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Abstract

The rapid advancement of generative models has led to the widespread emergence
of highly realistic synthetic images, making the detection of Al-generated content
increasingly critical. In particular, diffusion models have recently achieved un-
precedented levels of visual fidelity, further raising concerns. While most existing
approaches rely on supervised learning, zero-shot detection methods have attracted
growing interest due to their ability to bypass data collection and maintenance.
Nevertheless, the performance of current zero-shot methods remains limited. In
this paper, we introduce a novel zero-shot Al-generated image detection method.
Unlike previous works that primarily focus on identifying artifacts in the final
generated images, our work explores features within the image generation process
that can be leveraged for detection. Specifically, we simulate the image sampling
process via diffusion-based inversion and observe that the denoising outputs of gen-
erated images converge to the target image more rapidly than those of real images.
Inspired by this observation, we compute the similarity between the original image
and the outputs along the denoising trajectory, which is then used as an indicator of
image authenticity. Since our method requires no training on any generated images,
it avoids overfitting to specific generative models or dataset biases. Experiments
across a wide range of generators demonstrate that our method achieves significant
improvements over state-of-the-art supervised and zero-shot counterparts.

1 Introduction

Recent years, we have witnessed a spurt of development in the field of Artificial Intelligence Generated
Content (AIGC). With the advent of cutting-edge generative models, such as StyleGAN [28] and
Diffusion [24]], the quality of synthetic images has been significantly improved. With tools like Stable
Diffusion [50] and ControlNet [67]], people can quickly create artistic images conforming to their
ideas. Today, we can already see a large number of generated images on the Internet, which are
hard to distinguishable from real images for humans [42]]. While image generation technology can
increase our enjoyment of life, the proliferation of fake images with misleading information also
bring huge security risks.

In response to this, different detection methods have been explored [19} 63} |8, [10]. Researchers
attempt to address this from different perspectives, e.g., frequency anomalies [[19} [15] 160l 32] and
semantic differences [62} 143} 36L[25]]. Although previous methods achieve promising detection results,
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a significant issue is that the performance of detectors degrades considerably when they encounter
images generated by unseen generators. A primary reason is that images generated by different
generative models exhibit distinct forgery characteristics, and detectors tend to overfitting to the
categories of fake images used in training.
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Figure 1: An illustration of the denoising trajectory. In the sampling process of PF-ODE based
diffusion model, the noisy image is iteratively updated by moving a certain distance toward the
denoising output £ (¢) predicted by a neural network at each step, eventually yielding a noise-free
image. In this process, the intermediate denoised states z, form the sampling trajectory, while the
corresponding denoising outputs Zo(¢) constitute the denoising trajectory.

Image generation is a progressive refinement process. This is especially evident in recent diffusion
models [24} 56} 157, where the sampling process typically involves hundreds or even thousands of
steps. For another branch of generative models, GANs [22 |3 28], previous studies [65} 20, [18]]
have also suggested that the evolution of generator parameters during training can be viewed as
a diffusion-like process. Most existing detectors [15} 34 |68]] focus on identifying artifact-based
features in final generated images, while few have explored the informative signals embedded in
the image generation process itself. In this work, we attempt to uncover discriminative information
between real and generated images by analyzing their generation processes. Specifically, we simulate
the generation process using DDIM inversion [55] and construct the denoising trajectories of input
images, as shown in fig. [Tl We observe that, compared to real images, the denoising trajectories of
generated images exhibit earlier mode change, with denoising outputs converging more rapidly to the
final image. As a result, the similarity between the denoising outs and the final image can serve as an
effective indicator for distinguishing between real and generated images.

Inspired by the above findings, we propose a novel zero-shot method for detecting generated images.
Concretely, we perform DDIM inversion [55]] on the input image to simulate the sampling process
and collect the denoising outputs throughout the process. Then we use a pre-trained CLIP [46]
model to extract semantic features and compute the feature similarity between the original image
and each image along the denoising trajectory, summing the results to obtain a final similarity
score. Additionally, we further incorporate embeddings from intermediate layers of CLIP to capture
fine-grained features.

To validate the effectiveness of our method, we conducted extensive experiments on multiple datasets
of generated images. The evaluation covered a wide range of generative models, including some of the
most recent ones. Experimental results demonstrate that our approach exhibits strong generalization
ability. Our contributions can be summarized as follows:

* We demonstrate that the denoising outputs of generated images converge faster than those
of real images.

* We propose a novel zero-shot method for detecting generated images based on the similarity
between images along the denoising trajectory and the input image.

