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ABSTRACT

Many methods aim to enhance time series forecasting by decomposing the series
through intricate model structures and prior knowledge, yet they are inevitably
limited by computational complexity and the robustness of the assumptions. Our
research uncovers that in the complex domain and higher-order hypercomplex
spaces, the characteristic frequencies of time series naturally decrease. Leveraging
this insight, we propose Numerion, a time series forecasting model based on
multiple hypercomplex spaces. Specifically, grounded in theoretical support, we
generalize linear layers and activation functions to hypercomplex spaces of arbitrary
power-of-two dimensions and introduce a novel Real-Hypercomplex-Real Domain
Multi-Layer Perceptron (RHR-MLP) architecture. Numerion utilizes multiple
RHR-MLPs to map time series into hypercomplex spaces of varying dimensions,
naturally decomposing and independently modeling the series, and adaptively
fuses the latent patterns exhibited in different spaces through a dynamic fusion
mechanism. Experiments validate the model’s performance, achieving state-of-
the-art results on multiple public datasets. Visualizations and quantitative analyses
comprehensively demonstrate the ability of multi-dimensional RHR-MLPs to
naturally decompose time series and reveal the tendency of higher-dimensional
hypercomplex spaces to capture lower-frequency features.

1 INTRODUCTION

Time series prediction is crucial in fields like power, finance, transportation, and industry, with
a focus on uncovering temporal patterns for accurate forecasting. Recent advancements in deep
learning, including CNN-based (e.g., TCNBai et al. (2018), SCINetLiu et al. (2022)), RNN-based
(e.g., LSTNetLai et al. (2018), TPA-LSTMShih et al. (2019)), Transformer-based (e.g., InformerZhou
et al. (2021), AutoformerWu et al. (2021), PatchTSTNie et al. (2022), iTransformerLiu et al. (2023b)),
and MLP-based methods (e.g., N-BeatsOreshkin et al. (2019), DLinearZeng et al. (2023)), have
significantly enhanced this domain.

In cutting-edge solutions, techniques like sequence decomposition and multi-period pattern recog-
nition are integrated into models, often through complex structures or manual rules, increasing
computational demands and model complexity. Alternatively, some models achieve these tasks in the
frequency domain with simpler architectures. For instance, SCINetLiu et al. (2022) and FiLMZhou
et al. (2022a) use frequency domain decomposition, FEDformerZhou et al. (2022b) and FreTSYi et al.
(2023) capture multi-period patterns, and FilterNetYi et al. (2024) learns amplitude relationships
via filters. This stems from the natural divergence of time series properties in complex spaces
compared to real domains, prompting the question: Can time series exhibit additional properties in
higher-dimensional hypercomplex spaces, enabling modeling through simple transformations
rather than intricate structures?

Inspired by hypercomplex number theory (Appendix M), our experiments reveal that mapping time
series from the real domain to higher-dimensional hypercomplex spaces (e.g., complex numbers,
quaternions) naturally alters their characteristics, favoring lower-frequency features. As illustrated
in Figure 1, mapping to the complex domain eliminates high-frequency fluctuations, unveiling a
hierarchical spatial structure. In quaternion space, high-frequency features further diminish, resulting
in a clustering phenomenon where nearly all data points align with the same low-frequency feature.
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(b(a) )

Figure 1: (a) Time Series in Real, Complex, and Quaternion Domains. (b) Performance of Numerion.

Based on our experimental findings, we propose that mapping time series into hypercomplex spaces
of varying dimensions inherently reveals distinct latent features, eliminating the need for complex
model structures. To this end, we introduce Numerion, a Multi-Hypercomplex time series forecasting
model. Specifically, we generalize linear transformations and tanh activation functions from the
real domain to hypercomplex spaces of arbitrary power-of-two dimensions, establishing a unified
framework. We then design a novel Real-Hypercomplex-Real domain Multi-Layer Perceptron (RHR-
MLP) to model linear and nonlinear relationships in hypercomplex spaces. By mapping time series
into multiple hypercomplex spaces, we independently model temporal features using the simple
RHR-MLP structure. Finally, to better integrate information from different hypercomplex spaces, we
designed the Multi-Hypercomplex Adaptive Fusion mechanism to adaptively fuse them. Experiments
show our method achieves state-of-the-art performance across multiple datasets. Ablation studies,
visualizations, and quantitative analyses confirm that hypercomplex spaces naturally enable multi-
frequency decomposition of time series, uncovering diverse latent temporal patterns, with higher-
dimensional spaces tending to model low-frequency features. Our contributions are summarized as
follows:

• We generalize the linear layer and Tanh activation function to hypercomplex spaces, sup-
ported by rigorous theoretical foundations, and introduce a novel Real-Hypercomplex-Real
domain Multi-Layer Perceptron (RHR-MLP) architecture.

• We propose Numerion, a multi-hypercomplex space time series prediction model that
maps time series into different hypercomplex spaces to naturally achieve multi-frequency
decomposition, model distinct temporal patterns, and adaptively fuse them.

• Experiments validate the effectiveness of our method. Visualizations and quantitative analy-
ses demonstrate that hypercomplex spaces naturally enable multi-frequency decomposition
and reveal their underlying decomposition patterns.

2 PRELIMINARY

2.1 DEFINITION OF LONG-TERM TIME SERIES PREDICTION PROBLEM

The long-term time series prediction problem involves forecasting the values of target variables
{xT+1, · · · , xT+P |xi ∈ RF } over a future time period, utilizing historical time series data
{x1, · · · , xT |xi ∈ RF }. Here, T represents the length of the historical sequence, P denotes the
prediction horizon, and F indicates the number of features in the time series. The input is represented
as X ∈ RT×F , and the label is denoted as Y ∈ RP×F .

2.2 DEFINITION OF HYPERCOMPLEX NUMBERS

Hypercomplex numbers are an extension of complex numbers, generalizing their properties to higher-
dimensional spaces through the introduction of additional dimensions or more intricate algebraic
structures.
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Figure 2: Overall Structure of Numerion. Primarily includes Multi-Level Patch Embedding, Multi-
Dimensional RHR-MLP, and Multi-Hypercomplex Adaptive Fusion.

Lemma 2.1 Cayley-Dickson Algebra System: Let A be an algebraic system equipped with a conju-
gation operation (denoted as ∗), where elements are of the form (α, β). Through iteration, a new
algebraic system A′ can be constructed, adhering to the following rules: (α1, β1) + (α2, β2) =
(α1 +α2, β1 +β2); (α1, β1)× (α2, β2) = (α1α2 −β∗

2β1, β2α1 +β1α
∗
2); (α1, β1)

∗ = (α∗
1,−β1)

By Lemma 2.1, we can begin with the real numbers and iteratively construct algebras of any power-
of-two dimension, such as the complex numbers (2D), quaternions (4D), octonions (8D), sedenions
(16D), and beyond. These algebras comprise a real part and multiple imaginary units, adhering to
specific multiplication rules. The properties of real numbers manifest distinct behaviors within these
higher-dimensional spaces.

We define the n-dimensional hypercomplex numbers uniformly represented as:

c(n) := a0 + a1i1 + ...+ an−1in−1

where a0 is the real part coefficient, {a1, . . . , an−1} are the imaginary part coefficients, and
{i1, . . . , in−1} are the imaginary units. Since hypercomplex numbers are generated iteratively,
the dimension n must be a power of two (e.g., 1, 2, 4, ...). When n = 0, c(0) represents a real number.
Hypercomplex numbers also adhere to gradient differentiation rules, with the relevant theoretical
details provided in the Appendix I.2. Similarly, in this paper, all vectors, matrices, and modules in
hypercomplex space are denoted with a superscript (n) to indicate their dimensionality. The absence
of this superscript implies n = 1, which corresponds to the real number domain.

3 METHOD

In this section, we first generalize the linear layer and Tanh activation function to hypercomplex
spaces, proposing a real-hypercomplex-real domain multi-layer perceptron (RHR-MLP) architecture.
This architecture maps inputs to arbitrary hypercomplex spaces, uncovering unique features in high-
dimensional spaces. Building on this, we introduce a Multi-Hypercomplex time-series prediction
model, named Numerion, which achieves natural multi-frequency decomposition, modeling, and
fusion of time series through RHR-MLP across multiple hypercomplex spaces.

3.1 REAL-HYPERCOMPLEX-REAL DOMAIN MULTI-LAYER PERCEPTRON

Firstly, we define the mapping principles and generalize the linear layers and Tanh activation functions
to the hypercomplex space. Subsequently, we propose a Real-Hypercomplex-Real domain Multi-
Layer Perceptron (RHR-MLP) architecture, designed to model both linear and nonlinear relationships
within the hypercomplex space.

3.1.1 HIGH-DIMENSIONAL HYPERCOMPLEX MAPPING

We first define the mapping method from lower-dimensional hypercomplex numbers to higher-
dimensional ones. Since higher-dimensional hypercomplex numbers are derived from lower-
dimensional ones, for any nl-dimensional hypercomplex number, when mapping to a higher
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dimension nh (where nh > nl), we adopt the principle of preserving the lower-dimensional
coefficients and padding the higher-dimensional ones with zeros. This process is denoted as
X(nh) = HMAP(nl→nh)(X(nl)).

c(nl) := a0 + a1i1 + ...+ anl−1inl−1
HMAP(nl→nh)

−→
c(nh) := a0 + a1i1 + ...+ anl−1inl−1 + 0inl

+ ...+ 0inh−1

(1)

3.1.2 HYPERCOMPLEX LINEAR LAYER

We generalize the linear layer to hypercomplex spaces of arbitrary dimension n. The linear transfor-
mation from d1 to d2 space is expressed as:

O(n) = W(n)TX(n) + b(n) (2)
where the input vector X(n), the mapping matrix W(n), the bias matrix b(n), and the output O(n)

are all composed of hypercomplex numbers of the same dimension n
cno;0
cno;1

...
cno;d2

 =


cnw;0,0, c

n
w;0,1, · · · , cnw;0,d1

cnw;1,0, c
n
w;1,1, · · · , cnw;1,d1

...
cnw;d2,0

, cnw;d2,1
, · · · , cnw;d2,d1



cnx;0
cnx;1

...
cnx;d1

+


cnb;0
cnb;1

...
cnb;d2

 (3)

It is evident that the output of the hypercomplex linear layer can still be represented in a manner
analogous to real-valued matrix multiplication:

c
(n)
o;i = c

(n)
w;i,0 × c

(n)
x;0 + · · ·+ c

(n)
w;i,d1

× c
(n)
x;d1

+ c
(n)
b;i (4)

where the product of two hypercomplex numbers must conform to the multiplication rules of
the hypercomplex space. In Appendix H, we present comprehensive techniques for generating
multiplication rules in hypercomplex spaces of any power-of-two dimension, along with an efficient
computational approach for hypercomplex linear mappings.

For simplicity, we consistently represent the linear layer in an n-dimensional hypercomplex space as

HLinear(n)(X(n)) (5)

3.1.3 HYPERCOMPLEX NORM TANH ACTIVATION FUNCTION

To capture non-linear mapping relationships in hypercomplex spaces, we introduce the Hypercomplex
Norm Tanh (HNTanh) activation function. This function applies non-linear transformations to both
the real and multiple imaginary components of the hypercomplex number. The computation process
of HNTanh(n) is defined as:

âi =
ai

∥c(n)∥p
tanh(∥c(n)∥p) (6)

where ai denotes the coefficients of the hypercomplex number, and ∥ · ∥p represents the p-norm.
HNTanh enables non-linear transformation of the modulus of the hypercomplex number while
maintaining its phase. When the hypercomplex number simplifies to the real number space, this
activation function becomes equivalent to the tanh activation function. Additionally, this function is
both continuous and real-differentiable. Relevant theoretical derivations and advantage analyses are
provided in the Appendix J and I.1.

