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Abstract

This paper concerns the application of techniques from optimal transport (OT) to mean field
control (MFC), in which the probability measures of interest in OT correspond to empirical
distributions associated with a large collection of controlled agents. The control objective
of interest motivates a one-sided relaxation of OT, in which the first marginal is fixed and
the second marginal is constrained to a “moment class”: a set of probability measures
defined by generalized moment constraints. This relaxation is particularly interesting for
control problems as it enables the coordination of agents without the need to know the
desired distribution beforehand. The inclusion of an entropic regularizer is motivated by
both computational considerations, and also to impose hard constraints on agent behavior. A
computational approach inspired by the Sinkhorn algorithm is proposed to solve this problem.
This new approach to distributed control is illustrated with an application of charging a
fleet of electric vehicles while satisfying grid constraints. An online version is proposed and
applied in a case study on the ElaadNL dataset containing 10,000 electric vehicle charging
sessions in the Netherlands. This empirical validation demonstrates the applicability of the
proposed approach to optimizing flexibility while respecting grid constraints.

1 INTRODUCTION

We address the following control problem (1), motivated by applications involving the coordination of a large
population of electricity-consuming agents subject to global constraints, such as a maximum aggregate power
consumption.

Consider a set of K homogeneous agents, each characterized by a state:

Xk = (Sk,Wk) ∈ X , 1 ≤ k ≤ K.

Here, Sk denotes a non-controllable variable, while Wk is a control (or decision) variable. An electric vehicle
(EV) charging use case, providing a detailed concrete example, is presented in Section 3.

We consider a central planner that coordinates a large population of agents to minimize a cost c : X → R,
subject to M aggregate constraints on the total population (e.g. requiring that the total power consumption
of all agents remain below a prescribed threshold during M time steps: ∀m ∈ {1, . . . ,M},

∑K
k=1 fm(Xk) ≤ 0,

where f : X → RM denotes a mapping from state X to a consumption profile f(X) of an agent, and fm(x) is
the m-th component of f(x). The optimization problem for the central planner can thus be expressed as

min
Wk

{
K∑
k=1

c(Xk) :
K∑
k=1

f(Xk) ≤ 0
}
, (1)

where the inequality is on each component m ∈ {1, . . . ,M}. The use case considered in Sections 3 and 4 is
the control of a large population of EVs whose state Sk is the EV’s arrival time at the parking lot and its
initial state of charge, and the control Wk is the starting charging time. The cost c in this case could be seen
as a penalty for deviating from a planned schedule.
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A major challenge with this class of problems is that the computational complexity grows with the number of
agents. For instance, the dataset considered in Section 4 contains several thousand EV charging sessions.
Individually coordinating each agent while satisfying its own specific operational constraints is therefore often
computationally prohibitive in practice, or may result in suboptimal choices. A popular approach to address
this scalability issue is to adopt an MFC framework. In this setting, the number of agents is assumed to be
sufficiently large so that the impact of any single agent on the aggregate variables becomes negligible (Lasry
& Lions, 2007). What matters is then the control of the entire population, modeled through a probability
distribution µ of X = (S,W ) over X , and we denote ν, the distribution of the non-controllable variable S.
This gives us the mean field problem approximating equation 1 when K is large:

min
µ

{∫
X
c(x)dµ(x) : ∀s ∈ S

∫
W
dµ(s, w) = ν(s) and

∫
X
f(x)dµ(x) ≤ 0

}
. (2)

It is important to note that the optimization is only done on the control variable W and the distribution ν
is not modified; this is what we will subsequently call "preserving the distribution of the non-controllable
variables”.

Looking at equation 2, one may interpret the problem as transporting the initial probability distribution of
X to another distribution, as in the OT theory. The key difference here is that the target distribution is not
known a priori. In fact, determining this distribution is precisely the objective of the problem (e.g. the optimal
charging policy for the fleet of EVs). The only available information about this target distribution comes
from the aggregate constraints

∫
X f(x) dµ(x) ≤ 0, which will hereafter be referred to as moment constraints.

Recent works have introduced the Moment-Constrained Optimal Transport (MCOT) framework (Alfonsi
et al., 2020), in which both the initial and final distributions are required to satisfy moment constraints,
with the aim of approximating the classical OT problem, under appropriate assumptions, when the number
of moment constraints tends to infinity. The novelty of our work is that we propose a new approach for
modeling MFC problems as a one-sided MCOT variant, in which only the final distribution is required to
satisfy the moment constraints. This one-sided variant is particularly well-suited for MFC, where the initial
distribution corresponds to the nominal dynamics of the system, while the target one is only specified through
the moment constraints. For example, in the demand response applications in power grids, the coordinator
only cares about the constraints on the power consumption of the whole population of flexible devices, and
not about the detailed distribution over all individual device state trajectories.

Contributions Our contributions are the following:

• We propose a new problem Moment Constrained Optimal Transport for Control (MCOT-C) inspired
by OT and designed to achieve MFC goals: (i) Agents are controlled to meet a global constraint; (ii)
Their individual hard constraints must be satisfied, either physical (e.g. an EV cannot be plugged in
before it arrives, and its state of charge on arrival, or its departing time cannot be controlled) or in
terms of quality of service (e.g. each EV must be fully charged when leaving). A tunable regularizing
term, similar to the one introduced in entropic OT, is introduced for computational reasons but also
to achieve the goal (ii).

• We propose a projected gradient descent algorithm to solve MCOT-C and highlight its similarity to
the Sinkhorn algorithm.

• We extend this approach to an online setting, where the data about the EVs are progressively
discovered and show its applicability on a case study with a real data set (OpenDataset, 2019).

• Compared to the existing literature on MFC for demand response, our model allows to take into
account broader set of global constraints (e.g. aggregate power consumption ramping rate).

Literature Many academic communities are interested in efficiently transforming probability measures.
Examples include the fully probabilistic control design of Kárný (1996) and the related linearly-solvable
Markov decision framework (Todorov, 2007). Several methods have been designed in the field of MFC or
ensemble control, with applications ranging from power systems to medicine (Hochberg et al., 2006; Chertkov
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& Chernyak, 2018). These techniques can also be relaxed (Cammardella et al., 2020; Bušić & Meyn, 2018) or
regularized, often via a Kullback-Leibler term (Chertkov & Chernyak, 2018; Todorov, 2007) for computational
reasons. Similar objectives of controlling a large population of electricity-consuming agents have been explored
in the distributed control framework (Chertkov & Chernyak, 2018; Cammardella et al., 2020; Bušić & Meyn,
2018). In some cases, the problem is overly constrained by the global constraints, making it difficult or even
impossible to identify feasible solutions. To address this, relaxations of the functions f via quadratic penalties
have been proposed (Cammardella et al., 2020; Bušić & Meyn, 2018). Additional examples and surveys can
be found in Garrabe & Russo (2022).

OT theory first emerged in the 18th century, and more recently has become a significant tool in the machine
learning toolbox (Villani, 2008; Peyré et al., 2019). The goal is simply described: given two random variables
X and Y , find a joint probability measure π∗ for the pair (X,Y ) that preserves the marginals, and minimizes
a given cost. The introduction of an entropic regularizer, which leads to solutions that are easily computable
by the Sinkhorn algorithm (Cuturi, 2013), has become standard in OT. This development led to the entropic
optimal transport problem, which is closely related to the one considered here (except that a moment
constraint replaces the constraint on the second marginal), both in its formulation and in the algorithms
used to solve it. Several authors have proposed relaxations on the marginals of the OT problem, such as
unbalanced OT, where an entropic penalization of the deviation from the marginals is introduced (Chizat,
2017). Relaxations of marginals have been considered to improve numerical performance or to approximate
the OT problem (Balaji et al., 2020; Le et al., 2021; Alfonsi et al., 2020) but, to the best of our knowledge,
never as a natural representation of an MFC problem.

Connections between OT and control theory have been well established, most notably through the Ben-
amou–Brenier formulation (Benamou & Brenier, 2000), which bridges OT and fluid mechanics. From a
control-theoretic viewpoint, this formulation can be interpreted as an optimal control problem in which an
initial distribution (at the beginning of a time horizon) is transported toward a target distribution (at the end
of the horizon), while minimizing the cumulative cost incurred along the trajectory. More recent research has
further strengthened this link by connecting OT with dynamic programming and multi-marginal formulations
(Terpin et al., 2024), thereby showing that certain classes of optimal control problems can be recast as OT
problems. Another approach (Liu et al., 2022) addresses a mean field game where the target distribution is
known exactly and must be reached, using Deep Reinforcement Learning. In the present work, we do not
adopt the Benamou–Brenier framework; instead, the distributions considered here should be understood as
policies over the course of a day, rather than states being transported.