» Through extensive experiments, our method presents superior generalization ability. Notably,
it exhibits average performance improvements of 8.1% in accuracy and 9.8% in average
precision over the state-of-the-art, evaluated across 21 generators.

2 Preliminaries

2.1 Denoising Trajectory of ODE-based Diffusion Model

Given a data distribution pgq.,, the forward process of the diffusion model [54, 56| 24]] gradually add
noise with perturbing kernel p; (x4 |zo) = N (2¢; /o, 02(t)I), where 2o ~ Daata, t € [0,T] and



ay, 02 (t) are noise schedules. Eventually, py will follow a standard Gaussian distribution. Song et
al. [58]] presents a generalized framework of this process with stochastic differential equation (SDE),
and further propose the corresponding probability flow ordinary differential equation (PF-ODE),
which shares the same marginal distributions as the SDE. Images can be deterministically generated
by constructing the reverse-time PF-ODE. Particularly, DDIM [53]] is a special case of the PF-ODE,
with the following form:

Ty = \Jou_120(x;0¢) + or—1€0(T¢, 1) (D

and
xy — oreg(Te, )

NG

where Zo(x¢; o) is an estimate of the original sample ¢ and €4 (¢, t) denotes the noise predicted by
the neural network. The denoising trajectory can be obtained by taking denoising outputs, Zq(x¢; o),
at each step of this sampling process. For existing images, we can use the DDIM inversion to obtain
the approximate sampling process and denoising outputs. we provide some examples of denoising
outputs in appendix

@
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2.2 Generated Image Detection

High-Frequency Based Detection. Previous works point out that Al-generated images show anomaly
spectral distribution. Concretely, generated images exhibit different high-frequency mode [15} 14]],
which is believed to be caused by the upsampling operation in the neural network. Inspired by
this insight, some works detect generated images by extracting low-level information [60} 40, [11]].
Typically, researchers extract high-frequency components of images through wavelet transform [32],
noise pattern extraction [34], or resampling residual feature analysis [60]]. [11]reveals the high-
frequency differences between real and generated images in an unsupervised manner.

Semantic Based Detection. Another route line explores semantic features for generated image
detection. Researchers utilize pre-trained models to extract features in advance or finetune them,
thereby guiding detectors to focus more on semantic features. [62] show that a naive Resnet50 trained
on ProGAN-generated [27] images can generalize to other GAN-generated images. In addition, [43]
proposed to map images into an universal space by the image encoder of CLIP [46] to boost the
generalization ability of detectors. [35]] further suggests incorporate the text encoder of CLIP to
introduce language information. Recently, SIDA [25]] performs explainable detection with the aid of
rich visual and textual knowledge of large multimodal model.

3 Method

In this section, we first analyze the differences in the denoising trajectories between real and generated
images and conduct preliminary experiments to validate our findings. We then introduce our zero-shot
method for detecting generated images, which is based on the insights derived from the preceding
analysis.

3.1 Denoising Trajectory Analysis

Previous studies have found that the generation process of diffusion models can be regarded as
a frequency autoregressive process [49, [13| [17]]. Since random noise has equal energy across all
frequencies, the forward noising process progressively destroys image content from high to low
frequencies. Conversely, the reverse denoising process, i.e., the generation process, gradually restores
image information from low to high frequencies. The above description refers to the changes in images
along the sampling trajectory. Similarly, the images along the denoising trajectory, also conform to a
frequency-autoregressive generation process that progresses from low to high frequencies. Below, we
provide a simple analysis following the method in [13].

Consider a Gaussian forward diffusion process:
T =00+ ore, €~N(0,I), 3)

¢ is standard Gaussian noise. Let R[z]|(f) denote the radially averaged power spectral density
(RAPSD) of image « at spatial frequency f. For white Gaussian noise, R[¢](f) = 1 holds for all f.
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Figure 2: Overview of the proposed method. Given an input image, we employ DDIM inversion to
approximate its sampling process and obtain the denoising outputs at each step. We then use CLIP
to extract features from both the original image and each image along the denoising trajectory, and
compute their cosine similarities, which serves as the criteria for detecting generated images.

We define that a frequency component is detectable if its signal power exceeds a given signal-to-noise
ratio (SNR) threshold 7 > 0.

