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Abstract

We study the problem of likelihood maximization when the likelihood function is
intractable but model simulations are readily available. We propose a sequential,
gradient-based optimization method that directly models the Fisher score based on
a local score matching technique which uses simulations from a localized region
around each parameter iterate. By employing a linear parameterization for the
surrogate score model, our technique admits a closed-form, least-squares solution.
This approach yields a fast, flexible, and efficient approximation to the Fisher score,
effectively smoothing the likelihood objective and mitigating the challenges posed
by complex likelihood landscapes. We provide theoretical guarantees for our score
estimator, including bounds on the bias introduced by the smoothing. Empirical
results on a range of synthetic and real-world problems demonstrate the superior
performance of our method compared to existing benchmarks.

1 Introduction

Implicit simulator-based models are now routine in many scientific fields, such as biology [Csillery
et al.l[2010]], cosmology [Schafer and Freeman, [2012]], neuroscience [Sterratt et al.,2011]], engineering
[Bharti et al., |2021]], and other scientific applications [Toni et al., 2009]. In traditional statistical
models, there is a prescribed probabilistic model, which provides an explicit parameterization for the
data distribution, allowing development of the likelihood function for further inference. In contrast,
simulation-based models define the distribution implicitly through a computational simulator. Thus,
while simulation of the data for various parameter settings is possible, the probability density function
of the data or the likelihood function is often unavailable in closed form. This problem setting is
known as likelihood-free inference or simulation-based inference (SBI) [Cranmer et al., [2020]].

Traditionally, methods in this setting have focused on a Bayesian inference technique known as
approximate Bayesian computation (ABC) [Beaumont et al.,[2002]]. Fundamentally, the ABC method
builds an approximation to the Bayesian posterior distribution by drawing parameter samples from the
prior distribution, generating datasets from the drawn parameter values, and filtering parameter values
through a rejection algorithm based on the distance of the generated summary statistic of the dataset
from the observations. In recent years, there has been a rise of generative modeling or unsupervised
learning in machine learning, which aims to recover a data distribution given a set of samples.
Such generative models are often built from neural networks [Mohamed and Lakshminarayanan,
2017], and given the fundamental similarity with the SBI problem setting, this has led to significant
cross-pollination across the two fields, with the development of many SBI inference methods using
generative neural networks [Durkan et al.,[2018| [Papamakarios et al., 2017].

While significant progress in SBI has come from Bayesian approaches, such methods are often
computationally demanding; furthermore, many scientific disciplines retain a preference towards
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maximum likelihood approaches. In contrast, practitioners who favor faster point estimation through
maximum likelihood lack comparably mature tools. To close this gap, we propose a fast, simulation-
efficient, and robust gradient-based technique for estimating the maximum likelihood for SBI. We
build on a popular technique in generative modeling known as score matching [Hyvirinen and Dayan)
2005]], which has seen significant use in score-based generative models [Song and Ermon) 2019]], now
a cornerstone for many state-of-the-art approaches in generative modeling [Yang et al,[2023]]. We
adapt score matching to estimate the Fisher score, that is, the gradient of the log-likelihood function
with respect to the parameters, within a localized region. This estimated gradient can then be used in
any first-order gradient-based stochastic optimization algorithm such as stochastic gradient descent
(SGD) to obtain an approximate maximum likelihood estimator (MLE) and serves as a potential
avenue for uncertainty quantification for the MLE through the empirical Fisher information matrix.

Our contributions in this work are as follows.

* We propose a lightweight, simulation-efficient, and robust method for maximum likelihood
estimation of simulator models based on a novel local Fisher score matching technique

* We derive theory for our local Fisher score matching technique and establish a connection
with the Gaussian smoothing gradient estimator, offering a unifying perspective for zeroth-
order optimization techniques and likelihood optimization for SBI

* We demonstrate the effectiveness of our method in real-world experiments for applied
machine learning and cosmology problems, showcasing both its efficiency and robust
performance compared to existing approaches

2 Background

2.1 Score Matching

Density estimation is the problem of learning a data distribution pp(x) using only an observed
dataset, x ~ pp. An approach to this problem is learning the density with an energy-based model
(EBM), which parameterizes the model through its scalar-valued energy function Ey : R¥ — R
where x € X C R¥, giving the model density pp(x) = exp(—FEq(x))/Zp.

Since the energy function is an unnormalized density function, it can be flexibly parameterized, usually
through a neural network. However, note that the normalization constant Zy = [ exp(—Ep(x))dx is
still a function of #, and therefore will still need to be computed in training the EBM through standard
likelihood maximization. Since this multidimensional integral is often intractable and requires a costly
approximation method, score matching [Hyvarinen and Dayan| 2005] is often used to bypass the
computation of the normalization constant. This is done by considering an alternate training objective
instead of MLE, based on the score function sg : R¥ — R*, where sy = Vylogpy = —V«Fjy. In
fact, since equivalence in the score amounts to equivalence in the distribution, matching the scores is
equivalent to performing density estimation. One starting point is the explicit score matching objective

(ESM). Defining the gradient operator on a scalar-valued function as Vy := ( 8,—‘31, ey %)T, where
% is the partial derivative operator for x = (x1,...,xy), and the Jacobian operator on a vector-

valued function f : R — R as J, ; = [%]i,j, we have:
J

1
’CESM(e) = Ex’\’pD(x)§||89 (X) — Vxlogpp (X)H2

However, this objective is not tractable due to the need to evaluate Vy log pp(x). Hence, this
objective is transformed to:

1
Lesm(0) = Expp (x0) 5 lso(x)[|” + tr (Jxse(x))| + (constants w.r.t. )

Although this objective can be directly estimated, and thus optimized and used in the training of an
EBM, it is computationally expensive due to the presence of the Jacobian term, motivating further
extensions to the standard score matching objective, such as the denoising score matching objective
[Vincent, 2011]] and the sliced score matching objective [Song et al., 2020].



2.2 Maximum Likelihood Estimation and Fisher Score

Maximum likelihood estimation (MLE) is a foundational tool in statistical inference, under standard
regularity conditions, it is consistent and asymptotically efficient [Casella and Berger, 2024, Section
10]. Central to the MLE is the Fisher score, defined as the gradient of the log-likelihood with respect
to the parameters, Vg log p(x | #). From an optimization point of view, the score provides the
direction of steepest ascent of the log-likelihood in parameter space, and thus drives gradient-based
MLE approaches. From an inferential point of view, the covariance of the Fisher score is equal to
the Fisher information matrix (FIM), which, through the Cramér—Rao lower bound [Rao} [1992],
lower bounds the variance of any unbiased estimator. Furthermore, the distribution of the MLE is
asymptotically normal with covariance equal to the inverse of the FIM, which underpins Wald-type
confidence intervals and hypothesis tests [[Van der Vaart, 2000} Section 5].

2.3 Notation and Problem Setup

We consider a statistical model where the data x € X' C R%< are generated from a distribution P
parameterized by § € Q C R% . In the simulation-based inference setting, this statistical model is
implicitly defined, so we can draw samples from this model for any choice of 6 but the closed-form
expression for the probability density function, and hence the likelihood function is not known.

Given a set of N independent and identically distributed observations, D = {x;}}¥ ;, drawn from the
true data-generating process X; ~ Py«, where 8* denotes the true parameter, the maximum likelihood

estimator is Oy, = arg maxy p(D | ).

