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ABSTRACT

We consider the infinite-horizon linear mixture Markov Decision Processes
(MDPs), where the transition probabilities of the dynamic model can be linearly
parameterized with the help of a predefined low-dimensional feature mapping.
While the existing regression-based approaches have been theoretically shown to
achieve nearly-optimal regret, they are computationally rather inefficient due to
the need for a large number of optimization runs in each time step, especially
when the state and action spaces are large. To address this issue, we propose to
solve linear mixture MDPs through the lens of Value-Biased Maximum Likeli-
hood Estimation (VBMLE), which is a classic model-based exploration principle
in the adaptive control literature for resolving the well-known closed-loop identi-
fication problem of Maximum Likelihood Estimation. We formally show that (i)
VBMLE enjoys Õ(d

√
T ) regret, where T is the time horizon and d is the dimen-

sion of the model parameter, and (ii) VBMLE is computationally more efficient as
it only requires solving one optimization problem in each time step. In our regret
analysis, we offer a generic convergence result of MLE in linear mixture MDPs
through a novel supermartingale construct and uncover an interesting connection
between linear mixture MDPs and online learning, which could be of independent
interest. Finally, the simulation results show that VBMLE significantly outper-
forms the benchmark methods in both empirical regret and computation time.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) is one fundamental paradigm that learns an optimal
policy by alternating between two subroutines: estimation of the transition dynamics and planning
according to the learned dynamics model. MBRL has been extensively studied in the tabular setting
from various perspectives, including (Auer et al., 2008; Azar et al., 2017), which have been shown
to achieve either optimal regret bounds or sample complexity. Despite the above success, the con-
ventional tabular MBRL methods are known to be computationally intractable in RL problems with
large state or action spaces due to the need for direct estimation and access to the per-state transition
probability. To enable MBRL for large state and action spaces, one important recent attempt is to
study Markov decision processes with linear feature mappings (Zhou et al., 2021b), which is termed
linear mixture MDP subsequently in this paper. Specifically, linear mixture MDPs assume that
the probability of each transition can be represented by ⟨ϕ(s′|s, a),θ∗⟩, where ϕ(·|·, ·) is a known
feature function for each possible transition, and θ∗ parametrizes the transition probabilities to be
learned. This framework can readily encompass various related formulations, such as tabular MDPs,
feature-based linear transition models (Yang & Wang, 2019), the linear combination of base models
(Modi et al., 2020), and linear value function frameworks (Zanette et al., 2020).

Based on the existing literature of linear mixture MDPs, the existing approaches could be divided
into two primary categories depending on the length of the learning horizon: episodic MDPs and
infinite-horizon discounted MDPs. In episodic MDPs, one important feature is that the environment
state could be conveniently reset to some initial state when a new episode starts. Several recent
works have explored episodic MDPs through the use of value-targeted regression techniques, e.g.,
(Ayoub et al., 2020; Zhou et al., 2021a). A more detailed survey of the related works for episodic
MDPs is deferred to Section 2. By contrast, in infinite-horizon linear mixture MDPs, due to the
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absence of the periodic restart, addressing exploration and conducting regret analysis could be even
more challenging than that in episodic MDPs. Some recent attempts tackles infinite-horizon linear
mixture MDPs by designing regression-based approaches and establishing theoretical guarantees
(Zhou et al., 2021a;b; Chen et al., 2022). However, their algorithms could suffer from high com-
putational complexity and be intractable in practice for the following reasons: (i) In the existing
regression-based approaches, in each time step, one would need to solve a constrained optimization
problem of the action-value function for each state-action pair. (ii) Moreover, in order to represent
the value function as a linear combination of the learned parameter vector θ, it is necessary for
those regression-based approaches to construct a vector ϕV (s, a) :=

∑
s′∈S ϕ(s′|s, a)V (s′). As a

result, the action-value function can be expressed as follows: Q(s, a) = ⟨ϕV (s, a),θ⟩. However,
constructing ϕV could be computationally intractable when dealing with a large state space. These
limitations render the regression-based approaches mentioned above rather challenging to imple-
ment and deploy in practice. Therefore, one important research question remains to be answered:
How to design an efficient model-based RL algorithm for infinite-horizon discounted linear mixture
MDPs with provable regret guarantees?

In this paper, we answer the above question affirmatively. Specifically, to address the above lim-
itations, we design a tractable approach based on the classic principle of Value-Biased Maximum
Likelihood Estimation (VBMLE) (Kumar & Lin, 1982), which has shown promising results in re-
cent developments in bandits (Hung et al., 2021; Hung & Hsieh, 2023) and tabular RL (Mete et al.,
2021), and leverage the value biasing technique to enforce exploration. The major advantage of
VBMLE is that with the help of value biasing, it requires solving only one optimization problem for
learning the dynamics model parameter at each time step and thereby enjoys a significantly lower
computational complexity than the regression-based approaches. Moreover, we formally establish
Õ(d

√
T ) regret bound based on the following novel insights: (i) We establish a convergence result

on the Maximum Likelihood Estimator for linear mixture MDPs by using a novel supermartingale
approach. (ii) Through this construct, we also find useful connections between (i) the linear mixture
MDPs and online portfolio selection problem as well as (ii) VBMLE and the Follow-the-Leader
algorithm in online learning. We highlight the main contributions as follows:

• We adapt the classic VBMLE principle to the task of learning the dynamic model for linear mix-
ture MDPs. Our proposed algorithm addresses model-based RL for linear mixture MDPs from
a distributional perspective, which learns the parameterized transition directly by maximum like-
lihood estimation without resorting to regression, and guides the exploration via value biasing
instead of using concentration inequalities.

• We establish the theoretical regret bound of VBMLE by providing a novel theorem connected
to the confidence ellipsoid of MLE. Furthermore, we uncover an interesting connection between
online learning and our regret analysis.

• We conduct an empirical analysis to assess both the computational complexity and empirical regret
performance. The simulation results demonstrate that VBMLE exhibits a clear advantage in terms
of both effectiveness in regret and computational efficiency.

2 RELATED WORKS

VBMLE for Multi-Armed Bandits and RL. Regarding VBMLE, various prior works have ap-
plied this method to different bandit settings and tabular MDP. Firstly, (Liu et al., 2020) focuses
on solving non-contextual bandits with exponential family reward distributions. Next, (Hung et al.,
2021) introduces two variations of VBMLE: LinRBMLE and GLM-RBMLE. These methods are
designed for solving linear contextual bandits and result in an index policy. Furthermore, (Hung &
Hsieh, 2023) leverages the representation power of neural networks and proposes NeuralRBMLE.
This approach is specifically designed for solving neural bandits, making no assumptions about the
unknown reward distribution. As for the MDP setting, (Mete et al., 2021) has adapted VBMLE to
solve tabular MDPs, where the states and actions belong to a known finite set, while (Mete et al.,
2022) analyzed the finite performance of a constrained version of VBMLE. By contrast, this paper
takes the very first step towards understanding the theoretical regret performance of VBMLE in RL
beyond the tabular settings.
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Episodic MDPs with Function Approximation. Based on the class of transition dynamics models,
the episodic MDPs with function approximation could be divided into the following categories:

• Linear mixture MDPs: To tackle large MDPs, one common approach is to leverage linear mixture
MDPs, which enables a compact model representation through feature mapping. For instance,
from a model-free perspective, (Cai et al., 2020) proposes an optimistic variant of Proximal Pol-
icy Optimization algorithm (OPPO) to address exploration in linear mixture MDPs. (Ayoub et al.,
2020) addresses linear mixture MDPs by proposing UCRL-VTR, which extends the classic UCRL
algorithm (Jaksch et al., 2010) by using the value-targeted model regression as an optimistic ap-
proach for constructing the confidence set. Both the above methods achieve Õ(d

√
H3T ) regret

bound, where H is the episode length , d is the feature dimension, and T is the total steps. Later,
(Zhou et al., 2021a) provides a new tail inequality and adapts the weighted ridge regression to
UCRL-VTR to improve the regret bound Õ(dH

√
T ). Moreover, (Yang & Wang, 2020) studies

an interesting type of linear mixture MDPs that are bilinear in two feature embeddings and pro-
poses MatrixRL to achieve Õ(dH2

√
T ) regret bound. More recently, (He et al., 2022) proposes

to improve OPPO with a new Bernstein-type bonus and achieve a near-optimal Õ(dH
√
T ) regret.

• Linear MDPs: Another related but different type of linear models is the linear MDP, where the
transition model takes the form of the inner product between a state-action feature vector and
the vector of unknown measures over states. For instance, (Jin et al., 2020) presents an opti-
mistic variant of Least-Squares Value Iteration that achieves Õ(

√
d3H3T ) regret. (Wang et al.,

2019) studies another related but more general class of MDPs with generalized linear function
approximation and an optimistic closure assumption and presents value-based approaches with
Õ(H

√
d3T ) regret bound.

• General model classes: Recently, there are several works that address episodic MDPs under gen-
eral function approximation, where a class of possible transition models is given to the algorithm.
For instance, (Zhang, 2022) proposes a variant of Thompson sampling to favor models with high
rewards for more aggressive exploration. Later, (Zhong et al., 2022) presents a new complexity
measure, namely the generalized eluder coefficient, and proposes a variant of posterior sampling
algorithm under a general model class.