Because the Fourier transform is a linear operator and the power spectrum scales quadratically with
amplitude, we have

Rlawzol(f) = of Rzo](f),  Rlowel(f) = o7 RI|(f) = of )
A frequency component is considered detectable if

Rlowzol(f) > 7 Rlovel(f) = = 2. )

Qg

As the noise level decreases during the reverse diffusion process, the ratio o; /oy decreases. Conse-
quently, fimax(t), the maximal detectable frequency, increases monotonically, implying that higher
frequencies become progressively detectable. Since the model does not hallucinate information
that is completely obscured by noise, the spectral content of its denoised outputs will primarily
consist of the detectable frequencies that satisfy the above inequality. Therefore, the images along
the denoising trajectory will gradually transition from low-frequency components to high-frequency
details, which is consistent with the actual observations. In summary, the images in the denoising
trajectory, @ (x¢; 0+ ), follow a progressive refinement process from low to high frequencies, as shown
in fig. 3]

Previous works suggest that there are discrepancies between the distribution learned by diffusion
models and the true distribution of real images [64} [38] [53]]. It inspires us to make a reasonable
speculate that the diffusion model can predict generated images more accurately, which means the
denoising trajectories of generated images will converge more quickly according to above analysis.
To verify this conjecture, we inverse the sampling processes of some real and generated images with
DDIM inversion [53], and collect the denoising outputs during these processes. Next, we measure
their spectral similarity with the original image. Specifically, we compute the power spectral density
of the images at different timesteps along the denoising trajectory and calculate their differences
from the original image at each frequency. Since the effective frequency range of these images
progresses from low to high frequencies, we apply corresponding frequency masks when computing
the differences. As shown on the right side of the fig.[3] the differences for real images are larger
than those for generated images. It indicates that the denoising outputs of generated images achieve
faster convergence toward the target images. As a result, compared to real images, generated images
and the intermediate images along the denoising trajectories will exhibit higher similarity.
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Figure 3: (a) Frequency transition of images along the denoising trajectory (reverse process). (b)
Spectral differences between real/fake images and the images along their denoising trajectories: We
randomly select 500 real images from ILSVRC [51] and fake images generated by Stable Diffusion
v1.5 [50], then calculate the Power Spectral Density (PSD) of each image in the denoising trajectory
and their differences from the original image at each frequency.

3.2 Generated Image Detection

Using the above biases, we propose a novel zero-shot Al-generated image detection method, which
employs the similarity between the intermediate images along the denoising trajectory and the original
image as as a criterion to differentiate real and generated images. As shown in fig. 2] we first apply
DDIM inversion [55] to the input image and collect the denoising outputs at each step. Note that we
employ the commonly used latent diffusion model, therefore, we need to utilize the VAE encoder to
yield inputs and the VAE decoder to the outputs. To calculate the similarity between different images,
we extract features from images using CLIP [46], which demonstrates superior generalization ability
owing to its pretraining on a large corpus of image-text pairs. We then calculate the cosine similarity
between the features of each denoised image and those of the original image, and aggregate these
similarities to obtain the final semantic similarity score.

T
S(x) = % Z sim(emb(x), emb(Z;)) (6)
i=0

where sim(-, -) denotes cosine similarity, and we use the class embeddings as features of images.

Incorporating features of intermediate layers. An in-
tuitional way to extract features of an image using CLIP
is to take the output from its final layer as the represen-
tation of the image as in [43l135]. However, the features 09
extracted by different layers of CLIP exist non-negligible
differences. Specifically, shallow layers of CLIP focus
on low-level features such as textures, while deep layers
extract high-level semantic representations or concepts of
the entire image [21}161,126]]. We provide a more intuitive
demonstration of this in fig.[d] Therefore, directly using
the embeddings from the final layer will overlook fine- os
grained content, which is important for our detection task

since the denoising outputs in the later stages of sampling

differ from the original image only in fine details. There- Figure 4: In order to identify the sensitiv-
fore, to capture both the global and fine-grained features ity of each layer of CLIP to fine-grained
of the image, we use the features extracted from each layer ~changes, we apply blurring to images

of CLIP for similarity computation. and compute the embedding similarity
. o between the original and blurred images
As we have previously analyzed, the denoising outputs of . oo layer.

generated images converge more quickly. We can distin-

guish generated images from real counterparts based on

the similarity of the semantic representations between the original image and the images along the
denoising trajectory, with real images exhibiting higher similarity scores. Since our method does not
use any type of fake images for training, it avoids the overfitting problem and theoretically has better
generalization ability.
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Table 1: Cross-architecture generalization. We report the Acc (%) and AP (%) on ForenSynths. The
supervise baselines are trained on ProGAN, except for SIDA trained on their custom dataset. We
adopt either the officially released pre-trained models or reproduce the results by training according
to the provided code repositories. Zero-shot methods are displayed with the gray background.

