis elements, and a set of basis elements as basis.503

G.1 p-seminorm balls on graphs504

As we see in Sec. 5.2, the CBA seems to work only for vector data. However, in the following505

sections, we explore how our CBA algorithm can be applied to graph data by creating a ball structure506

over the graph.507

We first introduce the notations of a graph. A graph is a pair of nodes V := [N ] and edges E. An508

edge connects two nodes, and we assume that our graph is undirected and weighted. For each edge509

{i, j} ∈ E, we denote its weight by cij . For convenience, for each pair of nodes i, j with {i, j} /∈ E,510

we define cij = 0.511

To form a ball over a graph, a family of metrics we are particularly interested in is given by p-norms512

on a given graph G. Let513

dp(i, j) :=

 min
u∈RN

ui−uj=1

∑
s,t∈V

cst|us − ut|p
−1/p

. (16)

which is a well-defined metric for p ∈ [1,∞) if the graph is connected and may be defined for p =∞514

by taking the appropriate limits. When p = 2 this is the square root of the effective resistance circuit515

between nodes i and j which comes from interpreting the graph as an electric circuit where the516

edges are unit resistors and the denominator of Equation (16) is the power required to maintain a517

unit voltage difference between u and v [Doyle and Snell, 1984]. More generally, dp(i, j)p is known518

as p-(effective) resistance [Herbster and Lever, 2009, Alamgir and von Luxburg, 2011, Saito and519

Herbster, 2023]. When p ∈ {1, 2,∞} there are natural interpretation of the p-resistance. In the case520

of p = 1, we have that the effective is equal to one over the number of edge-disjoint paths between i521
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and j which is equivalently one over the minimal cut that separates i from j. When p = 2 it is the522

effective resistance as discussed above. And finally when p =∞ we have that d∞ is the geodesic523

distance (shortest path) between i and j. Note that, interestingly, there are at most 2N distinct balls524

for d1; as opposed to the general bound O(N2) on the number of metric balls. This follows since525

d1 is an ultrametric. A nice feature of metric balls is that they are ordinal, i.e., we can take an526

increasing function of the distance and the distinct are unchanged. The time complexity for each527

ball is as follows. For d1 ball, we compute every pair of distance in O(N3) using the Gomory-Hu528

tree [Gomory and Hu, 1961]. For d2 ball, it is actually enough to compute the pseudoinverse of graph529

Laplacian once, which costs O(N3) [Doyle and Snell, 1984]. For d∞ ball, we can compute every530

pair of distance in O(N3) by Floyd–Warshall algorithm [Floyd, 1962].531

G.2 Community detection bases532

In this section, we consider only bases formed via a set of subsets (a.k.a clusters) C ⊆ 2[N ]. Each of533

these subsets induces K basis elements: one for each action a ∈ [K]. Specifically, the basis element534

β : [N ]→ [K□] corresponding to the pair (C, a) is such that β(x) is equal to a whenever x ∈ C and535

equal to □ otherwise. Hence, in this section, we equate a basis with a set of subsets of [N ].536

We can compute a basis for a given graph G = (V,E) using community detection algorithms.537

Community detection is one of the most well-studied operations for graphs, where the goal is to538

find a partition {C1, . . . , Cq} of V (i.e.,
⋃q

i=1 Ci = V and Ci ∩ Cj = ∅ for i ̸= j) so that each Ci539

is densely connected internally but sparsely connected to the rest of the graph [Fortunato, 2010].540

There are many community detection algorithms, all of which can be used here, but the most popular541

algorithm is the Louvain method [Blondel et al., 2008]. We briefly describe how this algorithm works.542

The algorithm starts with an initial partition {{v} | v ∈ V } and aggregates the clusters iteratively:543

For each v ∈ V , compute the gain when moving v from its current cluster to its neighbors’ clusters544

and indeed move it to a cluster with the maximum gain (if the gain is positive). Note that the gain is545

evaluated using modularity, i.e., the most popular quality function for community detection [Newman546

and Girvan, 2004]. The algorithm repeats this process until no movement is possible. Then the547

algorithm aggregates each cluster to a single super node (with appropriate addition of self-loops and548

change of edge weights) and repeats the above process on the coarse graph as long as the coarse549

graph is updated. Finally, the algorithm outputs the partition of V in which each cluster corresponds550

to each super node in the latest coarse graph. Note that it is widely recognized that the Louvain551

method works in O(N logN) in practice [Traag, 2015].552

To obtain a finer-grained basis, we apply the so-called greedy peeling algorithm for each Ci in the553

output of the Louvain method. For Ci ⊆ V and v ∈ Ci, we denote by dCi
(v) the degree of v in554

the induced subgraph G[Ci]. For G[Ci], the greedy peeling iteratively removes a node with the555

smallest degree in the currently remaining graph and obtains a sequence of node subsets from Ci to a556

singleton. Specifically, it works as follows: Set j ← |Ci| and C(j)
i ← Ci. For each j = |Ci|, . . . , 2,557

compute vmin ∈ argmin{d
C

(j)
i

(v) | v ∈ C(j)
i } and C(j−1)

i ← C
(j)
i \ {vmin}. Using a sophisticated558

data structure, this algorithm runs in linear time [Lanciano et al., 2024].559

In summary, our community detection basis is the collection of node subsets {C(j)
i | i = 1, . . . , q, j =560