Infinite-Horizon Discounted MDPs With Function Approximation. Without the restart capa-
bility of episodic MDPs, infinite-horizon discounted MDPs pose a unique challenge of tackling
planning and exploration in the same single trajectory. As a result, the theoretical understanding of
this setting under function approximation remains limited. For example, under linear MDPs, (Yang
& Wang, 2019) proposes a variant of Q-learning that requires Õ(d/(1 − γ)2ϵ2) samples to find
an ϵ-optimal policy, where γ is the discount factor. Under the linear mixture MDPs, (Zhou et al.,
2021b) proposes the UCLK algorithm, which takes into consideration the confidence set of the least-
square estimator of the model parameter and establishes a regret upper bound of Õ(d

√
T/(1−γ)2).

Subsequently, (Zhou et al., 2021a) introduces an improved version of UCLK, called UCLK+, by
incorporating the weighted ridge regression into the original UCLK and achieves a regret bound that
matches the lower bound of Õ(d

√
T/(1 − γ)1.5) established by (Zhou et al., 2021b). On the other

hand, (Chen et al., 2022) also provides a variant of UCLK, namely UPAC-UCLK, which achieves
Õ(d

√
T/(1 − γ)2) + Õ(

√
T/(1 − γ)3) regret bound along with uniform-PAC sample complexity

guarantee. However, the above UCLK-based approaches are computationally inefficient as they all
require the costly extended value iteration for each state-action pair in each policy update, and this
is already not tractable in MDPs of moderate sizes. Our work falls in this category and presents
VBMLE as a computationally efficient solution to infinite-horizon linear mixture MDPs.

3 PROBLEM FORMULATION

Markov Decision Processes (MDP) and Linear Feature Mapping. An MDP is denoted by M :=
⟨S,A, P,R, T, µ0⟩, where S and A represent the state and action spaces, respectively, P is the
dynamic model, R : S × A → [0, 1] is the reward function, T is the time horizon, and µ0 is the
initial state distribution with µ0(s) > 01. A linear mixture MDP is defined by the following:

1As there is a policy that achieves optimal value for all initial states s, or equivalently, for all initial distri-
butions µ0, without loss of generality, it is common to take a strictly positive initial distribution.

3



Under review as a conference paper at ICLR 2024

• There exist an unknown parameter θ∗ ∈ Rd, and a known feature mapping ϕ(·|·, ·) :
S ×A×S → Rd, such that P (s′|s, a) = ⟨ϕ(s′|s, a),θ∗⟩,∀s′, s ∈ S, a ∈ A.

• ∥θ∗∥2 ≤
√
d and ∥ϕ(s′|s, a)∥2 ≤ L,∀s′, s ∈ S, a ∈ A.

Moreover, let P denote the set of parameters that correspond to the product of the simplices for each
(state, action) pair:

P :=

{
θ : 0 ≤ ⟨ϕ(·|s, a),θ⟩ ≤ 1,

∑
s′∈S

⟨ϕ(s′|s, a),θ⟩ = 1,∀s ∈ S, a ∈ A

}
, (1)

where θ denotes the parameter of the transition dynamics model and ϕ(·|s, a) is the known feature
mapping function.

A policy π : S → ∆(A), where ∆(A) is the set of all probability distributions on A, designed to
maximize the sum of discounted reward, which is denoted by the value function:

V π(s;θ) := E ai∼π(·|si)
si+1∼⟨ϕ(·|si,ai). θ⟩

[ ∞∑
i=0

γir(si, ai)
∣∣∣s0 = s

]
. (2)

Similarly, the action value function Qπ(s, a;θ) is defined as

Qπ(s, a;θ) := E ai∼π(·|si)
si+1∼⟨ϕ(·|si,ai). θ⟩

[ ∞∑
i=0

γir(si, ai)
∣∣∣s0 = s, a0 = a

]
. (3)

Moreover, we let J(π;θ) := Es∼µ0
[V ∗(s;θ∗)] denote the mean reward achievable for the MDP

with parameter θ under policy π over the initial probability distribution µ0.

Optimal Value and Regret. We then define the optimal value function to be the maximum value
obtained by a policy: V ∗(s;θ) = maxπ V

π(s;θ). In the discounted linear mixture MDP setting
(Zhou et al., 2021b), the cumulative regret R(T ) for the MDP with parameter θ∗ is defined to be
the total difference of value function between the optimal policy and the learned policy πt, where

R(T ) :=

T∑
t=1

[V ∗(st;θ
∗)− V πt(st,θ

∗)] , s1 ∼ µ0. (4)

Based on the fundamental result that there exists a policy that achieves optimal value for all states,
we use π∗(θ) to denote an optimal policy with respect to a given model parameter θ as

π∗(θ) := argmax
π

J(π;θ). (5)

4 VBMLE FOR LINEAR MDPS

Introduction to the VBMLE Principle. We now introduce the idea behind the classic value biasing
principle. Consider first the certainty equivalence principle (Kumar & Varaiya, 2015) employing the
straightforward Maximum Likelihood Estimate (MLE) as

θ̂t := argmax
θ∈P

{
t−1∏
i=1

p(si+1|, si, ai;θ)

}
, (6)

That is, at each time step t, the learner employs the policy πMLE
t that is optimal for the current

estimate θ̂t. Under appropriate technical conditions, it has been shown in (Borkar & Varaiya, 1979)
that θ̂t converges almost surely to a random θ̂∞, for which

p(s′|s, πMLE
∞ (s); θ̂∞) = p(s′|s, πMLE

∞ (s);θ∗),∀s, s′ ∈ S, (7)

where πMLE
∞ represents the optimal policy corresponding to θ̂∞. This convergence property is called

the closed-loop identification property; it means that asymptotically the transition probabilities re-
sulting from the application of the policy πMLE

∞ are correctly estimated. An important consequence is
that J(π∗(θ̂∞); θ̂∞) = J(π∗(θ̂∞);θ∗). Since πMLE

∞ is not necessarily optimal for θ∗, this implies

J(π∗(v); θ̂∞) ≤ J(π∗(θ∗);θ∗). (8)
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Algorithm 1 VBMLE for Reinforcement Learning in Linear Mixture MDPs
1: Input: α(t)
2: for t = 1, 2, · · · do

3: θV
t := argmaxθ∈P

{
t−1∑
i=1

log⟨ϕ(si+1|si, ai),θ⟩+ λ
2 ∥θ∥

2
2 + α(t) · V ∗(st;θ)

}
.

4: at = argmax
a∈A

Q∗(st, a;θ
R
t )

5: end for

The idea of the Value-Biased method is to try to undo the bias in (8) by adding a bias term that favors
parameters with larger optimal total return. This leads to the principle of Value-Biased Maximum
Likelihood Estimate (VBMLE) originally proposed in the adaptive control literature by (Kumar &
Lin, 1982) as follows:

θVBMLE
t := argmax

θ∈P

{
t−1∑
i=1

log p(si+1|si, ai;θ) + α(t) · J(π∗(θ);θ)

}
, (9)

where α(t) is a positive increasing sequence that weights the bias in favor of parameters with larger
total return. VBMLE employs this biasing method to handle the exploration-exploitation trade-off.

VBMLE for Discounted Linear Mixture MDPs. In this paper, we adapt the VBMLE principle to
the RL problem in the linear mixture MDP setting. Specifically, at each step, the learner would (i)
choose the parameter estimate that maximizes the regularized log-likelihood plus the value-bias as

θV
t := argmax

θ∈P

{
t−1∑
i=1

log⟨ϕ(si+1|si, ai),θ⟩+
λ

2
∥θ∥22 + α(t) · V ∗(st;θ)

}
, (10)

where λ is a positive constant for regularization, and then (ii) employ an optimal policy with respect
to θV

t . Notice that the term V ∗(st;θ) can be computed by using the standard Value Iteration pre-
sented as Algorithm 2 in Appendix. If there are multiple maximizers for (10), then one could break
the tie arbitrarily. For clarity, we also summarize the procedure of VBMLE in Algorithm 1.

Features of VBMLE for Linear Mixture MDPs. We highligh the salient features of the VBMLE
method in Algorithm 1 as follows.

• Computational Efficiency: As mentioned earlier, UCLK (Zhou et al., 2021b) suffers from high
computational complexity as it requires computing an estimate of the model parameter for each
state-action pair in each iteration. This renders UCLK intractable when either the state space or
the action space is large. By contrast, the VBMLE approach, which applies value-bias to guide
the exploration under the MLE, only requires solving one single maximization problem for the
dynamics model parameter θ in each iteration, making it computationally efficient and superior.
Accordingly, VBMLE could serve as a more computationally feasible algorithm for RL in linear
mixture MDPs in practice.

• VBMLE is Parameter-Free: As shown in Algorithm 1, the only parameter required by VBMLE
is α(t), which determines the weight of the value bias. As will be shown in Section 5, one could
simply choose α(t) =

√
t to achieve the required regret bound, and moreover this simple choice

also leads to superior empirical regret performance. As a result, VBMLE is parameter-free and
therefore does not require any hyperparameter tuning.

