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Abstract

This paper concerns the application of techniques from optimal transport (OT) to mean field
control (MFC), in which the probability measures of interest in OT correspond to empirical
distributions associated with a large collection of controlled agents. The control objective
of interest motivates a one-sided relaxation of OT, in which the first marginal is fixed and
the second marginal is constrained to a “moment class”: a set of probability measures
defined by generalized moment constraints. This relaxation is particularly interesting for
control problems as it enables the coordination of agents without the need to know the
desired distribution beforehand. The inclusion of an entropic regularizer is motivated by
both computational considerations, and also to impose hard constraints on agent behavior. A
computational approach inspired by the Sinkhorn algorithm is proposed to solve this problem.
This new approach to distributed control is illustrated with an application of charging a
fleet of electric vehicles while satisfying grid constraints. An online version is proposed and
applied in a case study on the ElaadNL dataset containing 10,000 electric vehicle charging
sessions in the Netherlands. This empirical validation demonstrates the applicability of the
proposed approach to optimizing flexibility while respecting grid constraints.

1 INTRODUCTION

We address the following control problem , motivated by applications involving the coordination of a large
population of electricity-consuming agents subject to global constraints, such as a maximum aggregate power
consumption.

Consider a set of K homogeneous agents, each characterized by a state:
Xk:(sk,Wk)EX, 1<k<K.

Here, Sk denotes a non-controllable variable, while W}, is a control (or decision) variable. An electric vehicle
(EV) charging use case, providing a detailed concrete example, is presented in Section

We consider a central planner that coordinates a large population of agents to minimize a cost c: X — R,
subject to M aggregate constraints on the total population (e.g. requiring that the total power consumption
of all agents remain below a prescribed threshold during M time steps: Ym € {1,..., M}, 21521 fm(Xk) <0,
where f: X — RM denotes a mapping from state X to a consumption profile f(X) of an agent, and f,,(z) is
the m-th component of f(x). The optimization problem for the central planner can thus be expressed as

K K
n;;;{Ze(Xk) DY f(XR) < 0}, (1)

k=1 k=1

where the inequality is on each component m € {1,..., M}. The use case considered in Sections [3|and [4| is
the control of a large population of EVs whose state Sj is the EV’s arrival time at the parking lot and its
initial state of charge, and the control Wy, is the starting charging time. The cost ¢ in this case could be seen
as a penalty for deviating from a planned schedule.
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A major challenge with this class of problems is that the computational complexity grows with the number of
agents. For instance, the dataset considered in Section [4] contains several thousand EV charging sessions.
Individually coordinating each agent while satisfying its own specific operational constraints is therefore often
computationally prohibitive in practice, or may result in suboptimal choices. A popular approach to address
this scalability issue is to adopt an MFC framework. In this setting, the number of agents is assumed to be
sufficiently large so that the impact of any single agent on the aggregate variables becomes negligible (Lasry
& Lions| 2007). What matters is then the control of the entire population, modeled through a probability
distribution p of X = (S, W) over X, and we denote v, the distribution of the non-controllable variable S.
This gives us the mean field problem approximating equation [l when K is large:

"

min{/X c(x)du(z) : Vs e S/W du(s,w) = v(s) and /Xf(gc)du(x) < 0}. (2)

It is important to note that the optimization is only done on the control variable W and the distribution v
is not modified; this is what we will subsequently call "preserving the distribution of the non-controllable
variables”.

Looking at equation [2] one may interpret the problem as transporting the initial probability distribution of
X to another distribution, as in the OT theory. The key difference here is that the target distribution is not
known a priori. In fact, determining this distribution is precisely the objective of the problem (e.g. the optimal
charging policy for the fleet of EVs). The only available information about this target distribution comes
from the aggregate constraints [ o f(x)du(z) <0, which will hereafter be referred to as moment constraints.
Recent works have introduced the Moment-Constrained Optimal Transport (MCOT) framework (Alfonsi
et al., 2020), in which both the initial and final distributions are required to satisfy moment constraints,
with the aim of approximating the classical OT problem, under appropriate assumptions, when the number
of moment constraints tends to infinity. The novelty of our work is that we propose a new approach for
modeling MFC problems as a one-sided MCOT variant, in which only the final distribution is required to
satisfy the moment constraints. This one-sided variant is particularly well-suited for MFC, where the initial
distribution corresponds to the nominal dynamics of the system, while the target one is only specified through
the moment constraints. For example, in the demand response applications in power grids, the coordinator
only cares about the constraints on the power consumption of the whole population of flexible devices, and
not about the detailed distribution over all individual device state trajectories.

Contributions Our contributions are the following:

e We propose a new problem Moment Constrained Optimal Transport for Control (MCOT-C) inspired
by OT and designed to achieve MFC goals: (i) Agents are controlled to meet a global constraint; (ii)
Their individual hard constraints must be satisfied, either physical (e.g. an EV cannot be plugged in
before it arrives, and its state of charge on arrival, or its departing time cannot be controlled) or in
terms of quality of service (e.g. each EV must be fully charged when leaving). A tunable regularizing
term, similar to the one introduced in entropic OT), is introduced for computational reasons but also
to achieve the goal (ii).

o We propose a projected gradient descent algorithm to solve MCOT-C and highlight its similarity to
the Sinkhorn algorithm.

e« We extend this approach to an online setting, where the data about the EVs are progressively
discovered and show its applicability on a case study with a real data set (OpenDataset} 2019).

e Compared to the existing literature on MFC for demand response, our model allows to take into
account broader set of global constraints (e.g. aggregate power consumption ramping rate).

Literature Many academic communities are interested in efficiently transforming probability measures.
Examples include the fully probabilistic control design of [Karny| (1996) and the related linearly-solvable
Markov decision framework (Todorov}, |2007)). Several methods have been designed in the field of MFC or
ensemble control, with applications ranging from power systems to medicine (Hochberg et al., 2006; |[Chertkov,
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& Chernyak, 2018). These techniques can also be relaxed (Cammardella et al.l [2020; Busi¢ & Meyn, 2018) or
regularized, often via a Kullback-Leibler term (Chertkov & Chernyakl [2018; |Todorovl, [2007)) for computational
reasons. Similar objectives of controlling a large population of electricity-consuming agents have been explored
in the distributed control framework (Chertkov & Chernyak, 2018} (Cammardella et al., [2020; Busi¢ & Meyn)
2018). In some cases, the problem is overly constrained by the global constraints, making it difficult or even
impossible to identify feasible solutions. To address this, relaxations of the functions f via quadratic penalties
have been proposed (Cammardella et al.l |2020; |Busi¢ & Meyn, |2018)). Additional examples and surveys can
be found in |Garrabe & Russo| (2022).

OT theory first emerged in the 18th century, and more recently has become a significant tool in the machine
learning toolbox (Villani, 2008; [Peyré et all 2019). The goal is simply described: given two random variables
X and Y, find a joint probability measure 7* for the pair (X,Y") that preserves the marginals, and minimizes
a given cost. The introduction of an entropic regularizer, which leads to solutions that are easily computable
by the Sinkhorn algorithm (Cuturi, [2013), has become standard in OT. This development led to the entropic
optimal transport problem, which is closely related to the one considered here (except that a moment
constraint replaces the constraint on the second marginal), both in its formulation and in the algorithms
used to solve it. Several authors have proposed relaxations on the marginals of the OT problem, such as
unbalanced OT, where an entropic penalization of the deviation from the marginals is introduced (Chizat)
2017)). Relaxations of marginals have been considered to improve numerical performance or to approximate
the OT problem (Balaji et al. 2020; Le et al., [2021; |Alfonsi et al., [2020) but, to the best of our knowledge,
never as a natural representation of an MFC problem.