As the likelihood function L(6; D) = vazl p(x; | 0) is not available for SBI models, typical
likelihood maximization cannot be applied directly. We thus propose a Fisher score matching-based
estimator, éFSM. Our method is fundamentally a first-order optimization approach, and our main
focus is on the direct estimation of the gradient of the log-likelihood function at each parameter
iteration, which is done with a novel local Fisher score matching objective. We first discuss our Fisher
score estimation technique in Section [3] before proceeding with the MLE procedure in Section [4]

3 Likelihood-free Fisher Score Estimation

Score matching [Hyvarinen and Dayan| [2005] is a classical method in density estimation, but is not
directly applicable in likelihood gradient maximization, as it typically targets the Stein score, i.e.,
the gradient with respect to the data V log pp(x) instead of the Fisher score, which is the gradient
with respect to the parameters Vg log pg(x). Hence, we propose to adapt score matching into a novel
local Fisher score estimation technique which estimates the gradient of the log-likelihood for a fixed

parameter point 6; at any data sample x, Vg£(0; x)|,_ o, = Volog p(x|6) ‘a ,

3.1 Local Fisher Score Matching Objective

Around the target parameter point 6;, we introduce a local proposal distribution ¢(6 | 6;), which
we typically take as an isotropic Gaussian distribution, ¢(6 | 6;) = N(6;,0>I). When combined
with the statistical model Py, we induce a joint distribution in both the data and parameter space that
has probability density p(x | 8)g(6 | ;). Note that by drawing parameter samples from the local
proposal distribution and then drawing corresponding data samples for the parameter samples, we
can easily draw samples from this joint distribution.

To estimate the score function, we use a score model Sy : R% — R4 where Sy (x) has parameters
W. Our starting point is the adapted, localized score matching least-squares loss for the Fisher score.

TW:6:) = Exp(x|o) 6~a(0]6,) [HW logp(x | 6) — Sw(x)| } W

As we are within the simulation-based inference framework, we do not have a closed form expression
for the Fisher score V log p(x | #) and hence this objective function is not tractable. We first expand
the square of Equation (IJ), which allows us to rewrite 7 (W; 6;) as:



T (W50:) = Exp(x6),0~q(0]61) [HSW H — 2Sw(x)" Vylogp(x | 0)] + (constants w.r.t. W)

We focus on the cross-term, B (x|8),0~q(816,) [Sw (%) T Vg log p(x | 8)]. Using an integration-by-
parts trick, this term can be transformed t0 —Ey(x|9),0~q(0]6,) [SW (x)"Valogq(d | 9,5)} . Note

that we have eliminated the dependence on the intractable likelihood function log p(x | #). Thus, this
allows us to rewrite 7 (W; 6;) as follows.

Theorem 3.1 (Local Fisher Score Matching (FSM)). Ler J (W) be defined as in Equation (1). Under
suitable boundary conditions, it can be rewritten (up to an additive constant w.r.t. W) as

TW36:) = Exp(x|0),0~q(6]0,) [HSW(X)H2 + 2Sw(x)" Vologq(0 | 90] 2)

The complete details for Theorem [3.1] are provided in Appendix [A.I] Given that we can draw
proposal samples {G(j)}Tzl where 01) ~ ¢(0 | 6;) and corresponding data samples {x](j )}221
where x,(j )~ p(x | 6Y)), the objective 7 (W; §;) can be approximated by Monte Carlo estimation.

11 : j
J(W;6,) = EZ::EZ:[HSW(X,S))HQ + 28w ()T Vologa(0] 0)lg-g]

Next, we show the optimal solution for the local FSM objective, 7 (W; 6;). The proof of Theorem
in Appendix[A.2]
Theorem 3.2 (Bayes-optimal Local Fisher Score). The optimal score model for the FSM objective
T (W;0,), is

S*(x;6:) = Egp(ox.0,) [ Vo log p(x | 6)]

As the score matching objective Equation (I)) is taken as an expectation over the parameter proposal
distribution ¢(@ | 6;), the Bayes-optimal score model for this objective is generally biased and instead
of being the true score at the point 6, it is instead an average of the score over the posterior induced
from the proposal distribution and the statistical model, that is, p(@ | x, 6;). Thus, this score matching
objective targets a smoothed likelihood around 6,. We elaborate on this in more detail in Section[5.1]

3.2 Score Model Parameterization

A key aspect of the Fisher score matching technique is the choice of parameterization for the
surrogate score model, Sy (x; 0 ), which approximates the Fisher score at the target parameter iterate
0:, Vg log pg(x)|e—s, . For computational tractability, we propose using a lightweight linear surrogate
score model based on the following derivation.

Let the surrogate score model be defined as Sy (x; 6;) = W T x, where W € R%*4¢ is the weight
matrix for our model. Recall that we first draw a set of parameters {60 )}3»”:1 from the proposal
distribution ¢(@ | 6;). Then, define the j-th data matrix as X; € R™*% constructed from n training

samples {x(j )} n_, drawn from the model p(x | ) at §9), and the j-th Gram matrix as G =X, TX;.
Using the linear score model for the local Fisher score matchmg objective function in Equatlon @])
and solving for the first-order conditions, we obtain the normal equation,

O _apyw ZZ N¥410g (0 | 6:)lj_pe] )

j=1 j=1k=1

We can thus obtain a closed-form solution for the linear Fisher score matching estimator as:

W=- ZG] 122 (J)Vglogq AR ®)

j=1 j=1k=1



Once W is obtained, we can use this to construct our Fisher score estimator S(x; ;) = W T x. We
provide a complete derivation and further discussion in the Appendix [A.3] Although the local Fisher
score matching objective is a general framework that is agnostic to the choice of parameterization of
the model, using a linear model essentially recasts the model estimation procedure as multivariate
linear regression, benefiting from well-understood theory and efficient implementations. Although a
linear model might not be sufficient to fully capture the full data-parameter relationship, it provides a
strong baseline that we find works well empirically compared to a more flexible neural network-based
model, which incurs significant computational costs in the form of an inner optimization loop and
increased variance. We provide empirical comparisons with the neural network-based score model in
the relevant experimental sections of the appendix, and details of the implementation in Appendix [A.4]

4 Likelihood-free MLE with Approximate Fisher Score

Using our local Fisher score matching (FSM) method as described in Section[3] we describe how
maximum likelihood estimation (MLE) can be performed in the likelihood-free setting. Unlike many
SBI methods that attempt to estimate the likelihood globally, our method is inherently sequential by
focusing only on a local Fisher score estimation at the parameter point 6.

Given a set of N independent and identically distributed observations, D = {x;}¥,, at a
fixed parameter point ;, we obtain an estimated FSM model S(x;6;) using training samples
{H(j)};?qzl,{xg)}zzl, drawn from 6 ~ ¢(6 | 6,), x](j) ~ p(x | 89)). As the FSM model is
a function of x, we can evaluate it at any observation x;, providing us with an approximate gradient

of the log-likelihood evaluated at 6,, Vol (6:;D) = Zf\il S (x;; 0¢). This can then be used directly in
any iterative stochastic gradient-based algorithm such as stochastic gradient descent (SGD) [Robbins
and Monro, [1951]], Adam [Kingma and Ba, 2015], or RMSProp [Tieleman, 2012]], where at each

parameter iteration 6, a new FSM model S (x; 0¢) is estimated. The FSM-MLE algorithm with SGD
is presented in Algorithm [I]

Algorithm 1 FSM-MLE Algorithm (SGD)

Input: N independent and identically distributed observations D = {x;}¥ ,, initial parameter 6,
step size 7, and proposal distribution ¢(6 | 6;)
Initialize ¢ <— 0
while t < T do
1. For current iterate 6, sample {#U )}?’:1 from proposal distribution § ~ ¢( | 8;), and then

sample corresponding data samples {x,(j )}Zzl, from x,(fj )~ p(x | 0U)).
2. Estimate Fisher score model S (x; 6¢) using training samples ({H(j )};»”:1, {xfj ) o)

3. Set 0,1 « 0; +nS(D;0;), where S(D;0;) = S| S(x;;60;)
4.t+—t+1
end while

4.1 Fisher Score Proposal Distribution

Our local FSM approach crucially uses a proposal distribution ¢(# | ;) in the parameter space,
defining a local region for the estimation of our Fisher score model. Although most distributions
with a differentiable and unbounded density can be used, we use an isotropic Gaussian distribution
q@ | 6;) = N(6 | 6;,0%I), which has a simple, closed-form solution and direct theoretical
interpretation as discussed in Section[5] This introduces a single scalar hyperparameter o that controls
the width of the proposal distribution. While further extensions such as a diagonal covariance matrix
or an adaptive covariance could be explored, we keep to the isotropic Gaussian proposal distribution
as it provides a simple and effective baseline. We provide further discussion on the choice of proposal
distribution and a calibration scheme for ¢ in Appendix [A.5]



5 Theoretical Analysis

In this section, we provide a theoretical analysis of our proposed local Fisher score matching technique
and the stochastic gradient optimization based on this technique.