• Distributional Perspective: In contrast to the existing RL methods for linear mixture MDPs (Ay-
oub et al., 2020; Zhou et al., 2021a;b; Chen et al., 2022) that aim to learn the unknown parameter
via regression on the value function (or termed value-targeted regression), the proposed VBMLE
takes a distributional perspective through directly learning the whole collection of transition prob-
abilities through value-biased maximum likelihood estimation. This perspective has also been
adopted by the prior works on applying VBMLE to the contextual bandit problems (Hung et al.,
2021; Hung & Hsieh, 2023).

We also highlight the differences between VBMLE for RL and VBMLE for bandits in Appendix C.
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Remark 1. Due to the non-concavity of VBMLE, we propose to solve VBMLE by Bayesian op-
timization (BO), which is a powerful and generic method for provably maximizing (possibly non-
concave) black-box objective functions. As a result, BO can provably find an ϵ-optimal solution to
VBMLE within finite iterations. Specifically:

• We have applied the GP-UCB algorithm, which is one classic BO algorithm and has been shown
to provably find an ϵ-optimal solution within Õ(1/ϵ2) iterations under smooth (possibly non-
concave) objective functions (Srinivas et al., 2012). Each sample taken by GP-UCB requires only
one run of standard Value Iteration in Algorithm 2.

• To further demonstrate the compatibility of VBMLE and BO, we have extended the regret analysis
of VBMLE to the case where only an ϵ-optimal VBMLE solution is obtained. Specifically, let H
denote the number of samples taken by GPUCB in each maximization run of finding VBMLE.
We show that VBMLE augmented with BO can achieve sub-linear regret as shown in Theorem
4. By using a moderate H , one could easily recover the same regret bound as that of VBMLE
with an exact maximizer. In our experiments, we find that choosing H = 25 is sufficient and also
computationally efficient.

• The complexity of VBMLE with GP-UCB for finding θV
t is to solve the standard Value Iteration

for only H + 1 times (H is for BO, each sample requires one value iteration in our objective
function, and another 1 for value iteration for θV

t ). This is a clear computational advantage over
the EVI in UCLK.

5 REGRET ANALYSIS

In this section, we formally present the regret analysis of the VBMLE algorithm. To begin with, we
introduce the following useful notations:

ℓt(θ) :=

t−1∑
i=1

log⟨ϕ(si+1|si, ai),θ⟩+
λ

2
∥θ∥22 (11)

θMLE
t := argmax

θ∈P
ℓt(θ), (12)

At :=

t−1∑
i=1

ϕ(si+1|si, ai)ϕ(si+1|si, ai)⊤ + λI. (13)

If there are multiple maximizers for (12), then one could break the tie arbitrarily.

Assumption 1. The following information for the transition probability P is known:

• The set of zero transition P0 := {(s, a, s′)|P (s′|s, a) = 0,∀s, s′ ∈ S, a ∈ A}.

• The lower bound non-zero transition probabilities pmin := min(s,a,s′) ̸∈P0
P (s′|s, a).

We then redefine the probability simplex based on the above assumption as follows:

P :=

{
θ

∣∣∣∣ pmin ≤ ⟨ϕ(s′|s, a),θ⟩ ≤ 1,∀(s, a, s′) ̸∈ P0;

⟨ϕ(s′|s, a),θ⟩ = 0,∀(s, a, s′) ∈ P0;∑
s′∈S

⟨ϕ(s′|s, a),θ⟩ = 1,∀s ∈ S, a ∈ A
}
. (14)

Remark 2. This assumption suggests that the magnitude of the gradient of the log probability for
the observed transition, denoted as ∥∇θ log ⟨ϕ(si+1|si, ai),θMLE

t ⟩∥2, is bounded from above. A
similar assumption is made in (Kumar & Lin, 1982; Mete et al., 2021). In some scenarios, the
knowledge of pmin may not be readily available. To address this, we introduce an alternative version
of VBMLE, termed Adaptive VBMLE, to address this issue. This variant employs the following
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adaptive constraint, resembling a probability simplex, to solve θV
t .

Pt :=

{
θ

∣∣∣∣ 1

log t
≤ ⟨ϕ(s′|s, a),θ⟩ ≤ 1,∀(s, a, s′) ̸∈ P0;

⟨ϕ(s′|s, a),θ⟩ = 0,∀(s, a, s′) ∈ P0;∑
s′∈S

⟨ϕ(s′|s, a),θ⟩ = 1,∀s ∈ S, a ∈ A
}
. (15)

The regret bound for this variant is detailed in Theorem 3.

5.1 CONVERGENCE ANALYSIS OF MLE IN LINEAR MIXTURE MDPS

To begin with, we highlight the main technical challenges as follows: A natural idea is to leverage
the Azuma–Hoeffding inequality on the log-likelihood ratio: ℓt(θMLE

t ) − ℓt(θ
∗), and then find the

distance between θMLE
t and the true parameter θ∗. However, it is known that the stochastic process

induced by the maximum log-likelihood ratio is actually a sub-martingale (shown in Lemma 6 in
Appendix for completeness). To address these issue, we propose several novel techniques: (i) We
first propose to construct a novel super-martingale (cf. Lemma 1) to characterize the convergence
rate of the MLE in linear mixture MDPs, which could be of independent interest beyond RL prob-
lems. Interestingly, this supermartingale consists of a term that could be interpreted as the regret in
the online portfolio selection problem and thereby offers an interesting connection between linear
mixture MDPs and online learning. (ii) Built on (i), to utilize Azuma-Hoeffding inequality, we need
to carefully handle the sum of squared supermartingale differences, which do not have an explicit
uniform upper bound and require a more sophisticated argument.

To begin with, we provide several useful definitions as follows. Define the likelihood ratio as

Lt(θ) :=

t−1∏
i=1

Pr(si+1|si, ai;θ)
Pr(si+1|si, ai;θ∗)

· exp
(
λ

2
∥θ∥22

)
. (16)

We proceed to construct two useful helper stochastic processes as follows: For each t ∈ N,

Xt := ℓt(θ
MLE
t−1 )− ℓt(θ

∗) +

t−1∑
i=1

zi, (17)

zt := ℓt(θ
MLE
t )− ℓt(θ

MLE
t−1 ). (18)

Lemma 1. For all λ ≥ 0, the stochastic process {Lt(θ
MLE
t−1 ) ·

∏t−1
i=1 exp(−zi)} is a martingale, i.e.,

Est+1∼Pr(·|st,at;θ∗)

[
Lt+1(θ

MLE
t ) ·

t∏
i=1

exp(−zi)

∣∣∣∣Ft

]
= Lt(θ

MLE
t−1 ) ·

t−1∏
i=1

exp(−zi), (19)

where Ft := {s1, a1, · · · , st, at} denotes the causal information up to time t.
Corollary 1. For all λ ≥ 0, the stochastic process {Xt} is a supermartingale, i.e.,

E
st+1∼Pr(·|st,at;θ∗)

[
ℓt+1(θ

MLE
t )− ℓt+1(θ

∗)−
t∑

i=1

zi

∣∣∣∣Ft

]
≤ ℓt(θ

MLE
t−1 )− ℓt(θ

∗)−
t−1∑
i=1

zi. (20)

This corollary can be proved by applying Jensen’s inequality to (19),

Notably, Corollary 1 offers a useful insight that a supermartingale that involves the log-likelihood
ratio could still be constructed despite that ℓt(θMLE

t ) − ℓt(θ
∗) is a submartingale. This result gen-

eralizes the classic result in (Kumar & Lin, 1982, Lemma 3) for tabular MDPs to the linear mixture
MDP setting, and is also holds for non-regularized MLE (λ = 0). To establish Theorem 1, we define
a useful quantity ∆t as

∆t :=

t−1∑
i=1

zi =

t−1∑
i=1

log

(
ϕi(si+1)

⊤ θMLE
t

ϕi(si+1)⊤ θMLE
i

)
, (21)

where ϕi(s) := ϕ(s|si, ai) is a shorthand for the feature vector. In the following lemma, we present
an upper bound for ∆t. Recall that ∥ϕ(s′|s, a)∥2 ≤ L, for all s, s′ ∈ S and a ∈ A.
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Lemma 2. For all λ ≥ 0, we have

∆t ≤
8d2

p2min
log

(
dλ+ (t− 1)L2

d

)
. (22)

Remark 3 (Connection between linear mixture MDPs and online learning). Through ∆t and
Lemma 2, we could build an interesting connection between MLE in linear mixture MDPs and
the Follow-the-Leader algorithm (Gaivoronski & Stella, 2000) in online learning. The connection
is two-fold: (i) MLE in linear mixture MDPs can be viewed as a variant of online portfolio se-
lection problem: We find that the MLE optimization problem in linear mixture MDPs takes the
same form as the classic online portfolio selection problem (Hazan et al., 2016). Specifically, the
feature vectors and the dynamics model parameter in linear mixture MDPs correspond to the price
vectors and the asset allocation, respectively. The main difference of the two problems lies in the
feasible set and the constraints. (ii) Iterative MLE is equivalent to Follow-the-Leader algorithm: An-
other interesting connection is that applying MLE in each time step would correspond to the classic
Follow-the-Leader algorithm (Gaivoronski & Stella, 2000). Moreover, the term ∆t in 22 could be
interpreted as the regret of the Follow-the-Leader algorithm in online learning. With that said, one
could verify that Lemma 2 is consistent with the regret quantified in (Gaivoronski & Stella, 2000).