Connections between OT and control theory have been well established, most notably through the Ben-
amou—Brenier formulation (Benamou & Brenier} |2000), which bridges OT and fluid mechanics. From a
control-theoretic viewpoint, this formulation can be interpreted as an optimal control problem in which an
initial distribution (at the beginning of a time horizon) is transported toward a target distribution (at the end
of the horizon), while minimizing the cumulative cost incurred along the trajectory. More recent research has
further strengthened this link by connecting OT with dynamic programming and multi-marginal formulations
(Terpin et al.l |2024]), thereby showing that certain classes of optimal control problems can be recast as OT
problems. Another approach (Liu et all 2022) addresses a mean field game where the target distribution is
known exactly and must be reached, using Deep Reinforcement Learning. In the present work, we do not
adopt the Benamou—Brenier framework; instead, the distributions considered here should be understood as
policies over the course of a day, rather than states being transported.

Notation The state space X is assumed to be a closed subset of RN with N > 1 and we denote B(A) the
set of Borel probability measures on a given set A. For 7 a bivariate distribution on X, its marginals will
be denoted 7y and 7 such that Vo € X, m(z) = [, n(x,dy) and Yy € X, m(y) = [, 7(dz,y). We denote
U(pr, o) ={m e B(X X X):m =y, ma = ug} the set B(X x X), the set of blvariate distributions having
for marginals p1 and po. The scalar product for bivariate distributions 7 and measurables functions g is

defined by (7, f) := [, 5 f(@, y)7(dz, dy).

2 MOMENT CONSTRAINED OPTIMAL TRANSPORT FOR CONTROL

2.1 Statement of the problem

The goal of the OT problem introduced by [Kantorovichl (1942) is to find a transport plan 7 minimizing a cost
(m,¢) = [y 5 c(x,y)dm(z,y) subject to the constraint that the marginals of 7 are exactly 1 and po. In this
section, we aim to formulate the MFC problem introduced in equation [2} in the framework of OT, where the
second marginal is not fully specified but must belong to a set of distributions respecting moment constraints.

In this framework, the first marginal m; corresponds to a nominal behavior u;, which is given, whereas the
second marginal, denoted by o, corresponds to the optimized distribution within the following moment class,

Pr={n€B(X): (i, frm) <OV 1<m< M}, (3)

where f: X — RM encodes M constraints. An equality constraint (i, f,,) = 0 can be expressed as a pair of
inequality constraints, thus equality constraints can also be imposed when required. Recall that in MFC,
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the distribution v of the non-controllable variable is fixed. In this framework, this implies that the bivariate
distribution 7 belongs to

K(Ul) = {7T € B(X X X) : W((xs,xw), (y57yw)) = Ml(deadxw)T((xmxw)vdyw)éms(dys)}v

where § is the Dirac measure, and T ranges over all probability kernels. That is, if 7 € K(u1), then
fw T2 (Ysy dYny) = fw m1(ys, dxy) = v(ys), which corresponds to our goal of preserving v on S, for both
marginals. Lastly, we will use the following Kullback-Leibler (KL) regularizer, similar to that in |Cuturi

(2013):
m(x,y) (da
oz (m(@m(zﬂ) (dz, dy). @

However, in our case, s is not the second marginal of 7, but left as a design parameter (in our case the second
marginal is not known a priori, as it is only constrained to belong to Ps). This regularizer is introduced for
three reasons. First, the minimization of a KL-divergence enforces absolute continuity between us and mo,
meaning that the support of s is included in the support of us. In practice, one defines the support of po as
the set of physically feasible or desirable states and controls (e.g., ensuring that electric vehicles are charged
at the end of their time slot or that charging does not occur before arrival), thereby preventing mo from
assigning mass to physically impossible or undesirable states. Second, unlike in certain MFC methods where
the entropic penalization is taken with respect to p; (Busi¢ & Meyn, [2018]), here one has the flexibility to
design uo. For instance, one may rather rely on a heuristically designed ps that may give faster convergence,
or, in the absence of one, choose a uniform distribution over the previously defined support (that may be
different than the one of p1). Finally, it has a computational interest, as it allows for obtaining explicit
solutions, as shown in Section [2}

Dycw (llpn ® pz) = /
XXX

This allows us to introduce the MFC problem:

Problem MCOT-C: Moment Constrained Optimal Transport for Control

mﬂin{(mc} + eDkr(mllp1 @ pa) : 7w € K(p1), a2 € Py} (5)

2.2 Dual problem

This subsection defines the dual and the theoretical properties needed for the algorithm but more details on
duality theory and proofs may be found in the appendices [A] and [B] The theoretical results of this problem in
the Gaussian case are presented in appendix [C] An example that illustrates the impact of regularization can
be found in appendix

Assumptions Throughout this work, we will consider the following assumptions:

(A1) c: X x X —» Ry and f: X — RM are continuous, and there is an open neighborhood N c RM
containing 0 such that Py_, is non-empty for all 7 € N. The latter condition implies a robust feasibility
under small perturbations, providing a Slater-type condition necessary for strong duality.

(A2) pp and po have compact support, and the problem is feasible under perturbations: for any r € N,
there is 7 satisfying mo € P;_, and m; = py. This guarantees the existence of feasible transport plans.

(A3) X%:=Cov(Y) is positive definite when Y ~ pg. This implies non-redundancy of constraints, strict
convexity of the dual problem and uniqueness of the Lagrange multiplier A*. From a numerical point of view,
it provides numerical stability for gradient descent algorithms.

In the EV charging use case in Section |3] the cost ¢(x,y) (quadratic penalties on charging time deviations)
and the aggregate constraint functions f(m) (bounds on the maximum power consumption or its gradient)
are continuous, and distributions p1 and ps have bounded support (defined by intervals). Assumption (A3)
is, in particular, not true if Y ~ uy has linear dependence. In a concrete setting, (A3) implies that each
variable in Y is not a linear combination of the others. If this is the case, it is easy to change Y by removing
this variable.
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Dual The dual of MCOT-C is by definition the function ¢*: RY — R U {—oc0},
() = emin{—e~H(m, £5) + Dxv(7llps ® p2) : 7 € K(p)}, (6)

where we introduce the notation £)(z,y) = —A"f(y) — c(x,y), Va,y € X.

For each )\ € R]f, e>0and z = (zs,24) € X, we denote

B)\,E(I) = 610g/ eXP(571€())\((=’175, -Tw)y (I& yw))ﬂQ(dyw)- (7)
Yuw EW

Proposition 1. Subject to (A1)-(A3),

(i) The infimum equation [0 gives ©*(A) = —(u1, Ba.c)-

(ii) The mazimizer is ™ (z,y) = TNz, y)p1(z) with Vo = (x4, y) € X, Yy = (x4,y,) € X,

TMx,y) = p2(y)da, (ys) exp(LN(x,y)) . LANz,y) = el (2,y) — Bre(@)}, (8)
and (M (y) = 73 (y) Yy e X.
(iii) There is no duality gap: there is a unique \* € R{‘f satisfying

©*(\*) = mgn{@r,c) + eDgp(m|p @ p2) i m € K(u), w2 € Py} (8b)

It is convenient to make the change of variables ( = e~!), and consider J(¢) := —e~1p*(().

We turn next to the representation of the derivatives of the dual function. The quantity 5_1B6<,5(:C) is a log
moment generating function for each x; for this reason, it is not difficult to obtain suggestive expressions for
the first and second derivatives with respect to (.

Proposition 2. The function J is convexr and continuously differentiable. The first and second derivatives
of J admit the following representations:

VI =m*, VI« =%, (9a)

in which m} = (u*, ;) = E*f;(Y)] for each i, and the Hessian equation@ coincides with the conditional
covariance:

A =EMY)F(Y)T] - EMNEMF(Y) | XIEMF(Y) | X]7]. (9b)

It follows that J is strictly convex.
Lemma 1. Suppose that (A1)-(A3) hold. Then, the covariance $* is full rank for any X € RY.

