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Abstract

Maximizing a monotone submodular function un-
der cardinality constraint k is a core problem in
machine learning and database with many basic
applications, including video and data summa-
rization, recommendation systems, feature extrac-
tion, exemplar clustering, and coverage problems.
We study this classic problem in the fully dy-
namic model where a stream of insertions and
deletions of elements of an underlying ground
set is given and the goal is to maintain an ap-
proximate solution using a fast update time. A
recent paper at NeurIPS’20 by Lattanzi, Mitrovic,
Norouzi-Fard, Tarnawski, Zadimoghaddam (Lat-
tanzi et al., 2020a) claims to obtain a dynamic
algorithm for this problem with a ( 12 − ϵ) approx-
imation ratio and a query complexity bounded
by poly(log(n), log(k), ϵ−1). However, as we
explain in this paper, the analysis has some im-
portant gaps. Having a dynamic algorithm for
the problem with polylogarithmic update time is
even more important in light of a recent result by
Chen and Peng (Chen & Peng, 2022) at STOC’22
who show a matching lower bound for the prob-
lem – any randomized algorithm with a 1

2 + ϵ ap-
proximation ratio must have an amortized query
complexity that is polynomial in n. In this paper,
we develop a simpler algorithm for the problem
that maintains a ( 12 − ϵ)-approximate solution
for submodular maximization under cardinality
constraint k using a polylogarithmic amortized
update time.
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1. Introduction
The problem of maximizing a monotone submodular func-
tion under cardinality constraint k is defined as follows:
Let f : 2V → R+ be a non-negative monotone submod-
ular function defined on subsets of a ground set V . Let
k ∈ N be a parameter. We are asked to return a set X of
at most k elements such that f(X) is maximum among all
k subsets of V . This problem is at the core of machine
learning (Elenberg et al., 2017; Mitrovic et al., 2019; Tohidi
et al., 2020), data mining (Wu & Tseng, 2022; Ashkan et al.,
2015; Parambath, 2019), and database (Bateni et al., 2019;
Salehi et al., 2018) with many basic applications including
video and data summarization (Feldman et al., 2018), recom-
mendation systems (Parambath et al., 2018; Ashkan et al.,
2015; Parambath, 2019; Benouaret et al., 2019), feature ex-
traction (Bateni et al., 2019), spatial search and map explo-
ration (Wu & Tseng, 2022) exemplar clustering (Salehi et al.,
2018; Badanidiyuru et al., 2014), sparse regression (Das &
Kempe, 2018; Tsai & Tseng, 2020; Tseng & Mettler, 2017)
and coverage problems (Bar-Ilan et al., 2001; Sagnol, 2013),
to name a few.

For the submodular maximization problem under cardinality
constraint k, the celebrated greedy algorithm due to Fisher,
Nemhauser, and Wolsey (Nemhauser et al., 1978) achieves
an approximation ratio of 1− 1/e ≈ 0.63, which is optimal
assuming P ̸= NP . However, this classic algorithm is inef-
ficient when applied to modern big data settings, given the
unique challenges of working with massive datasets. Moti-
vated by these challenges, in recent years there has been a
surge of interest in considering the submodular maximiza-
tion problem under a variety of computational models such
as streaming models (Badanidiyuru et al., 2014; Kazemi
et al., 2019) and distributed models (da Ponte Barbosa et al.,
2016; Liu & Vondrák, 2019; Kumar et al., 2015; McGregor
& Vu, 2019).

Related work. Badanidiyuru, Mirzasoleiman, Karbasi
and Krause (Badanidiyuru et al., 2014) were the first to study
this problem in the insertion-only streaming model and de-
veloped a ( 12 − ϵ)-approximate streaming algorithm for
this problem using space in O(kpoly(log(n), log(k), 1

ϵ )).
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Recently, Mirzasoleiman, Karbasi, and Krause (Mirza-
soleiman et al., 2017) studied this problem in the insertion-
deletion streaming model where they obtained a ( 12 − ϵ)-
approximate algorithm using O(d2(kϵ−1 log k)2) space
and O(dkϵ−1 log k) average update time, where d is an
upper-bound for the number of deletions that are allowed.
A follow-up by Kazemi, Zadimoghaddam, and Karbasi
(Kazemi et al., 2018) improved the space complexity and
the average update of the first work down to O(k log k +
d log2 k) and O(dk log2 k + d log3 k).

One bottleneck of these two works is the polynomial depen-
dency of their space and time complexities on the number of
deletions since it takes too much time to (re)compute the so-
lution after every insertion or deletion. Indeed, if the number
of deletions is linear in n = |V | or higher (say, d = Ω(n)),
it is better to rerun the offline algorithm (Nemhauser et al.,
1978) after every insertion and deletion. Despite their use
cases, the above algorithms are unsuitable for many modern
applications where data is highly dynamic. For these appli-
cations such as data subset selection problem (Elhamifar
& Kaluza, 2017; Elhamifar, 2019), movie recommendation
system (Ohsaka & Matsuoka, 2022; Chen et al., 2017), in-
fluence maximization in social networks (Chen et al., 2009;
Tong et al., 2017; Zhang et al., 2017), elements are continu-
ously added and deleted, prompting the need for algorithms
that can efficiently handle both insertions and deletions at
the same time.

Submodular maximization in dynamic model. Moti-
vated by these interests, in this paper, we study the submod-
ular maximization problem under the cardinality constraint
k in the dynamic model (Bernstein et al., 2021; Hanauer
et al., 2022; Bhattacharya et al., 2021; 2020). In this model,
we are given a stream of insertions and deletions of elements
of the underlying ground set V and we have an oracle ac-
cess to a function f that returns value f(A) for every subset
A ⊆ V . The goal is to maintain a good approximate set of
at most k elements after every insertion and deletion using
a fast query complexity.