Based on the supporting lemmas introduced above, we are ready to formally present the convergence
result of MLE in linear mixture MDPs.
Theorem 1. With probability at least 1− δ, we have

∥θ∗ −θMLE
t ∥2At

≤ 37d2

p2min
· log

(
dλ+ tL2

d

)
· log 1

δ
, (23)

The complete proof of Theorem 1 is provided in Appendix B.1, and here we provide a proof sketch:

Proof Sketch. Based on the result in Lemma 1, we can apply Azuma–Hoeffding inequality presented
in Lemma 5 to get the high probability bound of log-likelihood ratio. There are two main challenges
that need to be handled: (i) The first one is the additional term ∆t, we find a connection to the anal-
ysis of the online portfolio selection problem and use a similar approach to handle it. (ii) The other
one is Mt, which represents the cumulative difference of the super-martingale. We adopt a similar
approach by considering a stopping time to ensure that this theorem holds with high probability.

5.2 REGRET BOUND OF VBMLE

In this subsection, we formally provide the regret bound of the proposed VBMLE algorithm.
Theorem 2. For all linear mixture MDP M = ⟨S,A, P,R, T, µ0⟩, with probability at least 1 −
1
T − 3δ and choosing α(t) =

√
t, VBMLE in Algorithm 1 has a regret upper bound as

R(T ) = O

(
d
√
T log T

p4min(1− γ)2

)
. (24)

The complete proof of Theorem 2 is provided in Appendix B.2, and here we provide a proof sketch:

1. Similar to the analysis of the upper-confidence bound approach, which uses the concentration
inequality to replace the term associated with an optimal policy, under VBMLE we can replace
V ∗(st,θ

∗) by applying the objective function of VBMLE.

2. Then, there are two terms that need to be handled: (i) ∥θMLE
t −θ∗∥At

and (ii) ∥θV
t −θ∗∥At

.
We provide a novel theorem of the confidence ellipsoid of the maximum likelihood estimator in
linear mixture MDPs in Theorem 1 to deal with (i).

3. In contrast to the regret analysis presented in (Hung et al., 2021), where the likelihood of an
exponential family distribution was considered, analyzing regret in the linear mixture MDP set-
ting is more complex due to the absence of simple closed-form expressions for both θMLE

t and
θV
t . Additionally, in this context, the bias term is not linear with respect to θ, even if we rep-

resent it as Q∗(st, at;θ) = ⟨
∑

s′∈S ϕ(s′|st, at)V ∗(st,θ),θ⟩. To address these challenges, we
adopt a novel approach by completing the square of ∥θV

t −θ∗∥At
and successfully overcome the

problems mentioned above.

We also provide the regret analysis for this variant of VBMLE in Appendix D.
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6 NUMERICAL EXPERIMENTS

We demonstrate the empirical performance of VBMLE in terms of both regret and computation
time in this section. we conduct experiments on a simple environment with discrete state and action
spaces. To provide a detailed understanding of how we transition from the tabular MDPs to the
linear mixture MDP setting, we have outlined the procedure in the Appendix F.1. The following
result includes a comparison between VBMLE, UCLK (Zhou et al., 2021b) and UCLK+ (Zhou
et al., 2021a), which are both well-known algorithms used in the context of infinite-horizon linear
mixture MDPs. Another baseline algorithm is PSRL (Osband et al., 2013), a popular benchmark
method for tabular RL. Details regarding the selected hyperparameters can be found in Appendix
F.2. In the following
• Empirical Regret: Figure 1 provides the empirical regret of VBMLE, UCLK, UCLK+ and PSRL

across various sizes of linear MDPs, and the results demonstrate that the two varients, where
VBMLE (TR) is VBMLE with trust-region constrained algorithm for solving θV

t and VBMLE
(BO) is VBMLE with GP-UCB for optimization, outperform the other baselines in terms of regret
performance. In Figure 1(b), only the results of VBMLE with GP-UCB proposed in Appendix E
and PSRL are presented, as the other approaches are intractable for the larger MDP (|S| = 100) of
the MDP. The result shows that though PSRL has sub-linear regret in small-scale MDP (|S| = 5),
it has linear regret due to that it does not leverage the structure of linear feature mapping. We also
provide the standard deviation of the regret at the final step in Table G.1. VBMLE also has better
robustness with an order of magnitude smaller standard deviation than UCLK.

• Computation Time: UCLK requires U |S||A| times of solving the constrained quadratic opti-
mization problem per step, where U is the times of value iteration, and VBMLE with BO only
requires once K + 1 times, where K is the time horizon for BO. Table 6 displays the computa-
tion time per step within the same environment as depicted in Figure 1(a). It is evident that the
computational complexity of UCLK and UCLK+ render the algorithm impractical in large MDPs.
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(a) |S| = 5, |A| = 4 (b) |S| = 100, |A| = 4

Figure 1: Regret averaged over 10 trials.

Table 1: Computation time per step under different sizes of linear mixture MDPs.
|S| = 3, |A| = 2 |S| = 5, |A| = 4 |S| = 15, |A| = 4 |S| = 100, |A| = 4

VBMLE (TR) 0.793s 2.359s 42.232s -
VBMLE (BO) 2.06s 2.232s 3.999s 19.687s

UCLK 3.135s 49.763s ≥ 35hr -
UCLK+ 0.741s 20.128s ≥ 37hr -

7 CONCLUSION

We proposed a provably effective and computationally efficient algorithm for solving linear MDPs,
called VBMLE. The sample complexity of the proposed is proved to be upper bounded by
O
(
d
√
T log T/(p4min(1− γ)2)

)
. The proposed algorithm is different from the existing value-target

regression approach and leverages the MLE with value bias to learn the dynamic. We provide a
novel theorem to show the confidence ellipsoid of MLE and the simulation result demonstrates the
empirical performance of VBMLE.
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A PROOFS OF THE SUPPORTING LEMMAS

Recall that

Lt(θ) =

t−1∏
i=1

Pr(si+1|si, ai;θ)
Pr(si+1|si, ai;θ∗)

· exp
(
λ

2
∥θ∥22

)
(25)

Xt = ℓt(θ
MLE
t−1 )− ℓt(θ

∗) +

t−1∑
i=1

zi, (26)

zt = ℓt(θ
MLE
t )− ℓt(θ

MLE
t−1 ), (27)

we then introduce some supporting lemmas for the proof of regret.
Lemma 3 (Lemma C.2 in (Zhou et al., 2021b), Lemma 11 in (Abbasi-Yadkori et al., 2011)). Given
any {ϕ(st+1|st, at)}Tt=1 ∈ Rd satisfying that ∥ϕ(st+1|st, at)∥2 ≤ L. For all λ > 0, we have

T∑
t=1

∥ϕ(st+1|st, at)∥2A−1
t

≤ 2d log

(
dλ+ TL2

d

)
. (28)

Lemma 4. ∀s ∈ S, a ∈ A, and θ ∈ P, we have Q∗(s, a,θ) ≤ 1
1−γ .

Lemma 4 is a direct result of that the reward function is bounded by 1, i.e., R(·, ·) ≤ 1.
Lemma 5 (Azuma–Hoeffding Inequality). Suppose {X1, X2, · · · } is a martingale or super-
martingale. Then for all positive integers t and all positive reals δ, we have

Pr

(
Xt −X0 ≥

√
2Mt log

1

δ

)
≤ δ, (29)

where Mt :=
∑t

i=1(Xt −Xt−1)
2.

Lemma 6.

Lt(θ
MLE
t ) := max

θ∈P
Lt(θ) (30)

is a sub-martingale.

Proof. Given the causal information Ft, we have

Est+1∼Pr(·|st,at;θ∗)

[
max
θ∈P

Lt+1(θ)
∣∣Ft

]
≥max

θ∈P
Est+1∼Pr(·|st,at;θ∗)

[
Lt+1(θ)

∣∣Ft

]
(31)

=max
θ∈P

{∑
s′∈S

Pr(s′|st, at;θ∗) · Pr(s′|st, at;θ)
Pr(s′|st, at;θ∗)

· Lt(θ)

}
(32)

=Lt(θ
MLE
t ), (33)

where (31) holds by max
θ∈P

Lt+1(θ) ≥ Lt+1(θ
′), and

θ′ := argmax
θ∈P

{
Est+1∼Pr(·|st,at;θ∗)

[
Lt+1(θ)

∣∣Ft

]}
. (34)

Remark 4. The lemma shows that it is not able to apply Azuma–Hoeffding inequality on the max-
imum likelihood ratio. However, we can still add an additional term to construct a supermartingale:

Est+1∼Pr(·|st,at;θ∗)

max
θ∈P

Lt+1(θ) ·
t∏

i=1

(∑
s′∈S

ht(s
′)

)−1 ∣∣Ft

 = Lt(θ
MLE
t ) ·

t−1∏
i=1

(∑
s′∈S

ht(s
′)

)−1

(35)

12
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where

ht(s
′) := max

θ∈P

{
Lt(θ)

Lt(θ
MLE
t )

· Pr(s′|st, at;θ)
}
. (36)

It’s important to note that there are two primary challenges when dealing with ht(s
′):

• Dependency on state space size: The first challenge arises from the fact that
∑

s′∈S ht(s
′)

exhibits a dependency on the size of the state space. This dependence can complicate the
regret analysis, especially in cases where the state space is large.

