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ABSTRACT

Multi-Touch Attribution plays a crucial role in both marketing and advertising,
offering insight into the complex series of interactions within customer journeys
during transactions or impressions. This holistic approach empowers marketers
to strategically allocate attribution credits for conversions across diverse channels,
not only optimizing campaigns but also elevating overall marketplace strategies.
In this paper, we acknowledge the irregular time series nature of customer journey
data and showcase both the effectiveness and limitations of neural ordinary differ-
ential equations in terms of estimating the attributions and predicting conversions.

1 INTRODUCTION

With the rapid growth of internet users over the past few years, companies keep tracks of their cus-
tomers behaviors through multiple marketing channels, for example, paid search, natural search,
banner ads. It is crucial for the companies to attribute the right conversion credit on the interaction
between the user and the website content along the customer journey (touchpoints). Ideally, such
analysis should be done through A/B testing. However, usually the companies cannot perform a
mass-scale A/B test, as that could have negative impact on customer experience on important web-
sites, and usually requires spending a huge budget. Since budget allocation over different channels
is always an important decision, it is crucial for them to use multi-touch attribution (MTA) methods
to estimate the relative contribution of each touchpoint in customer conversion journeys.

In the past, rule-based methods like first-touch and last-touch attributed all credit to the initial/final
touchpoint. Later, MTA models such as Linear, Time Decay, and U-Shaped emerged, distributing
credit across touchpoints based on perceived influence. However, these models oversimplify real-
world complexities, struggling to capture nuanced interaction impacts. The Sharpley value, rooted
in cooperative game theory (Zhao et al. (2018); Singal et al. (2019); Shao & Li (2011)), captures
the marginal contribution of each touchpoint. Drawbacks include a failure to capture sequential de-
pendencies and factorial calculations due to considering all touchpoint permutations. The Markov
Chain model, combined with the removal effect (Anderl et al. (2016); Archak et al. (2010)), uses
transition probabilities between states/touchpoints in a customer’s journey. However, higher-order
Markov Chains are computationally intensive. A causal motivated methodology involves survival
analysis, focusing on the conversion event’s predictive goal (Ren et al. (2018)). Dalessandro et al.
(2012) proposed assigning conversion credits using a causal cooperation model, addressing practi-
cal constraints and proposing an approximate attribution measure. However, a drawback of these
models lies in the absence of exogenous variation in user historical data, posing a risk to the re-
liability of attribution results due to bias in the counterfactual predictor’s training data caused by
confounders, making accurate predictions more challenging. Inspired by methods proposed to ad-
dress such problem in longitudinal data, Yao et al. (2022) proposed a CausalMTA method which
eliminates the confounding bias from both static and dynamic perspectives and learn an unbiased
conversion prediction model using historical data.

Nevertheless, these methodologies lean towards single-point prediction and overlook sequential pat-
terns in user browsing history. Attribution credits derived from these methods often rely on heuristic
additive assumptions, which may prove ineffective in practical scenarios. Additionally, assump-
tions about survival function, such as exponential hazard function or Weibull distribution, constrain
the model’s capacity to adapt to diverse real-world data. Moreover, such customer journey are
complex and presents non-uniform intervals, which is a common challenge to models using conven-
tional recurrent neural networks (RNNs) or temporal convolutional neural networks (TCNs) (Chen
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et al. (2019), Rubanova et al. (2019)). To address this limitation, Rubanova et al. (2019) extended
RNNs by incorporating continuous-time hidden dynamics defined by ordinary differential equations
(ODEs), introducing a model known as ODE-RNN. These models exhibit a natural ability to handle
arbitrary time gaps between observations and explicitly model the probability of observation times
through Poisson processes.

This paper introduces a novel application of ODE-LSTM (Lechner & Hasani (2020)) to the MTA
problem, where we attempt to estimate attribution within customer journeys by incorporating an
attention mechanism into the original model. We conduct a comparative evaluation of this approach
alongside other commonly employed MTA methods, revealing both its strengths and weaknesses.
Our findings suggest that ODE-LSTM outperforms other methods particularly in scenarios where
time intervals are not excessively irregular, albeit demonstrating a decline in performance as irregu-
larity increases. However, it excels in estimating attributions compared to alternative approaches.