Notation The state space X is assumed to be a closed subset of RN with N ≥ 1 and we denote B(A) the
set of Borel probability measures on a given set A. For π a bivariate distribution on X , its marginals will
be denoted π1 and π2 such that ∀x ∈ X , π1(x) =

∫
X π(x, dy) and ∀y ∈ X , π2(y) =

∫
X π(dx, y). We denote

U(µ1, µ2) = {π ∈ B(X × X ) : π1 = µ1 , π2 = µ2}, the set B(X × X ), the set of bivariate distributions having
for marginals µ1 and µ2. The scalar product for bivariate distributions π and measurables functions g is
defined by ⟨π, f⟩ :=

∫
X ×X f(x, y)π(dx, dy).

2 MOMENT CONSTRAINED OPTIMAL TRANSPORT FOR CONTROL

2.1 Statement of the problem

The goal of the OT problem introduced by Kantorovich (1942) is to find a transport plan π minimizing a cost
⟨π, c⟩ =

∫
X ×X c(x, y)dπ(x, y) subject to the constraint that the marginals of π are exactly µ1 and µ2. In this

section, we aim to formulate the MFC problem introduced in equation 2, in the framework of OT, where the
second marginal is not fully specified but must belong to a set of distributions respecting moment constraints.

In this framework, the first marginal π1 corresponds to a nominal behavior µ1, which is given, whereas the
second marginal, denoted by π2, corresponds to the optimized distribution within the following moment class,

Pf = {µ ∈ B(X ) : ⟨µ, fm⟩ ≤ 0 ∀ 1 ≤ m ≤M}, (3)

where f : X → RM encodes M constraints. An equality constraint ⟨µ, fm⟩ = 0 can be expressed as a pair of
inequality constraints, thus equality constraints can also be imposed when required. Recall that in MFC,
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the distribution ν of the non-controllable variable is fixed. In this framework, this implies that the bivariate
distribution π belongs to

K(µ1) = {π ∈ B(X × X ) : π((xs, xw), (ys, yw)) = µ1(dxs, dxw)T ((xs, xw), dyw)δxs
(dys)},

where δ is the Dirac measure, and T ranges over all probability kernels. That is, if π ∈ K(µ1), then∫
W π2(ys, dyw) =

∫
W π1(ys, dxw) = ν(ys), which corresponds to our goal of preserving ν on S, for both

marginals. Lastly, we will use the following Kullback-Leibler (KL) regularizer, similar to that in Cuturi
(2013):

DKL(π∥µ1 ⊗ µ2) =
∫

X ×X
log

(
π(x, y)

µ1(x)µ2(y)

)
π(dx, dy). (4)

However, in our case, µ2 is not the second marginal of π, but left as a design parameter (in our case the second
marginal is not known a priori, as it is only constrained to belong to Pf ). This regularizer is introduced for
three reasons. First, the minimization of a KL-divergence enforces absolute continuity between µ2 and π2,
meaning that the support of π2 is included in the support of µ2. In practice, one defines the support of µ2 as
the set of physically feasible or desirable states and controls (e.g., ensuring that electric vehicles are charged
at the end of their time slot or that charging does not occur before arrival), thereby preventing π2 from
assigning mass to physically impossible or undesirable states. Second, unlike in certain MFC methods where
the entropic penalization is taken with respect to µ1 (Bušić & Meyn, 2018), here one has the flexibility to
design µ2. For instance, one may rather rely on a heuristically designed µ2 that may give faster convergence,
or, in the absence of one, choose a uniform distribution over the previously defined support (that may be
different than the one of µ1). Finally, it has a computational interest, as it allows for obtaining explicit
solutions, as shown in Section 2.

This allows us to introduce the MFC problem:

Problem MCOT-C: Moment Constrained Optimal Transport for Control

min
π

{
⟨π, c⟩+ εDKL(π∥µ1 ⊗ µ2) : π ∈ K(µ1) , π2 ∈ Pf

}
. (5)

2.2 Dual problem

This subsection defines the dual and the theoretical properties needed for the algorithm but more details on
duality theory and proofs may be found in the appendices A and B. The theoretical results of this problem in
the Gaussian case are presented in appendix C. An example that illustrates the impact of regularization can
be found in appendix D.

Assumptions Throughout this work, we will consider the following assumptions:

(A1) c : X × X → R+ and f : X → RM are continuous, and there is an open neighborhood N ⊂ RM
containing 0 such that Pf−r is non-empty for all r ∈ N . The latter condition implies a robust feasibility
under small perturbations, providing a Slater-type condition necessary for strong duality.

(A2) µ1 and µ2 have compact support, and the problem is feasible under perturbations: for any r ∈ N ,
there is π satisfying π2 ∈ Pf−r and π1 = µ1. This guarantees the existence of feasible transport plans.

(A3) Σ0 := Cov (Y ) is positive definite when Y ∼ µ2. This implies non-redundancy of constraints, strict
convexity of the dual problem and uniqueness of the Lagrange multiplier λ∗. From a numerical point of view,
it provides numerical stability for gradient descent algorithms.

In the EV charging use case in Section 3, the cost c(x, y) (quadratic penalties on charging time deviations)
and the aggregate constraint functions f(m) (bounds on the maximum power consumption or its gradient)
are continuous, and distributions µ1 and µ2 have bounded support (defined by intervals). Assumption (A3)
is, in particular, not true if Y ∼ µ2 has linear dependence. In a concrete setting, (A3) implies that each
variable in Y is not a linear combination of the others. If this is the case, it is easy to change Y by removing
this variable.

4



Under review as submission to TMLR

Dual The dual of MCOT-C is by definition the function φ∗ : RM+ → R ∪ {−∞},

φ∗(λ) = εmin
π

{
−ε−1⟨π, ℓλ0 ⟩+DKL(π∥µ1 ⊗ µ2) : π ∈ K(µ1)}, (6)

where we introduce the notation ℓλ0 (x, y) = −λTf(y)− c(x, y) , ∀x, y ∈ X .

For each λ ∈ RM+ , ε > 0 and x = (xs, xw) ∈ X , we denote

Bλ,ε(x) = ε log
∫
yw∈W

exp
(
ε−1ℓλ0 ((xs, xw), (xs, yw)

)
µ2(dyw). (7)

Proposition 1. Subject to (A1)–(A3),

(i) The infimum equation 6 gives φ∗(λ) = −⟨µ1, Bλ,ε⟩.

(ii) The maximizer is πλ(x, y) = Tλ(x, y)µ1(x) with ∀x = (xs, ys) ∈ X ,∀y = (xs, ys) ∈ X ,

Tλ(x, y) = µ2(y)δxs
(ys) exp(Lλ(x, y)) , Lλ(x, y) = ε−1{ℓλ0 (x, y)−Bλ,ε(x)} , (8a)

and µλ(y) = πλ2 (y) ∀y ∈ X .

(iii) There is no duality gap: there is a unique λ∗ ∈ RM+ satisfying

φ∗(λ∗) = min
π

{
⟨π, c⟩+ εDKL(π∥µ1 ⊗ µ2) : π ∈ K(µ1) , π2 ∈ Pf

}
. (8b)

It is convenient to make the change of variables ζ = ε−1λ, and consider J (ζ) :=−ε−1φ∗(εζ).

We turn next to the representation of the derivatives of the dual function. The quantity ε−1Bεζ,ε(x) is a log
moment generating function for each x; for this reason, it is not difficult to obtain suggestive expressions for
the first and second derivatives with respect to ζ.
Proposition 2. The function J is convex and continuously differentiable. The first and second derivatives
of J admit the following representations:

∇J (ζ) = mλ , ∇2J (ζ) = Σλ , (9a)

in which mλ
i = ⟨µλ, fi⟩ = Eλ[fi(Y )] for each i, and the Hessian equation 9a coincides with the conditional

covariance:
Σλ = Eλ[f(Y )f(Y )T]− Eλ

[
Eλ[f(Y ) | X]Eλ[f(Y ) | X]T

]
. (9b)

It follows that J is strictly convex.
Lemma 1. Suppose that (A1)–(A3) hold. Then, the covariance Σλ is full rank for any λ ∈ RM+ .

2.3 Algorithm: Semi-Sinkhorn with Gradient Descent

For numerical experiments, the state space X will be discretized and we will denote by N its cardinality. The
cost will be represented by a matrix C ∈ RN×N

+ . The solution to MCOT-C obtained in Proposition 1 may
be expressed as

π∗
i,j = uiGi,j exp (−ζ∗⊺fj), (10)

where G is the Gibbs kernel defined by Gi,j = exp(−Ci,j/ε)µ2,j and ui = µ1,i/
∑
j Gi,je

−ζ∗⊺f . As shown in
Proposition 2, it is possible to obtain a gradient descent algorithm 1, which looks similar to the Sinkhorn
algorithm (Cuturi, 2013), the difference being the update of ζk.
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Algorithm 1 Semi-Sinkhorn with Gradient Descent
Input: µ1, C, f
ζ0 ← 0M
k ← 0
while k ≤ kmax do
uk+1
i ← µ1,i/

∑
j Gi,je

−ζk⊺
f

ζk+1 ← ζk +
∑
i,j fju

k+1
i Gi,je

−ζk⊺
f

ζk+1 ← max{0, ζk+1}
k ← k + 1

end while

It is also possible to perform Newton’s method
rather than gradient descent by changing the
update of ζk by

ζk+1 ← ζk + (Σεζ
k

)−1
∑
i,j

fju
k
iGi,je

−ζk⊺f ,

where Σεζk is the Hessian defined in equa-
tion 9b. In cases where the starting point
ζ0 is close to the optimum ζ∗, we can obtain
quadratic convergence (C.T.Kelley, 1999).