• State-dependent maximization: The second challenge is related to the maximization inside
ht(s

′), which is also influenced by the specific state s′ under consideration. Formally, the
absence of a closed-form expression for this maximization makes it challenging to conduct
a straightforward analysis.

To address the above two challenges, we then introduce a new supermartingale associate to the
likelihood ratio evaluated on the previous step’s maximum likelihood estimator.

A.1 PROOF OF LEMMA 1

Recall that

Xt := ℓt(θ
MLE
t−1 )− ℓt(θ

∗) +

t−1∑
i=1

zi, (37)

zt := ℓt(θ
MLE
t )− ℓt(θ

MLE
t−1 ). (38)

For ease of exposition, we restate Lemma 1 as follows.

Lemma. The stochastic process {Lt(θ
MLE
t−1 ) ·

∏t−1
i=1 exp(−zi)} is a martingale, i.e.,

Est+1∼Pr(·|st,at;θ∗)

[
Lt+1(θ

MLE
t ) ·

t∏
i=1

exp(−zi)

∣∣∣∣Ft

]
= Lt(θ

MLE
t−1 ) ·

t−1∏
i=1

exp(−zi), (39)

where Ft := {s1, a1, · · · , st, at} denotes the causal information up to time t.

Proof. Recall the definition of likelihood ratio in (16). We have

Est+1∼Pr(·|st,at;θ∗)

[
Lt+1(θ

MLE
t ) ·

t∏
i=1

exp(−zi)

∣∣∣∣Ft

]

=
∑
s′∈S

Pr(s′|st, at;θ∗) · Lt(θ
MLE
t ) · Pr(s′|st, at;θMLE

t )

Pr(s′|st, at;θ∗)
·

t∏
i=1

exp(−zi), (40)

=Lt(θ
MLE
t ) ·

t∏
i=1

exp(−zi), (41)

=Lt(θ
MLE
t−1 ) ·

t−1∏
i=1

exp(−zi), (42)

where (40) holds by the definition of the expectation, (41) holds due to θMLE
t ∈ P and Ft-

measurability, and (42) holds by exp(zt) =
Lt(θ

MLE
t )

Lt(θMLE
t−1)

. We complete this proof.

A.2 PROOF OF LEMMA 2

Recall the definition of ∆t from (21) as

∆t :=

t−1∑
i=1

log

(
ϕi(si+1)

⊤ θMLE
t

ϕi(si+1)⊤ θMLE
i

)
+

λ

2

(
∥θMLE

t ∥22 − ∥θMLE
0 ∥22

)
, (43)

where ϕi(s) := ϕ(s|si, ai) is a shorthand for the feature vector. For ease of exposition, we restate
Lemma 2 as follows.

13



Under review as a conference paper at ICLR 2024

Lemma. For all λ ≥ 0, we have that

∆t ≤
8d2

p2min
log

(
dλ+ (t− 1)L2

d

)
. (44)

Proof. To begin with, we have

∆t+1 =

t−1∑
i=1

log ϕi(si+1)
⊤ θMLE

t+1 −
t−1∑
i=1

log ϕi(si+1)
⊤ θMLE

i

+
λ

2

(
∥θMLE

t+1 ∥22 − ∥θMLE
0 ∥22

)
+ log

ϕt(st+1)
⊤ θMLE

t+1

ϕt(st+1)⊤ θMLE
t

(45)

≤
t−1∑
i=1

log ϕi(si+1)
⊤ θMLE

t −
t−1∑
i=1

log ϕi(si+1)
⊤ θMLE

i

+
λ

2

(
∥θMLE

t ∥22 − ∥θMLE
0 ∥22

)
+ log

ϕt(st+1)
⊤ θMLE

t+1

ϕt(st+1)⊤ θMLE
t

(46)

≤
t−1∑
i=1

log ϕi(si+1)
⊤ θMLE

t −
t−1∑
i=1

log ϕi(si+1)
⊤ θMLE

i

+
λ

2

(
∥θMLE

t ∥22 − ∥θMLE
0 ∥22

)
+

⟨ϕt(st+1),θ
MLE
t+1 −θMLE

t ⟩
ϕt(st+1)⊤ θMLE

t

(47)

≤∆t +
∥∥∥ ϕt(st+1)

ϕt(st+1)⊤ θMLE
t

∥∥∥
A−1

· ∥θMLE
t+1 −θMLE

t ∥A, (48)

where (46) holds by θMLE
t = argmaxθ∈P ℓt(θ), (47) holds by the fact that log(x + 1) ≤ x,

and (48) holds by Cauchy–Schwarz inequality under any positive definite matrix A. To handle
∥θMLE

t+1 −θMLE
t ∥A, we start from the fact that θMLE

t+1 = argmaxθ∈P ℓt+1(θ), which leads to the fol-
lowing inequality:

0 ≤ℓt+1(θ
MLE
t+1 )− ℓt+1(θ

MLE
t ) (49)

=(θMLE
t+1 −θMLE

t )⊤∇θ

(
ℓt(θ) + log ϕt(st+1)

⊤ θ
) ∣∣

θ=θMLE
t

− 1

2
∥θMLE

t+1 −θMLE
t ∥2At+1(θ′

t+1)
(50)

≤ ϕt(st+1)
⊤

ϕt(st+1)⊤ θMLE
t

(θMLE
t+1 −θMLE

t )− 1

2
∥θMLE

t+1 −θMLE
t ∥2At+1(θ′

t+1)
, (51)

where (50) holds by Taylor’s theorem and At+1(θ
′
t+1) := −∇2

θℓt+1(θ)|θ=θ′
t+1

(θ′
t+1 is some

convex combination between θMLE
t+1 and θMLE

t ), and (51) holds due to the necessary condition of
optimality for constrained problem as ∇θℓt(θ)|⊤θ=θMLE

t
(θMLE

t+1 −θMLE
t ) ≤ 0. Then, by reordering

(51) and applying Cauchy–Schwarz inequality, we have

1

2
∥θMLE

t+1 −θMLE
t ∥At+1(θ′

t+1)
≤ ∥ ϕt(st+1)

ϕt(st+1)⊤ θMLE
t

∥A−1
t+1(θ

′
t+1)

. (52)

By plugging A = At+1(θ
′
t+1) into (48) as well as combining (48) and (52), we have

∆t+1 ≤∆t + 2
∥∥∥ ϕt(st+1)

ϕt(st+1)⊤ θMLE
t

∥∥∥2
A−1

t+1(θ
′
t+1)

, (53)

≤∆t +
2

p2min
· ∥ϕt(st+1)∥2A−1

t
, (54)

where (54) holds by Assumption 1 and A−1
t+1(θ

′
t+1) ⪯ A−1

t+1 ⪯ A−1
t given the definition in (13).

Then, by applying Lemma 3 to (54), we have

∆t+1 ≤ 8d2

p2min
log

(
dλ+ tL2

d

)
, ∀t ∈ N. (55)
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B PROOFS OF THE MAIN THEOREMS

B.1 PROOF OF THEOREM 1

For ease of exposition, we restate Theorem 1 as follows.

Theorem. At each time t, with probability at least 1− δ, we have

∥θ∗ −θMLE
t ∥2At

≤ βt, (56)

where βt :=
37d2

p2
min

· log
(

dλ+tL2

d

)
· log 1

δ .

Proof. By Corollary 1 and Azuma–Hoeffding inequality in Lemma 5, we have

Pr

(
ℓt+1(θ

MLE
t )− ℓt+1(θ

∗)−
t∑

i=1

zi ≥
√
2Mt log

1

δ

)
≤ δ, (57)

where Mt :=
∑t

i=1

(
logLi+1(θ

MLE
i )− logLi(θ

MLE
i−1 )− zi

)2
.

• Regarding ℓt+1(θ
MLE
t )− ℓt+1(θ

∗), we have

ℓt+1(θ
MLE
t )− ℓt+1(θ

∗) = ℓt(θ
MLE
t )− ℓt(θ

∗) + log
ϕ(st+1|st, at)⊤ θMLE

t

ϕ(st+1|st, at)⊤ θ∗ (58)

≥ 1

2
∥θMLE

t −θ∗∥2−∇2
θℓt(θ)|θ=θ′

+ log
ϕ(st+1|st, at)⊤ θMLE

t

ϕ(st+1|st, at)⊤ θ∗ (59)

≥ 1

2
∥θMLE

t −θ∗∥2At
− 1

pmin
, (60)

where (59) holds by Taylor’s theorem, the necessary condition of optimality for constrained prob-
lems ∇θℓt(θ)|⊤θ=θMLE

t
(θ∗ −θMLE

t ) ≤ 0, and θ′ is some convex combination of θMLE
t and θ∗, and

(60) holds by At ⪯ −∇2
θℓt(θ)|θ=θ′ , θ∗ ∈ P and Assumption 1.