3.1.4 LOW-DIMENSIONAL HYPERCOMPLEX MAPPING

Similar to the process of mapping to higher dimensions, when mapping to low-dimensional hy-
percomplex spaces, we follow the principle of retaining the lower-dimensional coefficients while
discarding the higher-dimensional ones. This operation is denoted as LMAP(nh→nl).

c(nh) := a0 + a1i1 + ...+ anl−1inl−1 + anl
inl

+ ...+ anh−1inh−1

LMAP(nh→nl)

−→ c(nl) := a0 + a1i1 + ...+ anl−1inl−1

(7)

where nh and nl represent the dimensions of the hypercomplex numbers, and nh > nl.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1.5 REAL-HYPERCOMPLEX-REAL DOMAIN MULTI-LAYER PERCEPTRON

The Real-Hypercomplex-Real domain Multi-Layer Perceptron (RHR-MLP) architecture we utilize
comprises High-Dimensional Hypercomplex Mapping, L× Hypercomplex Linear Layers with Hy-
percomplex Norm Tanh Activation Function and Dropout, a prediction layer, and Low-Dimensional
Hypercomplex Mapping, as depicted in Figure 2. We denote the RHR-MLP in the n-dimensional
hypercomplex space as RHR-MLP(n)(X), and its computational process is as follows:

X
(n)
(0) = HMAP(1→n)(X)

X
(n)
(i) = Dropout(HNTanh(n)(HLinear(n)(X(n)

(i−1)))) i = 1, 2, ..., L

O(n) = HLinear(n)([X(n)
(1) | · · · |X

(n)
(L) ])

O = LMAP(n→1)(O(n))

(8)

where [·|·] represents matrix concatenation.

3.2 NUMERION ARCHITECTURE

We introduce a multi-hypercomplex space time series prediction model, named Numerion, which
transcends the constraints of the real number domain by mapping sequences to complex, quaternion,
and higher-dimensional hypercomplex spaces. This approach seeks to uncover distinct latent temporal
patterns inherent in various hypercomplex spaces and adaptively integrate multi-dimensional features.
The model architecture, as depicted in Figure 2, primarily comprises three components: Multi-Level
Patch Embedding, Multi-dimensional RHR-MLP, and Multi-Hypercomplex Adaptive Fusion. Prior
to inputting the sequence and after generating the prediction, we apply mean normalization and
denormalization, respectively.

3.2.1 MULTI-LEVEL PATCH EMBEDDING

Time series often exhibit both long-term and short-term characteristics, which are challenging for a
simple MLP structure to model directly. However, PatchNie et al. (2022) enables segmentation of
the time series into varying lengths, allowing the MLP to capture temporal features across different
scales. Thus, before mapping the time series to multi-hypercomplex spaces, we enhance long-term
and short-term features through Multi-Level Patch EmbeddingNie et al. (2022).

We denote the number of patch levels as lp and define the segmentation length for each level as
⌊ T
2i ⌋, i = 0, 1, ..., lp − 1. The time series is segmented according to the length of each level, forming

multiple subsequences, where sequences within the same level have identical lengths. We linearly
map the time series at each level to a unified encoding dimension de, average the encodings of
multiple sequences at the same level, and concatenate the encodings from different levels to form a
time series Xp ∈ RF×(de·lp) that incorporates features of varying periodicities.

3.2.2 MULTI-DIMENSIONAL RHR-MLP

Next, Xp is fed into the multi-dimensional RHR-MLP to uncover latent patterns in hypercomplex
spaces of varying dimensions. Given the stepwise derivation of hypercomplex spaces, we select con-
secutive power-of-two spaces starting from real numbers: Real Numbers (Real), Complex Numbers
(Comp), Quaternions (Quat), Octonions (Octo), and Sedenions (Sede).

OReal = RHR-MLP(1)(Xp), OComp = RHR-MLP(2)(Xp), OQuat = RHR-MLP(4)(Xp)

OOcto = RHR-MLP(8)(Xp), OSede = RHR-MLP(16)(Xp)
(9)

where OReal, OComp, OQuat, OOcto, and OSede denote the prediction outputs in each hypercomplex
space. All RHR-MLPs operate in parallel, independently uncovering latent temporal patterns in their
respective spaces. We avoid higher-dimensional spaces for two reasons: first, computational time
and memory demands escalate rapidly; second, experiments reveal that higher-dimensional spaces
tend to model lower-frequency features, as shown in Section 4.2, and the benefits of excessively
low-frequency features for time series prediction are limited.
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3.2.3 MULTI-HYPERCOMPLEX ADAPTIVE FUSION AND LOSS

We design an adaptive fusion mechanism to integrate features from different spaces and generate
the final prediction. The outputs from all spaces are stacked, and an MLP learns adaptive weights
for each space. The softmax function ensures these weights sum to 1, and the weighted sum of the
outputs yields the fused prediction result.

Os =< OReal,OCompOQuat,OOcto,OSede >

R = µ(WT
f,2 σ(W

T
f,1Os + bf,1) + bf,2), Ŷ = sum(R ∗Os)

(10)

where < · > denotes matrix stacking, sum(·) represents the summation operation, µ(·) is the softmax
activation function, σ(·) is the GeLU activation function, and Ŷ is the model’s prediction result. The
model is trained using the MAE Loss as the loss function.

4 EXPERIMENT

In Section 4.1, we present the comparisons with other methods. Section 4.2 reveals the multi-
frequency natural decomposition patterns of time series through visualization and quantitative analysis.
Section 4.3 and Section 4.4 focus on parameter experiments and ablation studies, respectively. Section
4.5 analyzes efficiency. In Appendix H, we introduce a High-Efficient Hypercomplex Linear Layers
approach to accelerate hypercomplex computations. Appendix I provides theoretical supplements.
Appendix J includes a detailed analysis of HNTanh. Appendix K offers additional visualizations to
uncover the natural decomposition patterns of time series. Appendix L provides quantitative statistics
across various hypercomplex spaces. Appendix G reports the error bars of our model results.

4.1 MAIN RESULT

Table 1: Results of the Long-Term Time Series Forecasting task. We averaged the results across four
prediction lengths: {96, 192, 336, 720}. The best result is indicated in bold, and the second-best
result is underlined.

Numerion PatchMLP TimeMixer iTransformer TexFilter PaiFilter PatchTST Crossformer TimesNet FEDformer DLinear
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1 0.417 0.414 0.437 0.456 0.440 0.447 0.467 0.454 0.439 0.441 0.432 0.440 0.454 0.469 0.522 0.529 0.450 0.458 0.484 0.498 0.452 0.456
ETTh2 0.388 0.364 0.397 0.375 0.409 0.388 0.407 0.383 0.407 0.383 0.404 0.378 0.407 0.387 0.684 0.942 0.427 0.414 0.449 0.437 0.515 0.559
ETTm1 0.378 0.370 0.391 0.394 0.396 0.381 0.410 0.410 0.401 0.392 0.398 0.384 0.400 0.387 0.495 0.513 0.406 0.400 0.452 0.448 0.407 0.403
ETTm2 0.315 0.270 0.326 0.282 0.323 0.275 0.332 0.288 0.328 0.285 0.322 0.276 0.326 0.281 0.611 0.757 0.333 0.291 0.349 0.305 0.401 0.350
Weather 0.271 0.246 0.272 0.249 0.277 0.246 0.278 0.258 0.272 0.245 0.274 0.248 0.281 0.259 0.320 0.264 0.284 0.259 0.360 0.309 0.317 0.265

Solar Energy 0.262 0.252 0.292 0.309 0.278 0.242 0.284 0.295 0.286 0.298 0.290 0.277 0.307 0.270 0.442 0.406 0.374 0.403 0.383 0.328 0.401 0.330
Electricity 0.267 0.181 0.275 0.190 0.273 0.182 0.270 0.178 0.285 0.198 0.278 0.197 0.290 0.205 0.334 0.244 0.304 0.193 0.327 0.214 0.300 0.212

Traffic 0.281 0.468 0.298 0.485 0.298 0.485 0.282 0.428 0.300 0.470 0.340 0.521 0.304 0.481 0.426 0.667 0.336 0.620 0.376 0.610 0.383 0.625
Exchange 0.399 0.358 0.432 0.416 0.453 0.391 0.470 0.519 0.464 0.515 0.414 0.379 0.404 0.367 0.707 0.940 0.443 0.416 0.429 0.519 0.414 0.354

Table 1 showcases the comparison results of our method against other approaches, with all outcomes
representing the average across four prediction lengths {96, 192, 336, 720}. The complete experi-
mental results are detailed in Appendix C. It is evident that our method achieves the best MAE across
all datasets, particularly on datasets such as ETTh1 and ETTh2, where the performance improvement
is substantial, with an overall average MAE enhancement exceeding 4%. Our method consistently
ranks within the top two in terms of MSE, demonstrating an improvement of over 3% on the ETT
datasets. On datasets with more variables, such as Traffic, our method, being variable-independent,
occasionally exhibits slightly lower MSE performance compared to variable-fusion models like
timemixer and itransformer. Nonetheless, our method demonstrates significant advancements over
other models.

4.2 VISUALIZATION ANALYSIS OF RHR-MLP

To better understand the functional roles of different RHR-MLP in our model, we visualized the
outputs of each RHR-MLP under the best-performing configuration. As shown in Figure 3 and
detailed further in Appendix K.1, a clear frequency-based specialization emerges: high-dimensional
hypercomplex layers are primarily responsible for capturing low-frequency, low-dimensional trend
components, whereas real and complex-valued layers focus on high-frequency, high-dimensional
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Figure 3: Visualization of MLP outputs on ETTh1 (channel 0). The first plot shows the weighted
sum of five RHR-MLPs, with color indicating the module and thickness representing its contribution

fluctuations, such as local seasonal signals and noise. This emergent decomposition enables the
model to preserve long-term trend accuracy without compromising the fit on short-term patterns.

Quantitatively, the visualization shows that hypercomplex layers contribute about 60% of the final
output, with the hexadecimal layer alone accounting for nearly 40%, underscoring its dominant
role in modeling temporal trends. In contrast, the real and complex layers—specialized for mid- to
high-frequency content—contribute the remaining 40%. This separation is not due to any handcrafted
constraints or predefined modules. Instead, it emerges naturally from training, allowing the model
to learn a flexible statistical decomposition directly from data. This stands in contrast to classical
methods relying on rigid assumptions and may explain the model’s strong generalization across
diverse datasets. To further support these visualization results, we also present a quantitative sta-
tistical analysis in Appendix L, which independently reaches a similar conclusion, reinforcing our
interpretation.

These insights suggest that low-frequency components may inherently pose greater modeling chal-
lenges, and that addressing limitations in low-frequency prediction could further enhance the model’s
overall capacity—including its ability to represent high-frequency structures. Future work may refine
the allocation of representational resources to better balance the frequency spectrum.

4.3 HYPER-PARAMETER STUDY
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Figure 4: Hyper-parameter Study on Electricity with P = {96, 192, 336, 720}

We performed a sensitivity analysis on the Electricity dataset for four prediction lengths, focusing
on key parameters: patch level lp in Multi-Level Patch Embedding, patch embedding dimension
de, RHR-MLP layer number, feedforward dimension, dropout rate, and learning rate. The results,
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shown in Figure 4, indicate that the Numerion model is less sensitive to patch-related parameters,
favoring larger dimensions to capture more information, though performance gains are marginal.
Conversely, it is more sensitive to RHR-MLP parameters. Due to the complexity of hypercomplex
spaces, the model prefers fewer layers and lower encoding dimensions, as excessive complexity leads
to overfitting. Additionally, Numerion benefits from larger dropout rates and lower learning rates,
improving its ability to fit and generalize in high-dimensional spaces. Additional parameter studys
are provided in Appendix D.