Method ProGAN GauGAN BigGAN StarGAN  CycleGAN  StyleGAN  StyleGAN2 AVG
Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP  Acc AP
NPR [60] 99.8 100. 825 855 844 87.8 993 999 96.1 985 97.7 998 984 999 940 959
FreqNet [59] 99.6 100. 934 986 90.5 960 857 99.8 958 99.6 902 99.7 879 995 919 99.0
FreDect [19 994 100. 80.5 828 820 936 946 995 788 848 780 89.0 662 825 828 903
CNNSpot [62] 100. 100. 814 90.8 71.1 860 946 99.0 876 949 876 998 854 994 86.8 957
UnivFD [43] 100. 100. 99.5 100. 951 993 957 994 981 999 985 100. 742 984 944 99.6
SIDA* [25] 713 773 704 69.7 748 829 663 959 68.1 64.1 640 700 514 593 66.6 742
AEROBLADE [48] 47.4 503 448 426 50.1 474 51.1 47.1 422 41.0 469 436 374 382 457 443
MIBD [7] 903 974 879 979 776 86.8 506 553 734 905 705 765 642 728 735 825
ZeroFake [53] 480 449 58,6 60.6 503 533 458 399 556 464 492 521 455 464 504 49.1
Ours 964 998 92.1 975 935 977 978 100. 846 940 888 98.0 758 948 899 974

4 Experiments

4.1 Experiment Setup

Baselines. We compare our method with three types of detector, including high-frequency based
methods, semantic feature based methods, and zero-shot detection methods. Specifically, for the
high-frequency based methods, FreqNet [S9]], FreDect [19], and NPR [60] extract high-frequency
features of images using Fourier transform, discrete cosine transform, and resampling, respectively.
The semantic-based methods include CNNSpot [62], UnivFD [43], and SIDA [25]], which respectively
use ResNet, CLIP, and Large Multimodal Model [31]] as backbones to extract semantic features
and are fine-tuned for the task of generated image detection. Finally, we also compare our method
with three zero-shot detection methods. AEROBLADE [48]] identifies fake images based on the
differences between the original image and the one reconstructed by the VAE. ZeroFake [53]] achieves
generated image detection based on the similarity between original image and the image edited using
diffusion model. MIBD [7] approximates the curvature and gradient of the probability manifold to
enable zero-shot detection. Please see appendix [A.T] for more details.

Datasets. To verify the effectiveness of our method, we benchmark on a large number of fake images
generated by different types of generators involving GANs and diffusion models. ForenSynths [62]
contains images generated by various GANS, e.g., ProGAN [27] and StyleGAN [28]]. The real images
are collected from LSUN [66]], ImageNet [52], COCO [33]], and CelebA [37]. GenImage [70] include
8 early text-to-image diffusion datasets, such as Stable Diffusion V1.4 [50] and Glide [41]], and the
real images are sampled from ImageNet [52]. New Generator: Considering the rapid development
of generative models, we also test on images generated by several cutting-edge generative models.
Specifically, we take the test set of COCO [33] as the real image dataset, then we collect images
generated by FLUX [30], Stable Diffusion XL (SDXL) [43]], and Stable Diffusion V3 (SD3) [[16] with
corresponding prompts of real images. We further collected fake images generated by DALLE3 [5],
Firefly, and Midjourney-v5 (MJv5) [1] from [4]. See appendix [A.2]for the full list of generative
models we used.

Implementation Details. We perform a 50-step DDIM inversion with Stable Diffusion v1.5, before
which we crop images to the size of 512x512. We use CLIP ViT-L/14 to extract features. Our
experiments are implemented with PyTorch on NVIDIA A100 GPU. We set the detection threshold
as 0.75.

4.2 Comparison to Baselines

To compare the generalization of our method with other approaches, following previous works [60}
35 143]] we consider two experiment settings, i.e., cross-architecture and cross-paradigm. Specifically,
models are trained on images generated by one type of GAN, and under these two settings, they
are tested on images generated by other GANs and diffusion models respectively. SIDA [25]] is an
exception because their models need to be trained on customized datasets labeled with tampered
regions and corresponding descriptions, hence we directly use the pre-trained models they provide
for evaluation. Note that for zero-shot methods, including ours, these two settings are equivalent.



Table 2: Cross-paradigm generalization in terms of Acc performance.