2 METHODOLOGY

Let X = (X1,X2, . . . ,XN ) denote the input sequence data, where each Xi = (x1,x2, . . . ,xL)
represents a sequence with length L and xl denotes the features at the lth location. Let Y =
(y1, y2, . . . , yN ) be the class of the sequential data.

2.1 ODE-LSTM WITH ATTENTION

Follow Chen et al. (2019) and Lechner & Hasani (2020), we use autoregressive modeling with ODE-
LSTM with an additional attention layer to model the customer journey seuqences. Assume each
input data xl is associated with an timestamp tl and denote hidden states as well as memory cell as
hl and ml. The ODE-LSTM algorithm follows:

h′
l,ml = LSTMCell (ml−1,hl−1,xl) ,

hl = ODESolve (fθ,hl−1,h
′
l, (tl−1, tl)) ,

where the function fθ specifies the dynamics of the hidden state, using a neural network with pa-
rameters θ.

In order to obtain the attribution, the above hidden states are further feed to an attention layer to
identify pivotal touchpoints contributing to conversions. Subsequently, we consolidate the represen-
tations of these significant touchpoints, creating a comprehensive context vector.

vl = tanh (Whl)

al =
exp

(
vT
l u

)∑
l exp

(
vT
l u

)
s =

∑
l

alhl

(1)

The hidden states hl are feed through a one-layer multilayer perceptron (MLP) to get vl, where
W is a learnable matrix. Then, we measure the importance of the touchpoint by assessing the
similarity of vl with the vector u and obtain a normalized importance weight al through a softmax
function. It is noteworthy that, by design, al > 0. This construction offers the advantage that
the contribution of every touchpoint is always positive. Afterward, we compute the vector s as the
weighted sum of touchpoint representations based on the non-negative weights. Essentially, s is
the convex combination of all hl. u can be seen as a high-level representation of a fixed sequence.
We can customize this attribution model by imposing constraints on u based on domain knowledge
about touchpoint importance, it can either be kept fixed or initialized randomly and jointly learned
during the process. In our modeling, we adopt the latter approach. See Appendix A.1 for model
structure visualization.

In MTA problem, customer journeys are categorized into positive (leading to conversions) and neg-
ative (not leading to conversions). This problem can be treated as binary classification in the trans-
formed journey vector space s, which combines hidden outputs and attention weights. Thus, we
optimize a cross-entropy loss to train the model.
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2.2 ATTRIBUTION CALCULATION AND VALIDATION

Up to this point, we have the estimated conversion probability p(y|Xi) and the attention scores a.
With these outcomes, we can inherently allocate attribution to channels at each touchpoint l. As we
want to estimate the impact of each channel on successful conversions, our calculations exclusively
focus on customers who have achieved successful conversions. The total attribution of a channel is
the accumulative sum of the touchpoint attention scores if that touchpoint visit that channel.

Overall, we have two directions to measure the model performance. The first one focuses on con-
version estimation performance, where we use AUC and PRAUC. The second part aims at the per-
formance of calculated attributions for various channels. We evaluate attribution consistency across
channels using the Jaccard Index. Additionally, we introduce a novel metric called AURE (Area
Under Removal Effects). AURE tracks the cumulative impact on conversion probabilities by suc-
cessively removing channels based on the ranked attributions. See Appendix A.2 for details.

3 EXPERIMENTS

3.1 COMPETING METHODS

We have three methods to compare Transformers (TRANS) (Vaswani et al. (2017)), Temporal
Convolutional Neural Networks (TCN), and Attention LSTM (ALSTM). For Transformers and
TCN, Integrated Gradients (Sundararajan et al. (2017)) are utilized to explain the importance of
original input features. For ALSTM, after LSTM layers, we added the same attention layer as
introduced in 1 to obtain the attribution.

3.2 DATASETS

We conduct our experiments on two real-world datasets. See Appendix A.3 for experiment details.