4.4 ABLATION STUDY

Table 2: Ablation Study

ETTh1 with P=720 Electricity with P=96
MSE MAE MSE MAE

Numerion 0.449 0.449 0.152 0.239
w/o Multi-Level Patch 0.455 -1.34% 0.456 -1.56% 0.164 -7.89% 0.250 -4.60%

w/o Real 0.451 -0.45% 0.451 -0.45% 0.160 -5.26% 0.246 -2.93%
w/o Comp 0.451 -0.45% 0.452 -0.67% 0.156 -2.63% 0.244 -2.09%
w/o Quat 0.453 -0.89% 0.451 -0.45% 0.160 -5.26% 0.246 -2.93%
w/o Octo 0.453 -0.89% 0.455 -1.34% 0.161 -5.92% 0.247 -3.35%
w/o Sede 0.454 -1.11% 0.456 -1.56% 0.166 -9.21% 0.252 -5.44%

w/o Adaptive Fusion 0.450 -0.22% 0.451 -0.45% 0.177 -16.45% 0.263 -10.04%

We conducted ablation experiments on ETTh1 (P=720) and Electricity (P=96) to evaluate each
component of Numerion (Table 2). Removing the Multi-Level Patch Embedding caused sharp
degradation, confirming its role in capturing multi-scale temporal cues. Excluding any power-of-
two RHR-MLP also weakened performance, showing that distinct hypercomplex spaces specialize
in different temporal patterns, with higher dimensions particularly effective for low-frequency
periodicity. Adaptive Fusion proved essential, as its removal greatly harmed results on Electricity. A
detailed breakdown of 17 ablation cases is in Appendix E.

We also ablated the hypercomplex settings (Table 6, see Appendix E). Removing the HNTanh
activation—or either of its parts, tanh on the modulus or p-norm normalization—consistently degraded
performance, despite minor dataset-specific gains (e.g., ETTm1). Full HNTanh provided the most
stable improvements, underscoring the synergy of both components. To isolate dimensional effects,
we expanded real inputs for a standard MLP with comparable parameters. Its inferior results confirmed
that hypercomplex gains stem not from dimensionality but from structured multiplication and phase
coupling, which enforce stronger inductive bias for frequency decomposition and multichannel
interactions.

4.5 EFFICIENCY ANALYSIS

We assessed the efficiency of our model in comparison with several baseline models using a single
NVIDIA A5000 GPU and Intel Xeon Gold 6326 CPU. As illustrated in Figure 5, our model exhibits
competitive performance while maintaining reasonable resource consumption. Although it incurs
higher computational overhead and parameter count due to the simulation of hypercomplex operations
using real number, its overall efficiency remains practical and acceptable for real-world applications.
Detailed reasoning behind these design choices and efficiency trade-offs is provided in the Appendix
F.
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Figure 5: Efficiency Analysis on ETTh1 and Solar Energy dataset
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5 RELATED WORK

5.1 TIME SERIES FORECASTING

In this section, we classify most time series forecasting tasks based on whether they adopt the standard
benchmark datasets widely recognized by the academic community, as used in our work. We focus
particularly on those studies that inspired the design of our model. First, a number of classical models
based on MLP architectures are closely related to ours. These include N-BEATSOreshkin et al. (2019),
N-HITSChallu et al. (2023), MLinearLi et al. (2023), DLinearZeng et al. (2023), PatchMLPTang &
Zhang (2025), FilterNetYi et al. (2024), TimesNetWu et al. (2022), TimeMixerWang et al. (2024c),
and its extension TimeMixer++Wang et al. (2024b). Among them, TimeMixer combines linear and
sampling layers to implement bottom-up and top-down mixing, achieving a unique trend-seasonality
decomposition that guided our exploration. MLinear adopts a Mixture of Experts (MoE) framework
that combines predictions from multiple linear layers. Its design and aggregation mechanism provided
key insights into the architectural design of our own model.

Secondly, Transformer-based models form another major line of research in time series forecasting.
Prominent models in this category include InformerZhou et al. (2021), AutoformerWu et al. (2021),
FEDformerZhou et al. (2022b), CrossFormerZhang & Yan (2023) , PatchTSTNie et al. (2022),
STAEformerLiu et al. (2023a), iTransformerLiu et al. (2023b), TimeXerWang et al. (2024d), and
Timer-XLLiu et al. (2024). Notable examples such as AutoformerWu et al. (2021), FEDformerZhou
et al. (2022b), and PatchTSTNie et al. (2022) explored trend-season decomposition and hierarchical
embeddings tailored for time series, laying groundwork that we build upon. Other models like iTrans-
formerLiu et al. (2023b) and Timer-XLLiu et al. (2024) address temporal ordering in multivariate
settings, providing insights into sequence processing strategies that inform our design.

Several recent works based on the novel Mamba architecture, such as TimeMachineAhamed & Cheng
(2024) and Bi-MambaTang et al. (2024), as well as those using spatio-temporal graph convolutional
networks like AGCRNBai et al. (2020) and ASTGCNGuo et al. (2019), have contributed meaningfully
to the field. Other advances include multi-channel aggregation methods (e.g., CCMChen et al. (2024)),
contrastive learning techniques (RCLYan et al. (2025)), and label refinement approaches (FreDFWang
et al. (2024a)). These works have all made outstanding contributions to time series forecasting.

5.2 HYPERCOMPLEX NEURAL NETWORKS

Although hypercomplex neural networks are not yet widely adopted in machine learning—partly due
to the challenges discussed in Appendix J—they offer valuable insights relevant to our work. One
recent study Zhang et al. (2021) proposes a parameter-efficient design with learnable hypercomplex
number multiplication, inspiring improvements in our model structure. Another work Lopez et al.
(2024) introduces a cosine similarity transformation aligned with feature weights, enabling direct
visualization of attention in quaternion convolutional layers and guiding our interpretability approach.
Additional research on hypercomplex networks Comminiello et al. (2024), including quaternion
convolutions Altamirano-Gomez & Gershenson (2023), quaternion transformers Singh et al. (2024),
and octonion and sedenion networks Popa (2016); Pavlov et al. (2023), also contributes ideas,
particularly for our activation function design. A more detailed theoretical connection between
hypercomplex representations and time series modeling is provided in Appendix M.

6 CONCLUSION

In this paper, we extend linear layers and the Tanh activation to hypercomplex spaces of arbitrary
power-of-two dimensions, providing a unified framework with the real domain and an efficient
computation method. Building on this, we propose the Real-Hypercomplex-Real Multi-Layer Percep-
tron (RHR-MLP), which transforms inputs into hypercomplex spaces for enhanced modeling. This
leads to Numerion, a forecasting model that integrates multiple hypercomplex spaces to decompose,
model, and adaptively fuse multi-frequency components. Numerion is simple and interpretable,
with experiments confirming its effectiveness and showing that higher-dimensional spaces capture
low-frequency features. Looking forward, as noted in Appendix O, we expect progress from exploring
the characteristics of hypercomplex spaces, advancing theoretical analysis of their representational
power, and developing optimizers and hardware tailored to hypercomplex arithmetic.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

We declare that the use of LLM (Large Language Model) is solely for the purpose of grammar
checking and text refinement.

B EXPERIMENTS SETTING SUPPLEMENTS

B.1 DATASETS

We evaluated the performance of the model on nine publicly available long-term time series fore-
casting datasets: Weather, Solar Energy, Electricity, Traffic, Exchange, ETTh1, ETTh2, ETTm1, and
ETTm2. Detailed information about the datasets is provided in Table 3.

Table 3: Basic Information of Dataset.

Dataset Data Partition Frequency Feature Dim Type
Weather (36792,5271,10540) 10min 21 Weather

Solar Energy (36601,5161,10417) 10min 137 Electricity
Electricity (18317,2633,5261) Hourly 321 Electricity

Traffic (12185,1757,3509) Hourly 862 Traffic
Exchange (5120,665,1422) Daily 8 Weather

ETTh1 (8545,2881,2881) 15min 7 Temperature
ETTh2 (8545,2881,2881) 15min 7 Temperature
ETTm1 (34465,11521,11521) 15min 7 Temperature
ETTm2 (34465,11521,11521) 15min 7 Temperature

B.2 BASELINES

We selected a variety of state-of-the-art baselines to compare with our method in order to evaluate
the performance of Numerion. Specifically, we utilize Transformer-based models: FEDformer,
Crossformer, iTransformer, and PatchTST; convolutional neural network (CNN)-based models:
TimesNet; MLP-based models: TimeMixer, PatchMLP, and DLinear; as well as filter-based models:
TexFilter and PaiFilter.

B.3 METRICS

We evaluated all models using Mean Squared Error (MSE) and Mean Absolute Error (MAE) as the
evaluation metrics.

MAE =
1

N

N∑
i=1

|Yi − Ŷi|

MSE =
1

N

N∑
i=1

(Yi − Ŷi)
2

B.4 EXPERIMENT DETAILS

We repeat each experiment three times on a server equipped with an NVIDIA GeForce RTX 3090
GPU and an AMD EPYC 7282 16-Core Processor. We employ Adam as the optimizer, with the
learning rate set between 1e-4 and 1e-2 depending on the dataset. For Numerion, the patch level is
configured between 1 and 4, the patch embedding dimension is set between 64 and 256, the number
of RHR-MLP layers is set to 2 or 3, the initial dimension of RHR-MLP is set between 64 and 256
with subsequent HLinear dimensions decreasing, and the dropout rate is set between 0.5 and 0.7. For
datasets with a feature number greater than 100, the batch size is set to 100, while for other datasets,
the batch size is set to 512. The HLinear layers are initialized using random sampling from a standard
normal distribution, followed by normalization, and the biases are initialized as zero vectors.
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C FULL RESULTS

Table 4 provides the detailed comparison results on the Long-Term Time Series Forecasting task. We
set the input length to 96 and the prediction lengths to {96, 192, 336, 720}. Avg is averaged from all
four prediction lengths.

D ADDITIONAL HYPER-PARAMETER STUDY
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Figure 6: Additional Hyper-parameter Study on ETTm2 with P = {96, 192, 336, 720}
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Figure 7: Additional Hyper-parameter Study on ETTh1 with P = {96, 192, 336, 720}

We further conducted hyperparameter experiments on the ETTh1 and ETTm2 dataset, and the results
are presented in Figure 6 and Figure 7. Overall, our method demonstrates insensitivity to patch
parameters, moderate sensitivity to RHR-MLP parameters, and high sensitivity to the learning rate,
consistent with findings from prior parameter analyses. For shorter prediction lengths, the model
tends to utilize fewer layers and smaller widths, while for longer prediction lengths, it requires more
layers, larger widths, and higher patch levels to enhance information capture. The model achieves
superior prediction performance at lower learning rates, albeit at the cost of increased training time.
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Table 4: Full results for the Long-Term Time Series Forecasting task. We compare competitive
models under different prediction lengths :{96,192,336,720}. Avg is averaged from all four prediction
lengths.