5.1 Connection to Gaussian Smoothing

Gaussian smoothing is a popular zeroth-order optimization technique that estimates gradients using
only function evaluations when the gradient function is not known [Nesterov and Spokoiny} 2017,
Duchi et al} 2012]]. As the Gaussian smoothing gradient estimator targets a smoothed function, it
is widely applicable even for non-smooth functions, which would not be amenable with standard
gradient estimation, and has been shown to be robust to local optima [Starnes et al., [2023]] and
applicable for many challenging machine learning problems [Salimans et al., |2017].

Although standard Gaussian smoothing is straightforward for black-box optimization problems, note
that it is not directly applicable in the simulation-based inference setting as the intractable likelihood
L(0) = p(x | ) is not explicitly accessible. Nonetheless, we show here that our proposed local Fisher
score matching technique can be directly cast as a likelihood-free analogue of Gaussian smoothing.
Specifically, under a Gaussian proposal distribution, ¢(8 | 6;) = N'(6 | 6, 0*I), the Bayes-optimal
Fisher score is exactly the gradient of a smoothed likelihood. We provide a full proof of Theorem [5.1]
in Appendix

Theorem 5.1 (Equivalence as Gaussian Smoothing). Under an isotropic Gaussian proposal, q(6 |
0;) = N(0 | 0;,02I), the optimal FSM estimator is equivalent to the gradient of the smoothed
likelihood

Vo, l(0:;%) = Egpo)x.0,) Vo log p(x | 0)

where ((0y;X) = log [p(x | 6)q(0] 6;)dd and p(6 | x,0,) o< p(x | 0)q(0 | 6;) is the induced
posterior from the proposal distribution q(0 | )

Observe that the smoothed likelihood can be
further rewritten as

N 1.0 4 =01
£(0;x) = logEsunr(o,1) [L(Gt +o0z; X)} . 0=05
o=1.0

where L(0;x) = p(x | ). This is exactly the 0.8 9=20
Gaussian-smoothed likelihood function, except Parameter iterates
importantly that explicit evaluations of the like-
lihood L(0) were not used. Instead, our Fisher 0.6 +
score matching technique only obtains samples i
from the model p(x | 6) for the FSM estimation. / ﬁs&
Hence, our method directly inherits many of 0.4 / !
the robustness benefits of Gaussian smoothing X
while still being applicable in the SBI setting. %
Figure [T|demonstrates the effects of smoothing 0.21 R 3
in a one-dimensional, shifted exponential likeli- X
hood model with a single observation. The true a—
likelihood is zero for 6 > éMLE, and hence any 0.0 7 : : : : I :
gradient-based optimization which is initialized 2 3 4 5 6 7

beyond the boundary will be stuck in that region. Figure 1: Optimizing a non-smooth, exponential
However, using our smoothed likelihood (de- likelihood with FSM estimator (o = 0.5) for 10
picted with differing values of proposal variance ~parameter iterates from initial point 8y = 7

02), we are able to obtain a non-zero gradient

even outside the nominal support, allowing us to successfully optimize the likelihood function.

We can also further view the FSM procedure as a form of Empirical Bayes (EB) [Morris, [1983]], by
interpreting the proposal distribution ¢(6 | 6;) as a local prior centered at 6;, which, together with
the simulator model, defines an EB marginal likelihood function ¢(6;; x). Theoremthen shows
that our Bayes-optimal FSM estimator is exactly the hyperparameter gradient of the EB marginal
likelihood. Hence, this provides a complementary Bayesian interpretation of our FSM method in
addition to the optimization viewpoint of Gaussian smoothing.



5.2 Properties of the FSM estimator

We now provide theoretical guarantees for our FSM estimator under a Gaussian proposal distri-
bution by characterizing its bias. In particular, by establishing the bias in terms of the smoothing
hyperparameter o, we highlight a fundamental trade-off in the FSM estimation procedure.

Theorem 5.2 (Bias characterization of the FSM estimator). Let 6* be the true parameter, and denote
X9 ~ Py« as random observations sampled from the true model. Suppose there exists a unique
maximum likelihood estimator for this model, and that the log-likelihood is L-smooth. Recall that
9(x0;0:) = Vo logp(xo | 0)|g=0, is the true Fisher score, S*(xo; 0;) = Egp(o|x,0,) Vo log p(x | 0)
is the optimal FSM estimator. For a fixed parameter point 0,

The bias at 8, is bounded by
Exo||S* (%05 60:) — g(x0;64)|| < L Vdo By, [R(x0)]

where R(x) = ’; ((’;Ilz;) is a likelihood ratio term and d is the dimension of the parameter space

We provide a full proof in Appendix From

Theorem@ we can see that, increasing o, we 7=0.5 (Strong curvature) T=2.0 (Weak curvature)

increase the bias of the FSM estimator. Intu- & — 100 10°] —— 1100 &
itively, this is because o governs the degree of i 107 4 g - pinal 2
smoothing, which induces a "smearing" effect & 107 ‘ 5
of the FSM gradient estimates. On the other & 1075 s
hand, for the linear FSM estimator, note thatin 1072 é
the estimator W, we have the proposal gradient  § 100 \ 103 107 ] ‘ 10-2 Q:;
term V@ log q(9 ‘ et)|0:0(j) = —ﬁ(e(j) - et), = 102 10 100 10 102 107 160 10t g
and hence taking 0 — 0 inflates the variance of Proposal Variance o2 Proposal Variance o2

W. Thus, there is a fundamental bias-variance Figure 2: Mean-squared error and standard devia-
trade-off in the choice of 0. tion of the FSM estlmator S with varying proposal

hyperparameter o2, for two Gaussian likelihoods

Figure2]empirically illustrates the bias-variance x ~ N(0,72) with differing curvature.

trade-off of the linear FSM estimator with an
isotropic Gaussian proposal distribution for two Gaussian likelihood models with differing curvature.
In particular, the figure also shows the effect of the log-likelihood curvature, or the gradient-Lipschitz
constant L from Theorem[5.2] on the MSE-optimal choice of the proposal scale 0. When the curvature
is stronger (larger L), smoothing tends to introduce more bias, and the optimal o is smaller to control
the bias. Conversely, when curvature is weaker (smaller L), a larger o is optimal to reduce the
variance of the score estimator.

Furthermore, note that the likelihood ratio term, R(x) = 1; ((’;“Zt)) encodes the estimation error from

using training samples around the parameter iterate points 6, to estimate an FSM estimator that
is evaluated at observations xg ~ Py~. Hence, for parameter iterates 6; that are far from the true
parameter 6%, we are likely to get a subpar estimation of the true gradient, while as we approach the
true parameter, our estimation is likely to improve. However, increasing o, we can sample from a
wider parameter space and are therefore more likely to obtain parameter samples that cover 6*. Thus,
o also encodes an inherent exploration-exploitation trade-off.

5.3 Convergence Guarantees

As we have shown that our FSM gradient estimator closely relates to the Gaussian smoothing gradient
estimator in Section we can leverage established results showing the asymptotic convergence of
stochastic gradient-based optimization methods with such biased gradient estimators. In particular,
instead of using the final parameter iterate of the gradient-based optimization procedure as the approx-
imated MLE 01 =~ éMLE, we instead propose using an averaged SGD estimator O = % ZtT:1 0,
based on Polyak-Ruppert averaging [Polyak and Juditsky} |1992| Ruppert, |1988]], which enjoys
stronger theoretical guarantees. We provide the relevant convergence arguments in Appendix [A.8]

A further benefit is that since we can obtain the quantification of the algorithmic uncertalnty using the
averaged SGD, 07 — Oy from Appendlx and the statistical uncertainty of the MLE OnLe — 0
from standard statistical theory, we can prov1de a result showing the quantification of the joint
uncertainty using the averaged SGD 67 as an approximate MLE.