M Genlmage New Generator
ethod AVG
SD14 SDI.5 ADM DALLE2 MJ Glide VQDM Wukong DALLE3 Firefly MIJv5 SDXL FLUX SD3
NPR [60 78.6 78.9 69.7 64.9 77.8 183 78.1 76.1 79.0 73.6 80.0 80.0 803 799 768
FregNet [59 64.2 64.9 83.3 55.1 69.8 81.6 81.6 57.7 50.4 61.2 74.2 82.6 70.2 558 68.0
FreDect [19 39.5 39.9 64.3 34.6 46.4 550 78.8 41.0 33.0 52.6 44.4 66.7 28.0 306 468
CNNSpot [62 51.0 514 57.6 49.5 522 554 535 49.8 46.6 54.0 54.8 61.8 49.0 484 525
UnivFD 63.4 63.3 66.6 50.7 559 622 85.3 70.8 49.7 92.3 54.9 70.3 49.7 538 635
SIDA™ [25 48.0 48.9 53.6 60.5 59.3 488 50.0 55.5 84.0 58.6 67.9 62.2 869 779 61.6
AEROBLADE [48] 967 972 647 793 973 868 561 980 515 612 751 641 920 869 79.1
MIBD [7 620 630 573 777 555 643 769 654 498 578 541 598 502 569 60.8
ZeroFake [53 871 877 815 822 701 829 675 842 460 470 540 547 580 523 682
Ours 984 977 787 740 970 800 918  99.0 680 951 987 983 986 986 910
Table 3: Cross-paradigm generalization in terms of AP performance.
Method Genlmage New Generator AVG
SD1.4 SDI.5 ADM DALLE2 MJ Glide VQDM Wukong DALLE3 Firefly MIJv5S SDXL FLUX SD3
NPR [60. 84.0 84.6 74.6 76.7 854 857 81.2 80.5 86.0 718 88.9 89.1 88.6 879 83.6
FregNet [59 74.3 75.6 91.4 54.5 789 8838 89.6 66.9 55.9 66.0 80.6 90.3 76.6 613 75.1
FreDect [19 37.8 37.8 61.8 38.2 46.1 529 85.1 39.6 36.6 49.2 44.7 76.7 34.1 325 481
CNNSpot [62 59.2 60.0 76.2 53.5 58.7 716 67.7 57.0 42.1 62.5 64.6 75.1 49.2 471 603
UnivFD [43 86.7 86.4 87.3 63.2 75.0 844 96.7 91.5 50.4 99.3 77.9 92.7 50.1 773 799
SIDA™ [25 53.1 523 65.3 71.9 69.7 509 40.6 721 93.5 61.3 69.5 63.8 964 917 68.1
AEROBLADE [48]  98.2 98.9 80.3 92.1 99.7  96.8 76.1 99.3 60.6 73.3 86.9 79.2 97.0 943 88.0
MIBD [7! 72.3 73.4 65.4 88.1 60.9 778 87.8 76.6 53.5 67.5 60.3 71.3 542 646 69.5
ZeroFake [53] 94.2 95.4 90.0 90.7 77.0  91.1 74.3 90.8 48.2 438 58.5 61.7 60.3 557 737
Ours 100. 100 936 936 997 939 972 100 836 986 998 998 998 999 975

To evaluate the performance of the proposed method, we use accuracy (Acc) and average precision
(AP) metrics.

Cross-Architecture Generalization. In order to assess the generalization on images of GAN sources,
we employ ForenSynths [62] for evaluation. Concretely, models are trained on the training set
generated by ProGAN [27], which involves four types of images (cat, chair, car, and horse), and then
evaluated on the test set containing other GANs. We report the results in table[T}

It can be observed that most supervised methods achieve good detection performance on images
generated by GANs. This is because images generated by different GAN architectures tend to share
similar artifact patterns [15162]. Among frequency-based and semantic-based approaches, NPR [60]
and UnivFD [43] demonstrate the best performance, respectively. Regarding zero-shot detection
methods, AEROBLADE and ZeroFake yields almost random results. On the contrary, our method
and MIBD [[7] present better detection performance, and our method outperforms MIBD 16.4% and
14.9% in terms of average Acc and AP, respectively. We note that although our analysis is based
on sampling process of diffusion , we find our method can get promising performance on images
generated by GANS.

Cross-Paradigm Generalization. Due to the differences in artifact patterns between diffusion models
and GANS [19]147], cross-paradigm poses a more challenging problem. Following [60, 43| |68]], we
report the results of models trained on images generated by ProGAN from the ForenSynths dataset
and tested on diffusion-generated images from other datasets. The Acc and AP results are presentd
in table[2]and table[3] All supervised methods experience a significant drop in performance, especially
on images generated by the new generators. UnivFD [43] despite achieving a promising AP, suffers
from low accuracy due to differing optimal classification thresholds for images generated by diffusion
models and GANs. SIDA [25] demonstrates high detection performance on some cutting-edge
diffusion models, such as FLUX and DALLE3, but its effectiveness on other models still requires
improvement. Notably, our method exhibits powerful performance on almost all diffusion models. In
terms of average Acc and AP, our method outperforms the second-best approach, i.e., AEROBLADE,
by 11.9% and 17.5%, respectively. We also present the overall detection results of each method
in table[dl