2.3 Algorithm: Semi-Sinkhorn with Gradient Descent

For numerical experiments, the state space X will be discretized and we will denote by NV its cardinality. The
cost will be represented by a matrix C' € Rf *N'The solution to MCOT-C obtained in Proposition [1| may
be expressed as

sz :uiGi,j GXP(*C*Tfj)z (10)

where G is the Gibbs kernel defined by G j = exp(—C; j/e)pua; and u; = p1i/ Y- ; Gije™¢ /. As shown in
Proposition [2] it is possible to obtain a gradient descent algorithm [T} which looks similar to the Sinkhorn
algorithm (Cuturi, 2013)), the difference being the update of ¢*.
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It is also possible to perform Newton’s method

Algorithm 1 Semi-Sinkhorn with Gradient Descent . .
rather than gradient descent by changing the

Input: uq, C, f update of ¢* by
CO < 01\/[
k0 ¢ ¢F (25T fub G et

while k < k,,,4. do

u§+1 — /il,i/ Zj Gi,jefgmf 2,7

Al Ch 4+ Z” ijfHGi,j@*Cka where 25¢" is the Hessian defined in equa-

P max{0, ¢k} tion [0b] In cases where the starting point

k<~ k+1 (Y is close to the optimum (*, we can obtain
end while quadratic convergence (C.T.Kelley} 1999).

3 Use Case: EV Charging

3.1 Presentation of the use case

Consider a large fleet of electric vehicles (EVs) arriving to a charging station at random times and with
random state of charge, according to an initial law ry. There is a central planner whose goal is to maintain
constraints for the aggregate power consumption, as well as constraints for each vehicle owner. The vehicles
arrive during the period [9am, 10 : 30am], and must be fully charged by 5pm.

The goal is power tracking: total power consumption should follow a reference signal (r;) over a time period
[t1, 2], with 9am < ¢; < to < 5pm. This objective arises from the need to ensure real-time balance between
power production and demand in electricity grids, where maintaining frequency stability requires aggregate
consumption to closely follow regulation signals (Srivastava et all, [2022). This can be formulated as an
MCOT-C problem over the space of distributions on X =S x W with & = [0,T] x [0,1] and W = [0,T]. The
two first coordinates of x € X are the time and the battery state of charge at the arrival and the third is the
time when the EV will start charging, called the plugging time; so x € X is of the form x = (¢4, b,t.). The
function f is defined as:

pift € [te,te + 12
0 otherwise

o = (tab.t0) € Xt € 071, fio) = { ,
where p is the power consumption (here we normalize it to 1) and v = 0.25h7! is the speed of charge of the
EVs.

At each iteration, a gradient is calculated on X x W, with complexity of computing the gradient at each
iteration of the algorithm O(nd .. X Npattery); With ngime = 25 and Npattery = 20, being the number of
discretization points in time and battery state of charge. We use the MCOT-C problem presented in Section 2]

0.0 2.0e—3 4.0e—3 6.0e—3 8.0e—3
l \ \

)
: K K
S
S
(]
T 0.5 II
v
E
=
R
- 10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16
Time (h) Time (h) Time (h) Time (h)
(a) 1 (b) p2 (¢) pa without gradient (d) pa with gradient control
control

Figure 1: For vehicles arriving at 10am : (a) p; (b) pe designed to encode physical and quality of service
constraints; (¢) optimized p without gradient control; (d) optimized p with gradient control.
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Figure 2: (a) optimized consumption compared to the nominal with unplugging disabled; (b) optimized
consumption with unplugging enabled; (c¢) optimal consumption with constraint infeasible without unplugging.

with € = 0.03 being a compromise between computational stability and having a low value (as any non-negative
value will enforce the physical constraints). This regularizer penalizes the entropic discrepancy between 7
and p1 ® po. As a result, it pushes the optimal policy 7o to remain close to po, which will later be chosen as
a uniform distribution. We consider a version of problem MCOT-C with p; modeling the naive decision rule
in which a vehicle initiates charging on arrival:

V(ty,b) if t, = te
0 otherwise

/’Ll (ta; b7 tc) = {

Initiation of charging must be after the arrival time (physical constraint) and every vehicle must be fully
charged no later than 5pm (quality of service constraint). The following distribution meets these requirements,
to(ta, b, te) = Unif[tmT_$](tc), with v being the charging speed and Unif|, ;) being the density of uniform
distribution over [a, b]. It is assumed that drivers wish to initiate charging as soon as possible: this makes it
easier for the driver to manage an unforeseen event and may make it easier for the central planner to respond
to a grid contingency. This preference is modeled through the cost ¢((.,.,t%), (.,.,t¥)) = (t* — t¥)2.

3.2 Numerical Results

EV charging without unplugging The first results described here impose an additional constraint: once
charging begins, it cannot be interrupted until the vehicle is fully charged. In the following simulations,
a constraint on power consumption is imposed for the time period beginning at ¢; = 10am and ending at
to = 12pm. As the optimizer p* will be mutually absolutely continuous with respect to pg, both physical
constraints and constraints on quality of service are imposed through choice of ps. In Figure b)7 the
constraints enforced on o can be observed:

e Quality of Service constraint: At 5 pm, all EVs must be fully charged. Thus, if a vehicle needs At
minutes to charge, then the probability of connecting between 5pm—At and 5pm is zero. This is
observed by the completely white lower right triangle.

o Physical constraint: Vehicles cannot charge before arriving, so there is no mass probability before
10am for vehicles arriving at 10am.

These constraints are found in the p) showed in Figure c) and d), as [ is a reweighting of us. Aggregated
consumption displayed in Fig. [2| (a) shows that the first vehicles to arrive will start charging, but most of
those arriving just before 10:00 am will initiate charging only if they arrive with a high battery level so that
they are fully charged before the start of the constraint window from 10:00 am to 12:00 pm.

Gradient control to flatten the curve For real-life applications, controlling overall consumption over part
of the day through equality of consumption to a predefined signal can lead to a peak when the constraint is
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released. This phenomenon, due to the penalization of distant charging times, is observed in the different
plots of Fig. 2] Consumption can be smoothed by introducing the derivative constraints

Vt € [07T]7 |<gt7:u>| S gmaxv

where g; = fi41 — [t

In this example, ¢.... = 0.2, thus the overall
consumption must not increase by more than

0.2 per hour, which is what we observe in Fig. : CNoigiI;?rll N Wi;f}ll:}lll tG?;iiﬁ?ZSﬁ?:(:lo !
consumption at 12pm increases more slowly.

We can also see the impact of the constraint 0.71

on the gradient by looking at the difference be- 06!

tween Figure [[{b) and [T{c). In both cases, ve- ’

hicles arriving with a high battery level are put = 057

to charge first. This comes from the quadratic S 04

penalty on the start of the charging time: We % 0.31 \
prefer to charge those which will quickly be com- 5 02!

pletely charged and which will free up space S '

for those which will take longer. 0.1¢

EV charging with unplugging The model 0

can be extended by authorizing a vehicle to Time (h) 9 10 11 12 13 14 15 16 17
interrupt and restart charging. In this case,

X is extended with two extra time dimensions Figure 3: Optimal consumption with and without gradient
corresponding to an unplugging time and a re- control of the overall consumption

plugging time. A second term is included in ¢

that is quadratic in the difference of these times, designed to discourage charging interruption.

We find that unplugging does not impact significantly the optimal solution. Fig. 2| (a) and (b) provide a
comparison. Only a slight difference is visible before 10 am: A number of vehicles start to charge before the
constraint, stop at 10 am and restart afterwards. However, in some cases, this extra flexibility in charging is
necessary to obtain a feasible solution. Fig. [2 (¢) shows results obtained when power consumption is not
permitted in the middle of the day. In any feasible solution, a portion of vehicles stop charging for a period
before they are fully charged.

Comparison with piecewise deterministic Markov decision process approach for EV charging control proposed
by (Séguret et al.l [2024)) is provided in Appendix

4 ONLINE MCOT-C FOR EV CHARGING

In this section, we provide an online version of MCOT-C and test it on a real dataset.