Theorem 5.3. Let HAMLE’ ~ be the MLE for N i.i.d. samples. Suppose that the number of iterations
in the optimization algorithm T dominates the number of observations N such that 4/ % — 0 as

N, T — co. Then, assuming that /T (07 — éMLE_,N) = O,(1) uniformly over both N, T and that
the standard regularity conditions for the MLE are met, we have as N, T — oo,

VN(Or - 07) =a N(0,Z(6)")

where Z(0*) is the Fisher information matrix evaluated at the true parameter

We provide the proof in Appendix Given that the Fisher information matrix Z(6*) can
be approximated using the Fisher score by drawing samples x; ~ P; and evaluating Z(6*) ~

% Zfil Vo log p(x; | éMLE)Vg log p(x; | éMLE)T, we can also estimate this with our FSM method
and take advantage of this result to obtain uncertainty quantification based on Theorem[5.3]

6 Related Work

The method closest to ours is the approximate MLE approach of Bertl et al.| [2017]], which first
estimates the likelihood through kernel density estimation (KDE) before applying a simultaneous
perturbation stochastic approximation (SPSA) [Spall, |1992] algorithm, which amounts to using a
finite-differences gradient estimator on the likelihood function estimated using KDE. In contrast, our
FSM method directly estimates the Fisher score, merging density and gradient estimation into one
step and thereby reducing both model complexity and computational overhead. After posting the
first version of this manuscript on arXiv, we became aware of related independent work by [Sui et al.
[2025]], which proposes a similar Fisher score matching estimator. Their focus is on Fisher score
estimation more broadly, whereas our work targets simulation-based MLE specifically.

The use of MLE in the simulation-based model setting was first addressed in the seminal work on
SBI of Diggle and Gratton| [[1984]], although the inference of SBI is more typically addressed within
the Bayesian framework, as exemplified by the ABC algorithm. Naturally, since the maximum a
posteriori estimate (MAP) of the posterior distribution under a uniform prior corresponds to the
MLE within the prior support,|[Rubio and Johansen|[2013|] suggested leveraging the ABC algorithm
and using KDE to obtain the MLE, and more recent neural surrogate SBI methods, such as SNLE
[Papamakarios et al.,[2019], while not specifically targeted for MLE, could be used in the same way.
Another similar line of research is the work of [lonides et al.|[2017]] and |Park][2023]], which develop
the MLE methodology in the SBI setting for partially observed Markov models. Research focused on
developing SBI methods using score matching is a growing field [Geffner et al.,|2023} [Sharrock et al.|
2024} Jiang et al.| |2025]], however, this has been limited to amortized Bayesian inference, and, to our
knowledge, we are the first work that has adapted score matching for the purpose of direct Fisher
score estimation and MLE in the SBI setting.

7 Experimental Results

We evaluate our local Fisher score matching (FSM) technique on both controlled numerical studies
and challenging real-world SBI problems For all experiments, we use an isotropic Gaussian proposal
distribution ¢(0 | 6;) = N (6;,0%I) with a linear FSM estimator, and an empirical comparison with
the neural network-based FSM estimator is provided in the relevant experiment sections in the
Appendix.

As a primary baseline, we compare against the approximate MLE method of Bertl et al.| [2017], here
referred to as KDE-SP, which estimates a log-likelihood via kernel density estimation (KDE) and
then uses a simultaneous perturbation (SP) estimator to compute gradients:

0(o*) —4(67)
2c
where 4 is a Rademacher random vector with i.i.d. entries, 6= = 0 + ¢§, ¢ is a perturbation constant,

and 17(6‘; Xobs) = log p(Xeps | 0) is the log-likelihood estimated from the KDE by simulating data
samples around the target parameter 6 and evaluating at the observations x,,s. We provide further
details about the implementation in Appendix [A.T0}

Vi(0) =6

3Code is available at: https://github.com/Shermjj/Direct_FSM
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Figure 3: Comparison of FSM and KDE-SP in a 2D Gaussian model under varying hyperparameters
(proposal variance or perturbation constants). Error bars show 95% Cls over 100 repeated gradient
approximations.

7.1 Numerical Studies

To investigate the accuracy of gradient estimation and parameter estimation, we begin with a multi-
variate Gaussian model that features a fixed covariance. This model has a closed-form Fisher score,
allowing us to directly compare the estimated gradients from FSM and KDE-SP against the ground
truth. Further details and results of this experiment are presented in Appendix [A.TT]

One key aspect of both the FSM and KDE-SP
approach is the choice of the hyperparameters,
specifically the perturbation constant in KDE-
SP and the proposal variance in FSM. In Fig-
ure 3] we show the sensitivity of the gradient
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approximation quality to different choices of
this hyperparameter, as the simulation budget
increases. Although the gradient approximation )
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of both methods depends strongly on the choice o ‘ ‘ 102
of hyperparameters, we see that the FSM esti- Parameter Dimension
mate is always able to match the accuracy of Figure 4: Parameter estimation accuracy of both
the KDE-SP estimate given sufficient simula- the FSM and KDE-SP methods under increasing
tion budget, even when the hyperparameters are  parameter dimensions, over 100 repeated optimiza-
not favorably tuned. We provide the same ab- tion runs.
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In Figure fi] we show the quality of the result-
ing parameter estimate for the same multivariate

Figure 5: Parameter estimation and prediction ac-
7.2 LSST Weak Lensing Cosmology Model curacy of the NLE, FSM and KDE-SP methods.

. e . ) 1.2
Gaussian model with increasing parameter di-

mension while keeping the simulation budget
fixed. While the FSM gradient is able to main-
tain the quality of the parameter estimate, the
KDE-SP struggles in higher dimensional param-
eter spaces, likely due to the additional kernel
density estimation required.
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In this example, we use the log-normal forward model proposed by [Zeghal et al.|[2024] and |Lanzieri
et al.|[2025]], which simulates the non-Gaussian structure in gravitational weak-lensing. Using the
model in the full LSST-Y10 setting, this model is representative of real-world weak-lensing data.
Since the generated data are high-dimensional tomographic convergence maps (5 x 256 x 256), we
use a trained ResNet-18 compressor in|Alsing et al.| [2018]], producing a 6-dimensional summary
statistic. As an additional benchmark beyond the KDE-SP method, we further implement a standard
neural likelihood estimator (NLE) using the SBI package [Boelts et al.| [2025], trained with the same
total simulation budget given to both the KDE-SP and FSM gradient-based optimization methods.
Evaluated at the observations, NLE can be directly optimized to obtain an approximate maximum
likelihood estimator. Further details and results of this experiment are presented in Appendix



In Figure[5] we show both the parameter estimation and the accuracy of the prediction. Given the
limited simulation budget available, we observe that sequential gradient-based optimization methods
outperform the more simulation-intensive NLE approach and that the FSM approach is generally able
to achieve better performance with a smaller variance.

7.3 Generator Inversion Task

In this section, we tackle the canonical prob-
lem of latent inversion of a generator network
[Xia et al., |2022]. For a fixed generator Gy

and a query image x, the goal is to recover k-
a latent vector z such that G,,(z) ~ xo. Al-

though typically z is treated as a point estimate,

in this setting, we treat it as a latent variable,

z ~ N (6,021) and focus on 6 as the parame-

ter of interest. Note the marginal likelihood

L
(x| 0) :/5(X—G,w(z))N(Z 10,021) d

Flgure 6: Images from different latent mean opti-
is intractable because the push-forward density —mization procedure. Top row: FSM, Middle row:
under GG, has no closed form. However, our KDE-SP, Bottom row: Direct optimization
FSM approach allows us to estimate the Fisher
score Vg log p,,(x | 6) at xg, enabling us to maximize the likelihood ¢ (6;x0) = log p. (X0 | 0)
without directly estimating the likelihood. Conceptually, this turns the generator inversion problem
into likelihood-based inference. Alternatively, given a differentiable generator, we can directly
optimize the reconstruction loss to obtain an estimated latent mean (referred to as direct optimization).