Robustness to Perturbations. Social media platforms tend to apply post-processing to user-uploaded
images. To evaluate the robustness of our method under such conditions, we consider four common
types of perturbations including Gaussian blur, center cropping, JPEG compression and resizing. We
investigate the robustness of our method compared with other representative approaches under these
perturbations. Experiments are conducted on the ForenSynths and GenImage datasets, with each type
of perturbation applied at five different intensity levels. We report the overall AP across all settings
in fig. 5] Detailed results can be found in appendix [A.4]
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Figure 5: Robustness evaluation on common per-
turbations, measured in AP(%).
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Figure 6: Similarity score distribution for different datasets. We count the number of samples of real
and generated images in different score intervals.

It can be observed that NPR [[60], which relies heavily on high-frequency features in images, suffers
significant performance degradation under common perturbations. In particular, JPEG compression,
which tends to suppress high-frequency information, reduces its detection accuracy to near-random
performance. While UnivFD [43] suffers a significant performance degrade when countering blurring
perturbations. Moreover, compared to cropping and resizing, our method is more affected by blurring
and JPEG compression. We hypothesize that this is because these two types of corrupted image
distributions deviate more significantly from training datasets of diffusion models, making it difficult
for them to generate accurate predictions. However, our method still achieve the optimal average
performance.

4.3 Visualization

To verify the effectiveness of our method, we statistically analyzed the similarity scores of our
method on different generative models. We also visualized the distribution of scores from two other
zero-shot methods, i.e., AEROBLADE and MIBD. As shown in fig. @, our method demonstrates
better separability across different generative models, whereas AEROBLADE and MIBD only
show effectiveness on one paradigm of generator. For instance, although AEROBLADE achieves
promising results on diffusion-generated images, it fails to distinguish GAN-generated images
from real ones. In contrast, MIBD performs better on GAN-generated images but struggles with
diffusion models.Furthermore, we observed that the optimal decision threshold for our method
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remains consistently close to 0.75 across different datasets. This is a desirable property, as it implies
that a unified threshold can be used to detect various generative models.

To further validate our previous conclusion that the denoising outputs of generated images converge
more rapidly toward the target images, we visualize the features along the denoising trajectories.
Specifically, we use samples generated by SD1.5 from the Genlmage dataset along with real samples.
For each image, we extract the CLIP embeddings of the denoised target images at different denoising
time steps and visualize them using UMAP [39]], which preserves both global and local structure. The
visualization results are shown in fig. [/} the features of images generated by SD1.5 quickly become
close to their final denoised states as early as step 750. In contrast, the features of real images change
more gradually over time. This indicates that the denoising outputs of generated images converge to
final images more quickly.

4.4 Ablation Study

Importance of Fine-Grained Features. We evaluate the impact of incorporating features extracted
from intermediate layers of the CLIP model on the performance of our method. Specifically, we
assess the detection performance when using features from the last layer and from all layers of
CLIP, respectively. It can be seen in table[5] incorporating fine-grained features from intermediate
layers can significantly improve the detection performance. In addition, we report detailed detection
performance of each layer in appendix appendix

Effect of Vision Foundation Model. We also report the effect of using different vision foundation
models in table[5] Firstly, we employed CLIP models with different architectures and evaluated
their performance. It can be observed that the smallest model, i.e., ViT-B/32, performs significantly
worse than the others on the ForenSynths, while the ViT-H/14 achieves slight better results with the
ViT-L/14. This indicates that our method can benefit from larger models. Note that, consistent with
UnivFD [43]], we report our previous results using the CLIP ViT-L/14 to ensure fairness. In addition,
we also extract features using DINOv2, a self-supervised vision foundation model. As shown, the
detection performance using DINOV?2 is significantly lower than that of CLIP. We speculate that
this difference is mainly due to two reasons. First, unlike CLIP, the class token of DINOv2 does
not explicitly model global semantics using image captions. In addition, due to its self-supervised
learning approach, DINO learns more robust representations, making it less sensitive to changes in
image details.