4.1 Formulation of Online MCOT-C

First, while some theoretical models assume perfect knowledge of the battery level at each time step (Séguret),
2023)), this value is hard to obtain in practice even if estimates are available (Rezvanizaniani et all|2014) and
existing datasets do not take this data into account (Amara-Ouali et al. |2021]). Our choice on this subject is
to focus on the leaving time ¢; and the charging need At,, which is the charging time requested by the EV
owner. These parameters are easier to access and are consistent with other articles studying real datasets
(He et al.l 2012; Sadeghianpourhamami et al., |2018)). Arriving EVs are therefore defined on the following
state space:

S= (0,24 x [0,24] x [0,24] x{L...,npower]. (11a)
—_———
Arriving time  Leaving time  Charging need Max power
ta t At, Pmax
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At each time step t € [0,24], EVs are controlled through their charging starting time t.. The control space is
thus defined as:

wh = [t24] (11b)
N——
Plugging time t.

and we define the product space: X® =8 x W At each time step t € [0, 24],

1. New EVs arrive at the charging station and are added to the list of vehicles already present and not
charging yet {S"V} = {S; : # <t and t > ¢}. The empirical +(*) is updated:

1 )y
(t) _ leé(s—SZ ) 1fta§t
vis) { Nity(s) ifty >t ' (12a)

where Ny = [, 0(s — Si(t))ds + N [sv(s)1y,>¢(s)ds is the number of vehicles already arrived and
not charging plus the number of vehicles that are estimated to arrive.

2. ugt) is defined by the "Plug when Arrive" strategy: Vs = (tq, ti, At,,p) € S,

i (s,te) = V0 (5)8(t — ta). (12b)

3. ugt) is defined as "Plug with a uniform distribution" strategy:
Vs = (ta,t1, Atn,p) €S, t. €W,

Unif[ta’tlfAtn] (tc)y(t)(s) if ta > t

1y (s, t0) = : (12¢)
Unif[t)tl_Atn] (tC)V(t) (3) if ta S t

where Unif][a,b] is the density of the uniform distribution on the segment [a,b]. For the sake of
simplicity, we assume that there is no outlier (no vehicle that would require more charging time
than the difference between their arrival time and leaving time in particular). As in Section |3} uso is
designed to incorporate the hard constraint of respecting the quality of service through the absolute
continuity of p with po (due to the KL term).

4. The central planner will minimize equation [5| to obtain:

7® = argmin (r,¢) + sDKL(ﬂ'Hugt) ® ugt)).
reK (ui")
7r2€77f(t)

The function ¢ chosen here is a quadratic penalization: c((s%,t%), (s¥,t¥)) = (tZ — t¥)2. In this case,
as we compare it with the "Plug when Arrive" strategy for which t¥ = t¥, ¢ is a penalty for starting
charging long after the vehicle arrives.

(t)

5. For each vehicle Si(t), its plugging time ¢’ is randomly chosen according to (Sl-(t), .). f is then

updated as: fH) = fO + L S~ f(Sz(t)). Vehicles Si(t) such that t! = t begin their charging.

ti=t
4.2 Algorithm

In Algorithm [2) Alg(¢™), 1, po) returns ¢+1) the value of Algorithm [1| with the stopping criterion
Nl ((fD, e )|l € Nk and (.)* is the positive part function: Vz € RM, (z),, = max(0,z,,). The
norm |||| can be chosen as desired, but a good candidate is the infinite norm. With this norm, Nk corresponds
to the maximum error on all the vehicles that we can afford to have, so it should be chosen relatively small.
We can estimate that this error evolves linearly with N, which explains the multiplication by N (as N is the
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order of magnitude of the vehicles that will arrive during the day). We define the convergence error at time ¢
as &(¢) = RN((fD, pew ) T|| and vy, the real arrival law of EVs. With the definitions of Mét) and ugt) in
i (st f o tedte
equation |12{and Proposition |l we define F; as: Vs € S, F¢(s) = v((s) (s) #0
0 otherwise

Proposition 3. (i) &£:11((:) is bounded by K, a stochastic term, and a term corresponding to a poor prediction
of the law v:

fent@ <t (5 TETD g tre el | (B lFeteeceon] - Bl )

ti=t+1

(ii) The second term could be bounded with the Bienaymé—Chebyshev inequality to obtain:

Fe (S + V,, [Fel,,—
(H(t 2 ]Z\, ) EV,,V[FC]-ta:t+1]) H 2 fio) < Vo lFelty=r1] J<\7/<:§ cal :
Algorithm 2 Online MCOT-C
Thus, there is no need to start the optimization from Input: v, N, (fm)i<m<m, K
scratch at each time step, as the solution from the Output: V= {} the list of vehicles with their plug-
previous step provides a natural warm start for . ging time
This starting point is better if (i) the estimation of S+ {}
the arrival law of the vehicles v is close from the real ¢Y +— O
arrival law of vehicles v, and (ii) if N, the order of for t from 0 to T do
magnitude of EVs is large. Add to S, vehicles that arrived at time ¢
Compute N
4.3 Data Overview Update v, 11 and po as in equation
gm — Alg(C7 K1, f2, y)
The dataset used in this paper is composed of 10.000 for S; in S do
charging sessions from public charging stations oper- t. is generated according to Mu(¢, p1, p2, (Si, .))
ated by EVnetNL in the Netherlands (OpenDataset,
2019), in the year 2019. For each charging session, if t. =t then
several pieces of information are provided including [ f—=f(S)
the arrival time t,, the leaving time ¢;, the plugging S; is removed from S and (.S;,t.) is added to
time At,, and the max power P. A more detailed Vv
description can be found in (Refa & Hubbers| 2019), end if
and this dataset has already been used for clustering end for
algorithms (Straka & Buznal [2019), but not yet for end for

MFC.

There is a difference between weekdays and weekend days, so in this paper, we will consider the 7253
charging sessions happening during weekdays and divide them randomly. 90% of these weekdays will form a
training set of 231 days (6540 charging sessions) and will be considered historical data. A test day is created
with the remaining 10% of weekdays (21 days : 674 charging sessions) by grouping the corresponding 713
vehicle arrivals. The predicted distribution v is computed on the training set considered historical data and
N = % = 690 is the number of vehicles expected to arrive on this test day. In equation |5, we set € = 0.1
because we want a relatively low value to limit the impact of entropic relaxation (term in Kullback-Leibler),
but not too low, as this risks posing computational problems (because of the e~! in the exponential in
Proposition [T}

To compute the gradient at each iteration of Algorithm [I} we need to discretize the state space X: The day is
divided into T'4 1 = 97 steps (indexed from 0 to T') with a stepsize At of 15 minutes, which allows rapid grid
constraint changes to be taken into account. For the power discretization, we group each EV between 4kW,
7.5kW, and 12kW. This choice of discretization is standard (used for example in (Sadeghianpourhamami

10
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= Predicted Consumption = Aggregated Consumption == Maximum Power Constraint

800 - 1+ |

600

400 - 1+ - .

200 | b s |

Power Consumption (kW)

A N S N I
Time(h) 0 3 6 9 12 15 18 21 24 0 3 6 9 1215 18 21 24 0 3 6 9 12 15 18 21 24

(a) No Constraints (b) Maximum Power Constraints (¢) Maximum Power and Gradi-
ent Constraints

Figure 4: (a) Consumptions for the "Plug when Arrive' u; strategy with the arrival of EV predicted with v
and with the real distribution of EV; (b) Optimized Consumption for a constraint of 650kW for the aggregated
consumption; (¢) Optimized consumption for the same maximum power constraint and a constraint of
120kW /h for the gradient of the aggregated consumption.

). We assume here that vehicles plugged the day before are not affected by our strategy, because
they are already connected, but their consumption is taken into account in order to come closer to reality,
particularly in the case of controlling the gradient of aggregate consumption. We therefore consider the
aggregate consumption of vehicles arriving throughout the day and that of vehicles arriving the day before
(this impact is mainly present before 8 a.m.).

4.4 Control of the aggregated consumption

On Fig. [4} the nominal consumption in blue corresponds to what is expected by the charging station, these
are the historical data with the plugging strategy p1 "Plug when Arrive". On (a), we can see the difference
with the consumption for the real arrival of EV during the day with the same plugging strategy. The first
peak in the morning lasts longer, while the second peak seems to be weaker. On (b), a constraint imposed
by the charging station over the power consumed of 7y = 650kW is added through the moment constraints:
define for each m the function f,, via f,(8,%.) = Pmax if m € [te,te + Aty], fin(s,t.) = 0 otherwise, and
impose for each m the constraint (fp,, ) —r¢ < 0.