Criteo, is a dataset of real-time auction-based advertising attribution modeling (Diemert et al.
(2017)). This dataset captures the dynamics of Criteo’s live traffic over an extensive 30-day pe-
riod. It encompasses over 16 million impressions and documents 45,000 conversions across 700
campaigns. Each impression record potentially corresponds to click actions, with labeled touch
points indicating whether a click occurred. The dataset includes 12 features in total, including the
time, and the max customer journey length is 20. The time range is normalized to 0 to 1, and the
time differences can be nearly 0 or as large as 0.9.

Marketing Sign-up Data, which contains the customer actions over one year span, each timestamp
corresponds to a user’s visit to a particular URL. For every visit, we record four numeric features and
eight categorical features. The data has about 1.4 million visitors, over 7.6 million visits and about
9,000 URLs for attribution estimation. We limit the max customer journey length as 15 timestamps
in this data. Since the time span is over a year, the timestamps gaps could be one month or a few
seconds. We use days as timestamp in this data, in this case, most of the time differences are 0,
however, there exists large time difference such as 30 (days).

3.3 PERFORMANCE

3.3.1 CONVERSION ESTIMATION PERFORMANCE

Models Criteo Marketing Sign-up
AUC PRAUC AUC PRAUC

ODE-LSTM 0.9832 0.9293 0.9200 0.8507
ALSTM 0.9827 0.9286 0.9710 0.9292
TCN 0.9817 0.9238 0.9629 0.9079
TRANS 0.9813 0.9226 0.9262 0.8394

Table 1: Performance Metrics for Criteo and Marketing Sign-up datasets.

Table 1 demonstrates the model performance in terms of the AUC and PRAUC. On the data (Criteo)
that the time scale are relative small and most time differences are valid, ODE-LSTM performs
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the best, however, as the time difference goes large and most differences are 0 as in the marketing
signup data, ODE-LSTM was beat by ALSTM and TCN. The reason might be the ODE-LSTM
faces challenges due to its focus on continuous transitions. ALSTM and TCN are more robust in
capturing patterns in such scenarios. However, the simple Transformer model is the worst on the
both data. It might be because its lack of inherent temporal understanding, which means it may not
capture important temporal dependencies in the data. For such irregular time intervals or missing
data points data, Transformers may not handle such irregularities well, and additional preprocessing
or better time encoding is often needed.

3.3.2 ATTRIBUTION ESTIMATION

We plot AURE curves to validate attributions in Figure 2. It appears that ODE-LSTM and Trans-
formers are highly consistent on Criteo data. The top 100 removal effects for ODE-LSTM and
Transformer are 0.801 and 0.800 respectively, indicating a slight better performance of ODE-LSTM.
The differences among methods on the marketing data is more significant (Appendix Table 2 also
demonstrates this), although ODE-LSTM is not the best model in terms of AUC, the top 100 removal
effects is the highest as 0.888, and it has a dominating trend in Figure 2b. Additionally, to compare
the actual scores, Figures 1 show the normalized attribution scores of selected ten channels.

(a) Criteo data. (b) Marketing signup data.

Figure 1: Attribution comparisons on top 10 channels selected by the best performance model given
each data.

(a) Criteo data. (b) Marketing signup data.

Figure 2: AURE on top 100 channels selected by each method.

4 DISCUSSION

We proposed a ODE-LSTM combined with an attention mechanism to estimate the attribution in
MTA problem. ODE-LSTM is not necessary the best the model if simply comparing the AUC and
PRAUC, and ALSTM is the most robust method for predicting conversion. However, by comparing
the proposed AURE metrics, ODE-LSTM gives the best results. Although Neural ODE handles
continuous data, e.g. irregularly-sampled data or test-time sampling shift automatically and are
mathematically tractable to analyze. They are extremely slow at both training and inference. To
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further enhance the performance of ODE-related methods, a potential avenue for improvement lies
in refining the handling of time dynamics inherent in the attribution problem. Or we could try newly
developed methods, for example NCDE (Kidger et al. (2020)) and State Space Model (Gu et al.
(2022); Gu & Dao (2023)).