Recently, Chen and Peng (Chen & Peng, 2022) show a
lower bound for submodular maximization in the dynamic
model: any randomized algorithm that achieves ( 12 + ϵ)-
approximation ratio for dynamic submodular maximization
under cardinality constraint k requires amortized query com-
plexity nΩ̃(ϵ)

k3 . Therefore, the important question that we seek
to answer is the following:

Polylogarithmic question: Is there any dynamic algorithm
for submodular maximization that maintains a ( 12 − ϵ)-
approximate solution under cardinality constraint k with
a query complexity poly(log(n), log(k), 1/ϵ) where n is
the size of underlying ground set V ?

Very recently, Lattanzi, Mitrovic, Norouzi-Fard, Tarnawski,

and Zadimoghaddam (Lattanzi et al., 2020a) and Monem-
izadeh (Monemizadeh, 2020) tried to answer this question.
The first work claimed to develop a dynamic algorithm that
maintains an expected amortized ( 12 − ϵ)-approximate so-
lution for this problem using an amortized expected query
complexity of poly(log(n), log(k), 1/ϵ). The second paper
proposed a randomized dynamic ( 12 − ϵ)-approximation
algorithm with expected amortized query complexity of
O(k2poly(log(n), 1/ϵ)), so it partially answers our ques-
tion but not fully. Therefore, only the first paper (Lattanzi
et al., 2020a) claims to answer our question. However, as
we explain later in this paper, the proof of this dynamic
algorithm has important gaps in the analysis.

In this paper, we answer the polylogarithmic question af-
firmatively; we develop a new simpler algorithm which
maintains a ( 12 − ϵ)-approximate solution for submodular
maximization problem under cardinality constraint k with a
poly-logarithmic amortized query complexity.

1.1. Preliminaries

Submodular functions. Given a finite set of elements V , a
function f : 2V → R is submodular if

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).

for all A,B ⊆ V . In addition, function f is called monotone
if f(A) ≤ f(B) for all A ⊆ B, and is called nonnegative
if f(A) ≥ 0 for all A ⊆ V . In this paper, we consider
non-negative monotone submodular functions. In addition,
we assume that f(∅) = 0.1

Oracle access. In this paper, we assume that our algorithm
has access to an oracle that outputs value f(A) when it is
queried an arbitrary set A. We measure the time complexity
of a dynamic algorithm in terms of its query complexity,
which is the number of queries it makes to the oracle.

Dynamic model. We consider the classical dynamic model,
where we are given a sequence of insertions and deletions
of elements, and the goal is to maintain an α-approximate
solution of size at most k at any time t. We assume without
loss of generality that once an element is deleted, it is never
re-inserted. Indeed, the reinsertion of an element e can
always be simulated by inserting an identical copy of e.

We refer to the sequence of insertions and deletions as the
update stream and assume that it is chosen by a non-adaptive
adversary. The adversary is assumed to have knowledge of
our algorithm and can control the sequence of insertions

1This assumption is without loss of generality since if f(∅) >
0, then defining the function g as g(V ) := f(V ) − f(∅), g will
be a monotone submodular function as well. In addition, optimiz-
ing f is equivalent to optimizing g, and any algorithm obtaining
approximation ratio α < 1 for g would obtain approximation ratio
at least α for f as well.
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and deletions but does not have access to the random bits
our algorithm uses.

Notation. Given integers a, b, we use the notation [a, b] to
denote the set {a, . . . , b} and [a] to denote [1, a]. We use
1 [.] to denote the indicator function, i.e., 1 [A] equals one
if A is true and equals zero otherwise.
We use P [.] and E [.] to denote the probability and expecta-
tion, respectively. For an event A satisfying P [A] > 0, we
use P [.|A] and E [.|A] to denote the conditional probability
and conditional expectation. In this paper, we frequently
condition on the value of a random variable. To avoid con-
fusion, we will often use bold letters to denote random
variables and non-bold letters to denote their values, e.g.,
E [X|Y = Y ] denotes the expectation of the random vari-
able X, conditioned on the random variable Y attaining the
value Y .
Given a submodular function f and sets A and B, we will
use f(A|B) to denote the value f(A ∪B)− f(A).

2. Polylogarithmic Algorithm
2.1. Prior work

In this section, we highlight three main problems with the
analysis of the algorithm in (Lattanzi et al., 2020a). 2

On a high level, the algorithm obtains a solution Sol as
union of sets Si,j such that each Si,j is claimed to satisfy
E
[
f(Si,j |Spred(i,j))

]
≥ (1− ϵ)τ |Si,j |, where τ = OPT

2k , the
value OPT is the optimal value of any subset of ground
set V of size at most k, and Spred(i,j) denotes the set of
elements sampled before Si,j . The algorithm stops when it
has sampled k elements, or when it is no longer possible to
sample any element with the desired property.

Next, we explain three issues with the algorithm’s analysis.

First Issue: Incorrect conditioning in proof. The proof
of Theorem 5.1 (that proves the (1/2 − ϵ)-approximation
guarantee) does not consider the effect of conditional prob-
ability when bounding the submodular value of the sam-
ples. Specifically, to prove that the approximation factor
of the reported set is 1

2 − ϵ, the proof considers two cases.
The first case is when there are k elements sampled. In
this case, it is claimed that the submodular value of output
set Sol satisfies f(Sol) ≥ OPT

2 − ϵ since, in expectation,
each Si,j contributed (1− ϵ)τ |Si,j |. Given the assumption
|Sol| = k however, one needs to analyze the conditional ex-
pectation of f(Si,j |Spred(i,j)). In other words, just because

2An earlier version of this paper was submitted to the SODA’23
conference in July 2022. In February 2023, the authors of (Lattanzi
et al., 2020a) contacted us to mention that one of the authors was a
referee for our SODA’23 submission, they agree with a bug and
they will have a fix for it in their revised arxiv paper (Lattanzi et al.,
2020b).

E
[
f(Si,j |Spred(i,j))

]
≥ (1− ϵ)τ |Si,j |, does not mean that

E
[
f(Si,j |Spred(i,j))

∣∣∣|Sol| = k
]
≥ (1− ϵ)τ |Si,j |.