• For
∑t

i=1 zi, denoting ϕt(s) := ϕ(s|st, at), we have

t∑
i=1

zi = log

(
Lt(θ

MLE
t )

Lt(θ
MLE
t−1 )

·
Lt−1(θ

MLE
t−1 )

Lt−1(θ
MLE
t−2 )

· · · · · L1(θ
MLE
1 )

L1(θ
MLE
0 )

)
(61)

= log

(
ϕt−1(st)

⊤ θMLE
t ·ϕt−2(st−1)

⊤ θMLE
t · · · ·

ϕt−1(st)⊤ θMLE
t−1 ·ϕt−2(st−1)⊤ θMLE

t−2 · · · ·

)
+

λ

2

(
∥θMLE

t ∥22 − ∥θMLE
0 ∥22

)
(62)

=

t−1∑
i=1

log
ϕi(si+1)

⊤ θMLE
t

ϕi(si+1)⊤ θMLE
i

+
λ

2

(
∥θMLE

t ∥22 − ∥θMLE
0 ∥22

)
(63)

≤ 8d2

p2min
log

(
dλ+ (t− 1)L2

d

)
, (64)

where (64) holds by Lemma 2.
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• For Mt, we have

Mt =

t∑
i=1

(
logLi+1(θ

MLE
i )− logLi(θ

MLE
i−1 )− zi

)2
(65)

=

t∑
i=1

(
log

ϕi(si+1)
⊤ θMLE

i

ϕi(si+1)⊤ θ∗

)2

(66)

≤ 1

p2min

t∑
i=1

∥ϕi(si+1)∥2A−1
i

· ∥θMLE
i −θ∗∥2Ai

(67)

≤
maxi≤t∥θMLE

i −θ∗∥2Ai

p2min

t∑
i=1

∥ϕi(si+1)∥2A−1
i

(68)

≤max
i≤t

∥θMLE
i −θ∗∥2Ai

· 2d

p2min
· log

(
dλ+ tL2

d

)
, (69)

where (67) holds by Assumption 1 and Cauchy–Schwarz inequality, and (69) holds by Lemma 3.

Then, combining (60), (64) and (69) into (57), for all t, we have

∥θMLE
t −θ∗∥2At

≤ 1

pmin
+

8d2

p2min
log

(
dλ+ tL2

d

)
+max

i≤t
∥θMLE

i −θ∗∥Ai
·

√
4d

p2min
· log

(
dλ+ tL2

d

)
· log 1

δ
(70)

holds with probability at least 1− δ. Letting kt := argmaxi≤t∥θ
MLE
i −θ∗∥Ai

≤ t and denoting the
following indicator functions:

J := 1

{
∥θMLE

t −θ∗∥2At
≥ 37d2

p2min
· log

(
dλ+ tL2

d

)
· log 1

δ

}
(71)

Di := 1{kt = i},∀i ≤ t, (72)

Then, by (70) and the definition of kt, we have

∥θMLE
t −θ∗∥2At

≤ ∥θMLE
kt

−θ∗∥2Akt
(73)

≤ 1

pmin
+

8d2

p2min
log

(
dλ+ ktL

2

d

)
+ ∥θMLE

kt
−θ∗∥Akt

·

√
4d

p2min
· log

(
dλ+ ktL2

d

)
· log 1

δ
(74)

holds with probability at least 1− δ, which implies

∥θMLE
t −θ∗∥2At

≤ 37d2

p2min
· log

(
dλ+ tL2

d

)
· log 1

δ
:= βt. (75)

By the fact that
∑t

i=1 Pr(Di = 1) = 1 and Pr(J |Di = 1) ≤ δ, ∀i ∈ [t] shown above, we have

Pr(J) =
t∑

i=1

Pr(Di = 1)Pr(J |Di = 1) ≤ δ. (76)

We complete the proof.

Lemma. At each time t, with probability at least 1− δ, we have

∇θℓt(θ)|⊤θ=θMLE
t

(θMLE
t −θ∗) ≤ β′

t, (77)

where β′
t :=

22d2

p2
min

log
(

dλ+tL2

d

)
·max{1, log 1

δ }.
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Proof. This lemma can be proved by the same argument as Theorem 1. By the fact that
ℓt+1(θ

MLE
t )− ℓt+1(θ

∗) ≥ ∇θℓt(θ)|⊤θ=θMLE
t

(θ∗ −θMLE
t )− 1

pmin
, (57), (64), and (69), we also have

∇θℓt(θ)|⊤θ=θMLE
t

(θMLE
t −θ∗) ≤ 1

pmin
+

8d2

p2min
log

(
dλ+ ktL

2

dλ

)
+ ∥θMLE

kt
−θ∗∥Akt

·

√
4d

p2min
· log

(
dλ+ ktL2

d

)
· log 1

δ
(78)

≤22d2

p2min
log

(
dλ+ tL2

d

)
·max{1, log 1

δ
} := β′

t, (79)

where (79) holds by plugging (75) into (78).

B.2 PROOF OF THEOREM 2

Recalling that

βt :=
37d2

p2min
· log

(
dλ+ tL2

d

)
· log 1

δ
(80)

β′
t =

22d2

p2min
log

(
dλ+ tL2

d

)
·max{1, log 1

δ
}, (81)

we then state the detailed form of the regret upper bound.

Theorem. For all linear kernel MDP M = ⟨S,A, P,R, T, µ0⟩, with probability at least 1− 1
T − δ,

VBMLE, proposed in Algorithm 1, has regret upper bound satisfies that

R(T ) =

T∑
t=1

(V ∗(st,θ
∗)− V πt(st;θ

∗))

≤
(

βT

2p2min
+ β′

T

)
·

T∑
t=1

1

α(t)
+

4γ

1− γ

√
T log

1

δ

+
2γ

pmin(1− γ)2

√
T log

1

δ
+

√
βT γ

pmin(1− γ)2

(
1 +

√
T · 2d log

(
dλ+ TL2

d

))

+
2d · α(T )
(1− γ)

· log
(
dλ+ TL2

d

)
. (82)

By choosing α(t) =
√
t, we have R(T ) = O(d

√
T log T/(p4min(1− γ)2)).

Proof. By the definition of the cumulative regret in (4), we have

R(T ) =

T∑
t=1

(V ∗(st,θ
∗)− V πt(st;θ

∗)) (83)

≤
T∑

t=1

(
V ∗(st,θ

V
t )− V πt(st;θ

∗) +
ℓt(θ

V
t )− ℓt(θ

∗)

α(t)

)
(84)

=R′(T ) +

T∑
t=1

ℓt(θ
V
t )− ℓt(θ

∗)

α(t)
(85)

where (84) holds due to the following inequality:

ℓt(θ
V
t ) + α(t)V ∗(st;θ

V
t ) ≥ ℓt(θ

∗) + α(t)V ∗(st;θ
∗) (86)

=⇒ V ∗(st;θ
∗) ≤ V ∗(st;θ

V
t ) +

ℓt(θ
V
t )− ℓt(θ

∗)

α(t)
, (87)
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and (85) holds by R′(T ) :=
∑T

t=1(V
∗(st,θ

V
t ) − V πt(st;θ

∗)). For the term
∑T

t=1(ℓt(θ
V
t ) −

ℓt(θ
∗))/α(t), we have

T∑
t=1

ℓt(θ
V
t )− ℓt(θ

∗)

α(t)
=

T∑
t=1

ℓt(θ
V
t )− ℓt(θ

MLE
t )

α(t)
+

T∑
t=1

ℓt(θ
MLE
t )− ℓt(θ

∗)

α(t)
(88)

≤−
T∑

t=1

1

2α(t)
∥θV

t −θMLE
t ∥2At(θ′) +

T∑
t=1

1

2α(t)
∥θMLE

t −θ∗∥2At(θ′′)

−
T∑

t=1

∇θℓt(θ)|⊤θ=θMLE
t

(θ∗ −θMLE
t )

α(t)
(89)

≤
T∑

t=1

1

2p2minα(t)
∥θMLE

t −θ∗∥2At
−

T∑
t=1

∇θℓt(θ)|⊤θ=θMLE
t

(θ∗ −θMLE
t )

α(t)

−
T∑

t=1

1

2α(t)
∥θV

t −θMLE
t ∥2At

(90)