We train a GAN model on a 16 x 16 MNIST
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dataset and apply the generator inversion task,
comparing the direct optimization approach,
FSM, and KDE-SP method. From Figure [§| we
can see that while the FSM and direct optimiza-
tion is able to recover the target observation,
the KDE-SP struggles to achieve the same pixel
quality. This is also reflected in Figure[7] which .
shows the reconstruction loss for the different i - i i == i

methods. More details and results for this exper- FSM — Opt  KDE-SP FSM ~ Opt KDE-SP

iment are provided in Appendix Figure 7: Prediction error for the FSM, KDE-SP
and direct optimization method.
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8 Conclusion

We introduced FSM-MLE, a novel likelihood-free maximum likelihood estimation technique based
on local Fisher score matching. By directly estimating the Fisher score in a simulation-based setting,
our method circumvents the need to approximate the likelihood. This significantly reduces the com-
plexity of existing approaches that either rely on kernel density estimation or train expensive neural
density estimators. We further showed that under an isotropic Gaussian proposal, our local Fisher
score matching estimator admits a natural Gaussian smoothing interpretation, thereby inheriting
robustness properties from well-studied Gaussian smoothing techniques in black-box optimization.
Empirical results on synthetic examples, a cosmological weak-lensing model, and a generator inver-
sion task highlight the simulation efficiency and robustness of our approach. Further work includes
development of a more principled selection of the proposal variance o2, a richer parameterization
of the Fisher score model beyond the linear model, and further investigation into better leveraging
the smoothing behavior to tackle challenging likelihood optimization in the SBI setting, as well as
utilizing the approximate Fisher information matrix for uncertainty quantification. Since our method
is inherently sequential, a promising extension is a "semi-amortized" variant which would leverage a
pretrained neural network encoder with a training dataset, which would be coupled with our proposed
linear FSM model during inference, thereby enabling a more expressive model while still preserving
the benefits of fast, closed-form updates.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Section[3]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are briefly discussed in Section [§|and left for future work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appendix [A.§]
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Section[7]and Algorithm ]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Only publicly accessible datasets are used and code is provided.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix [A.TT][A.12][A.T3)

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All figures in Section [7]and Appendix [A.TT][A.T2] and [A.T3]include either
error bars representing the 95% confidence intervals over 100 repeated runs, or boxplots
that visualize the distribution of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix [A. 11} [A.12] and[A.T3

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper fully complies with the NeurIPS Code of
Ethics

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is purely a mathematical work and does not involve direct societal
applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not work on language models.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Section[7]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing and human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing and human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Appendix / Supplemental Material

A.1 Fisher score matching objective

Here, we provide a complete theorem and a proof for Theorem [3.1]

Theorem A.1 (Local Fisher Score Matching). Ler J (W) be defined as in Equation (I)). Given the
following assumptions:

* p(x18), q(0 | 6;) are differentiable with respect to 6, Sy (x) is differentiable with respect
fo x

e ¥x € R4, lim p(x|0)q(0]6;) =0
flofl—oo

J (W) can be rewritten (up to an additive constant w.r.t. W) as

T(W30) = Expixo),0~ae0i00 [[1Sw (X)]* + 25w (x)" Vologq(d | 6;)] (6)

Proof. We denote the joint distribution over (x, §) from the distributions p(x | ) and ¢(0 | ;) as
p(x,0 | 6;). First, we expand the square, and remove terms which are not dependent on the score
model parameters 1.

T(W) = Epie, (Vo log p(x | 8) — Sw(x)|°)

_ / a0 | 6,) / p(x | 8)]|Volog p(x | 8) — S (x)||dx db
6cR% xERIx

= / q(f | 9t)/ p(x [ 0){[IVologp(x | )] + [[Sw(x)|?
0cRo x€ERdx
— 2V logp(x | 6) T Sw(x)}dx d

= / q(@ | 9t)/ p(x | 0) {I1Sw(x)[I” = 2V logp(x | 6) " Sw (x)} dx df
0cR%o x€Rdx

+ (constants w.r.t. W)

Next, by exchanging integrals and using the integration by parts tricks similar to Theorem 1 in
Hyvérinen and Dayan|[2005]],

TW) = / a0 | 6,) / p(x | 6)]|Sw ()| dx db

6cR% xERIx

2 a®16) [ bl 6)Valosax | 6) S (x)dx do
6cR xERIx

_ / aes / p(x | 8)[1Sw () |Pdx d6

6cR%o xERx

_2/ / 4(010,)Vep(x | 0)T S (x)d6 dx
xcRIx JHcRo

- / ae / p(x | 0)Sw (x)]dx db
ocR% x€Rd:

€ x
S (i)
72/ / q(6] 0 p(x | 0)8%) (x)do dx
x€Rdx JocR% @l t);(%’i (x [ 0)Sy (x)
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TWy= [ a0100 [ ple|0))Sw )P s
dg

; 0
—2/ S(Z)x/ q(0]0:)=—p(x|0)dd dx
E_j w) | a010)55p0x|0)

_ / 401 6,) / p(x | 0)1Sw () |Pdx do
6cR% xERx
do

, B
+2 / s / 06 0)do d
xERdx ; w (X) ge]Rdg 801 q( | t)p(X | ) x

Finally, by further simplification

gy = [ w10 [ plx|o)swolPixas
dg

; G
+2/ s4) / 010,)-—1ogq(6 |0 0)do d
cr 2 WO [ 00100551080 | 0p(x | 0)d0 dx
=/ q(9|9t)/ p(x | 0)||Sw(x)|*dx do
HcR%o xERdx

dg
N
+2/ 99/ S (%)~ 1ogq(0 | 0)dx df
e q(0] 6y) xeRdx; W(x)agi ogq(0 | 6:)p(x | B)dx

dg
4 )0
/eeRde a(®16:) /xeRdx px | )Z [ w(x)” + 25y (x) a6, ogq(0 | ;)| dx

=1
dg

. . 9
- E E S (x)2 + 25 (x) = log q(6 | 0 }
q<9|et)p<xe>;[ W X)7 4 28w () g loga(® )

= EXNp(X\H),ONq(H\St)[”SW(X)H2 + 2SW(X)T Vologq(0 | 6;)]

A.2 Bayes-optimal solution to Fisher score matching objective
We present the complete theorem and proof for Theorem [3.2] here.
Theorem A.2. For a general differentiable function S : R% — R%,
S* = argmin ( I%w )||V9 logp(x |0) —Sx)||°= E Vglogp(x|6)
S t

p(x, p(0]x,6:)

Proof. First, observe that since the function S is only a function of x, we have

E Sx)= E Skx
p(x,0(6:) () p(x|6:) ()

We can decompose the objective function by expanding the square,

argmin B ||[Vologp(x|0) — S(x)|* = argmin E (||S(x)||> —25(x) Ve logp(x | 6))
s p(x,016:) 5 p(x,010¢)

Then, our objective can be equivalently expressed as

E S)?Z-25(x)" E [Vyl 6
o S ()]l (%) pw\x,en[ ologp(x | 0)]

Which has the optimal solution S*(x) = (9|E , )Vg log p(x | 6) O
ploIx,0¢
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A.3 Linear Fisher score model parameterization

Here, we provide details of the linear Fisher score model derivation.

) ¢ R%<, the linear score model weights are

)T
1
W € R%*? and we defined the data matrix as X; = | : € R™*%x and the corresponding
T

Recall that the parameter and data space are § € R, Xp;

Gram matrix as G; = XjTXj.

In practice, we include an intercept term in our regression by augmenting the data matrix with a
column of ones, i.e., [X(lfj)} € R%&+1 and W as a (dyx + 1) x dp matrix. For simplicity, we omit this
intercept term in our derivation.