3 Use Case: EV Charging

3.1 Presentation of the use case

Consider a large fleet of electric vehicles (EVs) arriving to a charging station at random times and with
random state of charge, according to an initial law ν0. There is a central planner whose goal is to maintain
constraints for the aggregate power consumption, as well as constraints for each vehicle owner. The vehicles
arrive during the period [9am, 10 : 30am], and must be fully charged by 5pm.

The goal is power tracking: total power consumption should follow a reference signal (rt) over a time period
[t1, t2], with 9am ≤ t1 < t2 ≤ 5pm. This objective arises from the need to ensure real-time balance between
power production and demand in electricity grids, where maintaining frequency stability requires aggregate
consumption to closely follow regulation signals (Srivastava et al., 2022). This can be formulated as an
MCOT-C problem over the space of distributions on X = S ×W with S = [0, T ]× [0, 1] and W = [0, T ]. The
two first coordinates of x ∈ X are the time and the battery state of charge at the arrival and the third is the
time when the EV will start charging, called the plugging time; so x ∈ X is of the form x = (ta, b, tc). The
function f is defined as:

∀x = (ta, b, tc) ∈ X , t ∈ [0, T ], ft(x) =
{
p if t ∈ [tc, tc + 1−b

v ]
0 otherwise ,

where p is the power consumption (here we normalize it to 1) and v = 0.25h−1 is the speed of charge of the
EVs.

At each iteration, a gradient is calculated on X ×W, with complexity of computing the gradient at each
iteration of the algorithm O(n3

time × nbattery), with ntime = 25 and nbattery = 20, being the number of
discretization points in time and battery state of charge. We use the MCOT-C problem presented in Section 2
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(b) µ2
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(c) µλ without gradient
control
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Time (h)

(d) µλ with gradient control

Figure 1: For vehicles arriving at 10am : (a) µ1 (b) µ2 designed to encode physical and quality of service
constraints; (c) optimized µ without gradient control; (d) optimized µ with gradient control.

6



Under review as submission to TMLR

9 10 11 12 13 14 15 16 17

0

0.2

0.4

0.6

Time(h)

Co
ns

um
pt

io
n

9 10 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17
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Figure 2: (a) optimized consumption compared to the nominal with unplugging disabled; (b) optimized
consumption with unplugging enabled; (c) optimal consumption with constraint infeasible without unplugging.

with ε = 0.03 being a compromise between computational stability and having a low value (as any non-negative
value will enforce the physical constraints). This regularizer penalizes the entropic discrepancy between π
and µ1 ⊗ µ2. As a result, it pushes the optimal policy π2 to remain close to µ2, which will later be chosen as
a uniform distribution. We consider a version of problem MCOT-C with µ1 modeling the naive decision rule
in which a vehicle initiates charging on arrival:

µ1(ta, b, tc) =
{
ν(ta, b) if ta = tc
0 otherwise .

Initiation of charging must be after the arrival time (physical constraint) and every vehicle must be fully
charged no later than 5pm (quality of service constraint). The following distribution meets these requirements,
µ2(ta, b, tc) = Unif [ta,T− 1−b

v ](tc), with v being the charging speed and Unif [a,b] being the density of uniform
distribution over [a, b]. It is assumed that drivers wish to initiate charging as soon as possible: this makes it
easier for the driver to manage an unforeseen event and may make it easier for the central planner to respond
to a grid contingency. This preference is modeled through the cost c((., ., txc ), (., ., tyc )) = (txc − tyc )2.

3.2 Numerical Results

EV charging without unplugging The first results described here impose an additional constraint: once
charging begins, it cannot be interrupted until the vehicle is fully charged. In the following simulations,
a constraint on power consumption is imposed for the time period beginning at t1 = 10am and ending at
t2 = 12pm. As the optimizer µ∗ will be mutually absolutely continuous with respect to µ2, both physical
constraints and constraints on quality of service are imposed through choice of µ2. In Figure 1(b), the
constraints enforced on µ2 can be observed:

• Quality of Service constraint: At 5 pm, all EVs must be fully charged. Thus, if a vehicle needs ∆t
minutes to charge, then the probability of connecting between 5pm−∆t and 5pm is zero. This is
observed by the completely white lower right triangle.

• Physical constraint: Vehicles cannot charge before arriving, so there is no mass probability before
10am for vehicles arriving at 10am.

These constraints are found in the µλ showed in Figure 1(c) and 1(d), as µλ is a reweighting of µ2. Aggregated
consumption displayed in Fig. 2 (a) shows that the first vehicles to arrive will start charging, but most of
those arriving just before 10:00 am will initiate charging only if they arrive with a high battery level so that
they are fully charged before the start of the constraint window from 10:00 am to 12:00 pm.

Gradient control to flatten the curve For real-life applications, controlling overall consumption over part
of the day through equality of consumption to a predefined signal can lead to a peak when the constraint is
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released. This phenomenon, due to the penalization of distant charging times, is observed in the different
plots of Fig. 2. Consumption can be smoothed by introducing the derivative constraints

∀t ∈ [0, T ], |⟨gt, µ⟩| ≤ gmax ,

where gt = ft+1 − ft.

9 10 11 12 13 14 15 16 17
0
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0.3
0.4
0.5
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Nominal Without Gradient control
Constraint With Gradient control

Time (h)

C
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m

pt
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n

Figure 3: Optimal consumption with and without gradient
control of the overall consumption

In this example, gmax = 0.2, thus the overall
consumption must not increase by more than
0.2 per hour, which is what we observe in Fig. 3:
consumption at 12pm increases more slowly.
We can also see the impact of the constraint
on the gradient by looking at the difference be-
tween Figure 1(b) and 1(c). In both cases, ve-
hicles arriving with a high battery level are put
to charge first. This comes from the quadratic
penalty on the start of the charging time: We
prefer to charge those which will quickly be com-
pletely charged and which will free up space
for those which will take longer.

EV charging with unplugging The model
can be extended by authorizing a vehicle to
interrupt and restart charging. In this case,
X is extended with two extra time dimensions
corresponding to an unplugging time and a re-
plugging time. A second term is included in c
that is quadratic in the difference of these times, designed to discourage charging interruption.

We find that unplugging does not impact significantly the optimal solution. Fig. 2 (a) and (b) provide a
comparison. Only a slight difference is visible before 10 am: A number of vehicles start to charge before the
constraint, stop at 10 am and restart afterwards. However, in some cases, this extra flexibility in charging is
necessary to obtain a feasible solution. Fig. 2 (c) shows results obtained when power consumption is not
permitted in the middle of the day. In any feasible solution, a portion of vehicles stop charging for a period
before they are fully charged.

Comparison with piecewise deterministic Markov decision process approach for EV charging control proposed
by (Séguret et al., 2024) is provided in Appendix F.

4 ONLINE MCOT-C FOR EV CHARGING

In this section, we provide an online version of MCOT-C and test it on a real dataset.

4.1 Formulation of Online MCOT-C

First, while some theoretical models assume perfect knowledge of the battery level at each time step (Séguret,
2023), this value is hard to obtain in practice even if estimates are available (Rezvanizaniani et al., 2014) and
existing datasets do not take this data into account (Amara-Ouali et al., 2021). Our choice on this subject is
to focus on the leaving time tl and the charging need ∆tn, which is the charging time requested by the EV
owner. These parameters are easier to access and are consistent with other articles studying real datasets
(He et al., 2012; Sadeghianpourhamami et al., 2018). Arriving EVs are therefore defined on the following
state space:

S = [0, 24]︸ ︷︷ ︸
Arriving time

ta

× [0, 24]︸ ︷︷ ︸
Leaving time

tl

× [0, 24]︸ ︷︷ ︸
Charging need

∆tn

×{1, . . . , npower}︸ ︷︷ ︸
Max power
pmax

. (11a)
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At each time step t ∈ [0, 24], EVs are controlled through their charging starting time tc. The control space is
thus defined as:

W(t) = [t, 24]︸ ︷︷ ︸
Plugging time tc

, (11b)

and we define the product space: X (t) = S ×W(t). At each time step t ∈ [0, 24],

1. New EVs arrive at the charging station and are added to the list of vehicles already present and not
charging yet {S(t)

i } = {Si : tia ≤ t and tic ≥ t}. The empirical ν(t) is updated:

ν(t)(s) =
{

1
Nt

∑
i δ(s− S

(t)
i ) if ta ≤ t

N
Nt
ν(s) if ta > t

, (12a)

where Nt =
∫

S
∑
i δ(s− S

(t)
i )ds+N

∫
S ν(s)1ta>t(s)ds is the number of vehicles already arrived and

not charging plus the number of vehicles that are estimated to arrive.