Model P
Numerion PatchMLP TimeMixer iTransformer TexFilter PaiFilter PatchTST Crossformer TimesNet FEDformer DLinear

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1

96 0.380 0.359 0.390 0.385 0.400 0.375 0.405 0.386 0.402 0.382 0.394 0.375 0.419 0.414 0.448 0.423 0.402 0.384 0.424 0.395 0.400 0.386

192 0.409 0.407 0.431 0.458 0.421 0.429 0.512 0.441 0.429 0.430 0.422 0.436 0.445 0.460 0.474 0.471 0.429 0.436 0.470 0.469 0.432 0.437

336 0.429 0.444 0.460 0.500 0.458 0.484 0.458 0.487 0.451 0.472 0.443 0.476 0.466 0.501 0.546 0.570 0.469 0.491 0.499 0.530 0.459 0.481

720 0.449 0.447 0.468 0.482 0.482 0.498 0.491 0.503 0.473 0.481 0.469 0.474 0.488 0.500 0.621 0.653 0.500 0.521 0.544 0.598 0.516 0.519

avg 0.417 0.414 0.437 0.456 0.440 0.447 0.467 0.454 0.439 0.441 0.432 0.440 0.454 0.469 0.522 0.529 0.450 0.458 0.484 0.498 0.452 0.456

ETTh2

96 0.326 0.279 0.344 0.296 0.348 0.296 0.349 0.297 0.343 0.293 0.343 0.292 0.348 0.302 0.584 0.745 0.374 0.340 0.397 0.358 0.387 0.333

192 0.379 0.359 0.390 0.371 0.391 0.371 0.400 0.380 0.396 0.374 0.395 0.369 0.400 0.388 0.656 0.877 0.414 0.402 0.439 0.429 0.476 0.477

336 0.416 0.406 0.424 0.417 0.428 0.417 0.432 0.428 0.430 0.417 0.432 0.420 0.433 0.426 0.731 1.043 0.452 0.452 0.487 0.496 0.541 0.594

720 0.433 0.414 0.432 0.415 0.468 0.469 0.445 0.427 0.460 0.449 0.446 0.430 0.446 0.431 0.763 1.104 0.468 0.462 0.474 0.463 0.657 0.831

avg 0.388 0.364 0.397 0.375 0.409 0.388 0.407 0.383 0.407 0.383 0.404 0.378 0.407 0.387 0.684 0.942 0.427 0.414 0.449 0.437 0.515 0.559

ETTm1

96 0.337 0.305 0.348 0.316 0.357 0.320 0.368 0.334 0.361 0.321 0.358 0.318 0.367 0.329 0.426 0.404 0.375 0.338 0.419 0.379 0.372 0.345

192 0.367 0.356 0.371 0.363 0.381 0.361 0.393 0.390 0.387 0.367 0.383 0.364 0.385 0.367 0.451 0.450 0.387 0.374 0.441 0.426 0.389 0.380

336 0.386 0.380 0.397 0.397 0.404 0.390 0.420 0.426 0.409 0.401 0.406 0.396 0.410 0.399 0.515 0.532 0.411 0.410 0.459 0.445 0.413 0.413

720 0.423 0.439 0.448 0.499 0.441 0.454 0.459 0.491 0.448 0.477 0.444 0.456 0.439 0.454 0.589 0.666 0.450 0.478 0.490 0.543 0.453 0.474

avg 0.378 0.370 0.391 0.394 0.396 0.381 0.410 0.410 0.401 0.392 0.398 0.384 0.400 0.387 0.495 0.513 0.406 0.400 0.452 0.448 0.407 0.403

ETTm2

96 0.249 0.170 0.259 0.178 0.258 0.175 0.264 0.180 0.258 0.175 0.257 0.174 0.259 0.175 0.366 0.287 0.267 0.187 0.287 0.203 0.292 0.193

192 0.292 0.231 0.304 0.242 0.299 0.237 0.309 0.250 0.301 0.240 0.300 0.240 0.302 0.241 0.492 0.414 0.309 0.249 0.328 0.269 0.362 0.284

336 0.330 0.289 0.341 0.302 0.340 0.298 0.348 0.311 0.347 0.311 0.339 0.297 0.343 0.305 0.542 0.597 0.351 0.321 0.366 0.325 0.427 0.369

720 0.387 0.390 0.399 0.405 0.396 0.391 0.407 0.412 0.405 0.414 0.393 0.392 0.400 0.402 1.042 1.730 0.403 0.408 0.415 0.421 0.522 0.554

avg 0.315 0.270 0.326 0.282 0.323 0.275 0.332 0.288 0.328 0.285 0.322 0.276 0.326 0.281 0.611 0.757 0.333 0.291 0.349 0.305 0.401 0.350

Weather

96 0.203 0.159 0.204 0.164 0.214 0.166 0.214 0.174 0.207 0.162 0.210 0.164 0.218 0.177 0.271 0.195 0.211 0.170 0.296 0.217 0.255 0.196

192 0.250 0.211 0.250 0.212 0.253 0.209 0.254 0.221 0.250 0.210 0.252 0.214 0.259 0.225 0.277 0.209 0.259 0.223 0.336 0.276 0.296 0.237

336 0.289 0.270 0.293 0.269 0.293 0.264 0.296 0.278 0.290 0.265 0.293 0.268 0.297 0.278 0.332 0.273 0.306 0.280 0.380 0.339 0.335 0.283

720 0.340 0.345 0.343 0.350 0.346 0.345 0.347 0.358 0.340 0.342 0.342 0.344 0.348 0.354 0.401 0.379 0.359 0.365 0.428 0.403 0.381 0.345

avg 0.271 0.246 0.272 0.249 0.277 0.246 0.278 0.258 0.272 0.245 0.274 0.248 0.281 0.259 0.320 0.264 0.284 0.259 0.360 0.309 0.317 0.265

Solar-Energy

96 0.244 0.209 0.270 0.269 0.254 0.236 0.258 0.250 0.246 0.278 0.245 0.254 0.286 0.234 0.302 0.232 0.358 0.373 0.341 0.286 0.378 0.290

192 0.261 0.250 0.293 0.314 0.284 0.235 0.286 0.298 0.283 0.297 0.281 0.272 0.310 0.267 0.410 0.371 0.376 0.397 0.337 0.291 0.398 0.320

336 0.270 0.273 0.304 0.325 0.287 0.244 0.296 0.314 0.305 0.307 0.315 0.290 0.315 0.290 0.515 0.495 0.380 0.420 0.416 0.354 0.415 0.353

720 0.272 0.274 0.303 0.327 0.286 0.253 0.294 0.319 0.311 0.309 0.318 0.292 0.317 0.289 0.542 0.526 0.381 0.420 0.437 0.380 0.413 0.356

avg 0.262 0.252 0.292 0.309 0.278 0.242 0.284 0.295 0.286 0.298 0.290 0.277 0.307 0.270 0.442 0.406 0.374 0.403 0.383 0.328 0.401 0.330

Electricity

96 0.239 0.152 0.253 0.165 0.247 0.153 0.240 0.148 0.259 0.169 0.256 0.175 0.270 0.181 0.314 0.219 0.272 0.168 0.308 0.193 0.282 0.197

192 0.251 0.167 0.255 0.168 0.256 0.166 0.253 0.162 0.273 0.183 0.264 0.182 0.274 0.188 0.322 0.231 0.322 0.184 0.315 0.201 0.285 0.196

336 0.270 0.182 0.276 0.189 0.277 0.185 0.269 0.178 0.287 0.200 0.279 0.196 0.293 0.204 0.337 0.246 0.300 0.198 0.329 0.214 0.301 0.209

720 0.308 0.224 0.315 0.237 0.310 0.225 0.317 0.225 0.322 0.241 0.313 0.237 0.324 0.246 0.363 0.280 0.320 0.220 0.355 0.246 0.333 0.245

avg 0.267 0.181 0.275 0.190 0.273 0.182 0.270 0.178 0.285 0.198 0.278 0.197 0.290 0.205 0.334 0.244 0.304 0.193 0.327 0.214 0.300 0.212

Traffic

96 0.264 0.441 0.285 0.459 0.285 0.462 0.268 0.395 0.284 0.439 0.336 0.506 0.295 0.462 0.429 0.644 0.321 0.593 0.366 0.587 0.396 0.650

192 0.276 0.457 0.287 0.464 0.296 0.473 0.276 0.417 0.293 0.455 0.333 0.508 0.296 0.466 0.431 0.665 0.336 0.617 0.373 0.604 0.370 0.598

336 0.282 0.465 0.294 0.472 0.296 0.498 0.283 0.433 0.300 0.473 0.335 0.518 0.304 0.482 0.420 0.674 0.336 0.629 0.383 0.621 0.373 0.605

720 0.301 0.507 0.327 0.547 0.313 0.506 0.302 0.467 0.324 0.512 0.354 0.553 0.322 0.514 0.424 0.683 0.350 0.640 0.382 0.626 0.394 0.645

avg 0.281 0.468 0.298 0.485 0.298 0.485 0.282 0.428 0.300 0.470 0.340 0.521 0.304 0.481 0.426 0.667 0.336 0.620 0.376 0.610 0.383 0.625

Exchange

96 0.200 0.083 0.211 0.092 0.235 0.090 0.213 0.092 0.208 0.088 0.207 0.087 0.205 0.088 0.367 0.256 0.234 0.107 0.278 0.148 0.218 0.088

192 0.293 0.172 0.303 0.182 0.343 0.187 0.302 0.181 0.316 0.196 0.305 0.186 0.299 0.176 0.509 0.470 0.344 0.226 0.315 0.271 0.315 0.176

336 0.410 0.322 0.448 0.386 0.473 0.353 0.435 0.360 0.490 0.458 0.437 0.367 0.397 0.301 0.883 1.268 0.448 0.367 0.427 0.460 0.427 0.313

720 0.693 0.855 0.767 1.004 0.761 0.934 0.928 1.442 0.841 1.318 0.706 0.874 0.714 0.901 1.068 1.767 0.746 0.964 0.695 1.195 0.695 0.839

avg 0.399 0.358 0.432 0.416 0.453 0.391 0.470 0.519 0.464 0.515 0.414 0.379 0.404 0.367 0.707 0.940 0.443 0.416 0.429 0.519 0.414 0.354
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E ADDITIONAL ABLATION STUDY

Table 5: The full results of the ablation study. The check mark (✓) and the wrong mark (x) indicate
with and without components.

Case Patch
Hyper-Complex

Adaptive Fusion
ETTh1 with P=720 Electricity with P=96 ETTh1 with P=96

Real Comp Quat Octo Sede MSE MAE MSE MAE MSE MAE
1 ✓ x ✓ ✓ ✓ ✓ ✓ 0.451 0.451 0.160 0.246 0.367 0.384
2 ✓ ✓ x ✓ ✓ ✓ ✓ 0.451 0.452 0.156 0.244 0.369 0.387
3 ✓ ✓ ✓ x ✓ ✓ ✓ 0.453 0.451 0.160 0.246 0.360 0.384
4 ✓ ✓ ✓ ✓ x ✓ ✓ 0.453 0.455 0.161 0.247 0.369 0.387
5 ✓ ✓ ✓ ✓ ✓ x ✓ 0.454 0.456 0.166 0.252 0.369 0.386

6 ✓ ✓ ✓ ✓ ✓ ✓ x 0.45 0.451 0.177 0.263 0.375 0.391

7 ✓ ✓ - 0.488 0.483 0.235 0.314 0.368 0.392
8 ✓ ✓ - 0.469 0.469 0.214 0.292 0.369 0.391
9 ✓ ✓ - 0.461 0.461 0.202 0.281 0.369 0.393

10 ✓ ✓ - 0.458 0.457 0.182 0.266 0.369 0.394
11 ✓ ✓ - 0.457 0.454 0.180 0.263 0.369 0.394

12 x ✓ ✓ ✓ ✓ ✓ ✓ 0.455 0.456 0.164 0.250 0.376 0.396

13 ✓ x ✓ ✓ ✓ ✓ x 0.452 0.451 0.178 0.263 0.374 0.395
14 ✓ ✓ x ✓ ✓ ✓ x 0.451 0.452 0.178 0.262 0.372 0.393
15 ✓ ✓ ✓ x ✓ ✓ x 0.45 0.451 0.176 0.259 0.366 0.386
16 ✓ ✓ ✓ ✓ x ✓ x 0.451 0.452 0.170 0.255 0.368 0.390
17 ✓ ✓ ✓ ✓ ✓ x x 0.45 0.453 0.175 0.259 0.365 0.391

✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.449 0.449 0.152 0.239 0.359 0.380

In Table 5, we provide a comprehensive ablation study. In Cases 1-5, we individually remove
each hypercomplex space (RHR-MLP), and the results indicate that eliminating any layer results in
performance degradation. Higher-dimensional hypercomplex spaces exhibit a more substantial impact
on performance. Moreover, since adjacent dimensions can partially compensate for the missing
spatial information, the performance does not decline significantly when a single hypercomplex
layer is removed. In contrast, Cases 7-11 utilize only a single hypercomplex space linear layer, and
the notable performance decline emphasizes the importance of integrating multiple hypercomplex
linear layers. Each hypercomplex space inherently learns distinct temporal patterns. In Case 12, the
removal of Multi-Level Patch Embedding leads to a performance drop, highlighting the necessity of
incorporating temporal information of varying lengths, which enables RHR-MLP to model multi-
period temporal features. In Case 6, the elimination of the Adaptive Fusion mechanism, where
predictions from all spaces are fused with equal weights, results in a significant performance decline,
underscoring the critical role of Adaptive Fusion. In Case 13-17, We further compare the ablation of
each RHR-MLP in the absence of Adaptive Fusion, and the conclusions remain consistent: adjacent
hypercomplex spaces can partially compensate for the missing space, causing a performance drop but
not a drastic decline.