Intuitively, one can expect that whenever samples Si,j have
high quality, i.e., f(Si,j |Spred(i,j)) is high, the algorithm
would be more likely to terminate with less than k samples
since the obtained samples already have high quality and
the remaining elements may contribute little to them. This
means that the condition |Sol| = k may introduce a negative
bias on the value of f(Si,j |Spred(i,j)).

Second Issue: Lack of analysis for biased samples. An-
other issue is that it is not clear whether the identity

E
[
f(Si,j |Spred(i,j))

]
≥ (1− ϵ)τ |Si,j | (1)

holds in the early step of the analysis, even without the extra
condition that |Sol| = k. The analysis considers the value of
Si,j and Spred(i,j) the last time LEVEL-CONSTRUCT(ℓ) was
called. It is then claimed that because Si,j was obtained by
invoking the peeling algorithm, (1) should hold. Importantly
however, the analysis of the peeling algorithm assumes that
the chosen elements we obtained by sampling uniformly at
random. While the claim may hold if the values of Spred(i,j)
and Ai,j (the set that Si,j is sampled from) were fixed,
here the values Spred(i,j) can only be calculated randomly,
by looking back at the last time LEVEL-CONSTRUCT(ℓ) is
called. Since this time itself depends on the value of Si,j ,
this looking back process may introduce bias, and it is not
clear how the bias should be handled.

To illustrate the issue, consider the following simple decre-
mental process. Assume that we are given a set V , and we
sample k elements from V to obtain a set S. An adversary
then deletes an element e from V and, if an element in S is
deleted, we take k fresh samples from V . Let (V1, S1) and
(V2, S2) denote the value of (V, S) before and after the dele-
tion respectively and let (V ′, S′) denote the value of (V, S)
the last time we sampled k elements. At first glance, it may
seem that the elements of S′ are k random elements from
V ′, this is not the case. Indeed, if V ′ = V1, then we know
that k fresh samples were not taken, which implies e /∈ S′.
Since k samples taken uniformly at random would contain
e with positive probability, this shows that the samples are
not uniformly at random. 3

3The bias here is reminiscent of the so-called random incidence
paradox, also known as the waiting time paradox and the related
inspection paradox (Ross, 2003). Consider a Poisson process that
has been running forever and assume that the arrival rate is λ = 4
per hour. This means that the average length between two succes-
sive arrivals is 1

λ
. One possible way to estimate this arrival rate is

to pick an arbitrary point x, e.g., x = 0, and measure the length
of time between the first arrival after x and the last arrival before
x. However, it can be shown that this results in an estimator with
expectation 2

λ
and is therefore biased. To understand why, con-

sider the segmentation of the real line caused by arrivals, i.e., each
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The algorithm of (Lattanzi et al., 2020a) has a “resampling”
condition similar to what is described above. In each level
ℓ, they maintain a series of buckets, where the samples
Si,ℓ on each bucket are obtained by repeatedly invoking the
peeling algorithm and depend on the samples of the previous
samples Sj,ℓ for j < i. Once an ϵ-fraction of Si,ℓ is deleted,
the entire level ℓ is reconstructed.

Third Issue: Expectation bound. 4 Lemma C.4 bounds
the expectation of the ratio of two expressions, but the ap-
plications of this lemma assume that the bound applies to
the ratios of the expectations, which is not the same thing.

Given the above issues, a natural question is whether it is
even possible to obtain 1

2 − ϵ approximation factor with
polylogarithmic query complexity. Indeed, as we explained
in above, Chen and Peng (Chen & Peng, 2022) show that
obtaining 1

2 +ϵ approximation requires an query complexity
that is polynomial in n (in fact, requires amortized query
complexity nΩ̃(ϵ)

k3 ), suggesting that 1
2 − ϵ may be impossible

as well. In this paper, we show that this is not the case.
We develop a simpler algorithm than that proposed in (Lat-
tanzi et al., 2020a) which maintains an ( 12 − ϵ)-approximate
solution for submodular maximization under cardinality
constraint k with a poly-logarithmic query complexity. We
emphasize that while our algorithm is simpler, it requires
careful analysis to avoid the aforementioned issues.

2.2. Overview of our algorithm

Offline algorithm. In this section, we first present the
offline version of our algorithm. Later, we show how to sup-
port insertions and deletions. We first remove all elements
that have submodular value less than τ = OPT/2k and
let R1 be the remaining elements. Let G0 = ∅ and i = 1.
In each iteration, we bucket the elements of Ri in based
on their relative marginal gain to Gi−1, i.e., f(e|Gi−1) for
e ∈ Ri, such that all the elements in the same bucket have
the same value of f(e|Gi−1) up to a factor of 1 + ϵbuck. We
use R

(b(i))
i to denote the largest (maximum size) bucket.

Next, for a suitable number mi, we take a uniformly random
subset of size mi from the largest bucket and we denote it by
Si. We then add Si to Gi−1 to form Gi. Next, we remove
all elements f(e|Gi) < τ from Ri to form Ri+1 using the

segment represents the interval between two successive arrivals.
Intuitively, since we are choosing x as a random point in the real
line, x is more likely to fall in the longer intervals than the short
ones. This results in a bias in favor of the longer intervals in the
estimator, leading to a larger estimate of 2

λ
.

4We thank an anonymous reviewer in SODA’23 for pointing
out this issue.

function:

Ri+1 = FILTER(Ri, Gi, τ) ={
{e ∈ Ri : f(e|Gi) ≥ τ}, if |Gi| < k.

∅, otherwise.

Later, we repeat the above process by setting i = i + 1.
The process is continued until there is no element with
f(e|Gi) ≥ τ left, or we have chosen k elements. The final
value of Gi, denoted by GT , is reported as the output of
the algorithm. After our offline algorithm has executed,
sets R0, . . . , RT+1, S1, . . . , ST , G0, . . . GT will satisfy the
following properties

Properties:
(1) Ri = FILTER(Ri−1, Gi−1, τ) for i ∈ [1, T + 1].
(2) Each Si is a uniformly random subset of size mi

from the largest bucket of Ri, denoted by R
(b(i))
i and

Gi =
⋃

j≤i Sj .