2. µ(t)
1 is defined by the "Plug when Arrive" strategy: ∀s = (ta, tl,∆tn, p) ∈ S,

µ
(t)
1 (s, tc) = ν(t)(s)δ(tc − ta). (12b)

3. µ(t)
2 is defined as "Plug with a uniform distribution" strategy:
∀s = (ta, tl,∆tn, p) ∈ S, tc ∈ W,

µ
(t)
2 (s, tc) =

 Unif [ta,tl−∆tn](tc)ν(t)(s) if ta > t

Unif [t,tl−∆tn](tc)ν(t)(s) if ta ≤ t
, (12c)

where Unif [a, b] is the density of the uniform distribution on the segment [a, b]. For the sake of
simplicity, we assume that there is no outlier (no vehicle that would require more charging time
than the difference between their arrival time and leaving time in particular). As in Section 3, µ2 is
designed to incorporate the hard constraint of respecting the quality of service through the absolute
continuity of µ with µ2 (due to the KL term).

4. The central planner will minimize equation 5 to obtain:

π(t) = arg min
π∈K(µ(t)

1 )
π2∈P

f(t)

⟨π, c⟩+ εDKL(π||µ(t)
1 ⊗ µ

(t)
2 ).

The function c chosen here is a quadratic penalization: c((sx, txc ), (sy, tyc )) = (txc − tyc )2. In this case,
as we compare it with the "Plug when Arrive" strategy for which txc = txa, c is a penalty for starting
charging long after the vehicle arrives.

5. For each vehicle S(t)
i , its plugging time tic is randomly chosen according to π(t)

2 (S(t)
i , .). f is then

updated as: f (t+1) = f (t) + 1
N

∑
tic=t

f(S(t)
i ). Vehicles S(t)

i such that tic = t begin their charging.

4.2 Algorithm

In Algorithm 2, Alg(ζ(t), µ1, µ2) returns ζ(t+1) the value of Algorithm 1 with the stopping criterion
Nt∥(⟨f (t), µζ(t)⟩)+∥ ≤ Nκ and (.)+ is the positive part function: ∀x ∈ RM , (x)+

m = max(0, xm). The
norm ∥∥ can be chosen as desired, but a good candidate is the infinite norm. With this norm, Nκ corresponds
to the maximum error on all the vehicles that we can afford to have, so it should be chosen relatively small.
We can estimate that this error evolves linearly with N, which explains the multiplication by N (as N is the

9
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order of magnitude of the vehicles that will arrive during the day). We define the convergence error at time t
as Et(ζ) = Nt

N ∥(⟨f (t), µζ(t)⟩)+∥ and νr, the real arrival law of EVs. With the definitions of µ(t)
2 and µ

(t)
1 in

equation 12 and Proposition 1, we define Fζ as: ∀s ∈ S, Fζ(s) =


∫

W µ
(t)
ζ (s, tc)f(s, tc)dtc

ν(t)(s) if ν(t)(s) ̸= 0

0 otherwise
.

Proposition 3. (i) Et+1(ζt) is bounded by κ, a stochastic term, and a term corresponding to a poor prediction
of the law ν:

Et+1(ζt) ≤ κ+
∥∥∥( ∑

tia=t+1

Fζ(S(t+1)
i )
N

− Eνr
[Fζ1ta=t+1]

)+∥∥∥ +
∥∥∥(

Eνr
[Fζ1ta=t+1]− Eν [Fζ1ta=t+1]

)+∥∥∥.
(ii) The second term could be bounded with the Bienaymé–Chebyshev inequality to obtain:

P
(∥∥∥( ∑

tia=t+1

Fζ(S(t+1)
i )
N

− Eνr
[Fζ1ta=t+1]

)+∥∥∥ ≥ κ0

)
≤ Vνr

[Fζ1ta=t+1]
Nκ2

0
.

Algorithm 2 Online MCOT-C
Input: ν, N , (fm)1≤m≤M , κ
Output: V= {} the list of vehicles with their plug-
ging time
S← {}
ζ0 ← 0M
for t from 0 to T do

Add to S, vehicles that arrived at time t
Compute Nt
Update ν, µ1 and µ2 as in equation 12
ζm ← Alg(ζ, µ1, µ2, y)
for Si in S do
tc is generated according to Mu(ζ, µ1, µ2, (Si, .))

if tc = t then
f ← f − 1

N f(Si)
Si is removed from S and (Si, tc) is added to
V

end if
end for

end for

Thus, there is no need to start the optimization from
scratch at each time step, as the solution from the
previous step provides a natural warm start for ζ.
This starting point is better if (i) the estimation of
the arrival law of the vehicles ν is close from the real
arrival law of vehicles νr and (ii) if N , the order of
magnitude of EVs is large.

4.3 Data Overview

The dataset used in this paper is composed of 10.000
charging sessions from public charging stations oper-
ated by EVnetNL in the Netherlands (OpenDataset,
2019), in the year 2019. For each charging session,
several pieces of information are provided including
the arrival time ta, the leaving time tl, the plugging
time ∆tn, and the max power P . A more detailed
description can be found in (Refa & Hubbers, 2019),
and this dataset has already been used for clustering
algorithms (Straka & Buzna, 2019), but not yet for
MFC.

There is a difference between weekdays and weekend days, so in this paper, we will consider the 7253
charging sessions happening during weekdays and divide them randomly. 90% of these weekdays will form a
training set of 231 days (6540 charging sessions) and will be considered historical data. A test day is created
with the remaining 10% of weekdays (21 days : 674 charging sessions) by grouping the corresponding 713
vehicle arrivals. The predicted distribution ν is computed on the training set considered historical data and
N = 6210

9 = 690 is the number of vehicles expected to arrive on this test day. In equation 5, we set ε = 0.1
because we want a relatively low value to limit the impact of entropic relaxation (term in Kullback-Leibler),
but not too low, as this risks posing computational problems (because of the ε−1 in the exponential in
Proposition 1.

To compute the gradient at each iteration of Algorithm 1, we need to discretize the state space X : The day is
divided into T + 1 = 97 steps (indexed from 0 to T ) with a stepsize ∆t of 15 minutes, which allows rapid grid
constraint changes to be taken into account. For the power discretization, we group each EV between 4kW,
7.5kW, and 12kW. This choice of discretization is standard (used for example in (Sadeghianpourhamami

10
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Figure 4: (a) Consumptions for the "Plug when Arrive" µ1 strategy with the arrival of EV predicted with ν
and with the real distribution of EV; (b) Optimized Consumption for a constraint of 650kW for the aggregated
consumption; (c) Optimized consumption for the same maximum power constraint and a constraint of
120kW/h for the gradient of the aggregated consumption.

et al., 2018)). We assume here that vehicles plugged the day before are not affected by our strategy, because
they are already connected, but their consumption is taken into account in order to come closer to reality,
particularly in the case of controlling the gradient of aggregate consumption. We therefore consider the
aggregate consumption of vehicles arriving throughout the day and that of vehicles arriving the day before
(this impact is mainly present before 8 a.m.).

4.4 Control of the aggregated consumption

On Fig. 4, the nominal consumption in blue corresponds to what is expected by the charging station, these
are the historical data with the plugging strategy µ1 "Plug when Arrive". On (a), we can see the difference
with the consumption for the real arrival of EV during the day with the same plugging strategy. The first
peak in the morning lasts longer, while the second peak seems to be weaker. On (b), a constraint imposed
by the charging station over the power consumed of rf = 650kW is added through the moment constraints:
define for each m the function fm via fm(s, tc) = pmax if m ∈ [tc, tc + ∆tn], fm(s, tc) = 0 otherwise, and
impose for each m the constraint ⟨fm, µ⟩ − rf ≤ 0.

This value of 650kW is chosen arbitrarily here, and any other can be chosen as long as it remains realistic.
This optimization makes it possible to exploit flexibility while respecting the imposed constraint, despite the
prediction error on the length of the first peak. Peaks above the maximum constraint correspond to unforeseen
arrivals of a large number of vehicles that must connect directly. It can also be due to the convergence not
completely achieved by the algorithm, which depends on the value of κ here chosen at 10kW.

4.5 Control of the gradient of the aggregated consumption

Another constraint that we want to respect in order to preserve the grid stability is the speed with which
consumption will increase or decrease. On Fig. 4 (a) (b), we see a strong peak at the start of the day. We
will seek to smooth this peak by imposing a constraint on the gradient of the power consumed. On (c),
this constraint imposed by the charging station of rg = 100kW/h is added through the moment constraints:
∀m ∈ [0, T − 1],∀(s, tc) ∈ X (t), gm(s, tc) = fm+1(s, tc) − fm(s, tc) and we impose: ∀m ∈ [0, T − 1],−rg ≤
N⟨gm, µ⟩ ≤ rg.