This value of 650kW is chosen arbitrarily here, and any other can be chosen as long as it remains realistic.
This optimization makes it possible to exploit flexibility while respecting the imposed constraint, despite the
prediction error on the length of the first peak. Peaks above the maximum constraint correspond to unforeseen
arrivals of a large number of vehicles that must connect directly. It can also be due to the convergence not
completely achieved by the algorithm, which depends on the value of x here chosen at 10kW.

4.5 Control of the gradient of the aggregated consumption

Another constraint that we want to respect in order to preserve the grid stability is the speed with which
consumption will increase or decrease. On Fig. [4] (a) (b), we see a strong peak at the start of the day. We
will seek to smooth this peak by imposing a constraint on the gradient of the power consumed. On (c),
this constraint imposed by the charging station of r, = 100kW /h is added through the moment constraints:
Vm € [0,T —1],Y(s,te) € XD, gp(s,te) = fms1(s,te) — fn(s,te) and we impose: Vm € [0,T — 1], —rg <
N{(gm,p) < rg.

This addition of constraints makes it possible to smooth out the slope which begins around 6am. There
are always irregularities due to deviation from prediction and the slight excess of the constraint on the first
peak can be explained by the maximum exploitation of the flexibility of the vehicles to respect the gradient
constraint, which does not leave enough flexibility when vehicles arrive between 9am and 3pm and have to be
connected directly.

11
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4.6 Sensitivity to the difference between actual EV arrival and its prediction

—— Predicted Without constraint This model depends on the quality of the predic-

—— Constraint With constraint tion v made for the rest of the day. In this part,

. : : : : : : : : : we try to test the robustness against this quality
= 1,200 - . of prediction, by twisting the previous prediction:
= 1.000 |- | the central planner expects 30% less vehicles before
E ’ 12am and 30% more vehicles after. The aggregated
I 800 - . power consumption associated to this prediction
§ 600 |- 7 N | is shown in blue in Fig. We can thus observe
g [ that compliance with the same maximal power
@) 400 - constraint of 650kW is still obtained and the con-
g 200 I \ | sumption is very close to Fig. 4] (b). We therefore
2 N\ have a certain robustness of the model concern-
0= : : : = ing the prediction v. This robustness is surely

| | | | |
Time (h) 0 3 6 9 12 15 18 21 24 obtained here by the fact that we can change the
connection time of a previously arrived vehicle as

Figure 5: When the predjction v differs greatly from .long as 1t 1s not conr.lected.' The algorithm can
%ggr&fgﬁ%y in the event of an unexpecte§ arrival of vehicles to be connected immediately, postpone the
connection time of less priority vehicles. But this poorer prediction comes at a cost: when comparing (7, ¢)
between the case where the prediction is close (shown in figure [4] (a)) and this case, we find that the average
time between arrival time ¢, and connection time ¢, increases from 11 minutes to 12 minutes. Having a less

accurate prediction will therefore make less optimal use of flexibility.

4.7 Comparison with a non-predictive algorithm ’ 10CS —— Constraint MCOT

600 - |

Other algorithms and methods have been proposed
in the literature for charging electric vehicles while
respecting global constraints, such as IOCS (Inte-
gral Online Charging Station) (Alinia et al.,[2022).
Compared to this algorithm, our approach allows
two new things. Firstly, the formulation as a MFC
problem allows us to scale up to a very large num-
ber of vehicles. Thus, IOCS has a complexity in
O(N?) with N the number of vehicles, whereas
ours has a linear complexity O(N). Also, the R

addition of a prediction allows us to find better so- . 0 3 6 9 12 15 18 21 24
lutions. In Fig. [6] we compare our MCOT method Time (h)

with IOCS modified to have the same control (plug-
ging at a given instant). Here, we assume that the
global constraint cannot be exceeded and that vehicles that cannot be plugged will be rejected. All vehicles
have the same priority to connect, and our metric for comparing the two algorithms will therefore be the
number of vehicles accepted with the same maximum power constraint of 650kW. On this dataset, MCOT
rejects 23 vehicles (3.4% of EVs) while IOCS rejects 33 vehicles (4.9% of EVs). In particular, we see a
difference between noon and 3 p.m., when the prediction seems to allow more vehicles to be charged.

400 - y

200 - .

Power Consumption (kW)

Figure 6: Comparison with IOCS (no prediction)

5 CONCLUSIONS

One-sided moment relaxation of OT problem provides a very natural representation setting for MFC
applications. This framework considers problems where the initial distribution is known and the goal is
to reach a final distribution that satisfies moment constraints, while minimizing a certain control cost. A
direct application is found in electric vehicle charging, where the objective is to optimally schedule charging
to control their aggregate consumption. It could also be applied to more complex problems in which the
distributions represent distributions of trajectories that are solutions of differential equations, for instance, the

12
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temperature evolution of a water heater. In such contexts, MCOT-C ensures that trajectories in the optimal
policy u are necessarily solutions of this ODE, through absolute continuity. Beyond demand response, other
potential applications can be envisioned, such as controlling a population of drones to provide flexible network
coverage services (Chen et al. 2020). In such applications, the OT problem is often infinite-dimensional
(e.g. trajectories of agents). By introducing an entropic regularization that allows for obtaining an explicit
expression of the gradient, MCOT-C leads to a tractable algorithm. Furthermore, KL-term has a dual role in
MCOT-C: a relaxation term as in many other machine learning algorithms, but it also enables to enforce the
constraints on the dynamics via the choice of ps and absolute continuity imposed by KL. There are many
directions for future research:

e The "Semi-Sinkhorn" algorithm might be improved through the introduction of optimization techniques
such as proximal methods or momentum.

e In some problems, the size of state space X is very large (e.g. cases where a continuous X' space cannot
be discretized, as in Appendix. It can also arise when the control becomes more complex (for instance,
by allowing unplugging and replugging times in Section . As the complexity of the algorithm increases
with the size of this state space, it may be necessary to adapt this method to limit computation time, by
using Monte Carlo-type methods, i.e., generating a number of trajectories to obtain an approximation of the
gradient, instead of calculating it exactly.

e We believe that representing distributions by their moments to perform optimal transport has broader
applications in machine learning and control. We aim to explore its potential in other contexts.

13
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In this appendix, dualization and proofs are presented in Section[A]and [B] A theoretical extension is presented
in appendix [C] in the case where the distributions are Gaussian and the moments specified are the means and
variances. In appendix |D| an experiment involving the transport of a uniform law illustrates the convergence
of the regularized problem to the non-regularized problem, when the regularization parameter € tends to 0.
In Appendix [E] the value of the cost function is reported for the different constraints presented in Section [3]
In Appendix [F} a comparison is done with an Hamilton Jacobi method on the EV use case. Lastly, in
Appendix [G] an application to the case of water heaters control is proposed.

A Duality

First, we want to introduce 2 preliminary problems to the MCOT-C problem. The first problem is a variant
of the relaxation of (Alfonsi et al., 2020)):

Problem 1S-MCOT: One Sided Moment Constrained Optimal Transport.
d(p1, P) = min{(m,c) : 7 € U(p1, 1), po € Py} (13)
Problem 1S-RMCOT is regularized using Kullback-Leibler divergence:
Problem 1S-RMCOT: One Sided - Regularized Moment Constrained Optimal Transport (1S-RMCOT).
d-(p1,Py) = TBEl{<7T»C> + eDxp (7|l @ p2) i m € U(pr, 1), p € Prl, (14)

where € > 0.