REFERENCES

Eva Anderl, Ingo Becker, Florian von Wangenheim, and Jan Hendrik Schumann. Mapping the
customer journey: Lessons learned from graph-based online attribution modeling. 33(3):457–
474, 2016. ISSN 0167-8116. doi: 10.1016/j.ijresmar.2016.03.001.

Nikolay Archak, Vahab S. Mirrokni, and S. Muthukrishnan. Mining advertiser-specific user behavior
using adfactors. In Proceedings of the 19th international conference on World wide web, WWW
’10, pp. 31–40. Association for Computing Machinery, 2010. ISBN 978-1-60558-799-8. doi:
10.1145/1772690.1772695.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
ferential equations. (arXiv:1806.07366), 2019. doi: 10.48550/arXiv.1806.07366.

Brian Dalessandro, Claudia Perlich, Ori Stitelman, and Foster Provost. Causally motivated attribu-
tion for online advertising. In Proceedings of the Sixth International Workshop on Data Mining
for Online Advertising and Internet Economy, ADKDD ’12, pp. 1–9. Association for Computing
Machinery, 2012. ISBN 978-1-4503-1545-6. doi: 10.1145/2351356.2351363.

Eustache Diemert, Julien Meynet, Pierre Galland, and Damien Lefortier. Attribution modeling in-
creases efficiency of bidding in display advertising. 2017.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.
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A APPENDIX

A.1 ATTENTION FOR ATTRIBUTION

Below Figure 3 is the attention module we used to obtain the attribution al, there are some potential
extension such that we can consider the time decay effects. Each touchpoint is associated with
its occurrence time. The time difference between the occurrence time and the end time can be
considered as a factor, smaller indicates that the timestamp is closer to the end time, potentially has
more attribution to the final conversion or non conversion state, we can penalize the attention scores
by this time decay factor. Moreover, the vector u can be defined as a representation of conversion
or non conversion state, which makes attribution closer to capturing the label information.

Figure 3: Attention for Attribution

A.2 AURE

Assume the attributions accurately reflect a channel’s influence on conversion, eliminating highly
influential channels should lead to a substantial decline in conversion probability. By plotting a curve
with the x-axis representing the count of removed channels starting from the highest attribution, and
the y-axis indicating the difference between the initially trained best probability and the probability
after removal, we can consider the curve’s area under it as a statistical metrics, the larger area
signifies a better method.

Let c1, c2, . . . , cm represent channels, P (y|Xi) represent the conversion probability for instance i.
The removal effect for instance i after removing channel c̃j is given by:

Rij = 1− P (yi|Xi,c̃j )/P (yi|Xi),

where Xi,c̃j is denoted as removing the channel c̃j in instance i.

For plotting the curve, the x-axis represents the number of channels removed, starting from the
highest attribution: j = 1, 2, . . . ,m. The y-axis indicates the expected removal effect:

1

N

N∑
i=1

Rij .
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A.3 TRAINING DETAILS

Both datasets are divided into trainset and testset (ratio: train 0.8, test 0.2). For Criteo data, 20% is
positive labelled, and the detailed features includes time, click, campaign, and additional nine cate-
gorical features. There are about 700 channels(campaigns) to evaluete and estimate the attribution.

For Marketing data, 30% is positive labelled. And the features include channel, visited URLs,
and other categorical attributes, such as time, page view duration, scroll depth, and other relevant
metrics.

For the hyperparameters, we set epoch as 20, learning rate as 1e−4, weight deacay as 1e−5, hidden
dimension as 128 and the dropout rate is 0.2. LSTM layers, attention heads and Temporal convolu-
tional layers are all set as 2.

A.4 TABLES AND FIGURES

ODE-LSTM ALSTM TCN TRANS
ODE-LSTM 0.60 0.316 0.526
ALSTM 0.7094 0.324 0.550
TCN 0.754 0.7857 0.48
TRANS 0.9417 0.6949 0.7857

Table 2: Comparison of Jaccard Index of top 100 ranked channels given by each method. The green
color represents Jaccard Index of Marketing signup data, and the blue color belongs to Criteo data.
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