This addition of constraints makes it possible to smooth out the slope which begins around 6am. There
are always irregularities due to deviation from prediction and the slight excess of the constraint on the first
peak can be explained by the maximum exploitation of the flexibility of the vehicles to respect the gradient
constraint, which does not leave enough flexibility when vehicles arrive between 9am and 3pm and have to be
connected directly.

11
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4.6 Sensitivity to the difference between actual EV arrival and its prediction
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Figure 5: When the prediction ν differs greatly from
the reality

This model depends on the quality of the predic-
tion ν made for the rest of the day. In this part,
we try to test the robustness against this quality
of prediction, by twisting the previous prediction:
the central planner expects 30% less vehicles before
12am and 30% more vehicles after. The aggregated
power consumption associated to this prediction
is shown in blue in Fig. 5. We can thus observe
that compliance with the same maximal power
constraint of 650kW is still obtained and the con-
sumption is very close to Fig. 4 (b). We therefore
have a certain robustness of the model concern-
ing the prediction ν. This robustness is surely
obtained here by the fact that we can change the
connection time of a previously arrived vehicle as
long as it is not connected. The algorithm can

therefore, in the event of an unexpected arrival of vehicles to be connected immediately, postpone the
connection time of less priority vehicles. But this poorer prediction comes at a cost: when comparing ⟨π, c⟩
between the case where the prediction is close (shown in figure 4 (a)) and this case, we find that the average
time between arrival time ta and connection time tc increases from 11 minutes to 12 minutes. Having a less
accurate prediction will therefore make less optimal use of flexibility.

4.7 Comparison with a non-predictive algorithm
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Figure 6: Comparison with IOCS (no prediction)

Other algorithms and methods have been proposed
in the literature for charging electric vehicles while
respecting global constraints, such as IOCS (Inte-
gral Online Charging Station) (Alinia et al., 2022).
Compared to this algorithm, our approach allows
two new things. Firstly, the formulation as a MFC
problem allows us to scale up to a very large num-
ber of vehicles. Thus, IOCS has a complexity in
O(N2) with N the number of vehicles, whereas
ours has a linear complexity O(N). Also, the
addition of a prediction allows us to find better so-
lutions. In Fig. 6, we compare our MCOT method
with IOCS modified to have the same control (plug-
ging at a given instant). Here, we assume that the
global constraint cannot be exceeded and that vehicles that cannot be plugged will be rejected. All vehicles
have the same priority to connect, and our metric for comparing the two algorithms will therefore be the
number of vehicles accepted with the same maximum power constraint of 650kW. On this dataset, MCOT
rejects 23 vehicles (3.4% of EVs) while IOCS rejects 33 vehicles (4.9% of EVs). In particular, we see a
difference between noon and 3 p.m., when the prediction seems to allow more vehicles to be charged.

5 CONCLUSIONS

One-sided moment relaxation of OT problem provides a very natural representation setting for MFC
applications. This framework considers problems where the initial distribution is known and the goal is
to reach a final distribution that satisfies moment constraints, while minimizing a certain control cost. A
direct application is found in electric vehicle charging, where the objective is to optimally schedule charging
to control their aggregate consumption. It could also be applied to more complex problems in which the
distributions represent distributions of trajectories that are solutions of differential equations, for instance, the
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temperature evolution of a water heater. In such contexts, MCOT-C ensures that trajectories in the optimal
policy µ are necessarily solutions of this ODE, through absolute continuity. Beyond demand response, other
potential applications can be envisioned, such as controlling a population of drones to provide flexible network
coverage services (Chen et al., 2020). In such applications, the OT problem is often infinite-dimensional
(e.g. trajectories of agents). By introducing an entropic regularization that allows for obtaining an explicit
expression of the gradient, MCOT-C leads to a tractable algorithm. Furthermore, KL-term has a dual role in
MCOT-C: a relaxation term as in many other machine learning algorithms, but it also enables to enforce the
constraints on the dynamics via the choice of µ2 and absolute continuity imposed by KL. There are many
directions for future research:

• The "Semi-Sinkhorn" algorithm might be improved through the introduction of optimization techniques
such as proximal methods or momentum.

• In some problems, the size of state space X is very large (e.g. cases where a continuous X space cannot
be discretized, as in Appendix G). It can also arise when the control becomes more complex (for instance,
by allowing unplugging and replugging times in Section 3). As the complexity of the algorithm increases
with the size of this state space, it may be necessary to adapt this method to limit computation time, by
using Monte Carlo-type methods, i.e., generating a number of trajectories to obtain an approximation of the
gradient, instead of calculating it exactly.

• We believe that representing distributions by their moments to perform optimal transport has broader
applications in machine learning and control. We aim to explore its potential in other contexts.

13
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In this appendix, dualization and proofs are presented in Section A and B. A theoretical extension is presented
in appendix C, in the case where the distributions are Gaussian and the moments specified are the means and
variances. In appendix D, an experiment involving the transport of a uniform law illustrates the convergence
of the regularized problem to the non-regularized problem, when the regularization parameter ε tends to 0.
In Appendix E, the value of the cost function is reported for the different constraints presented in Section 3.
In Appendix F, a comparison is done with an Hamilton Jacobi method on the EV use case. Lastly, in
Appendix G, an application to the case of water heaters control is proposed.

A Duality

First, we want to introduce 2 preliminary problems to the MCOT-C problem. The first problem is a variant
of the relaxation of (Alfonsi et al., 2020):

Problem 1S-MCOT: One Sided Moment Constrained Optimal Transport.

d(µ1,Pf ) = min
{
⟨π, c⟩ : π ∈ U(µ1, µ) , µ ∈ Pf

}
. (13)

Problem 1S-RMCOT is regularized using Kullback-Leibler divergence:

Problem 1S-RMCOT: One Sided - Regularized Moment Constrained Optimal Transport (1S-RMCOT).

dε(µ1,Pf ) = min
µ,π

{
⟨π, c⟩+ εDKL(π∥µ1 ⊗ µ2) : π ∈ U(µ1, µ) , µ ∈ Pf

}
, (14)

where ε > 0.

A.1 Dual for 1S-MCOT

Characterization of a solution to Problem 1S-MCOT is based on a Lagrangian relaxation. Introduce two
classes of Lagrange multipliers for equation 13: ψ is for the first marginal constraint, a real-valued measurable
function on X , and λ ∈ RM+ for the moment constraints. The dual functional is defined as the infimum,

φ∗(ψ, λ) := inf
π
⟨π, c⟩ − ⟨π1 − µ1, ψ⟩+ ⟨π2, λ

Tf⟩ = ⟨µ1, ψ⟩+ inf
x,y
{c(x, y)− ψ(x) + λTf(y)}. (15)

The convex dual of equation 13 is defined to be the supremum of φ∗(ψ, λ) over all ψ and λ. The dual
optimization problem admits a familiar representation. Compactness is assumed in Proposition 4 (ii), as in
prior work (Kemperman, 1968).
Proposition 4. If (A1) and (A2) hold, then,

(i) With φ∗ defined in equation 15, the dual convex program admits the representation

d∗ := sup
ψ,λ

φ∗(ψ, λ) = sup
ψ,λ

{
⟨µ1, ψ⟩ : ψ(x)− λTf(y) ≤ c(x, y) for all x, y

}
. (16)

On replacing ψ with ψλ(x) := infy{c(x, y) + λTf(y)} we obtain the equivalent max-min problem

d∗ = sup
λ

∫
inf
y

[c(x, y) + λTf(y)]µ1(dx). (17)

(ii) Suppose in addition the set X is compact. Then the supremum in equation 16 is achieved, and there is
no duality gap: for a vector λ∗ ∈ RM+ ,

d(µ1,Pf ) = d∗ =
∫

min
y
{c(x, y)− λ∗Tf(y)}µ1(dx).

Once we solve equation 16, we obtain π∗ through complementary slackness:

0 =
∫
x,y

π∗(x, y){ψ∗(x) + λ∗Tf(y)− c(x, y)},

which means that π∗ is supported on the set {(x, y) : −λ∗Tf(y) + ψ∗(x) = c(x, y)}.
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A.2 Regularization

Recall that the functional DKL(π∥µ1 ⊗ µ2) is used to define the Sinkhorn distance (Cuturi, 2013), and
coincides with mutual information when the marginals of π agree with the given probability measures µ1 and
µ2. In the present paper, the marginal µ2 is a design parameter.

1S-RMCOT geometry and duality A close cousin to 1S-RMCOT uses the Kullback-Leibler divergence
as a constraint rather than penalty (Cuturi, 2013). Consider for fixed δ > 0,

dcδ(µ1,Pf ) = min{⟨π, c⟩ , s.t. π ∈ U(µ1, µ) , µ ∈ Pf , DKL(π∥µ1 ⊗ µ2) ≤ δ}. (18)

The parameter ε > 0 in equation 14 may be regarded as a Lagrange multiplier corresponding to the constraint
DKL(π∥µ1 ⊗ µ2) ≤ δ. Under general conditions there is δ(ε) such that the optimizers of equation 18 and
equation 14 coincide.