Table 6: Ablation and baseline comparison on ETT benchmarks. Lower is better. ’HNTanh’ is our
full method. Best per (dataset, P , metric) is bold; ties are bolded for all winners.

Method P
ETTh1 ETTh2 ETTm1 ETTm2

MAE MSE MAE MSE MAE MSE MAE MSE

MLP 96 0.385 0.370 0.331 0.284 0.343 0.307 0.252 0.173
w/o Activation 96 0.383 0.372 0.331 0.285 0.341 0.313 0.253 0.175
w/o Tanh 96 0.388 0.366 0.334 0.286 0.343 0.306 0.252 0.174
w/o Dividenorm 96 0.385 0.372 0.334 0.289 0.337 0.310 0.251 0.173
HNTanh (Ours) 96 0.380 0.359 0.326 0.279 0.337 0.305 0.249 0.170
MLP 192 0.413 0.416 0.381 0.364 0.369 0.362 0.292 0.236
w/o Activation 192 0.412 0.420 0.387 0.374 0.369 0.365 0.297 0.238
w/o Tanh 192 0.418 0.410 0.390 0.372 0.367 0.352 0.295 0.239
w/o Dividenorm 192 0.414 0.418 0.384 0.369 0.365 0.362 0.294 0.237
HNTanh (Ours) 192 0.409 0.407 0.379 0.359 0.367 0.356 0.292 0.231

We ablate the proposed hypercomplex activation by disentangling its two components—tanh on
the modulus and p-norm normalization—and compare against removing activations entirely. On
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ETT benchmarks, “w/o activation” (only hypercomplex linear layers), “w/o tanh” (yi = xi

∥x∥p
),

and “w/o dividenorm” (yi = xi tanh(∥x∥p)) each show occasional wins on single datasets (e.g.,
ETTm1), but the full HNTanh consistently yields the best aggregate performance. Theoretically,
for the unnormalized variant yi = xi tanh(∥x∥p), the Jacobian entries shrink as ∥x∥p→0 (diago-
nal tanh(n) + |xi|p(1 − tanh2 n)n1−p, off-diagonal xi|xj |p−1(1 − tanh2 n)n1−p, induction see
Appendix I.2), producing vanishing gradients; adding normalization bounds the input norm and
stabilizes gradient flow, matching the empirical gains. We further test a “dimensional expansion”
control that pads real inputs (zero-padding/MLP) and trains a standard MLP: despite similar pa-
rameter counts, it underperforms, indicating that hypercomplex algebras contribute more than mere
width—their structured multiplication/phase coupling provides a superior inductive bias for frequency
decomposition and multichannel interactions.

F ADDITIONAL EFFICIENCY EXPERIMENTS

We conducted an efficiency evaluation of our model alongside a series of related models. The tests
were performed on a single NVIDIA A5000 GPU, with the CPU being an Intel(R) Xeon(R) Gold
6326 @ 2.90GHz. The experimental results on the ETTh1 dataset are presented in Table 7, while
those on the solar-energy dataset are shown in Table 8.

Table 7: Comparison of model performance and resource usage in ETTh1 dataset

Model Name s/epoch Parameters GPU Memory (MB) MSE MAE
Numerion 0.48 904,309 700.4 0.360 0.380
TimeMixer 0.71 75,497 1053.76 0.377 0.388
iTransformer 0.20 224,224 156.68 0.378 0.393
DLinear 0.10 18,624 29.18 0.379 0.386
PaiFilter 0.10 49,614 27.17 0.380 0.390
PatchTST 0.17 21,040 173.95 0.381 0.386
TimeXer 0.60 1,390,944 687.13 0.384 0.394
TimesNet 9.94 605,479 10103.31 0.399 0.404
PatchMLP 0.26 2,470,830 506.18 0.399 0.401
Informer 0.79 422,407 1106.81 1.204 0.800

Table 8: Comparison of model performance and resource usage in solar-energy dataset

Model Name s/epoch Parameters GPU Memory (MB) MSE MAE
Numerion 53.53 1779749 2111.33 0.217 0.250
TimeMixer 50.26 76537 2665.77 0.236 0.254
PaiFilter 1.36 49874 179.23 0.245 0.254
iTransformer 4.17 224224 374.72 0.246 0.255
PatchTST 6.26 21040 353.62 0.246 0.258
TimeXer 40.66 1424224 1746.3 0.248 0.256
TimesNet 59.76 613929 1638.73 0.277 0.296
PatchMLP 13.3 2508530 866.04 0.282 0.280
Informer 9.68 539017 303.38 0.298 0.298
DLinear 0.95 18624 151.84 0.303 0.323

The results indicate that, although our model achieves competitive performance, it occupies a middle
ground in terms of GPU memory consumption, parameter count, and computational time. Compared
to several recent mainstream models, our computational overhead is relatively higher; however, it
remains within an acceptable and practical range.

In fact, the core architecture of our model was originally designed with only five linear layers. The
increase in parameter count primarily stems from limitations in the underlying PyTorch framework,
which lacks native support for high-dimensional hypercomplex operations. As a result, each hyper-
complex linear layer is implemented as a pair of real-valued linear layers, effectively simulating
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hypercomplex computations using real operations. This leads to a substantial increase in the reported
parameter count—from five layers to the equivalent of 63 real-valued layers.

The relatively large memory footprint is attributed to the design of multiplication matrices used to
simulate hypercomplex multiplications. To accelerate hypercomplex multiplication, we precompute
and store multiplication matrices, effectively trading additional memory (up to 16-fold increase in
quadratic space for 16-dimensional hypercomplex numbers) for improved computational speed. This
design choice constitutes the primary source of memory overhead.

In terms of computation time, while we reduced the complexity of hypercomplex multiplication
from quadratic matrix multiplications to a single matrix multiplication step, the absence of native
data type support at the low-level computational layer still results in slower operations. Additionally,
the use of a norm tanh activation function, while essential for ensuring stable transformations in
the hypercomplex space, inherently incurs higher computational overhead compared to standard
activation functions. This inefficiency is further amplified in the hypercomplex setting. Together,
these factors contribute to the observed computational overhead.

Nevertheless, despite these inherent challenges posed by the framework and mathematical formulation,
the overall efficiency of the model remains tolerable for practical use. Moreover, the architecture
leaves room for further optimization, especially with potential future support for hypercomplex data
types at the framework level.

G ERROR BARS

Table 9: Standard deviation across all datasets

ETTh1 ETTh2 ETTm1

MSE MAE MSE MAE MSE MAE

96 0.380±0.001 0.359±0.001 96 0.326±0.000 0.279±0.001 96 0.337±0.002 0.305±0.001

192 0.409±0.001 0.407±0.000 192 0.379±0.001 0.359±0.000 192 0.367±0.003 0.356±0.002

336 0.429±0.001 0.444±0.001 336 0.416±0.002 0.406±0.002 336 0.386±0.002 0.38±0.002

720 0.449±0.001 0.447±0.002 720 0.433±0.001 0.414±0.001 720 0.423±0.003 0.439±0.002

ETTm2 Weather Solar-Energy

MSE MAE MSE MAE MSE MAE

96 0.249±0.000 0.170±0.000 96 0.203±0.004 0.159±0.002 96 0.244±0.003 0.209±0.004

192 0.292±0.000 0.231±0.001 192 0.25±0.005 0.211±0.002 192 0.261±0.002 0.25±0.005

336 0.330±0.001 0.289±0.001 336 0.289±0.005 0.270±0.003 336 0.270±0.003 0.273±0.004

720 0.387±0.001 0.390±0.001 720 0.340±0.005 0.345±0.003 720 0.272±0.004 0.274±0.007

Electricity Traffic Exchange

MSE MAE MSE MAE MSE MAE

96 0.239±0.002 0.152±0.000 96 0.264±0.005 0.441±0.002 96 0.200±0.002 0.083±0.001

192 0.251±0.002 0.167±0.001 192 0.276±0.007 0.457±0.003 192 0.293±0.003 0.172±0.001

336 0.270±0.003 0.182±0.002 336 0.282±0.006 0.465±0.003 336 0.270±0.003 0.322±0.001

720 0.308±0.003 0.224±0.004 720 0.301±0.007 0.507±0.004 720 0.693±0.004 0.855±0.002

In Table 9, we present the standard deviations calculated from three repeated experiments on Nume-
rion, highlighting its exceptional stability as a model. The results consistently exhibit low standard
deviations across all datasets, with particularly notable performance on the ETT dataset. This
underscores Numerion’s robustness and reliability in time series forecasting tasks.
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H HIGH EFFICIENT HYPERCOMPLEX LINEAR LAYERS

In this paper, The defination of hypercomplex algebra based on the Cayley-Dickson algebra
system. The Cayley-Dickson construction provides a general recursive method for generating
higher-dimensional algebras by repeatedly doubling lower-dimensional ones.

We begin with the complex numbers, which can be viewed as a two-dimensional algebra R× R over
the real field R, where each element is represented as a pair of real numbers (α1, β1), (α2, β2). The
addition of these elements follows the natural coordinate-wise rule:

(α1, β1) + (α2, β2) = (α1 + α2, β1 + β2)

Under the guidance of the Cayley-Dickson construction, the multiplication is defined by:

(α1, β1)× (α2, β2) = (α1α2 − β∗
2β1, β2α1 + β1α

∗
2)

where d∗ denotes the conjugate of d. Since d is real in this base case, the conjugate has no effect. It
is straightforward to verify that this multiplication satisfies the bilinearity property, thus constituting
a valid algebraic structure. By iterating this construction, we can systematically define multiplication
rules for higher-dimensional algebras such as quaternions, octonions, and beyond. And in the
program, we can also easily generate the multiplication rule matrix of all hypercomplex algebras by
iterating this formula.

In practice, real-number computations enjoy significant efficiency advantages in frameworks like
PyTorch. Therefore, in our implementation, we represent hypercomplex numbers as real-valued
vectors, leveraging extra dimensions to encode hypercomplex coefficients. Specifically, we employ
the Cayley-Dickson construction to generate two matrices: a coefficient selection matrix and a sign
matrix. The former specifies which coefficients of the operands should be multiplied at each step,
while the latter encodes the corresponding signs to apply to the resulting products. During each
multiplication operation, these matrices are instantiated using PyTorch tensor operations, enabling
efficient vectorized computation.

As an example,suppose p, q is the quaternion numbers, we have quaternion multiplication :

p× q = (p0q0 − p1q1 − p2q2 − p3q3)

+ (p0q1 + p1q0 + p2q3 − p3q2)i1

+ (p0q2 − p1q3 + p2q0 + p3q1)i2

+ (p0q3 + p1q2 − p2q1 + p3q0)i3

(11)

We can explicitly extract both the coefficient selection matrix and the sign matrix corresponding to the
Cayley-Dickson construction at each algebraic level. The coefficient selection matrix determines (left
below) which elements from the input vectors should participate in each multiplication term, while
the sign matrix (right below) encodes the appropriate sign (positive or negative) for each product.

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0


1 −1 −1 −1
1 1 1 −1
1 −1 1 1
1 1 −1 1


By precomputing these matrices, we effectively transform the recursive multiplication process into a
fixed matrix operation. Specifically, quaternion (or more generally, hypercomplex) multiplication can
be reformulated as a linear transformation:

y = S · ((M ⊙w)x)

Here, M is the coefficient selection matrix, S is the sign matrix, ⊙ denotes element-wise multiplica-
tion (interpreted as a gather-and-weight process), x is the input vector, and w represents the learnable
weights or operands. The weight tensor w is shaped as output dim × input dim × n, where n is
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the number of hypercomplex coefficients. Let w(n)
i denote the i-th coefficient of the hypercomplex

vector w. The coefficient selection matrix M ∈ Nn×n is used to construct the multiplication matrix
A shaped as output dim × input dim × n× n according to:

Ai,j = w
(n)
M [i,j]

In this expression, w(n)
M [i,j] is not a shallow copy but a newly constructed tensor derived from the

original w(n) via an index-based gather operation. Despite creating a new tensor, the autograd
mechanism retains the connection to w(n) in the computational graph. As a result, multiplying the
input x with matrix A remains algebraically equivalent to hypercomplex multiplication with w, and
gradients are correctly and efficiently propagated back to the original j-th coefficient of w(n) during
backpropagation, without introducing redundancy.