A.1 Dual for 1S-MCOT

Characterization of a solution to Problem 1S-MCOT is based on a Lagrangian relaxation. Introduce two
classes of Lagrange multipliers for equation 1) is for the first marginal constraint, a real-valued measurable
function on X, and A € Rf for the moment constraints. The dual functional is defined as the infimum,

(1, A) i=inf (7, ) = (m1 = pa, ) + (72, ATf) = (p,¥) + iwr}zf{C(w, y) — () + A f(y)}- (15)

The convex dual of equation is defined to be the supremum of ¢*(¢,\) over all ¢ and A. The dual
optimization problem admits a familiar representation. Compactness is assumed in Proposition [4 (ii), as in
prior work (Kemperman) 1968)).

Proposition 4. If (A1) and (A2) hold, then,

(i) With ¢* defined in equation the dual convex program admits the representation

d* = Sup ¢ (¥, N) = ZUI;{OM,W (@) = N'f(y) < e(z,y) for all z,y}. (16)
On replacing v with > (z) := inf, {c(z,y) + A" f(y)} we obtain the equivalent maz-min problem
d* = sgp/ir;f[c(x,y) + X f(y)]pa (dz). (17)

(ii) Suppose in addition the set X is compact. Then the supremum in equation is achieved, and there is
no duality gap: for a vector \* € R%,

Al Py) =" = [ min{e(e,y) = X7 () b ),
Once we solve equation [I6 we obtain 7* through complementary slackness:
0= [ # @) @) + X))
z,y

which means that 7* is supported on the set {(z,y) : =A\*" f(y) + ¥*(z) = c(z,y)}.
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A.2 Regularization

Recall that the functional Dxr,(7||p1 ® pe) is used to define the Sinkhorn distance (Cuturi, [2013]), and
coincides with mutual information when the marginals of 7 agree with the given probability measures p; and
wo2. In the present paper, the marginal po is a design parameter.

1S-RMCOT geometry and duality A close cousin to 1S-RMCOT uses the Kullback-Leibler divergence
as a constraint rather than penalty (Cuturi, |2013)). Consider for fixed ¢ > 0,

a5, Py) = min{(m,c), st 7€ Ul ), p € Py Dycn(mlin @ o) < 6}, (18)

The parameter € > 0 in equation [I4 may be regarded as a Lagrange multiplier corresponding to the constraint
Dy (7||p1 @ p2) < 6. Under general conditions there is d(g) such that the optimizers of equation |18 and
equation [I4] coincide.

In considering the dual of equation |14 we choose a relaxation of the moment constraints only: letting A € Rf
denote the Lagrange multiplier as before,

©*(A) = ir;f{(w, ¢) + eDxr (|| p1 ® pa) + (w2, \Th) : w1 = 1} (19)

The convex dual of 1S-RMCOT is by definition the supremum of the concave function ¢*. The optimizer,
when it exists, is denoted 7.

With the notation

G (z,y) = =N f(y) —clz,y), =y€X, (20)

the dual function may be expressed
{m: KL(r||p1 ® p2) < 0}

" (\) = —max{{r, ) — eDgr.(rllp @ p2) : m = ).

L]
p1 ® pro

The dual of equation |18 with d = d(e) yields better geometric
insight. If the maximum above exists, then the maximizer 7*
solves

™ € argmax{{r, €)) : Dycp (w1 ® iz) <3, 71 = pr}.

The convex region containing p11 ® pe shown in Fig. [7]is the Figure 7: Dual geometry for 1S-RMCOT
set of all 7 for which m = p; and Dgy,(7]|p1 ® p2) < d. The

optimizer 7 lies on the intersection of this region and the hyperplane shown in the figure, indicated with a
dashed line: {7 : (m, £})) = (7*,£})}. This value of A does not optimize ¢* because the hyperplane is not the
boundary of the half-space shown in the figure.

For computation, it is convenient to make a change of variables: since m; = p; is constrained, the infimum is
over all probability kernels: for \ € Rf ,

©*(A) 5=if;f{—<M1T7€3> + eDk(nT|p @ p2)} (21)

For eachA€R¥,5>Oandx€X,we denote

By.(z) = clog / (e ) aldy) (22)

Proposition 5. Subject to (A1)-(A3),

(i) The infimum equation gives ©*(N) = —(u1, Brg).
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(ii) The probability kernel maximizing equation i
T (2, dy) = pa(dy) exp(L(x,y)) , with L (x,y) = e {{5(x,y) — Bre(2)}. (23a)
(iii) unique X\* € RY eaists, satisfying
@ (A7) = de(p1, Py). (23b)
That is, there is no duality gap.

The similarity between Proposition [5] and Proposition [4] is found through examination of equation [I7} and
the recognition that —B) () is a (uz-weighted) soft minimum of —¢€3(x,y) = c(z,y) — A" f(y) over y € X.
Subject to this interpretation, the convex dual of 1IS-RMCOT can be expressed in a form entirely analogous
to equation [I7}

max P (A) = max / soft;nin{c(x, y) + A f(y) e (dx).

1S-MCOT approximation

Consider the following procedure to obtain a solution to 1S-MCOT (without regularization), but with X
compact, and the supports of uq and ps each equal to all of X. Let {7, A\* : ¢ > 0} denote primal-dual
solutions to 1S-RMCOT, where € > 0 is the scaling in equation Hence for each € > 0,

de(p1,Py) = (7, ¢) + eDxr(m®| 1 @ p2) = —(p1, Bxe ).

Proposition 6. Suppose that the assumptions of PToposition (ii) hold, so in particular X is compact.
Then, any weak subsequential limit of {7, \* : ¢ > 0} as e | 0 defines a pair (7°,\°) for which ° solves
18-MCOT and X\° achieves the supremum in equation .

Furthermore, it is possible to bound the rate of convergence:

|d2 (p1, Py) — d* (1, Py)| < eDgr(n°||p @ po)

A.3 Link with the MCOT-C Problem
Writing the dual of MCOT-C, we get:
" (A) = emin{—(m, 1) + Dxv(7|lpn @ pa) : 7 € K ()}
Since 7 € K (u1) is constrained, the infimum is over all probability kernels T from X to W:
) = = [ r(da) s {(T (@), B3 Do = eDr (T ials, )},

where (., .)yy is the inner product on W. We obtain Proposition [1} which gives similar results as Prop. |5| with
a probability kernel going from X to W.

B Proofs

Much of the analysis that follows is based on convex duality between relative entropy and log moment
generating functions. For any probability measure p on X and function g: X — R, the log moment generating
function is denoted,

Au(g) = log(p, e7).

With p fixed, this is viewed as an extended-valued, convex functional on the space of Borel measurable
functions. Lemma [2|is a standard tool in information theory (Dembo & Zeitouni, [1998), and a reason that
relative entropy is popular for use as a regularizer in optimization.
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Lemma 2. Relative entropy and the log moment generating function are related via convex duality:

For any probability measure p we have

Drr(plp) = Stglp{<p7 9) — Mu(9)}- (24a)

If Dir(p|ln) < oo then the supremum is achieved, with optimizer equal to the log likelihood ratio, g* =
log(dp/dys).

For Borel measurable g: X — R,

Au(g) = Sl;p{<p7 9) — Drr(p|lp)}- (24b)

If A,(g) < oo then the supremum is achieved, where the optimizer p* has log likelihood ratio log(dp* /dp) =
9—Nu(9)- 0

We present here the proof of part (i). The proof of (ii) is done in the proof of Proposition @

Proof of Proposition The dual function is invariant under a constant shift in 1, so we may assume
that the infimum is exactly zero by adding a constant to ¢. This gives

max " (Y, \) = mex {(Mlﬂ/}) : %E?;[C(I,y) —(x) — M| f(y)] = 0} .

The value of the maximum is unchanged if the equality constraint is replaced by the inequality

which yields the representation equation 0

Proof of Proposition For each A we have by definition,

o = [ _ e (T, lee) - / _ T} (25)
- —smjgx/xex M1(d$){5_1 /yeX T(x, dy)ty(x,y) — Dxu(T (x, ')||M2)}- (26)

For each z we have an optimization problem of the form equation Applying Lemma [2| (ii) gives the
representation equation 8aj and by substitution (or applying equation [24b|) we obtain

/ T () — Dia (T, )llnz) = €7 Bao(a) (27)

Integrating with respect to pq and applying equation 26 completes the proof. a

Proof of Proposition The proof is the same as the previous one using this expression of the dual:
" (A) = — / pu1(de) ;I(I%KT(% )5l (@, ))w — eDxer (T, )|l p2(s”, ) }-
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Proof of Proposition |§| Let (7¢, A%) denote the solution to 1s-RMCOT, with € > 0 regarded as a variable.
We let (7%, \) denote any weak sub-sequential limit: for a sequence {g; | 0},

7% — 70, Ao =AY i — 00.
Optimality of 7° is established in the following steps:
- Subject to (A1) and (A2) we know that 70 € U (uy, ) with pu € Py.