In considering the dual of equation 14 we choose a relaxation of the moment constraints only: letting λ ∈ RM+
denote the Lagrange multiplier as before,

φ∗(λ) := inf
π
{⟨π, c⟩+ εDKL(π∥µ1 ⊗ µ2) + ⟨π2, λ

Th⟩ : π1 = µ1}. (19)

The convex dual of 1S-RMCOT is by definition the supremum of the concave function φ∗. The optimizer,
when it exists, is denoted πλ.

Figure 7: Dual geometry for 1S-RMCOT

With the notation

ℓλ0 (x, y) = −λTf(y)− c(x, y) , x, y ∈ X , (20)

the dual function may be expressed

φ∗(λ) = −max
π
{⟨π, ℓλ0 ⟩ − εDKL(π∥µ1 ⊗ µ2) : π1 = µ1}.

The dual of equation 18 with d = d(ε) yields better geometric
insight. If the maximum above exists, then the maximizer πλ
solves

πλ ∈ arg max{⟨π, ℓλ0 ⟩ : DKL(π∥µ1 ⊗ µ2) ≤ δ , π1 = µ1}.

The convex region containing µ1 ⊗ µ2 shown in Fig. 7 is the
set of all π for which π1 = µ1 and DKL(π∥µ1 ⊗ µ2) ≤ δ. The
optimizer πλ lies on the intersection of this region and the hyperplane shown in the figure, indicated with a
dashed line: {π : ⟨π, ℓλ0 ⟩ = ⟨πλ, ℓλ0 ⟩}. This value of λ does not optimize φ∗ because the hyperplane is not the
boundary of the half-space shown in the figure.

For computation, it is convenient to make a change of variables: since π1 = µ1 is constrained, the infimum is
over all probability kernels: for λ ∈ RM+ ,

φ∗(λ) := inf
T
{−⟨µ1T, ℓ

λ
0 ⟩+ εDKL(µ1T∥µ1 ⊗ µ2)} (21)

For each λ ∈ RM+ , ε > 0 and x ∈ X , we denote

Bλ,ε(x) = ε log
∫
y∈X

exp
(
ε−1ℓλ0 (x, y)

)
µ2(dy). (22)

Proposition 5. Subject to (A1)–(A3),

(i) The infimum equation 21 gives φ∗(λ) = −⟨µ1, Bλ,ε⟩.

17
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(ii) The probability kernel maximizing equation 21 is

Tλ(x, dy) = µ2(dy) exp(Lλ(x, y)) ,with Lλ(x, y) = ε−1{ℓλ0 (x, y)−Bλ,ε(x)}. (23a)

(iii) unique λ∗ ∈ RM+ exists, satisfying

φ∗(λ∗) = dε(µ1,Pf ). (23b)

That is, there is no duality gap.

The similarity between Proposition 5 and Proposition 4 is found through examination of equation 17, and
the recognition that −Bλ,ε(x) is a (µ2-weighted) soft minimum of −ℓλ0 (x, y) = c(x, y)− λTf(y) over y ∈ X .
Subject to this interpretation, the convex dual of 1S-RMCOT can be expressed in a form entirely analogous
to equation 17:

max
λ

φ∗(λ) = max
λ

∫
softmin

y
{c(x, y) + λTf(y)}µ1(dx).

1S-MCOT approximation

Consider the following procedure to obtain a solution to 1S-MCOT (without regularization), but with X
compact, and the supports of µ1 and µ2 each equal to all of X . Let {πε, λε : ε > 0} denote primal-dual
solutions to 1S-RMCOT, where ε > 0 is the scaling in equation 14. Hence for each ε > 0,

dε(µ1,Pf ) = ⟨πε, c⟩+ εDKL(πε∥µ1 ⊗ µ2) = −⟨µ1, Bλε,ε⟩.

Proposition 6. Suppose that the assumptions of Proposition 4 (ii) hold, so in particular X is compact.
Then, any weak subsequential limit of {πε, λε : ε > 0} as ε ↓ 0 defines a pair (π0, λ0) for which π0 solves
1S-MCOT and λ0 achieves the supremum in equation 17.

Furthermore, it is possible to bound the rate of convergence:

|d∗
ε(µ1,Pf )− d∗(µ1,Pf )| ≤ εDKL(π0∥µ1 ⊗ µ2)

.

A.3 Link with the MCOT-C Problem

Writing the dual of MCOT-C, we get:

φ∗(λ) = εmin
π

{
−⟨π, l⟩+DKL(π∥µ1 ⊗ µ2) : π ∈ K(µ1)}.

Since π ∈ K(µ1) is constrained, the infimum is over all probability kernels T from X to W:

φ∗(λ) = −
∫
x

µ1(dx) max
T (x,.)

{
⟨T (x, .), ℓλ0 (x, .)⟩W − εDKL(T (x, .)∥µ2(sx, .))

}
,

where ⟨., .⟩W is the inner product on W . We obtain Proposition 1, which gives similar results as Prop. 5 with
a probability kernel going from X to W.

B Proofs

Much of the analysis that follows is based on convex duality between relative entropy and log moment
generating functions. For any probability measure µ on X and function g : X → R, the log moment generating
function is denoted,

Λµ(g) = log⟨µ, eg⟩.

With µ fixed, this is viewed as an extended-valued, convex functional on the space of Borel measurable
functions. Lemma 2 is a standard tool in information theory (Dembo & Zeitouni, 1998), and a reason that
relative entropy is popular for use as a regularizer in optimization.

18
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Lemma 2. Relative entropy and the log moment generating function are related via convex duality:

For any probability measure p we have

DKL(p∥µ) = sup
g
{⟨p, g⟩ − Λµ(g)}. (24a)

If DKL(p∥µ) < ∞ then the supremum is achieved, with optimizer equal to the log likelihood ratio, g∗ =
log(dp/dµ).

For Borel measurable g : X → R,

Λµ(g) = sup
p
{⟨p, g⟩ −DKL(p∥µ)}. (24b)

If Λµ(g) <∞ then the supremum is achieved, where the optimizer p∗ has log likelihood ratio log(dp∗/dµ) =
g − Λµ(g). ⊓⊔

We present here the proof of part (i). The proof of (ii) is done in the proof of Proposition 6.

Proof of Proposition 4 The dual function is invariant under a constant shift in ψ, so we may assume
that the infimum is exactly zero by adding a constant to ψ. This gives

max
ψ,λ

ϕ∗(ψ, λ) = max
ψ,λ

{
⟨µ1, ψ⟩ : inf

x,y

[
c(x, y)− ψ(x)− λ | f(y)

]
= 0

}
.

The value of the maximum is unchanged if the equality constraint is replaced by the inequality

inf
x,y

{
c(x, y)− ψ(x)− λ | f(y)

}
≥ 0,

which yields the representation equation 16. ⊓⊔

Proof of Proposition 5 For each λ we have by definition,

φ∗(λ) = min
T

∫
x∈X

µ1(dx)
{
εDKL(T (x, · )∥µ2)−

∫
y∈X

T (x, dy)ℓλ0 (x, y)
}

(25)

= −εmax
T

∫
x∈X

µ1(dx)
{
ε−1

∫
y∈X

T (x, dy)ℓλ0 (x, y)−DKL(T (x, · )∥µ2)
}
. (26)

For each x we have an optimization problem of the form equation 24b. Applying Lemma 2 (ii) gives the
representation equation 8a and by substitution (or applying equation 24b) we obtain

ε−1
∫
y∈X

Tλ(x, dy)ℓλ0 (x, y)−DKL(Tλ(x, · )∥µ2) = ε−1Bλ,ε(x). (27)

Integrating with respect to µ1 and applying equation 26 completes the proof. ⊓⊔

Proof of Proposition 1 The proof is the same as the previous one using this expression of the dual:

φ∗(λ) = −
∫
x

µ1(dx) max
T (x,.)

{
⟨T (x, .), ℓλ0 (x, .)⟩W − εDKL(T (x, .)∥µ2(sx, .))

}
.
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Proof of Proposition 6 Let (πε, λε) denote the solution to 1s-RMCOT, with ε > 0 regarded as a variable.
We let (π0, λ0) denote any weak sub-sequential limit: for a sequence {εi ↓ 0},

πεi → π0 , λεi → λ0 , i→∞.

Optimality of π0 is established in the following steps:

- Subject to (A1) and (A2) we know that π0 ∈ U(µ1, µ) with µ ∈ Pf .

- For any π ∈ U(µ1, µ) with µ ∈ Pf and DKL(π∥µ1 ⊗ µ2) <∞ and any ε > 0 we have

⟨π0, c⟩ = lim
i→∞
⟨πεi , c⟩ ≤ lim

i→∞
{⟨πεi , c⟩+ εiDKL(πεi∥µ1 ⊗ µ2)} ≤ lim

i→∞
{⟨π, c⟩+ εiDKL(π∥µ1 ⊗ µ2)} = ⟨π, c⟩ .