This approach enables us to express hypercomplex multiplication as a unified matrix multiplication
step. Although it necessitates temporarily building the multiplication matrix for each computa-
tion—introducing some additional CPU/GPU overhead—it substantially accelerates the overall
computation by reducing the number of separate operations and fully utilizing hardware-optimized
matrix kernels.

The multiplication rules for octonions is provided below:



0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0





1 −1 −1 −1 −1 −1 −1 −1
1 1 −1 1 −1 1 1 −1
1 1 1 −1 −1 −1 1 1
1 −1 1 1 −1 1 −1 1
1 1 1 1 1 −1 −1 −1
1 −1 1 −1 1 1 1 −1
1 −1 −1 1 1 −1 1 1
1 1 −1 −1 1 1 −1 1


I THEORETICAL SUPPLEMENT

I.1 GRADIENT OF ACTIVATION FUNCTION

Although the HNTanh activation function in this paper operates on hypercomplex numbers, it can
equivalently be viewed as an activation function for multivariate real vectors. Given an input vector
x ∈ Rm, the output after applying the activation function is y = f(x) ∈ Rm.

Our goal is to derive the Jacobian matrix J = ∂y
∂x . Suppose we use xi to represent the i-th coefficient

of the vector x. Due to the inherent symmetry of the function, it suffices to compute the diagonal
entries ∂yi

∂xi
and the off-diagonal entries ∂yi

∂xj
for i ̸= j.

The activation function is defined coefficient-wise as:

yi =
xi

∥x∥p
tanh(∥x∥p),

where ∥x∥p denotes the p-norm:

∥x∥p =

(
m∑

k=1

|xk|p
)1/p

.

Let n := ∥x∥p for brevity.

We differentiate yi with respect to xi:

∂yi
∂xi

=
∂

∂xi

(xi

n
tanh(n)

)
.
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Applying the product derivative rule:

∂yi
∂xi

=
tanh(n)

n
+ xi

∂

∂xi

(
tanh(n)

n

)
.

Next, by the chain rule:

∂

∂xi

(
tanh(n)

n

)
=

∂n

∂xi

∂

∂n

(
tanh(n)

n

)
.

Compute the derivative with respect to n:

∂

∂n

(
tanh(n)

n

)
=

n(1− tanh2(n))− tanh(n)

n2
.

Compute the derivative of n with respect to xi:

∂n

∂xi
= |xi|p−1 sign(xi)n

1−p.

Therefore, the final expression for ∂yi

∂xi
is:

∂yi
∂xi

=
tanh(n)

n
+ |xi|p

(
n(1− tanh2(n))− tanh(n)

n2

)
n1−p .

Similarly, differentiating yi with respect to xj :

∂yi
∂xj

= xi
∂

∂xj

(
tanh(n)

n

)
.

Again applying the chain rule:

∂yi
∂xj

= xi
∂n

∂xj

∂

∂n

(
tanh(n)

n

)
.

We already computed ∂
∂n

(
tanh(n)

n

)
. For ∂n

∂xj
:

∂n

∂xj
= |xj |p−1 sign(xj)n

1−p.

Thus:
∂yi
∂xj

= xi|xj |p−1 sign(xj)

(
n(1− tanh2(n))− tanh(n)

n2

)
n1−p .

The Jacobian matrix entries are thus fully determined, Diagonal entries by the formula above for ∂yi

∂xi
,

Off-diagonal entries by the formula above for ∂yi

∂xj
with i ̸= j.

This derivation completes the gradient calculation of the HNTanh activation function.

I.2 GRADIENT OF HYPERCOMPLEX NUERAL NETWORK

In the context of training hypercomplex neural networks, it is important to demonstrate that the
results obtained through real-valued gradient descent in our formulation are valid. The justification
consists of two steps. First, we observe that the network is obviously trainable when treated as a real-
differentiable function. Second, we show that the gradient used in our implementation—specifically,
the Jacobian matrix—is equivalent to that derived from real-valued differentiation.

To elaborate on the first point: the network can clearly be viewed as real-differentiable if we treat
hypercomplex multiplication purely as a linear transformation on real-valued vectors. Since each
operation in the network (including hypercomplex multiplications) corresponds to a differentiable

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

real-valued function, the entire network inherits differentiability in the real sense. Therefore, standard
gradient-based optimization is applicable.

The second step involves verifying that the gradient computed in our network matches the true
Jacobian matrix derived from real differentiation. We illustrate this using a quaternion-based network
as an example. A linear layer in such a network can be represented as a quaternion-valued function:

F : R4 → R4, F (c(4)) = W × c(4) +B

Here, c(4), W , and B are quaternions, each composed of four real-valued coefficients, and multi-
plication follows the standard quaternion multiplication rule as defined in Equation 11. To analyze
gradient flow, we compute the Jacobian matrix of the output F (c(4)) with respect to the input c(4).
The result I.2 reveals that each coefficient of W (denoted Wi) contributes to the output via a lin-
ear transformation consistent with the coefficient and sign matrices defined in our implementation
(Appendix H). Hence, the computed gradients are exactly equivalent.

W0 −W1 −W2 −W3

W1 W0 W3 −W2

W2 −W3 W0 W1

W3 W2 −W1 W0


As a result, we can confidently apply traditional gradient descent by interpreting the hypercomplex
network as a composition of real-valued operations. Once established for quaternions, this reasoning
naturally extends to general hypercomplex networks. Therefore, our approach indeed enables effective
training of hypercomplex neural networks using real-valued optimization methods.

However, it is crucial to note that while the network is trainable, it does not fully satisfy the conditions
of hypercomplex numbers or complex differentiability. As a result, the gradients are not strictly
hypercomplex numbers. The underlying reason for this is that the hypercomplex linear layer does not
satisfy the necessary partial differential equation (PDE) constraints dictated by the generalized
Cauchy-Riemann–Fueter equations. Specifically, taking quaternions as an example, for a function
f : X → X , where X is the quaternions here, the following condition must hold for quaternion
differentiability:

Df :=

(
∂

∂X0
+ i1

∂

∂X1
+ i2

∂

∂X2
+ i3

∂

∂X3

)
f = 0

However, this condition does not hold in the case where W is any arbitrary quaternion. Therefore,
although quaternion-based networks can be trained with real-valued gradient descent, they do not
exhibit the full differentiability required by quaternion calculus, thus limiting their theoretical
alignment with hypercomplex systems.

J ACTIVATION MECHANISMS IN HYPERCOMPLEX NEURAL NETWORKS

Although hypercomplex networks remain a niche area, researchers have increasingly explored their
potential in various deep learning tasks. One major limitation hindering their broader success is
the lack of effective activation functions tailored to hypercomplex spaces. Prior approaches often
apply real-valued activation functions independently to each component, which breaks the inherent
symmetry of hypercomplex representations and restricts expressive capacity during training. Notably,
the modulus—shared across all hypercomplex systems—possesses desirable mathematical properties.
This motivates us to develop activation functions that operate on the modulus directly, aiming to
preserve structural integrity and improve learning efficiency.

In this paper, we propose HNTanh, an activation function that leverages the modulus property of
hypercomplex numbers and treats the hypercomplex input holistically rather than coefficient-wise.
Specifically, given a hypercomplex input x, the activation function is defined as:
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HNTanh(c(n)) =
c(n)

∥c(n)∥p
· tanh(∥c(n)∥p)

where

tanh(x) =
ex − e−x

ex + e−x
,

∥c(n)∥p =

(∑
i

|c(n)i |p
)1/p

,

∥c(n)∥p denotes the p-norm of n-dimensional hypercomplex number c(n). In this work, we set
p = 6.We visualize the state space of the activation function on a two-dimensional plane. Specifically,
Figure 8 shows the activation function itself; Figure 9 depicts the gradient of the activation function
with respect to the modulus; Figures 10 and 11 illustrate the gradients with respect to the first
and second coefficients, respectively. These visualizations demonstrate that our activation function
exhibits stronger overall symmetry and maintains a smoother gradient distribution across most regions
of the space.
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Figure 8: Visualization of the HNTanh activation
function over complex numbers.
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Figure 9: Visualization of the gradient of the
norm induced by the HNTanh activation func-
tion.
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Figure 10: Visualization of the gradient of the
real coefficient (Re) in the HNTanh activation
function.
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Figure 11: Visualization of the gradient of the
imaginary coefficient (Im) in the HNTanh activa-
tion function.

J.1 WHY DO WE CHOOSE SIX-NORM?

To determine the optimal choice of norm, we conducted both visualization and empirical evaluations.
Visualization on the complex plane revealed that using a six-norm, as shown in Figure 0, produces
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pronounced fluctuations and sharper transitions around extreme values. In contrast, lower-order
norms, such as the two-norm depicted in Figure 12, exhibit smoother behavior in non-extreme regions.
Higher-order norms, including the infinity norm,depicted in Figure 13, introduced excessive extreme
points, leading to poorer overall continuity in the function’s profile.And from the formula in I.1, we
can see that the Jacobian matrix is almost 0 except for the diagonal and the rows and columns where
the maximum value elements are located, and the optimization is unstable.
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Figure 12: Visualization of the 2-norm tanh ac-
tivation function space. The function exhibits
noticeably over-smoothed field characteristics.
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Figure 13: Visualization of the ∞-norm tanh
activation function space. The function displays
clearly sawtooth-like field patterns.

For the experimental evaluation, we trained models on multiple variants of the ETT dataset (ETTh1,
ETTh2, and ETTm1) using p-norm values ranging from 1 to 8 and inf, with all other settings kept
identical. The results, summarized in Table 10, reveal that due to differences in the data distributions
across datasets, it is not feasible to depict a single unified performance curve showing the relationship
between the norm value and overall model performance. Nevertheless, it is evident that activation
functions with medium to high norm values consistently outperform those with lower norms. Notably,
the six-norm, as part of this medium-to-high norm range, achieves relatively strong performance
across datasets. Based on these empirical findings and the smoother, more balanced properties
observed in the visualization, we adopt the six-norm as our activation function.

Table 10: Performance of different activation function norms on the ETT dataset, evaluated under
identical experimental conditions.

Order of Norm ETTh1 ETTh2 ETTm1

MAE MSE MAE MSE MAE MSE

1 0.3838 0.3629 0.3319 0.2877 0.3415 0.3046
2 0.3805 0.3604 0.3329 0.2911 0.3425 0.3049
3 0.3800 0.3604 0.3313 0.2870 0.3424 0.3063
4 0.3801 0.3609 0.3313 0.2869 0.3419 0.3072
5 0.3795 0.3599 0.3309 0.2870 0.3412 0.3056
6 0.3798 0.3602 0.3306 0.2854 0.3401 0.3057
7 0.3798 0.3600 0.3301 0.2853 0.3405 0.3057
8 0.3797 0.3597 0.3310 0.2867 0.3398 0.3049

inf 0.3795 0.3593 0.3306 0.2846 0.3415 0.3069

J.2 WHY DO WE CHOOSE TANH?