≤
(

βT

2p2min
+ β′

T

)
·

T∑
t=1

1

α(t)
−

T∑
t=1

1

2α(t)
∥θV

t −θMLE
t ∥2At(θ′), (91)

where (89) holds by applying Taylor’s theorem with θ′ ∈ (θV
t ,θ

MLE
t ),θ′′ ∈ (θMLE

t ,θ∗), and the fact
that ∇θℓt(θ)|⊤θ=θMLE

t
(θV

t −θMLE
t ) ≤ 0, (90) holds due to −p2min∇2

θℓt(θ) ⪯ At ⪯ −∇2
θℓt(θ),∀θ ∈

P, and (91) holds with probability at least 1 −
∑T

t=1
1
T 2 by (75), (77), and replacing δ with 1

T 2 in
βT and β′

T , Lemma 3, and Cauchy–Schwarz inequality. Then, we have

R′(T ) =

T∑
t=1

[
V ∗(st,θ

V
t )− V πt(st;θ

∗)
]

(92)

= γ

T+1∑
t=2

[
Es′∼Pr(·|st,at;θ

V
t )
[V ∗(s′,θV

t )]− Es′∼Pr(·|st,at;θ∗)[V
πt(s′,θ∗)]

]
(93)

= γ

T+1∑
t=2

[
Es′∼Pr(·|st,at;θ∗)[V

∗(s′,θV
t )− V πt(s′,θ∗)]−

(
V ∗(st+1,θ

V
t )− V πt(st+1,θ

∗)
)

︸ ︷︷ ︸
:=B1

+ Es′∼Pr(·|st,at;θ
V
t )
[V ∗(s′,θV

t )]−V πt(st+1,θ
∗)︸ ︷︷ ︸

:=B2

−Es′∼Pr(·|st,at;θ∗)[V
∗(s′,θV

t )]+V ∗(st+1,θ
V
t )︸ ︷︷ ︸

:=B3

]
(94)

≤ 4γ

1− γ

√
T log

1

δ
+B2 (95)

where (93) holds by πt = argmaxπ V
π(st,θ

V
t ), and (95) holds with probability at least 1−

∑T
t=1

2
t2

by applying Azuma Hoeffding inequality in Lemma 5 on B1 and B3, which are martingale difference
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sequences. For B2, we have

γ

T+1∑
t=2

[
Es′∼Pr(·|st,at;θ

V
t )
[V ∗(s′,θV

t )]− V πt(st+1,θ
∗)
]

=γ

T+1∑
t=2

[
Es′∼Pr(·|st,at;θ∗)

[
Pr(s′|st, at;θV

t )

Pr(s′|st, at;θ∗)
V ∗(s′,θV

t )

]
− V πt(st+1,θ

∗)

]
(96)

= γ

T+1∑
t=2

[
Es′∼Pr(·|st,at;θ∗)

[
Pr(s′|st, at;θV

t )

Pr(s′|st, at;θ∗)
V ∗(s′,θV

t )

]
−Pr(st+1|st, at;θV

t )

Pr(st+1|st, at;θ∗)
V ∗(st+1,θ

V
t )

]
︸ ︷︷ ︸

:=B4

+ γ

T+1∑
t=2

[
Pr(st+1|st, at;θV

t )

Pr(st+1|st, at;θ∗)
V ∗(st+1,θ

V
t )− V πt(st+1,θ

∗)

]
(97)

=B4 + γR′(T ) +
2γ

1− γ
+ γ

T+1∑
t=2

[(
Pr(st+1|st, at;θV

t )

Pr(st+1|st, at;θ∗)
− 1

)
V ∗(st+1,θ

V
t )

]
(98)

≤ 2γ

pmin(1− γ)

√
T log

1

δ
+ γ

T+1∑
t=2

[(
Pr(st+1|st, at;θV

t )

Pr(st+1|st, at;θ∗)
− 1

)
V ∗(st+1,θ

V
t )

]
︸ ︷︷ ︸

:=B5

+γR′(T ) +
2γ

1− γ

(99)

where (96) holds by importance sampling, (97) holds by adding and subtracting
Pr(st+1|st, at;θV

t )/Pr(st+1|st, at;θ∗) · V ∗(st+1,θ
V
t ), (98) holds by Lemma 4, and (99) holds with

probability at least 1 − δ by applying Azuma-Hoeffding inequality in Lemma 5 on B4. Then, for
the term B5, we have

B5 =γ

T+1∑
t=2

[(
Pr(st+1|st, at;θV

t )

Pr(st+1|st, at;θ∗)
− 1

)
V ∗(st+1,θ

V
t )

]
(100)

≤ γ

pmin(1− γ)

T∑
t=1

|⟨ϕ(st+1|st, at),θV
t −θ∗⟩|+ γ

pmin(1− γ)
(101)

≤ γ

pmin(1− γ)

T∑
t=1

∥ϕ(st+1|st, at)∥A−1
t

· ∥θV
t −θMLE

t ∥At

+
γ

pmin(1− γ)

T∑
t=1

∥ϕ(st+1|st, at)∥A−1
t

· ∥θMLE
t −θ∗∥At +

γ

pmin(1− γ)
(102)

≤ γ

pmin(1− γ)

T∑
t=1

∥ϕ(st+1|st, at)∥A−1
t

· ∥θV
t −θMLE

t ∥At

+

√
βT γ

pmin(1− γ)

(
1 +

√
T · 2d log

(
dλ+ TL2

d

))
(103)

where (101) holds by pmin ≤ mint≤T Pr(st+1|st, at;θ∗), which is defined in Assumption 1, (102)
holds by Cauchy–Schwarz inequality and triangle inequality, and (103) holds by Theorem 1 with
probability at least 1− 1

T by replacing δ with 1
T 2 in βT and Lemma 3. Combining the final term in
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(91) and (103), we have
T∑

t=1

(
− 1

2α(t)
∥θV

t −θMLE
t ∥2At

+
γ

pmin(1− γ)
∥ϕ(st+1|st, at)∥A−1

t
∥θV

t −θMLE
t ∥At

)

≤
(

γ

4pmin(1− γ)

)2 T∑
t=1

α(t)∥ϕ(st+1|st, at)∥2A−1
t

(104)

=α(T ) · 2d log
(
dλ+ TL2

d

)
, (105)

where (104) holds by completing the square, and (105) holds by Lemma 3. Letting α(t) =
√
t and

combining (85), (91), (95), (99), (103), and (105), we complete the proof.

C DIFFERENCES BETWEEN VBMLE FOR RL AND VBMLE FOR BANDITS

Compared to the existing works on VBMLE for bandits (Hung et al., 2021; Hung & Hsieh, 2023),
VBMLE for RL presents its own salient challenges:

• Non-Concave Objective Function of VBMLE for Linear Mixture MDPs: In the context of
bandits, VBMLE learns by maximizing the log-likelihood of observed rewards with a bias term
that depends on the maximum achievable reward. As the parametric form of the reward distribu-
tions is typically unknown in the bandit setting, (Hung et al., 2021; Hung & Hsieh, 2023) rely on a
surrogate likelihood function (typically belongs to an exponential family) to estimate the unknown
reward distributions and incorporates a reward bias by adding the immediate maximum reward.
As a result, the resulting objective function still remains a concave function such that its maxi-
mizer either enjoys a closed-form expression or could be solved efficiently by a gradient-based
method. By contrast, VBMLE for RL manages to optimize the log-likelihood with the value bias,
which ends up as a non-concave function. To address this issue, we take the following approach:
(i) For the theoretical regret analysis, we consider an oracle that returns the maximizer of the
constrained optimization problem induced by VBMLE. (ii) For the practical implementation, we
could incorporate the value iteration into the optimization subroutine and use a gradient-based
method to numerically find an approximate maximizer of VBMLE.

• Non-Index-Type Policies: Prior works on VBMLE for bandits (Liu et al., 2020; Hung et al.,
2021; Hung & Hsieh, 2023) could convert the original VBMLE into an index-type policy by using
arm-specific estimators. This conversion also facilitates the regret analysis in (Liu et al., 2020;
Hung et al., 2021; Hung & Hsieh, 2023). However, this approach is not applicable in RL for
linear mixture MDPs since the action and state spaces could typically be very large in practice.
As a result, we are not allowed to reuse a similar analytical framework to characterize the regret
of VBMLE in linear mixture MDPs. To address this, we leverage a supermartingale approach and
use an induction argument to establish the regret bound, as will be shown in Section 5.

D REGRET ANALYSIS FOR ADAPTIVE VBMLE

Theorem 3. For all linear mixture MDP M = ⟨S,A, P,R, T, µ0⟩, with probability at least 1 −
1
T − 3δ and choosing α(t) =

√
t, VBMLE with

θV
t := argmax

θ∈Pt

{
t−1∑
i=1

log⟨ϕ(si+1|si, ai),θ⟩+
λ

2
∥θ∥22 + α(t) · V ∗(st;θ)

}
, (106)

and Pt is defined in (15), has a regret upper bound that satisfies

R(T ) = O

(
d
√
T (log T )5

(1− γ)2
+

T0

1− γ

)
, (107)

where T0 := exp( 1
pmin

).
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Proof. The proof closely resembles that of Theorem 1 and Theorem 2 by replacing pmin with 1
log t .

We highlight the distinctions in Theorem 1 as follows:

• In Lemma 2, the upper bound of ∆t is 8d2(log t)2 log
(

dλ+(t−1)L2

d

)
due to

ϕt(st+1)
⊤ θMLE

t ≥ 1
log t ,∀t ∈ [T0, T ] in (53).