We start from the empirical version of the local Fisher score matching objective, Equation (3)
(replacing averages by sums for simplicity),

n

STSw P + 28w (xY)T Valog (0 | 6:)]g—pi)
1 k=1

T
M=

J

Substituting our linear score model, S(x;0;) = W x,

m m n

ST TP +23 > (T WV log g6 | 0)]g—g)

j=1k=1 j=1k=1

To obtain the first-order conditions, we take derivative with respect to W, for each of the terms
separately.
For the first term,

iimﬂ )2 — Ztr X, W) T (X))

j=1k=1

j=1
Z (WX X,W)

Applying aiw gives:
S eX[ X =2) G;Ww
j=1 j=1

For the second term, we can similarly apply % to give:

ZZ x "WV logq(8 | 6:)lg—ocr] 2ZZX Volog (0 | 0:)lg—pu

j=1k=1 j=1k=1
Combining the two terms, we obtain

m m n

77 —QZG W+222Xk 010gq9|9t)|9 0G)

j=1 k=1

Setting this to 0 gives us the normal equations in Equation ().

m
If the sum of the Gram matrices, ), G is invertible (otherwise, we may opt to use the ridge penalty),
j=1
we can directly obtain the linear Fisher score matching estimator in Equation (3).
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Naturally, our linear score model setup can be extended to include a Frobenius norm penalty \||W ||%
in the objective, leading to a ridge-type solution:

1G] ZZ[ OV01080(0 | 00)]_y0 |
j=1

j=1k=1

This stabilises the inverse and helps prevent overfitting in finite-sample regimes. In practice, we
implement the ridge-type linear Fisher score model.

A.4 Neural Network Fisher score model parameterization

An alternative to the linear Fisher score model provided in Appendix [A.3]is a neural network
parameterization of the score model. In this setting, we denote S(x;0;) = Sy(x) where Sy is
a neural network with parameters ¢ for a fixed parameter iterate ;. The parameters ¢ can be
obtained by optimizing the FSM objective 7 (¢; 6;) from Equation (2) (with its Monte Carlo estimate
Equation (3)) using standard neural network backpropagation. Thus, following Algorithm [T} using
a neural network parameterization requires a potentially costly inner optimization loop for each
parameter iterate 6,.

A.5 Fisher score matching proposal distribution

As discussed in Section[5.2] the theoretical optimal choice of the hyperparameter o depends on the
curvature of the log-likelihood function. In practice, the curvature is unknown, and thus selecting
the optimal o is challenging in general. We propose a simple pilot calibration based on grid search,
before running the main FSM-MLE procedure, we execute a short pilot FSM-MLE procedure with
different candidate value o}, yielding corresponding candidate parameter estimate égk. For each oy,
we simulate data at égk, and select the candidate o, which minimizes the discrepancy between the
observed data and the simulated data at the candidate parameter estimate. Thus, this procedure selects
hyperparameters o which can produce simulations most consistent with the observations.

A simple annealing schedule which would reduce the hyperparameter o over the course of the
FSM-MLE optimization procedure could also be considered. This would ensure that the smoothing
bias discussed in Section 5] vanishes asymptotically, however, such a procedure would be complicated
by the increase in the variance of the FSM estimator and numerical instability when o is too small.
While we attempted to implement such an annealing scheme in our experiments, we found that it
introduced additional complexity without meaningful performance gains over a fixed o scheme.

When the likelihood function exhibits strong anisotropic curvature, an isotropic Gaussian proposal
is suboptimal. Extending the calibration scheme to diagonal covariances, however, would make
grid search scale exponentially with the parameter dimension, making the method computationally
prohibitive for higher dimensional problems. Hence, it remains an open question on how to efficiently
design scalable procedure to select more expressive proposal distributions.

A.6 Gaussian smoothing equivalence

We provide here a more detailed derivation of Theorem [5.1]

Theorem A.3 (Equlvalence as Gaussian Smoothing). Under an isotropic Gaussian proposal, q(0 |
;) = N(0 | 0;,0%I), with the assumptions as Theorem- A. 1| the optimal score matching estimator is
equivalent to the gradient of the smoothed likelihood

Vo, l(0:;%) = Eop(o)x,6,) Vo log p(x | 0)

where ((0y;x) = log [p(x | 6)q(0] 6;)dd and p(6 | x,0,) < p(x | 0)q(0 | 6;) is the induced
posterior from the proposal distribution q(0 | 0)

Proof. First, define Z(6;) = [ p(x | )q(0 | 6;)d6 such that £(6;;x) = log Z(6;).
Now, observe that,
Vo, Z(6:) 1

Vo l0x) = 57 = s [ e | 0)V0,a0 00
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For an isotropic Gaussian proposal, (0 | 0;) = N'(0 | 6;,021), we have that

Vo,q(0 | 0;) = —Voq(6 | 6;)
Using the integration-by-parts trick (similarly to the proof in Appendix [A-6), we have,

/p(x 16)V0.q(6 | 6,)d0 = — /p(x 1 0)Voq(0 | 6,)d0
- / Vop(x | 0)q(6 | 0,)d0
- / Vo logp(x | 0)p(x | 6)q(6 | 0,)d0

Substituting this expression into V, ¢ (6¢;x), we have,

Vo, (61 x) = % / (x| 0)Vo.q(0 | 6,)d0

- %/W log p(x | O)p(x | 0)q(0 | 0;)do

= /Vglogp(x | H)W

= Egp(o)x,0,) Vo logp(x | 0)

do

A.7 Bias of FSM

Theorem A.4 (Bias characterization of the FSM estimator). Let 0* be the true parameter, and denote
X9 ~ Py« as random observations sampled from the true model. Suppose there exists a unique
maximum likelihood estimator for this model, and that the log-likelihood is L-smooth. Recall that
9(x0;0:) = Vo logp(xo | 0)|o—0, is the true Fisher score, S*(x0;0;) = Egp(o|x,0,) Vo log p(x | 0)
is the optimal FSM estimator. For a fixed parameter point 0y,

The bias at 0; is bounded by
Exo||S* (%05 0¢) — glao; )| < L Vdo By, [R(x0)]

where R(x) = ’; ((’;Ilz;) is a likelihood ratio term and d is the dimension of the parameter space

Proof. Recall that g(x;6;) = Vglogp(x | 0)|g=g, is the true Fisher score and the optimal FSM
estimator is defined as S*(x; 0;) = Egp(g/x,0,) Vo log p(x | 0).

1. We first show the bias bound ||S*(x; 6;) — g(x; 0:)]],

15" (x561) = 905 00| = |[Eapioincs) [Volog p(x | 6) = Vo log p(x | 6)lo=o]

< Eoop(o)x.60) {Hva log p(x | ) — Vg logp(x | 9)\0:&”}

< / 16— 6,p(6 | x.6,)d6

9 x9
< Lsw (,'wt/e 6,1la(6 | 6,)d6
0,)
< IVdo sup PO %00
= o q(0]0,)

24



. 0|x,0+ x|0 x
Denoting p(x | 6;) := [p(x | 0) q(6 | 6;) df, note that supy p(g(‘lgwt)) = & zla(l)\cd\L@]f)( )
2. We now take expectation with respect to the true model, xg ~ p(x | 8*), and the only non-constant

. 0]x,0
term is supy pé(g’l‘étg‘) .

p(xo | OvLe(x0))
p(xo | 0r)

7;(("0"’*) p(xo0 | %)dxq

p(a | X070t)
Ey su =
%P a0 10,)

p(xo | 0%)dxg

A.8 Convergence guarantees of FSM

In this section, we provide an asymptotic convergence analysis of the stochastic gradient method
based on the local Fisher score matching gradient under a Gaussian proposal distribution. Recall that,
based on theoretical development in Section and Appendix [A.6] we have shown that the FSM
estimator, under a isotropic Gaussian proposal distribution, targets a smoothed log-likelihood,

0y (0;x) = log/p(x | ON(O' | 6,0%1)do’

Let the N independent and identically distributed observations be D = {x;} ¥, and the corresponding
smoothed likelihood objective be

N
lo(0:D) = > Lo (05;)

We define the smoothed maximum likelihood estimator for the dataset D as
N

6, = argmax, Z 05 (0;%;)

i=1

Equivalently, assuming the concavity of the smoothed likelihood function, we can characterize the
smoothed maximum likelihood estimator with its first-order optimality condition.