The norm-based activation function for hypercomplex numbers can effectively induce a symmetric
and relatively smooth functional space. However, determining the optimal choice of activation
function remains an open question worthy of deeper investigation. Indeed, selecting an appropriate
activation function is a highly complex problem. The study of activation functions itself is challenging,
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as it lacks universally rigorous theoretical frameworks and definitive solutions that generalize well
across applications. On the one hand, the performance of an activation function is closely tied to the
specific characteristics of the downstream tasks; on the other hand, research on activation functions
in hypercomplex spaces remains scarce.
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Figure 14: Visualization of activation function
gradient under SiLU replacement
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Figure 15: Visualization of activation function
gradient under Sigmoid replacement

In this work, we therefore build upon well-established activation functions with widespread empirical
success. We conducted an analysis of the currently mainstream ReLU-like activation functions and
the sigmoid function, and visualized their gradient behavior with respect to the norm (modulus) of
hypercomplex numbers. As illustrated in Figures 14 and 15, unlike the real-valued case where inputs
span both positive and negative domains, the modulus is inherently non-negative. Consequently,
activation functions in the ReLU family—exemplified here by the SiLU function—exhibit a nearly
uniform gradient across the complex plane, effectively activating only the positive half of the input
domain. Sigmoid-based activations also suffer from similar limitations under this setting.

In our validation experiments, we selected several widely used and influential activation functions.
Within the Norm-Activation framework, we fixed the overall structure while varying only the
activation function, ensuring that all other experimental parameters remained identical. The results
are presented in the table below.

Table 11: Performance of different activation function norms on the ETT dataset, evaluated under
identical experimental conditions.

Type of Function ETTh1 ETTh2 ETTm1

MAE MSE MAE MSE MAE MSE

Tanh 0.3800 0.3602 0.3337 0.2901 0.3416 0.3068
Sigmoid 0.3855 0.3671 0.3366 0.2944 0.3409 0.3041

Relu 0.3815 0.3633 0.3316 0.2861 0.3483 0.3234
Mish 0.3824 0.3667 0.3324 0.2899 0.3507 0.3337
SiLU 0.3842 0.3695 0.3324 0.2904 0.3438 0.3193

LogSigmoid 0.3993 0.3945 0.3398 0.3068 0.3562 0.3314
RRelu 0.3814 0.3632 0.3319 0.2868 0.3515 0.3362

Notably, Tanh achieved the best performance on the ETTh1 dataset and performed comparably well
on both ETTh2 and ETTm1. Although it did not attain the top score across every dataset, Tanh
consistently delivered the most competitive overall results among all tested activation functions.
These findings provide empirical support for the effectiveness of selecting Tanh as the activation
function, validating our choice from a practical experimental standpoint.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

K VISUALIZATION

K.1 VISUALIZATION OF HYPERCOMPLEX LINEAR PREDICTION RESULTS

We visualized the outputs of each linear block in the trained model under its best-performing
parameters. For this analysis, we selected the prediction results of the first channel from the first
sample in the ETTh1 test set. Figure18 presents the predictions from five different linear layers in the
time domain, while Figure17 shows their corresponding representations in the frequency domain.
Figure16 illustrates the weighted average weights assigned to each linear block, which are used to
average the outputs of the RHR-MLP.

The results reveal that, under optimal settings, the model implicitly assigns the high-dimensional
hypercomplex layer to predict the low-dimensional, low-frequency components of the time series,
while the real and complex linear layers focus on capturing the high-dimensional, high-frequency
components. This separation enables the model to effectively fit localized, noisy seasonal signals
while maintaining accurate predictions of the overall trend. Additionally, the average weight distri-
bution indicates that the real and complex linear layers collectively contribute approximately 40%
of the prediction sequence, primarily capturing medium and high-frequency seasonal signals. In
contrast, the hypercomplex layers account for about 60% of the results, with the hexadecimal linear
layer alone supporting nearly 40% of the predictions, while the remaining hypercomplex layers play
an auxiliary role in refining the overall trend.

Interestingly, while this decomposition behavior resembles the effects of classical time series decom-
position, it emerges naturally through model training. Unlike artificially designed decomposition
models, it is not constrained by the limitations of fixed-form decomposition. This statistical, machine
learning–driven decomposition ability enables the model to adapt flexibly to different datasets, ulti-
mately contributing to its strong predictive performance across multiple benchmarks. It also provides
a glimpse into the nature of the model’s low- and high-frequency features in learning time series data.
We will explore this further in the next paragraph, and the section of quantitative analysis of these
features.

K.2 VISUALIZATION RESULTS WITH OTHER TRAINING SETTING

In order to better explore the inspiration brought by this method, We conducted visualization ex-
periments under alternative experimental settings to further validate our findings. Figures 20 and
21 illustrate the visualization effects of the ETTh1 dataset under non-optimal parameters, while
Figure 19 presents the corresponding average weight distribution. The results indicate that even
under non-optimal configurations, the model consistently employs high-dimensional hypercomplex
layers as the primary mechanism for capturing low-frequency information, while relying on real and
complex layers to capture high-frequency signals. However, under these suboptimal conditions, the
low-dimensional layers exhibit a relatively poor learning effect on the high-frequency components,
with their corresponding weight proportion significantly lower than the 40% observed under optimal
configurations. Consequently, their contribution to the overall decomposition is minimal, leading to
subpar model prediction results.

We also performed visualization experiments on other datasets.Figures 23, 24, and 22 present the
visualization of specific channels on the ETTh2 dataset, while Figures 29, 30, 28, 26, 27, and 25
show the corresponding visualizations for the ETTm2, ETTm1 dataset. Although these datasets
exhibit more complex high-frequency signals, the dominance of hypercomplex numbers in the learned
weights, along with the observation that different hypercomplex layers capture distinct low-frequency
features, suggests that the model primarily focuses on learning low-frequency trend characteristics.
Based on these experiments, we propose the following hypothesis: the model’s inability to accurately
predict low-frequency signals limits its capacity to further analyze high-frequency components,
thereby constraining overall performance improvement. While this conclusion may not be entirely
definitive—given the inherent limitations of the datasets and model architecture—it nonetheless
offers valuable insights for further enhancing our time-series prediction model.
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Figure 16: Visualization of weights of MLP on ETTh1
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Figure 17: Visualization of MLP prediction in
frequency domain on ETTh1
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Figure 18: Visualization of MLP prediction in
time domain on ETTh1
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Figure 19: Visualization of weights of MLP on ETTh1 on non-optimal parameters
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Figure 20: Visualization of MLP prediction in
frequency domain on ETTh1(non-optimal)
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Figure 21: Visualization of MLP prediction in
time domain on ETTh1(non-optimal)
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Figure 22: Visualization of weights of MLP on ETTh2
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Figure 23: Visualization of MLP prediction in
frequency domain on ETTh2
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Figure 24: Visualization of MLP prediction in
time domain on ETTh2
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Figure 25: Visualization of weights of MLP on ETTm1
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Figure 26: Visualization of MLP prediction in
frequency domain on ETTm1
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Figure 27: Visualization of MLP prediction in
time domain on ETTm1
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Figure 28: Visualization of weights of MLP on ETTm2
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Figure 29: Visualization of MLP prediction in
frequency domain on ETTm2
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Figure 30: Visualization of MLP prediction in
time domain on ETTm2
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L QUANTITATIVE STATISTICAL ANALYSIS TO THE DECOMPOSITION METHODS

To further validate the characteristics of the decomposition approach described in the previous
section and to derive concrete insights from the unique decomposition learned by the model, we
conducted extensive quantitative analyses on the ETT dataset. Specifically, we computed three key
metrics for the predictions made by real, complex, and hypercomplex linear layers in the frequency
domain: the Proportion of Variance Explained (PVE)Fraser (1965), the Mean Absolute Frequency
(MAF)Haugen et al. (2015), and the Pearson correlation coefficientRahadian et al. (2023) between
predictions and ground truth in the time domain.

PVE, a classical metric in variance analysis, measures the proportion of variance in the dependent
variable that is explained by the independent variable. Letting Yf denote the ground truth and Ŷf

denote the predicted value at frequency f , the PVE is mathematically defined as:

PVEf = 1− Var(Yf − Ŷf )

Var(Yf )

A PVE value closer to 1 indicates a higher explanatory power. In this study, we partitioned the
frequency domain into intervals to analyze the PVE across different frequency bands, thereby
revealing how well each RHR-MLP fits different frequency regions.

The MAF metric reflects the frequency specificity of the predictions by the linear layers. A lower
MAF indicates that the predictions are dominated by lower-frequency components, whereas a higher
MAF suggests a greater presence of high-frequency components in the predictions. The MAF in this
study is computed as:

MAF =

∑
f |f | · P (f)∑

f P (f)

where P (f) denotes the power at frequency f .

Table 12: Mean PVE per RHR-MLP per frequency bin on channel 0 of ETTh1, with corresponding
Mean Absolute Frequency (MAF) and Pearson correlation coefficient.

[0.00-0.01] [0.01-0.04] [0.04-0.09] [0.09-0.14] [0.14-0.20] [0.20-0.27] [0.27-0.50] MAF Pearson
Real 0.0004 0.0156 0.0377 0.0091 0.3040 0.1878 0.4311 0.241223 0.097605
Comp 0.0432 0.0075 0.9196 0.0103 0.0065 0.0083 0.0045 0.082320 0.382733
Quat 0.2199 0.0604 0.6982 0.0138 0.0035 0.0017 0.0023 0.037663 0.521406
Octo 0.1036 0.0230 0.7892 0.0740 0.0037 0.0041 0.0024 0.051302 0.631457
Sede 0.1000 0.0116 0.8445 0.0362 0.0026 0.0028 0.0022 0.046143 0.688479

Table 13: Mean PVE per RHR-MLP per frequency bin on channel 1 of ETTh1, with corresponding
Mean Absolute Frequency (MAF) and Pearson correlation coefficient.

[0.00-0.01] [0.01-0.04] [0.04-0.09] [0.09-0.14] [0.14-0.20] [0.20-0.27] [0.27-0.50] MAF Pearson
Real 0.0004 0.0087 0.0208 0.0066 0.277 0.1997 0.4685 0.257347 0.114217
Comp 0.0612 0.0107 0.8371 0.0173 0.0153 0.0428 0.0155 0.089623 0.304849
Quat 0.326 0.0784 0.5738 0.0146 0.0034 0.0016 0.0022 0.032386 0.45547
Octo 0.1592 0.0192 0.7165 0.0797 0.007 0.0121 0.0062 0.05182 0.479334
Sede 0.168 0.0152 0.7587 0.0385 0.0057 0.0078 0.006 0.045574 0.565875

The third metric, the Pearson correlation coefficient, measures the overall similarity between the
predicted and ground truth signals in the time domain. On typical time series datasets, a Pearson
coefficient closer to 1 indicates that the predicted sequence better aligns with the overall trend of the
true sequence.

Tables 12,13 present the results of our quantitative analyses on channels 0 and 1 of the ETTh1
dataset. The corresponding MAF and Pearson correlation coefficients are reported alongside the
interval-based PVE values. From these results, we observe similar patterns to those discussed in
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Table 14: Mean PVE per RHR-MLP per frequency bin on channel 0 of ETTm1, with corresponding
Mean Absolute Frequency (MAF) and Pearson correlation coefficient.

[0.00-0.01] [0.01-0.04] [0.04-0.09] [0.09-0.14] [0.14-0.20] [0.20-0.27] [0.27-0.50] MAF Pearson
Real 0.2485 0.7226 0.0237 0.0033 0.0007 0.0004 0.0008 0.011422 0.446613
Comp 0.4764 0.4804 0.0315 0.0073 0.0019 0.0007 0.0017 0.010222 0.037417
Quat 0.3179 0.4730 0.1607 0.0172 0.0135 0.0044 0.0133 0.026225 0.408534
Octo 0.0173 0.9675 0.0139 0.0006 0.0002 0.0001 0.0003 0.013652 0.788544
Sede 0.1989 0.7693 0.0268 0.0023 0.0010 0.0005 0.0012 0.012790 0.678040

Table 15: Mean PVE per RHR-MLP per frequency bin on channel 3 of ETTm1, with corresponding
Mean Absolute Frequency (MAF) and Pearson correlation coefficient.