Different Diffusion Models and Timesteps. To

verify the impact of different diffusion models on

the performance of our method, we also evaluate Table 6: Performance of our method across
our method with Stable Diffusion v2.1 (SD2.1) and ~ different diffusion models and timesteps. Mea-
FLUX, considering their open-source availability ~sured in AP(%)

and popularity. NOte that althou gh FLUX was pro— Diffusion Model ForenSynths GenImage New Generator AVG
posed as a Flow Matching model, we still treat it as  Spa 023 97 255 iy
a diffusion model in this context. Results in table FLUX 848 88.3 819 853
show that SD2.1 and FLUX achieve lower detection =~ ———-F* 73 202 7 72
performance compared to SD1.5, with the FLUX

based detector performing the worst. We speculate that this may be because FLUX can accurately
predict the original image at the early stages of the generation process, which affects the progressive
generation behavior of the denoising trajectory and partially disrupts the bias between real and fake




images. Nevertheless, FLUX based detector still achieve promising results. Moreover, we test using
fewer timesteps, 10 steps, and observe that our method can achieve similar results, indicating that it
is not significantly suffered by detection efficiency issues.

5 Conclusions and Discussions

In this paper, we introduce a novel zero-shot method for detecting Al-generated images. Our approach
is motivated by the observation that generated images exhibit faster convergence toward the target
image along their denoising trajectories. To detect synthetic images, we perform DDIM inversion on
the input image, collect intermediate denoising outputs, and compute their similarity to the original
image—where generated images are expected to exhibit higher similarity. Since our method does not
rely on generated images for training, it avoids overfitting to specific generative models or datasets
and demonstrates strong generalization capabilities. We believe our work will inspire future research
to further explore informative features embedded in the image generation process itself.

Limitations. Although our method demonstrates strong generalization capabilities, its performance
may degrade when applied to severely corrupted images, such as those that have undergone heavy
compression or significant blurring. This may be primarily due to such images deviate substantially
from the data distribution learned by diffusion models, making it difficult for the model to accurately
predict the original image. Currently, we compute the final score by directly averaging the similarity
scores obtained from different timesteps and CLIP layers. In the future, we plan to develop an
adaptive weighting scheme to assign importance dynamically, which is expected to further improve
detection performance.

Broader Impacts. Our work aims to combat misinformation and enhance the credibility of content
on social media platforms. The generation and detection of synthetic images form a long-term
adversarial game. As generative models continue to evolve and improve, it becomes essential to
incorporate diverse approaches for effective detection. We hope our work will inspire further research
into discovering and leveraging new forensic cues for identifying Al-generated images.
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A Appendix

A.1 Compared Baselines

Supervised Detectors. 1) FreDect [19]: a detector trained on the DCT space. 2) FreqNet [S9]: it
extracts high-frequency information by performing Fourier transforms in both the pixel space and the
feature space. 3) NPR [60]: it resamples images by first downscaling and then upscaling them, and
computes the residuals with respect to original images to capture local pixel relationships. Since this
approach captures low-level features similar to the high-frequency components of images, we also
categorize it as a frequency-based method. 4) CNNSpot [62]: a detector fine-tuning on pretrained
ResNet. 5) UnivFD [43] this method uses the CLIP model to project images into a unified feature
space, followed by a single linear layer for classification. 6) SIDA [25]: it fine-tunes a pretrained
large multimodal model using custom dataset annotated with tampered labels. The trained model can
provide detailed information related to fake contents. To compute the AP for this method, we use the
logits before the softmax outputs as probabilities for real and fake.

Zero-Shot Detectors. 1) AEROBLADE [48]: This method identifies images generated by latent
diffusion models by reconstructing the original image using a VAE. 2) ZeroFake [53]]: This method
performs DDIM inversion on the image, modifies the prompt during reconstruction, and uses the
SSIM between the reconstructed image and the original to identify fake images. 3) MIBD [7]: It
perturbs the image with noise and uses the similarity between original images and the noises predicted
by a diffusion model as the detection criteria values.

A.2 Datasets

ForenSynths. The test set contains images generated by 7 types of GAN, namely ProGAN [27]],
GauGAN [44], BigGAN [6], StarGAN [9], CycleGAN [69]], StyleGAN [28]], and StyleGAN2 [29].

GenlImage. It includes 8 diffusion models: Stable Diffusion V1.4 [50], Stable Diffusion V.15 [30],
ADM [12], DALLE2, Midjourney [1]], Glide [41]], VQDM (23], and Wukong [2]].

New Generator. We download the test set of COC0O2017, and use generative models to produce
corresponding fake images based on the prompts of each real image, thereby avoiding semantic
bias. The new generators include Stable Diffusion v3 [[16], FLUX [30], Stable Diffusion XL [45],
DALLES3 [3], Firefly and Midjourney-v5 [1]]. We present some examples in fig. [8]

Real

SD3

FLUX

Figure 8: Examples of real images and corresponding generated images.
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Figure 9: Examples of denoising outputs at different timesteps.