N
VQZO'(H;D) = ZS*(Xi;Q) =0
i—1

where S*(x;0) = Vyl,(6;x) is the Bayes-optimal ESM estimator.

In practice, however, we utilize the linear FSM estimator S (x; ) as discussed in Section and
Appendix [A.3] In order to reduce the variance of the resulting approximate maximum likelihood
estimator, as well as to provide stronger theoretical guarantees, we use the averaged parameter
estimate [Polyak and Juditsky} [1992]]

_ 1 L
9T=T;9t

In the following, we state an asymptotic convergence result, which can be found in Proposition 2.1 of
Jin et al.[[2021]], which is based on|Polyak and Juditsky|[[1992].
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Assumption A.1 (Smoothness and concavity of the true log-likelihood). The log-likelihood function
00;D) = ZZJ\LI log p(x; | 0) is L smooth and p strongly concave.

Note that this is a sufficient condition for the strong concavity of the smoothed log-likelihood.

Assumption A.2 (Step Size Condition). The step-sizes ny > 0 satisfies for all t, "‘_n# = o(n)
and Y2 nIHN/24712 < oo

Assumption A.3 (Unbiasedness and Martingale Noise Control). Define the noise term & =
S’(Gt,l, ug;0) — S*(04—1;0), which is a martingale difference sequence with respect to Fy_1 =
o(ur,...,us—1), where uy = {(0;+, Xi.1)} L, represents all the simulations used for the score model
estimation at iteration t.

1. For all iterations t > 1, the linear FSM estimator is unbiased.:

E[S(Oi—1,ut;0) | Fee1] = S*(0i—1;0)

2. Assume that there exists a constant K > 0 such that for all t > 1, almost surely:
E[&)1* | Foor] + 1157 (0s—150) > < K1+ [[0:—1 — 05]I*)
Assumption A.4 (Hessian Bound). There is a function H (u) with bounded fourth moments, such
that the operator norm of V¢ S(0, u) is bounded, || VS (0,u)|| < H(u) for all 0

Theorem A.5. Suppose Assumptions and[A. 4| hold and the sequence of step sizes fulfills
Using the updates of the gradient descent 0,11 < 6; + 1:S:(x; 0, 0), we have that the averaged

parameter iterates O = % Zle 0; satisfies as T — oo:

1. gT —a.s. ég
2. VT(Op —0,) =4 N(0,V)
where V = (V3 (0,; D)) E[S(85; D)S(00; D) T1(V3Ls(65; D))~

A.8.1 Relationship between smoothed MLE and the true MLE

Furthermore, we note here that we can establish an upper bound on the distance between the smoothed

MLE éa and the true MLE 6. For simplicity, assume that we only have a single observation in our
dataset, x. Then, using the strong concavity in Assumption[A.I] L-smoothness of the log-likelihood
as in Theorem[A.4] and the result from[A.7]for a fixed point x, and denoting the gradient of the true
log-likelihood as ¢g(0;x) = Vl(6; %),

1. R 1, .
05 — 0] < —1lg(05;%) — g(0;x)[| = —|lg(05; %)
1 %
1 . .
= ;Ilg(&;X) — 8%(x;05) |l
Lovds  p(0]x,0,)
= sup =
w o q0]0,)

Thus, we have shown that ||, — 6| is approximately of the order O(c).

A.9 Uncertainty quantification of FSM

Here, we show the uncertainty quantification by leveraging the result from Appendix [A.8] with
classical MLE theory. As before, we denote 7 = % Z;T:l 0; as the averaged parameter iterate from
the FSM-SGD procedure, and for clarity, we denote HAMLE, ~ as the MLE of the true likelihood based
on N i.i.d. observations. Our goal will be to characterize the distribution of v/N (A7 — 6*).
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First, we note that we can decompose 7 — #* into both algorithmic and statistical uncertainty,
Or — 0* = (Or — OiLe.N) + (OumLen — 0%)

algorithmic uncertainty sampling uncertainty

Multiplying by /N, we obtain the following.
\/N(éT — 9*) = \/N(éT — éMLE,N) + \/N(éMLE,N — 9*)

Focusing on the algorithmic error, observe that

VN(Or — Oyiie,n) = \/? VT (61 — briie,v)

Since by assumption we know that \/% — 0and Xy = \/T(éT — éMLE,N) = Op(1) from
Appendix [A.8] this implies that their product is

\/? Xy =VN(Or - Orre.N) —p 0
as N, T — oo.
From classical MLE theory, under standard regularity conditions,
VN(Ourpn — 0°) —=a N(0,Z(6%)7Y)

where Z(6*) is the Fisher information matrix at the true parameter.
Finally, to combine both results, using Slutsky’s theorem,

VN(Or - 07) =a N(0,Z(6)")
as N, T — oo

A.10 KDE-SP implementation

We implement the KDE-SP gradient estimator as proposed in Bertl et al.|[2017]], combining a kernel
density estimate (KDE)-based likelihood approximation with a simultaneous perturbation stochastic
approximation (SPSA). Specifically, at each iteration ¢, the approximate gradient of the log-likelihood
at 6 is given by:

Lo 1)

2Ct

Vi) =6, ,

where 0+ = 0 + ¢;6; and #~ = 0 — ¢;6; for a random perturbation &;. This gradient estimate is then
used in an SPSA update of the form

0r =01+ VL (0;_1)
Following the specifications in Bertl et al.|[2017]], we adopt the standard SPSA step size schedule:

a
= ——, ¢

_c
(t+ A’ ot
witha = 1,7 =1/6,and A = [0.1T'|, where T is the total number of iterations.

The constants a and c¢ control the initial values of o, and ¢,. We tune both by performing a grid
search over pairs ( a,c ). For each candidate pair, we run a short trial of the SPSA optimization,
simulate data from the resulting parameter estimates, and measure prediction error relative to the
observed dataset. We then select the pair ( a, c ) that yields the lowest validation error. We also
incorporate the KDE modifications proposed in Section 3.2 of Bertl et al.|[2017], which refine the
KDE-based likelihood approximation. These modifications help stabilize the KDE estimation for
high-dimensional problems.
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Figure 8: Gradient accuracy of both the Fisher score matching (FSM) technique and the KDE-
SP method for a bivariate Gaussian likelihood for different choices of the proposal variance and
perturbation constants. The error bars represent a 95% confidence interval for 100 repeated gradient
approximations.

A.11 Additional details and results on numerical studies experiment

A.11.1 Additional results on hyperparameter sensitivity

In Figures[§]and [9] we provide additional results on the ablation study showing the sensitivity of
the gradient accuracy between the FSM method and the KDE-SP method for different choices of the
proposal variance and perturbation constants, respectively. Figure[3]is a subset of the results shown in
Figure[§] Even in higher-dimensional settings, we find that the FSM method can match the gradient
accuracy of the KDE-SP method across a wide range of hyperparameter choices.

A.11.2 Additional results on parameter dimension scaling

Figure |10] includes an additional result with the neural network FSM method for the parameter
dimension scaling experiment seen in Figure [d] Furthermore, Figure [T shows the scaling with
parameter dimension, with increasing simulation budgets, complementing the results seen in Figure
Generally, we find that the linear FSM method performs the best across different parameter dimensions
and simulation budgets. The KDE-SP method performs worse in higher dimensions, likely due to
the curse of dimensionality affecting the kernel density estimate. The neural network FSM method
shows competitive performance in lower dimensions, but its performance quickly degrades in higher
dimensions, possibly due to optimization and/or overfitting issues.