Dynamic algorithm. To handle insertions and deletions,
we maintain modifications of the above properties after the
updates in the stream. These properties will ensure that our
algorithm has an approximation factor of 1

2 − ϵ using ex-
pected amortized query complexity that is polylogarithmic
in n, k.

To handle insertions, for each level i, we maintain a set Ri ⊇
Ri that will temporarily hold the elements in a level before
they are processed. More formally, each time an element
v is inserted, we add v to all Ri such that f(v|Gi−1) ≥ τ .
Once the size of Ri is at least 3

2 |Ri|, we reconstruct the
level i. A formal pseudocode is shown in Algorithm 2.
To handle deletions, we keep track of the deleted elements
by adding them to a set D. For each level i, we keep track of
the number of elements deleted in the bucket R(b(i))

i that we
had chosen to sample Si from. Once an ϵ-fraction of these
elements is deleted, we restart the offline algorithm from
level i by invoking RECONSTRUCT(i). A formal pseudocode
is provided in Algorithm 3.

We note that our construction is different from that of (Lat-
tanzi et al., 2020a) in a number of ways. Firstly, their al-
gorithm maintains multiple buckets in each level, and each
bucket contains its own set of samples Si,ℓ, where the set
Si,ℓ is sampled after Si−1,ℓ. Once an ϵ-fraction of Sj,ℓ

is deleted for some j, the entire bucket ℓ is reconstructed.
Therefore, the resampling condition for Si,ℓ depends on all
Sj,ℓ, including Si,ℓ itself and Sj,ℓ for j > ℓ which in turn
depend on Si,ℓ. In contrast, our reconstruction condition for
Si depends only on S1, . . . , Si−1 and does not depend on
Si or any Sj for j > i. As we show in Section A.1 (Lemma
12), this choice allows us to prove that the samples Si are
always a uniformly random subset of R(b(i))

i .
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Now, we explain how we choose sample size mi in each
level. Our choice here is based on the peeling/threshold-
sampling algorithm (Fahrbach et al., 2019), though we re-
quire new analysis in the proofs. One possibility is to set
mi = 1. This ensures that f(Si|Gi−1) ≥ |Si| · τ since all
the elements in Ri are guaranteed to satisfy f(e|Gi−1) ≥ τ .
The problem with this approach is that the number of levels
T can be polynomial in k as we may need to sample every
element of a solution set which is of size k in a separate level.
This would in turn lead to a polynomial query complexity.

Another extreme is to choose a very large integer, e.g., set
mi = k. The problem with this approach however is that
the sample Si may have low relative marginal gain to Gi−1,
i.e., f(Si|Gi−1) may be low. Indeed, once we sample one
element si from R

(b(i))
i , we expect the marginal gain of the

remaining element to drop since f is submodular.

A good value of mi needs to balance the above trade-off. Let
τ (i) denote the minimum threshold corresponding to R

(b(i))
i ,

i.e., e ∈ [τ (i), (1 + ϵ)τ (i)) for e ∈ R
(b(i))
i . Intuitively, we

want to choose an mi such that

1. In expectation, each element in Si adds at least (1 −
ϵ) · τ (i) to the value of the output, i.e., f(Si|Gi−1) ≥
(1− ϵ) · |Si| · τ (i).

2. The value mi is large enough to ensure that |Ri+1|
is considerably smaller than |Ri|, ensuring that the
number of levels is not too large.

The first property is important for ensuring the approxima-
tion guarantee of our algorithm, while the second property
controls its query complexity.

The main idea is to choose the largest mi that satisfies a
modification of the first property. Given a parameter ϵ, we
search for the largest integer mi such that when sampling
mi elements at random, the last element has marginal gain
at least τ (i) with probability at least 1 − ϵ. Since the last
element is likely to be the worst element because of submod-
ularity, this ensures the first property. In addition, since we
have chosen the largest integer mi, a random sample of the
remaining elements should contribute τ (i) with probability
at most 1 − ϵ since it is effectively the last elements of a
sample of size mi + 1. This ensures that an ϵ fraction of
the elements in R

(b(i))
i will be removed from the b(i)-th

bucket in the next level, which in turn allows us to bound
the number of levels.

To find the largest such mi, we binary search over the set of
all possible values m′ for mi. For each m′, we test whether
it satisfies the first property above by sampling S′ for O( 1

ϵ2 ·
log(k/ϵ)) trials and testing whether its last element has
marginal gain at least τ in more than (1 − ϵ) fraction of

the trials. A standard Chernoff bound then shows that mi

satisfies the mentioned properties with high probability.

Finally, we relax the assumption of known OPT by main-
taining multiple parallel runs, indexed by p ∈ Z. For
each run p, we will use the value OPTp = (1 + ϵopt)

p

for OPT in the algorithm and only insert elements with
f(e) ∈ [ϵ · OPTp

2k ,OPTp]. We always output the set with
maximum value of f across all the runs. This increases the
query complexity of our algorithm by a factor of at most
O(log1+ϵopt

(k/ϵ)) , since each element needs to be inserted
into ⌈log1+ϵopt

(2k/ϵ)⌉ runs, and reduces the approximation
guarantee by at most ϵ, since the discarded elements affect
the solution by at most ϵ · OPT.

2.3. Overview of techniques

Approximation factor We start by giving an overview of
our proof for the approximation factor of the algorithm. As
we show in Section A.1 (Lemmas 5 and 12), the output of
our algorithm satisfies the following important properties.

1. For all i ∈ [0, T ], defining R̂i := Ri\D, R̂i+1 =

FILTER(R̂i, Gi). In addition, R̂T+1 = ∅.