- Under the support assumption we can approximate in the weak topology any π ∈ U(µ1, µ) with µ ∈ Pf by
πδ satisfying DKL(πδ∥µ1 ⊗ µ2) <∞ and

⟨π0, c⟩ ≤ ⟨πδ, c⟩ ≤ ⟨π, c⟩ − δ .

Since δ > 0 is arbitrary this establishes optimality.

We next show λ0 provides an optimal solution. Then, for any λ,

⟨π0, c⟩ ≥ − lim
i→∞
⟨µ1, Bλ,εi

⟩ =
∫
∈ fy{c(x, y)− λT f(y)}µ1(dx) .

The lower bound is achieved using λ0 by allowing λ to depend on i:

⟨π0, c⟩ ≤ lim
i→∞
{⟨πεi , c⟩+ εiDKL(πεi∥µ1 ⊗ µ2)} = − lim

i→∞
⟨µ1, Bλεi ,εi⟩ =

∫
inf
y
{c(x, y)− λ0T f(y)}µ1(dx) .

To prove the rate of convergence, we adapt results from (Luise et al., 2018) in our context. First, we denote
πε = argmin[⟨π, c⟩+ εDKL(π∥µ1 ⊗ µ2)] and by optimality of πε, we obtain: ⟨πε, c⟩+ εDKL(πε∥µ1 ⊗ µ2) ≤
⟨π0, c⟩+ εDKL(π0∥µ1 ⊗ µ2)

By optimality of π0 and positivity of the Kullback-Leibler divergence, we obtain: ⟨π0, c⟩ ≤ ⟨πε, c⟩ ≤
⟨πε, c⟩+ εDKL(πε∥µ1 ⊗ µ2)

Combining these inequalities, we get:

0 ≤ ⟨πε, c⟩+ εDKL(πε∥µ1 ⊗ µ2)− ⟨π0, c⟩ ≤ εDKL(π0∥µ1 ⊗ µ2),

0 ≤ d∗
ε(µ1,Pf )− d∗(µ1,Pf ) ≤ εDKL(π0∥µ1 ⊗ µ2).

which proves our result.

Proof of Lemma 1 Suppose that v ∈ RM is in the null space: Σλv = 0. From the definition equation 9b
it follows that

0 = vTΣλv = Eλ
[{
vT

(
f(Y )− Eλ[f(Y ) | X]

)}2]
.

Equivalently, there is a function g : X → R such that

vTf(Y ) = g(X) a.s. [πλ].

The probability measures πλ and π0 := µ1 ⊗ µ2 are mutually absolutely continuous, so the same equation
holds under a.s. [π0]. Independence gives

vTf(Y ) = E0[vTf(Y ) | Y ] = E0[g(X) | Y ] = ⟨µ1, g⟩ a.s. [π0].

That is, the variance of vTf(Y ) is equal to zero. Under (A3) this is possible only if v = 0. ⊓⊔

20



Under review as submission to TMLR

Proof of Proposition 2 Recall the notation µλ = µ1T
λ, which is the second marginal of πλ, and the

probabilistic notation defined in the Introduction. Also, by definition we have J (ζ) = ε−1⟨µ1, Bεζ,ε⟩.

We have for each i,

ε−1 ∂

∂ζi
Bεζ,ε(x) =

∫
y∈X µ2(y) exp

(
{ζTf(y)− ε−1c(x, y)}

)
fm(y)∫

y∈X µ2(y) exp
(
{ζTf(y)− ε−1c(x, y)}

) = Tλfm(x).

Integrating each side over µ1 gives equation 9a (recall that µλ = µ1T
λ).

To obtain the second derivative of J (ζ) requires the first derivative of the log-likelihood:

Lεζj (x, y) := ∂

∂ζj
Lεζ(x, y) = ∂

∂ζj

[
ζTf(y)− ε−1Bεζ,ε(x)

]
= hj(y)− Tλhj (x).

From this we obtain,

∂2

∂ζi∂ζj
Bεζ,ε(x) = ∂

∂ζj
T εζfm (x)

=
∫
T εζ(x, dy){Lεζj (x, y)fm(y)}

=
∫
T εζ(x, dy)hj(y)fm(y)− Tλhj(x)

∫
T εζ(x, dy)hj(y)

= Eλ[hj(Y )fm(Y ) | X = x]− Eλ[fm(Y ) | X = x]Eλ[hj(Y ) | X = x].

Integrating each side over µ1 gives equation 9b. ⊓⊔

Proposition 7. The conditional distribution defined in equation 8a is Markovian: for a collection of
probability kernels {P̌λi } parameterized by x,

Tλ(x, dy) = ν0(dy0)
M∏
i=1

P̌λi (yi−1, dyi;x). (28)

Proof of Proposition 7 The proof reduces to justifying equation 28, which is one component of Proposition
8 that follows.

Write Lλi (xi, yi) = ε−1{λi(U(yi)− ri)− 1
2∥xi − yi∥

2}, and for each i consider the positive kernel,

P̂λi (yi−1, dyi) = Pi(yi−1, dyi) exp
(
Lλi (xi, yi)

)
.

Proposition 8. The conditional distribution defined in equation 8a can be expressed

Tλ(x, dy) = ν0(dy0) exp
(
−ε−1Bλ,ε(x)

) M∏
i=1

P̂λi (yi−1, dyi). (29)

Consequently, conditioned on X = x, the process Y is of the form equation 28, in which each kernel in the
product takes the form,

P̌λi (yi−1, dyi;x) = 1
gi−1(yi−1;x) P̂

λ
i (yi−1, dyi)gi(yi;x).

The functions {gi : 0 ≤ i ≤M} are defined inductively: gM (yM ;x) ≡ 1, and for 1 ≤ i ≤M ,

gi−1(y;x) :=
∫
P̂λi (y, dyi)gi(yi;x) , y ∈ X.

This results in g0(y0, x) = exp
(
ε−1Bλ,ε(x)

)
.
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Proof The representation equation 29 follows from the definition equation 8a and the structure imposed on
h and µ1. It is then immediate that equation 29 can be transformed to equation 28: by construction,

M∏
i=1

P̌λi (yi−1, dyi;x) = 1
g0(y0;x)

M∏
i=1

P̂λi (yi−1, dyi).

Since y0 = x0 by construction, it also follows that

exp
(
ε−1Bλ,ε(x)

)
= g0(x0;x).

⊓⊔

C Example: Quadratic Constraints & Gaussian Regularizer

Consider the special case in which the function f is designed to specify all first and second moments for Y . To
solve Problem 2 we adopt the following notational conventions for the Lagrange multiplier: E[Yi] = m1

i ←→ λ1
i

and E[YiYj ] = m2
ij ←→ λ2

i,j . Of course we have m2
ij = m2

ji for each i, j. The total number of constraints is
thus M = n+ n(n+ 1)/2. For purposes of calculation it is useful to introduce the symmetric matrices M2

Y

and Λ2 with respective entries {m2
ij} and {λ2

ij}; similar notation is used for mY and λ1, the n-dimensional
vectors with entries {m1

i } and {λ1
i }.

Remark: In this subsection, the same assumptions as in the rest of the article are not made; in particular,
compactness is not assumed, as this property does not hold in the present setting.

Equation (7) gives ℓλ0 (x, y) = λTf(y)− c(x, y) with

λTf(y) = yTΛ2y − ⟨Λ2,M2
Y ⟩+ yTλ1 −mT

Y λ
1. (30)

An explicit solution to problem 1S-RMCOT is obtained when c is quadratic and µ2 is Gaussian:
Proposition 9. Consider the 1S-RMCOT optimization problem equation 14 in the following special case:
c(x, y) = 1

2∥x − y∥
2, and µ2 = N(0, I) in the regularizer equation 4. Assume that the target covariance

ΣY :=M2
Y −mYm

T
Y is positive definite.