1, . . . , |Ci|} together with {{v} | v ∈ V } for completeness.561

G.3 Graph convexity bases562

An alternative to metric balls and communities are, for example, (geodesically) convex sets in a563

graph. They correspond to the inductive bias that if two nodes prefer the same action, then also the564

nodes on a shortest path between the two tend to prefer the same action. Geodesically convex sets are565

well-studied [van De Vel, 1993, Pelayo, 2013] and have been recently used in various learning settings566

on graphs [Bressan et al., 2021, Thiessen and Gärtner, 2021]. Similarly to convex sets in the Euclidean567

space, a setC of nodes is convex if the nodes of any shortest path with endpoints inC are inC, as well.568

More formally, the (geodesic) interval I(u, v) = {x ∈ V : x is on a shortest path between u and v}569

of two nodes u and v contains all the nodes on a shortest path between them. For a set of node A we570

define I(A) = ∪a,b∈AI(a, b) as a shorthand notation for the union of all pairwise intervals in A. A571

set A is (geodesically) convex iff I(A) = A and the convex hull conv(A) of a set A is the (unique)572

smallest convex set containing A. Note that for u, v ∈ V , I(u, v) and conv({u, v}) are typically573
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different sets. Indeed, I(u, v) is in general non-convex, as nodes on a shortest path between two574

nodes in I(u, v) (except for u, v) are not necessarily contained in I(u, v). As the total number of575

convex sets can be exponential in N , e.g., all subsets of a complete subgraph are convex, we consider576

the basis consisting of all intervals: I(u, v) for u, v ∈ [N ]. This involvesO(N2) basis elements, each577

of size O(N). With a simple modification of the Floyd Warshall [Floyd, 1962] algorithm, computing578

the interval basis takes O(N3) time complexity.579

H Additional experimental results580

We thoroughly explored various configurations for the three graphs described in our experimental581

setup in Section 6. We run our experiments with an Intel Xeon Gold 6312U processor and 256 GB of582

RAM ECC 3200 MHz. Figure 3 displays different settings for the number of nodes in each clique583

and noise levels.584

As we compare the computational complexity of each basis in Section G and the main results, the585

most intense computational load in the experiments will arise from the calculation of the basis,586

which can be seen as an initialization step in our algorithm. The proposed methods have varying587

computational complexities, and an arbitrarily complex function can be employed to compute the588

basis. Remark that, in the usual complexity comparison among online learning algorithms using589

experts, we compare the complexity given the experts. Practically, we use pre-computed bases or590

even human experts. Also note that due to the expensive complexity of the p-balls and the convex591

sets seen in Section G, we only conduct the LVC for LastFM Asia.592

In Figure 4, we present multiple settings for generating the Gaussian graph. Here the title of each593

plot is “Foreground x,y; Background x′,y′; k-NN,” which is explained as follows: x represents the594

number of nodes in each foreground class, x′ represents the number of nodes in the background class,595

y represents the standard deviation of the Gaussians generating the foreground class, y′ represents596

the standard deviation of the Gaussian generating the background class, and k represents the number597

of nearest neighbors used to generate the graph.598

In Figure 5, we present the various labels chosen as noise for the Cora graph. In Figure 2(c), we599

presented the averages of all these different configurations. Here, we can see that the main behavior600

of the various bases is roughly maintained independently of the different labels chosen to be masked601

as background class.602

In Figure 6, we present the various labels chosen as noise for the LastFM Asia graph. This graph603

comprises nodes representing LastFM users in Asian countries and edges representing mutual follower604

connections. Vertex features are extracted based on the artists liked by the users. During this initial605

analysis, we arbitrarily chose three out of eighteen possible labels to serve as the background class.606

In Figure 2(d), we presented the averages of all these different configurations. Varying the chosen607

background classes also produces different results, this is indeed due to the inherent lack of noise in608

the dataset. It is nice to see that regardless of the noise labels chosen, the behavior of our algorithm is609

always good, showing, as expected, that based on the amount of noise, we can just improve.610
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Figure 3: Stochastic Block Model results, dotted lines represent different baselines, while solid lines
are used to represent various results.
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Figure 4: Gaussian graph results, dotted lines represent different baselines, while solid lines are used
to represent various results.
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Figure 5: Cora results, dotted lines represent different baselines, while solid lines are used to represent
various results
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Figure 6: LastFM Asia results, dotted lines represent different baselines, while solid lines are used to
represent various results
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