2. Conditioned on the values S1, . . . Si−1 and mi, the set
Si is a uniform subset of size mi from R

(b(i))
i . In other

words,

P [Si = S|T ≥ i, S1, . . . , Si−1,mi]

=
1(|R(b(i))

i |
mi

)1 [S ⊆ R
(b(i))
i ∧ |S| = mi

]
,

As mentioned earlier, the integers mi are chosen such that in
expectation, each element of Si contributes at least (1− ϵ)τ ,
i.e., E [f(Si|Gi−1)] ≥ (1 − ϵ) · |Si| · τ . If the sample
quality was deterministic, i.e., f(Si|Gi−1) was guaranteed
to always be at least (1−ϵ)τ , then we could have used a well-
known argument that considers two separate cases based on
whether or not GT has k elements. If it has k elements, then
since each sample added, on average, (1 − ϵ)τ to final f ,
then the claim would hold. If it does not have k elements,
then since R̂i+1 = FILTER(R̂i, Gi) and R̂T+1 = ∅, each
element e in the optimal set must satisfy f(e|GT ) < τ ,
which can then be used to show that f(GT ) ≥ f(Gopt ∪
G)− kτ ≥ OPT− kτ = OPT

2 .

However, the issue with this type of analysis
is since conditioning on the event |GT | = k,
would mean that we can no longer guarantee
E [f(Si|Gi−1)] ≥ (1−ϵ)τ |Si|. In other words, just because
E [f(Si|Gi−1)|T ≥ i] ≥ (1 − ϵ)τ |Si| holds, it does not
mean that E

[
f(Si|Gi−1)

∣∣T ≥ i, |GT | = k
]
≥ (1−ϵ)τ |Si|

would hold as well. Indeed, one can expect that if the
sample set Si has a high quality, i.e., f(Si|Gi−1) is large;
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then the algorithm would be more likely to reach OPT/2
with less than k elements. The condition |GT | ≤ k,
therefore, induces a negative bias on the quality of the
samples. Further complicating the analysis is the fact that
some of the samples are deleted, and the output of our
algorithm is GT \D, not GT .

To address this issue, we introduce a novel relaxation func-
tion that may be of independent interest. By carefully unify-
ing the cases of |GT | = k and |GT | < k, we first show that
our new relaxation function is a lower bound on f(GT \D).
We then bound the contribution of each level to the relax-
ation function to prove the desired OPT

2 − ϵ bound. We refer
the reader to Section A.3 for more details.

Query complexity. To bound the query complexity of our
algorithm, we show that our choice of mi means the number
of levels is polylogarithmic in n, k. The choice ensures that
at least ϵ · |R(b(i))

i | elements in R
(b(i))
i will either be moved

to a lower bucket in Ri+1, or they will not appear in Ri+1

altogether. Since the number of buckets is bounded by
log1+ϵbuck

(OPT
τ ) = log1+ϵbuck

(2k), each element can only go
down at most log1+ϵbuck

(2k) times. Our proof formalizes
this intuition, though there are some subtleties given that
the above guarantees hold only in expectation.

The polylogarithmic bound on the number of levels im-
plies that each call to RECONSTRUCT(i) makes at most
O(|Ri| · poly(log(n), log(k), 1

ϵ )) queries. Given the choice
of reconstruction conditions in our algorithm, when an in-
sertion or deletion triggers a call to RECONSTRUCT(i), we
can charge it back to at least |Ri|

poly(log(k), 1ϵ )
elements that trig-

gered it. This implies that each RECONSTRUCT(i) charges
back a polylogarithmic number of queries to each element.
In addition, each update can only be charged once by each
level (the first time the level is reconstructed after this up-
date). Since the number of levels is polylogarithmic, this
implies a polylogarithmic bound on the query complexity.
We refer the reader to Section A.4 for a more detailed anal-
ysis.

Comparison with prior work. We briefly highlight the
main differences in the algorithm and analysis that allow
us to sidestep the aforementioned issues of the analysis
in (Lattanzi et al., 2020a).

The first main difference is the design of multi-level struc-
ture and reconstruction condition. Our structure only sam-
ples elements once per level, and our reconstruction condi-
tion considers the effect of deletions on the set of elements
these samples were chosen from, not the actual elements
themselves. This ensures that whether or not a level is re-
constructed is independent of its samples. This effectively
resolves the biasing issue discussed in Section 2.1. A con-
sequence of these changes, however, is that the existing

analysis needs to be altered significantly for both the ap-
proximation guarantee and query complexity.

The second main difference is the introduction of a relax-
ation function that always lower bounds the value of the
output f(GT \D). The relaxation function unifies the two
cases of |GT | = k and |GT | < k, allowing us to sidestep
the conditioning issue discussed in Section 2.1.

3. Proposed Algorithm
In this section, we present our dynamic algorithm for sub-
modular maximization under cardinality constraint k us-
ing polylogarithmic number of oracle queries. We start
by presenting an offline algorithm for the problem in Sec-
tion 3.1. We then show how to extend this to a dynamic
setting by considering lazy updates in Sections 3.2, and
3.3. In these sections, we assume access to a parameter
OPT, which estimates the value of the optimal solution
up to a factor of 1 + ϵ. More formally, we assume that
f(Gopt) ≤ OPT ≤ (1 + ϵopt)f(Gopt) where Gopt denotes
the optimal solution. In section 3.5, we show how to remove
this restriction by considering parallel runs.

3.1. Offline Algorithm

We now present an offline algorithm for the problem. In this
section, we assume that the value of the optimal solution,
which we denote by OPT, is known to the algorithm. As
we will show in our analysis, OPT does not need to be an
exact estimate, and our results still hold as long as it is
approximately correct. Later in Section 3.5, we will remove
this restriction altogether.

Setting the threshold τ to be OPT
2k and defining the set G0

as ∅, our algorithm starts by removing all elements with
submodular value f(e) less than τ and collecting the re-
maining elements in the set R1. Starting with i := 1,
in each iteration, we group the samples in buckets based
on their relative marginal gain to Gi−1, i.e., f(e|Gi−1),
such that all the elements in the same bucket have the
same value of f(e|Gi−1) up to a factor of 1 + ϵbuck. In
other words, all the elements e in the same bucket satisfy
f(e|Gi−1) ∈ [τ (i), (1+ϵbuck) ·τ (i)) for some threshold τ (i).
This requires log1+ϵbuck

(2k) buckets as

1. We can assume that f(e|Gi−1) ≥ τ for all e ∈ Ri.
This was the case for i = 1, and we will also ensure
it to be true for i ≥ 1 by removing all elements with
f(e|Gi−1) < τ when forming Ri.