• The final term 1
pmin

in (60) becomes log t,∀t ∈ [T0, T ].

• For Mt, the RHS in (69) becomes maxi≤t∥θMLE
i −θ∗∥2Ai

· 2d(log t)2 log
(

dλ+tL2

d

)
due

to ϕi(si+1)
⊤ θ∗ ≥ 1

log t .

Then, we have

βt = 37d2 · (log t)2 · log
(
dλ+ tL2

d

)
· log 1

δ
(108)

β′
t = 22d2 · (log t)2 · log

(
dλ+ tL2

d

)
·max{1, log 1

δ
} (109)

We also highlight the distinctions in Theorem 2 as follows:

• The initial steps T0 are chosen such that 1
log T0

≤ pmin. The cumulative regret before T0 is
equivalent to T0

1−γ according to Lemma 4.

• For the remain cumulative regret, we have − 1
(log t)2∇

2
θℓt(θ) ⪯ At ⪯ −∇2

θℓt(θ),∀θ ∈ Pt

applied in (90). Therefore, we have

R(T ) = O

(
d
√
T (log T )5

(1− γ)2
+

exp( 1
pmin

)

1− γ

)
. (110)

E BAYESIAN OPTIMIZATION FOR VBMLE

In this section, we present another approach for addressing the non-concave optimization problem
outlined in (10). While we can employ a gradient-based method to identify a θ that achieves a
local maximum in (10), the complexity of such approaches, such as the Trust-Region Constrained
Algorithm Byrd et al. (1987) and Coordinate Descent Algorithm Wright (2015), are typically high
due to the growth in the number of constraints, which scales in the order of |S|2. This complexity
makes it challenging to tackle large-scale (|S| ≥ 100) linear mixture MDPs using VBMLE and
other baseline algorithms like Zhou et al. (2021a;b). To find the maximizer of a black-box function
f with sample efficiency, Bayesian optimization (BO) leverages the Gaussian process (GP) prior to
parameterize each point in the domain D ⊂ Rd into a mean function and a covariance function. For
choosing a next sample, such BO approaches like EI Močkus (1975), PI Kushner (1964), GP-UCB
Srinivas et al. (2010) will maintain a acquisition function (AF) to be an index policy based on the
GP estimation. Consequently, we explore the use of GP-UCB to solve θV

t . The noisy sample yk at
point xk ∈ D satisfies yk = f(xk) + ϵk, where ϵk ∼ N(0, σ2) is Gaussian noise. The regret of BO
is defined as RBO

K :=
∑K

k=1 (f(x
∗)− f(xk)), where K is the total horizon for BO. The following

lemma provides the regret bound for GP-UCB Srinivas et al. (2012).

E.1 REGRET ANALYSIS FOR VBMLE WITH BO

Lemma 7 (Theorem 3 in Srinivas et al. (2012)). If the objective function f lies in the RKHS cor-
responding to exponential spectral decay kernel K(x,x′). Assume that ∥f∥2K ≤ B. The regret for
GP-UCB satisfies that

Pr
{
RBO

K ≤
√

C1HβKγK ∀K ≥ 1
}
≥ 1− δ, (111)
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where C1 = 8/ log(1 + σ−2), βk = 2B + 300γk log
2(k/δ) and γk = O((log k)d+1).

Then, we can incorporate the optimization error from BO into the regret bound of VBMLE.
Theorem 4. For all linear mixture MDP M = ⟨S,A, P,R, T, µ0⟩, with probability at least 1 −
1
T − 4δ and choosing α(t) =

√
t, VBMLE, proposed in Algorithm 1, with parameter selection by

GP-UCB has a regret upper bound that satisfies

R(T ) = O

(
max

{
d
√
T log T

pmin2(1− γ)2
,
√
T
(logK)d+1

√
K

})
. (112)

Proof. The proof is almost the same as that in Theorem 2. We highlight the distinctions in Theorem
2 as follows: Let θBO

t to be the maximizer selected by GP-UCB and EBO
t to be the optimization

error at time t, which satisfies that
ℓt(θ

V
t ) + α(t)V ∗(st;θ

V
t )− (ℓt(θ

BO
t ) + α(t)V ∗(st;θ

BO
t )) ≤ EBO

t , (113)

and EBO
t can be handled by Lemma 7. Then, applying the similar property of (86), we have

EBO
t + ℓt(θ

BO
t ) + α(t)V ∗(st;θ

BO
t ) ≥ ℓt(θ

∗) + α(t)V ∗(st;θ
∗) (114)

=⇒ V ∗(st;θ
∗) ≤ V ∗(st;θ

BO
t ) +

ℓt(θ
BO
t )− ℓt(θ

∗)

α(t)
+

EBO
t

α(t)
. (115)

Notice that we do not need to handle the optimization error in θBO
t since we apply the technique of

completing the square. Simply replace θV
t with θBO

t in (104)-(105). We completed the proof.

F IMPLEMENTATION DETAILS

F.1 ENVIRONMENT

• ϕ(·|s, a): We employ a neural network architecture with two linear hidden layers, each
utilizing the Rectified Linear Unit (ReLU) activation function applied to every neuron. The
network’s input is created by concatenating the one-hot vectors derived from the state and
action indices. The output of this network is subsequently transformed into a set of d
final layers, each having a dimension of hidden size × |S|, and employing the softmax
activation function. The resulting outputs from these final layers are concatenated to yield
the final output, which can be represented as {ϕ(s′|s, a)}s′∈S ∈ Rd×|S|.

• θ∗: By initializing the parameter vector θ∗ with random values such that the summation
of its elements equals 1, we can readily verify that the θ∗ resides within the probability
simplex.

All the simulations are conducted on the device with (i) CPU: Intel Core i7-11700K, (ii) RAM: 32
GB, (iii) GPU: RTX 3080Ti, and (iv) OS: Windows 10.

F.2 HYPER-PARAMETERS

γ 0.9
Temperature of the softmax function 0.01

λ 1
δ for UCLK 0.1

d 3
K 25

length scale for GP 0.1

Figure 3(a) shows the comparison of ∥θV
t −θ∗∥22 and ∥θUCLK

t −θ∗∥22. Notably, due to UCLK
learning distinct parameter for each state-action pair, we also plot mins,a∥θUCLK

t (s, a) − θ∗∥22 and
1

|S||A|
∑

(s,a)∥θ
UCLK
t (s, a)− θ∗∥22 for UCLK. The result shows that VBMLE learned a more accu-

rate representation of true parameter θ∗.
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G ADDITIONAL SIMULATION RESULT

Empirical regret for the environment with different pmin: As shown in the Theorem 2, the regret
bound is depend on the factor of 1/p4min. We highlight that the above dependency on 1/p4min could
be quite conservative in practice. Specifically, we evaluate VBMLE on two MDPs, each with a
moderate pmin or a very small pmin. The empirical regrets are shown in the Figure 2. The result
shows that VBMLE still achieve low empirical regret under a pmin less than 0.001.

Distance between the learned θ and θ∗: Figure 3 shows the distance between the learned θ and
θ∗ MDP with |S| = 5, |A| = 4, compared with UCLK, a tabular case algorithm. We don’t provide
the result of UCLK since it is impractical in terms of computation time. The result includes two
variants of the biased term designed in VBMLE:

• Approximated VBMLE: The biased term equals to
∑

s′∈S⟨ϕ(s′|st, at)V ∗(s′;θV
t−1),θ⟩.

Notice that the term V ∗(s′;θV
t−1) is detached from θ.

• Exact VBMLE: The biased term V ∗(st;θ) is constructed by value iteration (2), which is
the same implementation as that in Figure 1.

0 100 200 300 400 500

Time Horizon

0

50

100

150

200

A
v
e
ra

g
e
 C

u
m

u
la

ti
v
e
 R

e
g
re

t

UCLK+

UCLK

VBMLE (TR)

0 100 200 300 400 500

Time Horizon

5

10

15

20

25

30
A

v
e
ra

g
e
 C

u
m

u
la

ti
v
e
 R

e
g
re

t
UCLK+

UCLK

VBMLE (TR)

(a) |S| = 5, |A| = 4, pmin = 0.0939 (b) |S| = 5, |A| = 4, pmin = 0.00073

Figure 2: Regret averaged over 5 trials.

G.1 STANDARD DEVIATION OF FIGURE 1

Table 2: The table shows the standard deviation of cumulative regret at t = 500.
|S| = 3, |A| = 2 |S| = 5, |A| = 4

UCLK 79.289 23.982
VBMLE 1.874 1.830
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Figure 3: Observation of the distance over with T = 2500.

Algorithm 2 Value Iteration
1: Input: δ, U,θ
2: V (1)(·;θ) = 1

1−γ

3: for u = 1, 2, · · · , U do

4: V (u+1)(·;θ) = maxa

{
R(·, a) + γ

∑
s′∈S

P (s′|s, a;θ)V (u)(·;θ)
}

5: end for
6: Return V (U+1)(·;θ)
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