[0.00-0.01] [0.01-0.04] [0.04-0.09] [0.09-0.14] [0.14-0.20] [0.20-0.27] [0.27-0.50] MAF Pearson
Real 0.1378 0.8323 0.0222 0.005 0.001 0.0006 0.0011 0.013584 0.208974
Comp 0.6085 0.3462 0.0315 0.0089 0.0022 0.0007 0.0019 0.009141 0.028703
Quat 0.4405 0.3668 0.1465 0.0181 0.0117 0.0043 0.0122 0.023216 0.305707
Octo 0.0069 0.9701 0.0205 0.0011 0.0004 0.0002 0.0006 0.014868 0.660863
Sede 0.5131 0.4609 0.0211 0.0023 0.0009 0.0005 0.0011 0.00871 0.602638

the previous section: the lower-frequency regions (below 0.09) are predominantly predicted by the
higher-dimensional hypercomplex layers, effectively capturing global trend patterns; whereas the
higher-frequency regions are predicted by the lower-dimensional complex and real-valued layers,
capturing localized seasonal signals. And because the model is channel-independent, this prediction
rule does not change with the channel.

However, a notable divergence from conventional decomposition design emerged (cite). Traditional
modeling intuition often assumes that low-frequency components are more difficult to predict than
high-frequency components, leading to designs that allocate greater model capacity to handle low-
frequency signals. Contrarily, our model, after training, reveals an opposite pattern: the complex and
hypercomplex MLP, which constitute the majority of the model’s parameters, primarily focus their
predictive capacity on a specific low-frequency band—particularly the interval [0.04− 0.09]—while
selectively predicting auxiliary low-frequency components in [0− 0.01], [0.01− 0.04], and [0.09−
0.14]. Surprisingly, the Real MLP, despite having the fewest parameters, is responsible for predicting
the complex high-frequency components.

Tables 14, 15, and 16 summarize the quantitative results of our analyses on the ETTm1 and ETTm2
datasets, both of which exhibit lower frequency characteristics compared to the ETTh1 dataset.

When comparing across datasets, we observe that the low-frequency nature of ETTm1 and ETTm2,
coupled with their training challenges, results in the Real MLP struggling to capture prominent
high-dimensional features. Consequently, the predicted signals from the MLP tend to concentrate in
lower frequency ranges overall.

Nonetheless, a closer examination of the frequency distribution across low-frequency intervals, along
with metrics such as the Mean Amplitude Frequency (MAF) and Pearson correlation coefficient,
reveals a clear stratification pattern in the predictive frequencies of the different MLP. Despite
operating predominantly at low frequencies, the predictions from each RHR-MLP exhibit distinct
characteristics that reflect the integration of diverse feature sources.

These findings suggest that the decomposition mechanism learned by the model is indeed functioning
as intended, effectively disentangling components with different frequency properties. However, the

Table 16: Mean PVE per RHR-MLP per frequency bin on channel 6 of ETTm2, with corresponding
Mean Absolute Frequency (MAF) and Pearson correlation coefficient.

[0.00-0.01] [0.01-0.04] [0.04-0.09] [0.09-0.14] [0.14-0.20] [0.20-0.27] [0.27-0.50] MAF Pearson
Real 0.1545 0.7596 0.0506 0.0326 0.002 0.0004 0.0003 0.017574 0.016364
Comp 0.9773 0.0108 0.0043 0.0027 0.0015 0.001 0.0023 0.002114 0.055557
Quat 0.3066 0.4821 0.1502 0.0454 0.005 0.0031 0.0075 0.026367 0.096686
Octo 0.0671 0.872 0.0454 0.0046 0.0033 0.0023 0.0053 0.017973 0.315934
Sede 0.9916 0.0068 0.0008 0.0004 0.0001 0.0001 0.0002 0.000295 0.169416
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results also indicate that there is potential for further improvement and optimization to expand the
decomposition frequency range and improve the prediction performance.

M WHY THE METHOD WORKS: RMT AND HYPERCOMPLEX–SPECTRAL
PERSPECTIVES

M.1 J.1 RANDOM–MATRIX PERSPECTIVE: EFFECTIVE–RANK COLLAPSE AND SPECTRAL
BIAS IN HYPERCOMPLEX LAYERS

Let x ∈ Rd be embedded into a hypercomplex algebra, quaternions H or octonions O, by identifying
R with the zero–imaginary subfield and applying a random hypercomplex weight W ∈ Hm×d or
W ∈ Om×d. Via standard real block representations, this induces a real linear map

Although R(W ) is generically full rank and has more real parameters than a comparable real/complex
layer, its effective number of modes is smaller.

Key claim (stable rank reduction). Define the stable rank

sr (R(W )) ; =;
|R(W )|F 2

|R(W )|22
. (12)

Relative to real/complex random matrices, hypercomplex ensembles exhibit symmetry–induced
eigenvalue/singular–value degeneracies, yielding repeated eigenvalues and concentrated spectra .
This is speculated from symmetry-induced degeneracies in simple cases: when N=2, quaternions show
2- to 4-fold eigenvalue repetitions (aligned with Dyson ensemble β = 4), while octonions display up
to 8-fold degeneracy (β = 8)(Forrester, 2017). Let σi be the singular values and pi = σ2

i /|R(W )|F 2.
The spectral entropy

H(σ); =;−
∑

ipi log pi (13)

is reduced by these degeneracies, and the ratio in equation 12 correspondingly decreases as |R(W )|2
inflates relative to |R(W )|F .

Consequence 1 (implicit low–pass bias) : Lower stable rank means optimization gravitates toward
solutions with a few dominant singular directions. Functionally, the layer acts as a low–pass opera-
tor: it favors smooth, low–frequency structure while attenuating high–frequency oscillations/noise,
consistent with implicit/spectral low–rank biases observed in over–parameterized linear networks
(Fridovich-Keil et al., 2022; Rahaman et al., 2019).

Consequence 2 (generalization and robustness) : In noisy time series, truncating high frequencies
reduces variance. The algebra–induced rank collapse thus serves as a built–in regularizer: despite
large parameter counts, admissible mode diversity is curtailed by symmetry, improving stability
against outliers and measurement noise.

M.2 J.2 HYPERCOMPLEX–SPECTRAL PERSPECTIVE: QFT/OFT PROPERTIES AS INDUCTIVE
BIAS FOR MULTIVARIATE TIME SERIES

The quaternion Fourier transform (QFT) (Ell, 1992; Cheng & Kou, 2018; Sangwine, 1996) and
octonion Fourier transform (OFT) (Hahn & Snopek, 2011; Baszczyk & Snopek, 2017) extend the
complex Fourier transform to vector–valued signals while preserving core theorems:

• Hermitian symmetry. For real inputs, spectra are conjugate–symmetric, eliminating
redundant frequencies without loss (Salehi et al., 2013). In hypercomplex embeddings, this
symmetry extends across channels, reducing spectral redundancy in multichannel data.

• Plancherel–Parseval. Energy is preserved between time and frequency domains, supporting
power–preserving linear operators and interpretable orthogonal decompositions (Alessio,
2016).

• Wiener–Khintchine. Autocorrelation equals the inverse transform of the power spectral
density, now in the hypercomplex domain, exposing both intra–channel and cross–channel
dependencies (Zbilut & Marwan, 2008).
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Windowed variants (e.g., windowed OFT) provide time–frequency localization while retaining these
guarantees, improving detection of transient, multiscale structure (Bhat & Sheikh, 2023).

Why this helps modeling.

1. Phase–aware coupling. Hypercomplex units encode amplitudes and joint phases/orientations
via non–commutative products; the induced real block operator performs coupled rota-
tions/scalings across channels, enabling orientation–aware filtering that scalar models cannot
match at the same parameter budget.

2. Energy– and correlation–preserving structure. Because QFT/OFT preserve energy and
connect spectra to autocorrelation, hypercomplex–constrained linear maps behave as
phase–coherent, power–preserving filters, stabilizing optimization and aiding interpretabil-
ity.

3. Built–in multichannel priors. Algebraic constraints impose cross–channel couplings (akin
to Cauchy–Riemann–type relations), pruning spurious degrees of freedom and sharpening
generalization for vector–valued time series.

Link to §M.1. The spectral theorems specify what structure is preserved (energy, symmetry, correla-
tions); the RMT view explains how algebra enforces a compact dominant–mode set (implicit low
rank). Together, they imply a phase–coherent, low–variance estimator that captures trends and stable
cross–channel relations while suppressing noise—matching empirical behavior.

Summary. Hypercomplex representations provide (i) an implicit low–rank, low–pass bias
via spectral degeneracies (RMT), and (ii) the right spectral invariants (Hermitian symmetry,
Plancherel–Parseval, Wiener–Khintchine) for multichannel time series (QFT/OFT). This combination
explains why our method is data–efficient, noise–robust, and strong on long–horizon trends—even
when nominal parameter counts are large.

N SHOW CASE

In this section, we present the complete results of the case study. For each dataset, we randomly
selected 2–3 channels from the first seven channels for visualization. The detailed outcomes are
summarized as follows. While the predictive performance and visualizations appear broadly similar
across models—reflecting the strong overall baseline performance—our model consistently demon-
strates more accurate predictions of low-frequency components, particularly evident in the weather
dataset and other representative cases.

O LIMITATIONS

Our method introduces a novel time series forecasting model leveraging multiple hypercomplex
spaces, but it also faces several limitations. First, PyTorch natively supports only real and complex
numbers, so all hypercomplex data structures, linear layers, and activation functions had to be
implemented from scratch. Computations are simulated in the real domain, leading to slower
training and higher memory demands—e.g., a sedenion layer consumes 16× more memory than its
real counterpart. Second, optimizers such as Adam are not inherently designed for hypercomplex
arithmetic, resulting in slower convergence and increased training fluctuations. Third, despite our
efficient implementation, memory usage and runtime scale unfavorably with dimensionality due to
the lack of specialized hardware or data structures. Beyond hardware constraints, our approach is also
limited in representation design. Current practice relies mainly on zero-padding to extend real inputs
and Cayley–Dickson constructions to define hypercomplex spaces, but alternative transformations
into different hypercomplex spaces remain underexplored. It is unclear whether other structured
spaces or mappings might yield stronger inductive biases for time series, and these directions
require substantial theoretical investigation. Finally, advanced transformations, such as generalized
hypercomplex Fourier methods, are not yet implemented due to both theoretical and computational
barriers. We remain optimistic that future work—developing new transformation schemes, theoretical
foundations, and hardware/optimizer support—will greatly enhance the practicality and performance
of hypercomplex models.
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Figure 31: ETTh1 Channel 1

0 25 50 75 100 125 150 175 200
Time

4

3

2

1

0

1

Va
lu

e

Ground Truth
Input
Prediction

Numerion

0 25 50 75 100 125 150 175 200
Time

4

3

2

1

0

1

Va
lu

e

Ground Truth
Input
Prediction

DLinear

0 25 50 75 100 125 150 175 200
Time

4

3

2

1

0

1

Va
lu

e

Ground Truth
Input
Prediction

PatchMLP

0 25 50 75 100 125 150 175 200
Time

4

3

2

1

0

1

Va
lu

e

Ground Truth
Input
Prediction

TimeXer

0 25 50 75 100 125 150 175 200
Time

4

3

2

1

0

1

Va
lu

e

Ground Truth
Input
Prediction

FilterNet

0 25 50 75 100 125 150 175 200
Time

4

3

2

1

0

1

Va
lu

e

Ground Truth
Input
Prediction

iTransformer

0 25 50 75 100 125 150 175 200
Time

4

3

2

1

0

1

Va
lu

e

Ground Truth
Input
Prediction

PatchTST

0 25 50 75 100 125 150 175 200
Time

4

3

2

1

0

1

Va
lu

e

Ground Truth
Input
Prediction

TimesNet

Figure 32: ETTh1 Channel 0
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Figure 33: ETTh2 Channel 0
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Figure 34: ETTh2 Channel 6
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Figure 35: ETTm1 Channel 6
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Figure 36: ETTm1 Channel 0
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Figure 37: ETTm2 Channel 6
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Figure 38: ETTm2 Channel 4
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Figure 39: Solar Energy Channel 0
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Figure 40: Solar Energy Channel 4
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Figure 41: Weather Channel 2
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Figure 42: Weather Channel 3
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Figure 43: Electricity Channel 0
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Figure 44: Electricity Channel 5
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