2. All elements have f(e|Gi−1) ≤ f(e) ≤ OPT = 2k · τ .

Next, we take a uniformly random subset of size mi from
the largest bucket for a suitable number mi, forming the
samples Si. We will explain how to choose mi in Section

6
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3.4. We then add Si to Gi−1 to form Gi and remove all
elements f(e|Gi) ≤ τ from Ri to form Ri+1. Then we
repeat the above process with i ← i + 1 until there are
no elements with f(e|Gi) ≥ τ left, or we have chosen k
elements. The final value of Gi, denoted by GT , is given
as the algorithm’s output. A formal pseudocode is provided
in Algorithm 1. The values R and D in the algorithm will
be necessary for the next section, and for now, we can think
of them as Ri = Ri and D = ∅. As seen in Algorithm 1,
the main part of our design, which is the function RECON-
STRUCT, is more general than the description above and
can, effectively, start midway from a set Ri for i ≥ 1. This
property will play a crucial role in the upcoming sections as
we require reconstructing a portion of our data structure to
handle insertions and deletions.

Algorithm 1 Offline algorithm
1: procedure INIT(V,OPT)
2: R0 ← V , τ ← OPT

2k , G0 ← ∅
3: D ← ∅, R0 ← R0

4: R1 ← FILTER(R0, G0, τ), R1 ← R1

5: RECONSTRUCT(1)

6: procedure RECONSTRUCT(i)
7: Ri ← Ri\D, Ri ← Ri

8: while Ri ̸= ∅ do
9: for j ∈ [0,

⌊
log1+ϵbuck

(2k)
⌋
] do

10: R
(j)
i ← {e ∈ Ri : f(e|Gi−1)

τ ∈ [(1 +
ϵbuck)

j , (1 + ϵbuck)
j+1)}

11: b(i) ∈ argmaxj

∣∣∣R(j)
i

∣∣∣
12: τ (i) ← (1 + ϵbuck)

b(i) · τ
13: mi ← CALCSAMPLECOUNT(R

(b(i))
i , Gi−1, τ

(i))

14: Si ← Uniform subset of size mi from R
(b(i))
i

15: Gi ← Gi−1 ∪ Si

16: Ri+1 ← FILTER(Ri, Gi, τ), Ri+1 ← Ri+1

17: i← i+ 1

18: T ← i− 1

19: function FILTER(R′, G′, τ ′)
20: if |G′| = k then
21: return ∅
22: else
23: return {e ∈ R′ : f(e|G′) ≥ τ ′}

Next, we show how to handle insertions and deletions in our
algorithm.

3.2. Insertion

We take a lazy approach for dealing with insertions; for each
level i, we maintain a set Ri ⊇ Ri that will temporarily hold
the elements in a level, and process these elements once the
number of elements is sufficiently large. More formally,
each time an element v is inserted, we add v to all Ri such

that f(v|Gi−1) ≥ τ . Once the size of Ri is at least 3
2 the

size of Ri, we reconstruct level i. A formal pseudocode is
shown in Algorithm 2.

Algorithm 2 Insert
1: procedure INSERT(v)
2: R0 ← R0 ∪ {v}
3: for i← 1, . . . , T + 1 do
4: if f(v|Gi−1) < τ or |Gi−1| = k then
5: break
6: Ri ← Ri ∪ {v}
7: if i = T + 1 or |Ri| ≥ 3

2 · |Ri| then
8: RECONSTRUCT(i)
9: break

3.3. Deletion

To handle deletions, we keep track of the deleted elements
by adding them to a set D. For each level i, we keep track
of the number of elements deleted in the bucket R(b(i))

i that
we had chosen to sample Si from. Once an ϵ-fraction of
these elements is deleted, we restart the offline algorithm
from level i by invoking RECONSTRUCT(i). A formal pseu-
docode is provided in Algorithm 3. Note that level i is
reconstructed with Ri ← Ri\D to avoid using deleted val-
ues in the reconstruction.

Algorithm 3 Delete
1: procedure DELETE(v)
2: D ← D ∪ v
3: for i← 1, . . . , T do
4: if |D ∩R

(b(i))
i | ≥ ϵdel · |R(b(i))

i | then
5: RECONSTRUCT(i)
6: break

3.4. Choice of sample size

As explained in the intro, the main idea behind our algo-
rithm is to find the largest integer mi such that if we sample
mi elements uniformly at random, the last sampled element
has marginal gain at least τ (i) with probability at least 1− ϵ.
To achieve this, we binary search over all possible values
m′. For each m′, we use repeated trials to estimate the
probability that the last element of Si has marginal gain at
least τ (i). As we show in Section A.2, a standard Chernoff
bound implies that using a polylogarithmic number of sam-
ples, we can estimate this probability with error at most ϵsam

10 .
A formal pseudocode of the above sketch is provided in
Algorithm 4 in which we use notation u.a.r for a set that is
sampled uniformly at random.

7
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Algorithm 4 CALCSAMPLECOUNT

1: function REDUCEMEAN(R′, G′,m′)
2: for t← 1, . . . ,

⌈
4

ϵsam2 log
(

200k11

ϵsam

)⌉
do

3: Sample S′ of size m′ − 1 u.a.r. from R′

4: Sample element s from R′\S′ u.a.r.
5: It ← 1 [f(s|G′ ∪ S′) ≥ τ ′]

6: return mean of It
7: function CALCSAMPLECOUNT(R′, G′, τ ′)
8: m← 1,M ← min{k − |G′|, |R′|}
9: if REDUCEMEAN(R′, G′,M) ≥ 1− ϵsam then

10: return M
11: while M −m > 1 do
12: m′ ← ⌊m+M

2 ⌋
13: if REDUCEMEAN(R′, G′,m′) ≥ 1− ϵsam then
14: m← m′

15: else
16: M ← m′

17: return m

3.5. Unknown OPT

In this section, we relax the assumption of known OPT
by maintaining multiple parallel runs, indexed by p ∈ Z.
For each run p, we will use the value OPTp = (1 + ϵopt)

p

for OPT in the algorithm and only insert elements with
f(e) ∈ [ϵ · OPTp

2k ,OPTp]. We always output the set with
maximum value of f across all the runs.