- For any 7 € U(p1, 1) with p € Py and Dxr, (]| @ p2) < oo and any € > 0 we have

(79, ¢) = lim (7%, ¢) < lim {(7%, ¢) + €; Dk, (7%
1—> 00 1—> 00

1 ® p)y < lim {(, ¢) + & Dicr (7l pn @ pi2) } = (0, €) -
- Under the support assumption we can approximate in the weak topology any m € U (u1, 1) with pn € Py by
70 satisfying Dxr, (70 |1 ® pe) < oo and

(79, ¢) < (n°,¢) < (m,e) — 4.
Since § > 0 is arbitrary this establishes optimality.

We next show A° provides an optimal solution. Then, for any A,

(°,¢) > — lim (1, By.e,) = / € fy{e(w.y) — AT f(y) b (d)

1—00

The lower bound is achieved using \° by allowing A to depend on i:

(%, ¢) < lim {{(7% ¢) + g; Dk, (7

1—00

pr @ p2)} = = lm (i, Baciey) = /igf{C(%y) 2T f () b (d)

To prove the rate of convergence, we adapt results from (Luise et al.| 2018]) in our context. First, we denote
e = argmin[{m,c) + eDky(7||u1 ® pz2)] and by optimality of 7., we obtain: (7., c) + e Dy (me||p1 @ p2) <
(o, ¢) + eDxr(moll 1 @ p2)

By optimality of 7y and positivity of the Kullback-Leibler divergence, we obtain: (mg,c) < (me,¢) <
(e, €) + eDkL(Te| |1 ® pi2)

Combining these inequalities, we get:

0 < (72, ¢) + eDkL (e[| @ p2) — (o, ¢) < eDkr(mol[p @ p2),

0 < dZ(p1,Py) — d*(p1,Py) < eDkr(mol|p1 @ pa).

which proves our result.

Proof of Lemma Suppose that v € RM is in the null space: *v = 0. From the definition equation
it follows that )
0=v"2%=E{v"(fY)-Ef(Y)| X])} ']

Equivalently, there is a function g: X — R such that
v f(Y) = g(X) a.s. [1)].

The probability measures 7* and 7% := j1; ® po are mutually absolutely continuous, so the same equation
holds under a.s. [7°]. Independence gives

VEY) =EQRTfY) Y] =Eg(X) | Y] = (u1,9)  as. [7°].

That is, the variance of v" f(Y’) is equal to zero. Under (A3) this is possible only if v = 0. O
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Proof of Proposition |§| Recall the notation y* = p; T, which is the second marginal of 7*, and the
probabilistic notation defined in the Introduction. Also, by definition we have J(¢) = ™ *{u1, Be¢ e)-

We have for each i,

0 ()= Jyex m2W) exp({C"f(y) — e 'e(x,y)}) fn ()

G Jyea n2(y) exp({CTf(y) — e le(z,y)})

= T)‘fm(x).

Integrating each side over p; gives equation [9a| (recall that pu* = puyT?).
To obtain the second derivative of J(¢) requires the first derivative of the log-likelihood:

W@w:iﬁﬂawiikww%1&MM=%@—WMW-

From this we obtain,

o 0. .
mBsc,s(ff) = T@T fm ()

- /TEC(a:,dy){ch(x,y)fm(y)}

:(ﬁmwwm@mwfww@fﬂm@m@
= EMNhy(Y)fn(Y) | X = 2] = EMfu(Y) | X = 2B MRy(Y) | X = .

Integrating each side over p; gives equation [Ob ]

Proposition 7. The conditional distribution defined in equation is Markovian: for a collection of
probability kernels { P} parameterized by ,

PMyi—1, dyi; ). (28)

=

™ (95; dy) = Vo(dyo)

(2

Il
=

Proof of Proposition[7] The proof reduces to justifying equation which is one component of Proposition
that follows.

Write L) (24, y;) = e H{\U(yi) — i) — 3|lzi — yi]|*}, and for each i consider the positive kernel,
PMyi1,dy;) = Pi(yi—1, dy;) exp (L} (x4, i)
Proposition 8. The conditional distribution defined in equation[8d| can be expressed
M ~
T (x, dy) = vo(dyo) exp(—e ' Bac(@)) [ [ P} (wi-1, dus). (29)
i=1

Consequently, conditioned on X = x, the process Y is of the form equation[28, in which each kernel in the
product takes the form,

. 1 ~
PMyioy, dys; 1) = ————— P (yi1, dyi)gi (yi; @).
(yi—1,dyi; ) i) (yi—1, dyi)gi (yi; )
The functions {g; : 0 <1i < M} are defined inductively: grr(yar;x) =1, and for 1 <i < M,
9i-1(y; @) r=/133(y7dyi)gi(yi;x), yEX

This results in go(yo,z) = exp(e "' By (z)).
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Proof The representation equation [29| follows from the definition equation [8aland the structure imposed on
h and pq. It is then immediate that equation 29| can be transformed to equation by construction,

M M
PMyi—1,dyi;x) = ———— [ PMyio1, dy:).
11 sl LI

Since yg = xg by construction, it also follows that

exp(e™ ' Bac(2)) = go(xo; 2).

C Example: Quadratic Constraints & Gaussian Regularizer

Consider the special case in which the function f is designed to specify all first and second moments for Y. To
solve Problem 2 we adopt the following notational conventions for the Lagrange multiplier: E[Y;] = m} «+— A}
and E[Y;Yj] = mZ; +— A7 ,;. Of course we have m7; = m3; for each i,j. The total number of constraints is
thus M = n + n(n + 1)/2. For purposes of calculation it is useful to introduce the symmetric matrices M2
and A? with respective entries {m;;} and {)\};}; similar notation is used for my and A', the n-dimensional

vectors with entries {m}} and {\}}.

Remark: In this subsection, the same assumptions as in the rest of the article are not made; in particular,
compactness is not assumed, as this property does not hold in the present setting.

Equation gives £ (x,y) = A\"f(y) — c(x,y) with
N fy) = y"A%y — (A%, M) +y" A —mp AL (30)

An explicit solution to problem 1S-RMCOT is obtained when ¢ is quadratic and uo is Gaussian:

Proposition 9. Consider the 1S-RMCOT optimization problem equation[IJ) in the following special case:
clz,y) = %Hx —yl?, and pz = N(0,1) in the regularizer equation . Assume that the target covariance
Sy =M% — mymi is positive definite.

Then, for each A with A?> < %(1 + €)1, the probability kernel T> is Gaussian: conditioned on X = x, the
distribution of Y is Gaussian N(m., Xpx) with

1

mis =e 'Sz + A, Spo=[T+e I -2A0%] . (31)

Proof of Proposition |§| From equation [30| and using c(z,y) = 3|z — y||> we obtain an expression for the
likelihood L* appearing in equation

LMa,y) = e H{y" Ay +y" A = 5 = Bac(2)} = 5(12)1* = 22Ty + [lylI*)}, (32)

with k* = (A2, MZ) + m}, A\'. The expression for 7 in equation [8a| using po = N(0, ) then implies that for
any z, T*(z,dy) admits the Gaussian density

| 2) = s esp(= i) esp(e {4yl — 2%+ 57l + ). (33)

where n*(z) = (2m)"/? exp(e ' {k* + By (z) + 3|[|*}) may be regarded as a normalizing constant. |
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Remark: If 4 is non gaussian, it is necessary to compute the normalizing constant in the definition of T
) = @) [Pl = [en(-3rSglyre e+ ) dy (34)
= /(2m)?det(Spa) exp(3e %[z + A Em[z + A')). (35)
Monte-Carlo methods can be used to estimate A*. Denote for each x,
Ao — A Ao — A s
P@) = [P, m e = [T wd)r) )"

Each have polynomial entries: ¢ is a quadratic function of x and mf‘y ;(x) is a fourth order polynomial in
for each ¢, 5. Thus, one might take

= (Xnga) S = mA (X ) — T mr T

These functions will have finite means provided E[||X||*] is finite under y;.