Then, for each λ with Λ2 < 1
2 (1 + ε)I, the probability kernel Tλ is Gaussian: conditioned on X = x, the

distribution of Y is Gaussian N(mx
Tλ ,ΣTλ) with

mx
Tλ = ε−1ΣTλ [x+ λ1] , ΣTλ =

[
I + ε−1[I − 2Λ2]

]−1
. (31)

Proof of Proposition 9 From equation 30 and using c(x, y) = 1
2∥x− y∥

2 we obtain an expression for the
likelihood Lλ appearing in equation 8a:

Lλ(x, y) = ε−1{
yTΛ2y + yTλ1 − κλ −Bλ,ε(x)} − 1

2 (∥x∥2 − 2xTy + ∥y∥2)
}
, (32)

with κλ = ⟨Λ2,M2
Y ⟩+mT

Y λ
1. The expression for Tλ in equation 8a using µ2 = N(0, I) then implies that for

any x, Tλ(x, dy) admits the Gaussian density

τλ(y | x) = 1
nλ(x) exp

(
− 1

2∥y∥
2)

exp
(
ε−1{− 1

2y
T[I − 2Λ2]y + yT[x+ λ1]}

)
, (33)

where nλ(x) = (2π)n/2 exp
(
ε−1{κλ +Bλ,ε(x) + 1

2∥x∥
2}

)
may be regarded as a normalizing constant. ⊓⊔
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Remark: If µ1 is non gaussian, it is necessary to compute the normalizing constant in the definition of Tλ:

nλ(x) = nλ(x)
∫

τλ(y | x) dy =
∫

exp
(
− 1

2y
TΣ−1

Tλy + ε−1yT[x+ λ1]
)
dy (34)

=
√

(2π)d det(ΣTλ) exp
( 1

2ε
−2[x+ λ1]TΣTλ [x+ λ1]

)
. (35)

Monte-Carlo methods can be used to estimate λ∗. Denote for each x,

qλ(x) =
∫
Tλ(x, dy)f(y) , mλ(x) =

∫
Tλ(x, dy)f(y)f(y)T.

Each have polynomial entries: qλi is a quadratic function of x and mλ
i,j(x) is a fourth order polynomial in x

for each i, j. Thus, one might take

m̃n+1 = qλn(Xn+1) , Σ̃n+1 = mλn(Xn+1)− m̃n+1[m̃n+1]T.

These functions will have finite means provided E[∥X∥4] is finite under µ1.

D Convergence rate when transporting from a uniform distribution
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Figure 8: Density of µ1 and densities of π∗
ε,2 for different

values of ε

We want to illustrate the convergence rate in
Proposition 6.

With the same notations as in problems 1S-
MCOT and 1S-RMCOT, we define X = [0, 1].
Distributions µ1 and µ2 are the uniform distri-
butions on X . We define f(x) = x − α with
α ∈ X the imposed mean, and impose a unique
constraint: ⟨f, µ⟩ = 0.

The cost c is chosen as: ∀x, y ∈ X , c(x, y) =
(x− y)2.

For these values, it is possible to obtain an ex-
plicit solution to 1S-MCOT, using Proposition
3.1:

d∗ = sup
λ

∫
inf
y

[c(x, y)− λf(y)]µ1(dx) = sup
λ

∫
inf
y

[(x− y)2 − λ(y − α)]dx

= sup
λ

∫
−λ

2

4 + λ(α− x)dx

= (α− 0.5)2.
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Figure 9: Comparison of the costs d∗ and ⟨c, π∗
ε ⟩ for

different values of ε

The solution π∗
ε may be obtained through gradient

descent as explained in section 3. For α = 0.25 and
a discretization of X to 100 points (to compute the
gradient), the resulting marginal π2 is shown in Fig.
8, achieving the constraint on the mean, for different
values of ε.

The values of d∗ and ⟨c, π∗
ε ⟩, were obtained for a

range of ε (from 10−3 to 103). We can observe in
Fig. 9 that the convergence to the minimum of the
unregularized problem is fast and that it respects
the inequality proved in Proposition 6:

|d∗
ε(µ1,Pf )− d∗(µ1,Pf )| ≤ εDKL(π0∥µ1 ⊗ µ2).
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E Costs of the solutions shown in Section 3

In this section, the value of the cost function associated with the distribution π produced by the algorithm is
reported for the different constraints presented in Section 3. The total cost is decomposed into the contribution
of the control cost, ⟨c, π⟩, and the contribution of the entropic regularization term, εKL(π∥µ1 ⊗ µ2), which is
intended to remain small.

E.1 Costs for the solutions shown in Figure 2

Unplugging disabled Unplugging enabled Harder Constraint
0
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6
⟨c, π⟩ εDKL(π∥µ1 ⊗ µ2)
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Figure 10: Decomposition of the cost for the different scenarios of Figure 2

Figure 10 shows that allowing vehicles to unplug and replug does not alter the cost ⟨c, π⟩, as long as the
constraint remains easy to satisfy. The cost εKL(π∗∥µ1 ⊗ µ2) due to the KL divergence cannot be compared
between these two scenarios, as the state space is not the same (and thus we do not compare with the same
µ2). The third bar represents a scenario, where unplugging is allowed and an harder constraint is imposed
(no consumption during two hours), which results in a significantly higher cost.

E.2 Costs for the solutions shown in Figure 3

Without gradient control With gradient control
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Figure 11: Decomposition of the cost for the two scenarios of Figure 3
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Figure 11 shows that adding an additional constraint (here, a constraint on the slope of total consumption)
leads to an increased cost. In Figures 10 and 11, the impact of regularization appears to be small, which is
consistent with our choice of keeping ε small.

F Comparison with methods based on Hamilton-Jacobi-Bellman equations and
Piecewise Deterministic Markov Processes
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Figure 12: Computation time for MCOT and PDMP (PDMP
algorithm is stochastic, error bars are computed over 10
simulations)

A common method in the MFC literature is to
start with Hamilton-Jacobi-Bellman equations,
discretize these equations and solve them nu-
merically. We compare ourselves here with an
article (Séguret et al., 2024) that applies this
type of method to EV charging, via a generation
of Piecewise Deterministic Markov Processes
(PDMP). The case study here is a flat signal,
and both methods seek to track this signal. As
the PDMP method can only take into account
one fixed starting time, we assume that all ve-
hicles arrive at 9am. We note in Figure 12 that
our MCOT method is faster in this case, what-
ever ntime. For higher values of ntime, MCOT’s
computation time increases quadratically, and

it could be improved by using Monte Carlo methods to simulate trajectories (as the PDMP method does).
Apart from computation time, another advantage of the MCOT method is the flexibility of the model
considered: in particular, vehicles arriving at different times can be considered.

G Water heaters control

We present in this appendix how to apply MCOT-C in a control problem other than the control of EVs.

Water heater control problem: We consider a large population of homogeneous Water Heaters (WH).
At time t, a WH is modeled by its mean temperature θ(t) ∈ Θ, where Θ is a subset of R, and its power mode
m(t) ∈ {0, 1} (Off/On). These WHs follow the Ordinary Differential Equation (ODE):

dθ(t)
dt

= −ρ(θ(t)− θamb) + σm(t)p− σϵ(t),

with ρ the fraction of heat loss by minute, σ the specific heat capacity of the volume of water, p the heating
power, θamb the room temperature, and ϵ(t) the power equivalent of the water drains at time t. Moreover, a
water heater aims at keeping its mean temperature between θmin and θmax by turning the water heater Off
whenever the temperature reaches θmax and turning it back On whenever the temperature reaches below
θmin. The intial density of WHs is at time 0:

θ0,m0 ∼ ν0.

And the nominal policy µ1 is thus defined as follows by this update equation:



θt+1 = θt − ρδt(θt − θamb) + σδtmtpmax − σϵt

mt+1 =

 mt if θt+1 ∈ [θmin, θmax]
0 if θt+1 ≥ θmax
1 if θt+1 ≤ θmin

θ0,m0 ∼ ν0

(36)
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The population of water heaters is represented through its mean-field distribution µ, that is, the empirical
distribution obtained in the limit of an infinite number of agents. When applied to a finite but large population,
this mean-field distribution induces a control policy. We consider the setting in which a central agent seeks
to control these WHs in order to satisfy A global constraints on the aggregate behavior of the WHs:

∀a ∈ {1, . . . , A}, ⟨f (a), µ⟩ ≤ 0,

where the function f is defined as f : X → RA.

Application of MCOT-C to this problem: We allow the WHs to flip their power mode (from On
to Off or from Off to On), while the temperature is still between the two bounds θt+1 ∈ [θmin, θmax]. We
limit ourselves to two flips per day per water heater. We will note these two times t1, t2 ∈ {1, . . . , T}2. This
limitation avoids frequent switching, which is undesirable for the water heater. Therefore, the power mode
update for the policy µ2 can be written as follows:

mt+1 = mt if θt+1 ∈ [θmin, θmax] and t /∈ {t1, t2}

mt+1 = (1−mt) if θt+1 ∈ [θmin, θmax] and t ∈ {t1, t2}

mt+1 = 0 if θt+1 ≥ θmax
mt+1 = 1 if θt+1 ≤ θmin

We can choose c as the number of flips added during the day or the temperature difference at the end of the
day, to reduce the impact of the algorithm on user comfort.

Discussion This problem can be formulated with the MCOT-C framework:

min
π
⟨π, c⟩+ εKL(π∥µ1 ⊗ µ2) : π ∈ K(µ1), π2 ∈ Pf

An important difference is that here we directly control trajectories (solutions of the ODE). The absolute
continuity (imposed by the KL term) ensures that trajectories in µ, the optimal policy, are necessarily
solutions of this ODE, as the support of µ is in the support of µ2. A second difference is that the state space
is very large (it is the number of possible controlled trajectories), and thus the gradient in our algorithm
should be computed with Monte Carlo methods.
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