3.6. Choice of parameters

For some ϵ < 1
10 , we set ϵsam = ϵbuck = ϵopt = ϵ and

ϵdel =
ϵ
20 .

4. Theoretical Analysis
In this section, we state our main theoretical result.

Theorem 1. There is an algorithm for dynamic sub-
modular maximization that maintains a set with ex-
pected 1

2 − ϵ approximation factor that makes at most
poly(log(n), log(k), 1

ϵ ) amortized queries in expectation,
where n denotes the largest number of elements at any point
of the stream.

To prove this result, we establish two theorems that consider
the approximation factor and query complexity of our al-
gorithm, respectively. First, in Section A.3, we prove the
following result.

Theorem 2. The dynamic Algorithm 1 (with Algorithms 2
and 3 for handling updates) maintains an output set GT \D
with expected approximation factor 1

2 −O(ϵ) as long as the
optimal solution Gopt satisfies

f(Gopt) ≤ OPT ≤ (1 + ϵopt)f(Gopt).

Next, in Section A.4, we prove the following result.

Theorem 3. The dynamic algorithm 1 (with Algorithms
2 and 3 for handling updates) has an expected amortized
query complexity that is polynomial in log(n), log(k), and
1
ϵ .

We note that the above results imply Theorem 1 since, as
mentioned in Section 3.5, maintaining multiple runs adds
a log1+ϵopt

(k/ϵ) term in the query complexity while the
approximation ratio reduces by an extra ϵ term.

5. Conclusion
In this paper, we presented the first provably correct poly-
logarithmic algorithm for the dynamic submodular maxi-
mization problem under a cardinality constraint. For future
work, it would be interesting to improve the query complex-
ity of this problem or the more general problem of maxi-
mizing a submodular function under a matroid constraint
for which the current best result is a ( 14 − ϵ) approxima-
tion algorithm with O(k log(k) log3(kϵ )) query complexity
obtained by (Banihashem et al., 2023).
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A. Proofs
We establish some properties of our algorithm in Section A.1 and A.2. Throughout the section, we use R̂i to denote Ri\D.

A.1. Invariants

A.1.1. DETERMINISTIC INVARIANTS

In this section, we prove some invariants that will be useful in our proofs. We start with the following fact.

Fact 4. For all 1 ≤ i < j, a call to RECONSTRUCT(j) would not affect any of the values Ri, Ri, Gi. Furthermore, the
value of R̂i := Ri\D is unaffected by a call to RECONSTRUCT(i).

The fact follows from the pseudocodes given for RECONSTRUCT.

Lemma 5. For all i ∈ [0, T ], defining R̂i := Ri\D,

R̂i+1 = FILTER(R̂i, Gi). (2)

Proof. Fix i and consider the last time RECONSTRUCT(j) was called for some j ≤ i. Our proof consists of 2 parts. We
first show that (2) holds right after this call was made (Part 1). We then show that the condition holds after any subsequent
insertion and deletion operations (Part 2).

Part 1. Consider the last execution of RECONSTRUCT(j) for some j ≤ i. The following properties hold after this execution.

1. Ri+1 = FILTER(Ri, Gi) because of Line 16.

2. Ri = Ri and Ri+1 = Ri+1 because of Line 16 (or line 7 for i, if j = i).

3. Ri ∩D = Ri+1 ∩D = ∅ because D is removed from Rj in Line 7, and all Rj′ for j′ > j are subsets of Rj because
of Line 16.

Therefore,
R̂i+1 = Ri+1 = FILTER(Ri, Gi) = FILTER(R̂i, Gi)

Part 2 (Update). We assume that the update does not trigger a call to RECONSTRUCT(j) for j ≤ i as otherwise, the claim
holds by Part 1.
We first consider INSERT. Each time a new value v is inserted to Ri, then it is inserted into Ri+1 if and only if f(v|Gi)

is at least τ and |Gi−1| < k. Therefore, R̂i+1 = FILTER(R̂i, Gi) holds after the execution of Line 6 for i+ 1. By Fact 4,
even if the insertion triggers RECONSTRUCT(i+ 1), the values of R̂i and R̂i+1 would not be affected. Therefore, INSERT
preserves (2).
As for DELETE, when an element is added to D, it is removed from both R̂i and R̂i+1, and therefore (2) is preserved. The
possible calls to RECONSTRUCT(j) for j ≥ i+ 1 also preserve the property by Fact 4, which finishes the proof.

Lemma 6. RT+1 = ∅ and Ri ̸= ∅ for i ∈ [1, T ].

Proof. The claim holds at the beginning of the stream as FILTER(∅, ·) = ∅.
For each update in the stream, if the update triggers a call to RECONSTRUCT(i) for some i ≤ T + 1, the property would be
preserved since RECONSTRUCT stops building levels when RT+1 = ∅. Otherwise, we observe that since the value of T and
Ri can only change during insertion and deletion through invoking RECONSTRUCT, the invariant will be preserved.

Lemma 7. For all i ∈ [T ]

|R(b(i))
i ∩D| ≤ ϵdel|R(b(i))

i |.

and

|Ri| ≤
3

2
|Ri|.
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Proof. The claim holds initially because T = 0, and it holds after each update because of the reconstruction condition of the
levels.

Lemma 8. For i ∈ [T ], Ri ̸= ∅ and R̂i ̸= ∅ and RT+1 = R̂T+1 = ∅.

Proof. We use Lemma 6 in both cases. We note that for T +1, we have |RT+1| ≤ 3
2 |RT+1| = 0 given Lemma 7. Therefore,

RT+1 = R̂T+1 = ∅.