A.3 Examples of Denoising Outputs

We perform DDIM inversion on the input image to simulate its generative process, and collect the
denoised outputs at each timestep to compute their similarity with the original image. In fig. [0}
we present some examples of predicted images along the denoising trajectories for both real and

generated images.

A.4 Robustness Experiments

Table 7: Average robustness to common perturbations. We report the average AP (%) scores of
different methods over each type of perturbations at all intensity levels.

Method Clean Blur Crop

JPEG Resize AVG

NPR [60] 884 789 895
UnivFD [43] 913 732 94.83
MIBD [7] 78.7  69.8 79.6
Ours 973 813 98.1

579 88.3 80.6
78.5 89.0 854
72.3 76.8 754
80.7 95.5  90.6

To evaluate the robustness of our method, we apply four

common types of perturbations typically

encountered on social media platforms, each with five levels of intensity. We compare our approach
with state-of-the-art methods from each category, namely NPR [60], UnivFD [43]] and MIBD [7].
In table[7} we report the average AP of each method under different types of perturbations.

A.5 Ablation Study on CLIP Layer

To further verify the importance of the intermediate fea-
tures of CLIP, we extract the features from each layer of
CLIP (ViT-L/14) as image embeddings and test the de-
tection performance of our method. As shown in fig. [T0}
the features extracted from the 15th intermediate layer
achieve the best performance, and the results from these
middle layers are significantly better than those from the
early and late layers. Moreover, the variation in detection
performance across different layers is closely correlated
with the curves presented in fig. ]

16
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Figure 10: Detection performance of dif-
ferent layer.



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the ab-
stract and introduction accurately reflect the pa-
per’s contributions and scope?

Answer: [Yes]

Justification: We have faithfully describe our con-
tributions in the abstract and introduction.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations
of the work performed by the authors?

Answer: [Yes]
Justification:

Guidelines: We have discussed the limitations of
our method in the conclusion section.

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the
paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: We provide clear descriptions or ref-
erences of the relevant theoretical assumptions.

Guidelines:
* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented

by formal proofs provided in appendix or supplemental material.
* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the
information needed to reproduce the main exper-
imental results of the paper to the extent that it
affects the main claims and/or conclusions of the
paper (regardless of whether the code and data
are provided or not)?

Answer: [Yes]

Justification: We have provided a thorough de-
scription of the settings of our method, including
the models, datasets and implementation details.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access
to the data and code, with sufficient instructions
to faithfully reproduce the main experimental
results, as described in supplemental material?

Answer: [Yes]

Justification: We have provided the project demo
in the supplementary material, and we will open
the source code once our paper gets published.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training
and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.)
necessary to understand the results?

Answer: [Yes]

Justification: We specify the key configurations
about the implementation details in the experi-
ment section.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance
Question: Does the paper report error bars suit-
ably and correctly defined or other appropriate

information about the statistical significance of
the experiments?
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Answer:

Justification: Error bars are not reported because
it would be too computationally expensive.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper
provide sufficient information on the computer
resources (type of compute workers, memory,
time of execution) needed to reproduce the exper-
iments?

Answer:
Justification: We provide the type of GPU used
in our experiments. While we do not report the

execution time for each experiment, as this metric
is not particularly relevant to our task.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in
the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.
cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our researches conducted in this
paper conform with NeurIPS Code of Ethics.
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Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential
positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential societal
impacts of this work in the conclusion section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards
that have been put in place for responsible re-
lease of data or models that have a high risk for
misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]
Justification: Our research poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners
of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and
terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We have cited the original papers
that produced the code packages or datasets. And
we also state the versions of the assets are used.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

14.

Question: Are new assets introduced in the pa-
per well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human sub-
jects

Question: For crowdsourcing experiments and
research with human subjects, does the paper
include the full text of instructions given to par-
ticipants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]
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15.

16.

Justification: Our paper does not involve crowd-
sourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or
equivalent for research with human subjects

Question: Does the paper describe potential risks
incurred by study participants, whether such risks
were disclosed to the subjects, and whether In-
stitutional Review Board (IRB) approvals (or an
equivalent approval/review based on the require-
ments of your country or institution) were ob-
tained?

Answer: [NA]

Justification: Our paper does not involve crowd-
sourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage
of LLMs if it is an important, original, or non-
standard component of the core methods in this
research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does
not impact the core methodology, scientific rigor-
ousness, or originality of the research, declaration
is not required.

Answer: [NA]

Justification: The core method development in
this research does not involve LLMs as any im-
portant components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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