D Convergence rate when transporting from a uniform distribution

T T T

We want to illustrate the convergence rate in

Proposition [0} 10
With the same notations as in problems 1S-
MCOT and 1S-RMCOT, we define X = [0,1].
Distributions p1 and ps are the uniform distri- 3
butions on X. We define f(z) =z —a with £ 5 o
a € X the imposed mean, and impose a unique A
constraint: (f, u) = 0.
The cost ¢ is chosen as: Va,y € X, c(z,y) = 0
5 | |

(z —y)*. | | | | | |
0 0.2 0.4 0.6 0.8 1

For these values, it is possible to obtain an ex-
plicit solution to 1S-MCOT, using Proposition Fi

3 1. gure 8: Density of y; and densities of 7 , for different

values of

dr = sgp/igfk(% y) = M)l (de) = sup / inf[(z — y)* = Ay — a)ldz

4

L 1 1 1L 11 | :(0[_05)2
0.2 ¢

)\2
:sup/———i—)\(a—x)dx
A

The solution 7} may be obtained through gradient
descent as explained in section [3] For o = 0.25 and
a discretization of X to 100 points (to compute the
gradient), the resulting marginal 75 is shown in Fig.
Bl achieving the constraint on the mean, for different
values of €.

Cost
&

0.1

The values of d* and (c,n}), were obtained for a

range of £ (from 1073 to 10%). We can observe in

e s ey by i Fig, [9] that the convergence to the minimum of the

10° 10 10! 10 107t 107 1077 unregularized problem is fast and that it respects
€ the inequality proved in Proposition [6}

Figure 9: Comparison of the costs d* and (¢, 7}) for |d%(p1, Py) — d* (1, Py)| < eDxr (ol @ pa).
different values of €
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E Costs of the solutions shown in Section

In this section, the value of the cost function associated with the distribution 7w produced by the algorithm is
reported for the different constraints presented in Section[3] The total cost is decomposed into the contribution
of the control cost, {c, ), and the contribution of the entropic regularization term, eKL (7|11 ® p2), which is
intended to remain small.

E.1 Costs for the solutions shown in Figure 2]

|. (e, m) O eDxy (|| ® p2) |

Value

0
Unplugging disabled Unplugging enabled Harder Constraint

Figure 10: Decomposition of the cost for the different scenarios of Figure

Figure [10[ shows that allowing vehicles to unplug and replug does not alter the cost (¢, 7), as long as the
constraint remains easy to satisfy. The cost e K L(m*||1 ® p2) due to the KL divergence cannot be compared
between these two scenarios, as the state space is not the same (and thus we do not compare with the same
12). The third bar represents a scenario, where unplugging is allowed and an harder constraint is imposed
(no consumption during two hours), which results in a significantly higher cost.

E.2 Costs for the solutions shown in Figure 3]

T T

o | (e, m) BeDicw(rlln & p) | !
o 4| :
=]
=

7.22 102
-2
a9l 7.32-10 |

Without gradient control With gradient control

Figure 11: Decomposition of the cost for the two scenarios of Figure
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Figure |11| shows that adding an additional constraint (here, a constraint on the slope of total consumption)
leads to an increased cost. In Figures|[10] and the impact of regularization appears to be small, which is
consistent with our choice of keeping € small.

F Comparison with methods based on Hamilton-Jacobi-Bellman equations and
Piecewise Deterministic Markov Processes

. ‘ ) ) ‘ T T A common method in the MFC literature is to
2 350 | == MCOT —= PDMP | start with Hamilton-Jacobi-Bellman equations,
g 3007 | discretize these equations and solve them nu-
B 250 | merically. We compare ourselves here with an
g 200 1 article (Séguret et all 2024]) that applies this
£ 150} 1 type of method to EV charging, via a generation
é 100 | 1 of Piecewise Deterministic Markov Processes
g 50 | _/ 1 (PDMP). The case study here is a flat signal,
@) 0f 1 and both methods seek to track this signal. As
100200 300 400 500 600 the PDMP method can only take into account

Number of discretisation point in time nime one fixed starting time, we assume that all ve-

hicles arrive at 9am. We note in Figure [I2] that
Figure 12: Computation time for MCOT and PDMP (PDMP .. MCOT method is faster in this case, what-

algorithm is stochastic, error bars are computed over 10

i ever Nitime- For higher values of ngjme, MCOT’s
simulations)

computation time increases quadratically, and
it could be improved by using Monte Carlo methods to simulate trajectories (as the PDMP method does).
Apart from computation time, another advantage of the MCOT method is the flexibility of the model
considered: in particular, vehicles arriving at different times can be considered.

G Water heaters control
We present in this appendix how to apply MCOT-C in a control problem other than the control of EVs.

Water heater control problem: We consider a large population of homogeneous Water Heaters (WH).
At time t, a WH is modeled by its mean temperature () € ©, where O is a subset of R, and its power mode
m(t) € {0,1} (Off/On). These WHs follow the Ordinary Differential Equation (ODE):

DD p(008) — Bu) + om(t)p — (s,

with p the fraction of heat loss by minute, o the specific heat capacity of the volume of water, p the heating
power, 04, the room temperature, and €(t) the power equivalent of the water drains at time ¢. Moreover, a
water heater aims at keeping its mean temperature between 6,,;, and 6,,,, by turning the water heater Off
whenever the temperature reaches 6,4, and turning it back On whenever the temperature reaches below
Opmin- The intial density of WHs is at time 0:

90, mo ~ 1g.
And the nominal policy p; is thus defined as follows by this update equation:

et-‘rl - ‘9t - pét(et - eamb) + Oétmtpmaw — 06

my lf 9t+1 S [emzna gmam}
miy1 = 0 if 9t+1 > Omaa (36)
1 if 041 < Omin

o, mo ~ g
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The population of water heaters is represented through its mean-field distribution y, that is, the empirical
distribution obtained in the limit of an infinite number of agents. When applied to a finite but large population,
this mean-field distribution induces a control policy. We consider the setting in which a central agent seeks
to control these WHs in order to satisfy A global constraints on the aggregate behavior of the WHs:

Vae {1,...,A}, (f9 u) <o,

where the function f is defined as f: X — RA.

Application of MCOT-C to this problem: We allow the WHs to flip their power mode (from On
to Off or from Off to On), while the temperature is still between the two bounds 6,41 € [Omin, Omaz]- We
limit ourselves to two flips per day per water heater. We will note these two times t1,t5 € {1,...,T}2. This
limitation avoids frequent switching, which is undesirable for the water heater. Therefore, the power mode
update for the policy us can be written as follows:

myr1 = my if Opp1 € [Omin, Omae] and t & {t1,t2}
myp1 = (L —my) if 011 € [Omin, Omas] and t € {t1,t2}
mer1 = 0if i1 > Opaw
myp1 = 1if 011 < i

We can choose ¢ as the number of flips added during the day or the temperature difference at the end of the
day, to reduce the impact of the algorithm on user comfort.

Discussion This problem can be formulated with the MCOT-C framework:

mﬂin (m,e) +eKL(m||p1 ® po) : ™ € K(p1), m2 € Py

An important difference is that here we directly control trajectories (solutions of the ODE). The absolute
continuity (imposed by the KL term) ensures that trajectories in pu, the optimal policy, are necessarily
solutions of this ODE, as the support of y is in the support of us. A second difference is that the state space
is very large (it is the number of possible controlled trajectories), and thus the gradient in our algorithm
should be computed with Monte Carlo methods.
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