A.11.3 Additional results on wall-clock time

We provide a comparison of the wall-clock time in Figures[T2)and [T3]for repeated gradient estimation
procedures for both the KDE-SP and FSM methods. As we can see in Figure the FSM scales

28



o=c=0.0001

o=c=0.001 o=c=0.01 o=c=0.1

1500

§—
—
o
S
S
S

Gradient error ||
w
o
o
o

12504

1000

7504

5001

2501

Gradient error [|g — g
= N w » w

o

o o o
ES o ©

Gradient error [|g — g

e
N

e
=)

102 10°

104

105 10

Simulation budget

102 10° 10* 10° 10° 102 10° 10* 10° 10° 102 10° 10* 10° 10°
Simulation budget Simulation budget Simulation budget

—— FSM Gradient ~ —=- KDE-SP Gradient
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method for a 20 dimensional Gaussian likelihood for different choices of the proposal variance and
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FSM Linear Gradient s
KDE-SP Gradient <
FSM NN Gradient o J

approximations.
x 102+
(o)
I
<D
. 1014
— 1
(@)
—
—
L
o 109
)
)]
S
O
c 10714
o

10
Parameter Dimension
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Figure 12: Wall clock time comparison between FSM and KDE-SP estimation, over 1000 runs for
increasing simulation budgets

favorably with respect to the increase in the number of simulation budgets. However, in Figure 3]
the matrix inversion step of the linear FSM method grows cubically with the parameter dimension,
and hence causes an increase in the wall-clock time for the FSM method. We note that in practice
one can reduce this cost considerably by employing faster linear solvers (e.g., conjugate gradient
methods), which can greatly improve scalability in higher dimensions.

A.11.4 Additional results on confidence interval construction

We also note that in Figure[T4] we provide a simple validation test for the use of the FSM estimate for
the Fisher information matrix estimation. This shows that we can recover a well-calibrated confidence
interval even with the use of a stochastic Fisher score estimate.

Further details of these experiments are provided in the Appendix [AT1.3]
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A.11.5 Experimental details

The gradient comparison experiment corresponding to the plots of Figures [3|and [8| was carried out
for a bivariate Gaussian mean model with 10 observations. Observations were generated from a true
mean of (1.0, 1.0) (Figure |§|used a 20-dimensional Gaussian with the same setting), and Fisher score
estimates were taken at the observation means, which is also the maximum likelihood estimator. The
uncertainty was obtained by repeating 100 runs of the score estimation for both methods.

The multivariate Gaussian parameter estimation accuracy in Figure[IT] was performed with 100 obser-
vations, and with parameter dimensions of d = 5, 20, 50, 100 for 100 optimization steps, using 100 re-
peated runs as with the previous experiment. Figures[dand[I0]were performed in a similar way, by fix-
ing a total simulation budget of 1000 and increasing parameter dimensions of d = 2, 5, 10, 20, 50, 100.
The true parameters used to generate the observations were similarly taken to be a vectors of ones
as with the previous experiment. The (a, ¢) hyperparameters for the KDE-SP gradient method was
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selected from a grid of [1072,1071,10°, 10,102, 103] x [1072,1071,10°, 10%, 10%,103]. For the
FSM-based estimation, the (o, i) hyperparameters, corresponding to the proposal variance and step
size, were tuned in the exact same way as the KDE-SP gradient hyperparameters (using the prediction
error), but over a grid of [1073,1072,107!] x [1072,1071,10°] instead. The Adam [Kingma and
Bal[2015] optimizer was used for the FSM-based estimation, with averaging over the last 50 iterations
of the parameter iterates.

For the wall-clock time comparisons in Figures [12|and|13] each gradient estimation procedure was
timed for 1000 runs on a bivariate Gaussian mean model with 10 observations. As both the FSM and
KDE-SP gradient estimation was implemented in Python and the JAX package, best attempts were
made to equalize the comparison between the two methods. All just-in-time (JIT) compilations for
both methods were disabled for the wall-clock tests to remove compilation overhead.

For the confidence interval experiment of Figure[I4] a 5 dimensional multivariate Gaussian mean
model was used. A step size of 1073 with o = 0.05 was used with the RMSProp [Tieleman, 2012]
optimizer. The final Fisher information matrix was estimated by simulating 100000 simulations from
the resulting MLE estimate of the optimization run, which was used to construct the confidence
interval. This was repeated for 100 runs to obtain an estimated coverage probability.

For the neural network-based FSM method, a standard feedforward neural network with two hidden
layers of size 16 with ReLU activations was used. Adam optimizer with a step size of 10~2 was used
to train the neural network for 10 iterations, for each parameter iteration of the MLE optimization
procedure.

All experiments in this section were performed on a standard consumer laptop, an Intel i7-11370H
CPU with 64GB of RAM.

A.12 Additional details on LSST weak lensing experiment

For the weak lensing experiment in Figure[I5] 100 iterations of the gradient optimization method
were used with both the KDE-SP and FSM estimators, with 100 simulations per iteration, giving a
total simulation budget of 10000 simulations for the entire optimization process. The dimension of
the parameter space is 6, and the dimension of the summary statistics used is 6 as well.

The same amount of simulations was provided to a neural likelihood estimater, which is a standard
masked autoregressive flow model in the package SBI in Python [Boelts et al., 2025]]. To mimic a
general, uninformative prior, we used the priors for the parameters provided in Table 1 of [Zeghal
et al.|[2024]], which are all Gaussian priors, and converted them to a uniform prior by taking three
standard deviations from the mean, U[p — 3 * o, u + 3 * o], where the original Gaussian priors are
represented as N'(11, 2). The NLE was trained with 10000 (parameters, data) pairs drawn from this
prior, and 5000 iterations with a standard Adam optimizer were used to train the NLE. To optimize
the NLE for a specific observational dataset, we evaluated the trained NLE at the specific dataset, and
directly differentiated through the NLE model, giving us a deterministic gradient, which is used in
a standard gradient-based optimization procedure. The likelihood is optimized until convergence,
where there is no longer any change in the estimated likelihood with the NLE.

The hyperparameters (a,c) for the KDE-SP gradient method were selected from a grid of
[107°,107%,1073,1072] x [1073,1072,1071, 10°]. For the FSM method, we set ¢ = 10~ and a
step size of 102, with parameter averaging over the final 50 iterations.

For the neural network-based FSM method, a standard feedforward neural network with two hidden
layers of size 16 with ReL.U activations was used. Adam optimizer with a step size of 10~2 was used
to train the neural network for 10 iterations, for each parameter iteration of the MLE optimization

procedure. We find that the neural network-based FSM method did not perform well in this experiment,
often suffering from high variance and instability during training.

An RTX 4090 GPU with 24GB of VRAM, 41GB of RAM was used in this experiment.
A.13 Additional details on generator inversion task
For the generator inversion task in Figure [16] we trained a standard GAN on a down-scaled 16 x 16

MNIST dataset, giving a data dimension of 256 as no summary statistics were used. We used
500 iterations of the gradient optimization method with both the KDE-SP and the FSM gradient
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Figure 15: Parameter estimation and prediction accuracy of the NLE, FSM (linear and neural-network
based) and KDE-SP methods for the LSST-Y10 weak lensing model, for increasing number of
observations

estimation procedure, with 22500 simulations per parameter iteration used in the gradient estimation.
The dimension of the parameter space is 50.

The (a,c) hyperparameters for the KDE-SP gradient method was selected from a grid of
[107%,1073,5 x 1073,1072,5 x 1072] x [107*,1072,5 x 1073,1072,5 x 10~2]. For the FSM
method, we set o = 0.2 and a step size of 5 x 1072, with parameter averaging over the last 300
iterations. The latent mean prior, o, was set at 0.1.

The direct optimization approach was performed by directly minimizing a reconstruction loss (mean
squared error in pixel space) between the generated images and the observations, and directly
differentiating through the generator network GG,,. Specifically, we minimize the following loss
function.

. I
min £(Gw(0),x0) = - ; |Gw(zi) — %ol

where z; ~ N'(0,021). This is done with the Adam optimizer with a step size of 5 - 10~1, and for
1000 iterations, with n = 100 simulations per iteration.

For the neural network-based FSM method, a standard feedforward neural network with two hidden
layers of size 16 with ReLU activations was used. Adam optimizer with a step size of 10~3 was used
to train the neural network for 10 iterations, for each parameter iteration of the MLE optimization
procedure. Compared to Appendix [A:12] we found that the neural network-based FSM method
performed better in this experiment, but still generally had subpar performance compared to the linear
FSM method and with increased variance.

An RTX 4090 GPU with 24GB of VRAM, 41GB of RAM was used in this experiment.
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