For i ∈ [T ], we observe that if R̂i = ∅, then it follows that R(b(i))
i ⊆ D, which implies |R(b(i))

i ∩D| = |R(b(i))
i |. According

to Lemma 7, this is only possible when |R(b(i))
i | = 0. Because b(i) was the largest bucket, this implies that |Ri| = 0 which

contradicts Lemma 6.

Lemma 9. For all i ∈ [0, T ], Ri+1 ⊆ Ri.

Proof. The claim holds initially since T = 0. It suffices to show that INSERT and DELETE preserve it.

We first observe that each time RECONSTRUCT(j) is called for some j ≤ i, the property will hold since

Ri+1 = Ri+1 = FILTER(Ri, Gi) ⊆ Ri = Ri

It is also clear that calling RECONSTRUCT(j) for j ≥ i+1 will preserve the property since it does not alter Ri, while it may
(if j = i+ 1) decrease Ri+1. Other than RECONSTRUCT, the only way either Ri or Ri+1 are altered is when an element is
inserted into the sets during processing INSERT, but this also preserves the property since an element that was not inserted
into Ri, will not be inserted into Ri+1.

A.1.2. RANDOM INVARIANTS

Next, we will state and prove the uniformity invariant. Before we do this, though, we will need a few definitions.

Definition 10 (History). We define the History of Level i as

Hi := (R0, R1, . . . , Ri, R0, R1, . . . , Ri, S1, . . . , Si−1,mi). (3)

Note that Si is not included in the definition. Analogously, we define the random variable Hi as

Hi := (R0,R1, . . . ,Ri,R0,R1, . . . ,Ri,S1, . . . ,Si−1,mi).

Remark 11. In the above definition, the random variable Hi is defined if and only if T ≥ i. Note that Hi is not defined for
i = T + 1 because there is no value of mi. This will not be an issue in our analysis since we will work with Hi only when
T ≥ i. Most notably, when conditioning on the value of Hi, we will condition on the event T ≥ i as well. Throughout the
proofs, we will frequently write σi instead of T ≥ i,Hi = Hi for convenience.

Our next lemma shows that conditioned on the history of level i, its sample set Si is a random subset of size mi from R
(b(i))
i .

Lemma 12. For any i ≥ 1, and any Hi such that P [T ≥ i,Hi = Hi] > 0,

P [Si = S|T ≥ i,Hi = Hi] =
1(|R(b(i))

i |
mi

)1 [S ⊆ R
(b(i))
i ∧ |S| = mi

]
. (4)

Before stating the proof, we observe that the property holds after a call to RECONSTRUCT, as we formally show in the
following Lemma.

Lemma 13. Assume we call RECONSTRUCT(j) for some j ≤ i in a data structure with values T−, R−
0 , . . . , satisfying

T− ≥ i, obtaining the new (random) values T,R0, . . . . Then for all sets S,

P [Si = S|T ≥ i,Hi = Hi] =
1(|R(b(i))

i |
mi

)1 [S ⊆ R
(b(i))
i ∧ |S| = mi

]
.
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Proof. We observe that before Si is sampled in Line 14, all of the values compromising Hi are already determined and
will not change after Si is sampled. Therefore, since the claim holds when Si is sampled (because of Line 14), it holds
afterwards as well.

Next, we prove Lemma 12 by showing that (4) is preserved after insertions and deletions.

Proof of Lemma 12. We will prove the claim by induction on the time step. At the beginning of the stream, the claim holds
trivially since the event T ≥ i is impossible because of T = 0 < 1 ≤ i.

Assuming that the claim holds for some time step, we will show that it holds in the next time step as well. More formally,
for an insertion or deletion of an element v in the stream, let T−,R−

0 , . . . denote the values of the data structure before the
operation and T,R0, . . . , denote the values afterwards. For a fixed i, we need to show that (4) holds. The main idea behind
the proof is to consider two cases based on whether or not CONSTRUCTLEVEL(i) was triggered by the insertion or deletion
operation. In the first case, we will show that Lemma 13 implies the claim. In the second case, we will use the induction
hypothesis, i.e, the fact that (4) held for the values T−,R−

0 , . . . , to prove the claim. As we will observe, a crucial aspect of
our proof in the second case is that the decision to invoke RECONSTRUCT(i) in INSERT and DELETE procedures is solely
determined by the History of level i and not influenced by the actual samples Si.

We now proceed with a formal proof. Let Li be a random variable that takes the value 1 if CONSTRUCTLEVEL(i) was called
because of the update, and takes the value 0 otherwise. Let the shorthand σi denote the event T ≥ i∧Hi = Hi. We need to
show that P [Si = S|σi] =

1

(|R
(b(i))
i

|
mi

)
· 1
[
S ⊆ R

(b(i))
i ∧ |S| = mi

]
. Conditioning on Li, we can rewrite P [Si = S|σi] as

P [Si = S|σi] = ELi∼Li|σi
[P [Si = S|σi,Li = Li]] . (5)

It, therefore, suffices to prove that

P [Si = S|σi,Li = Li] =
1(|R(b(i))

i |
mi

) · 1 [S ⊆ R
(b(i))
i ∧ |S| = mi

]
, (6)

for both Li = 0 and Li = 1. For Li = 1, the claim holds by Fact 13 since by definition, Li = 1 means RECONSTRUCT(j)
was called for some j ≤ i.

We, therefore, focus on Li = 0. We first observe that σi,Li = 0 implies T− ≥ i. This is because Li = 0 means
RECONSTRUCT(j) for any j ≤ i was not called. Therefore if T− were strictly less than i, then T would equal T− (because
RECONSTRUCT can only be called for values upto T + 1 and if RECONSTRUCT is not called, then T does not change.)
which is not possible since T ≥ i.
Since T− ≥ i, we can condition on the value of the previous history of level i. More formally, define the random variable
H−

i as

H−
i := (R

−
0 ,R

−
1 , . . . ,R

−
i ,R

−
0 ,R

−
1 , . . . ,R

−
i ,S

−
1 , . . . ,S

−
i−1,m

−
i ).

By the law of iterated expectation,

P [Si = S|σi,Li = 0] = P
[
Si = S|σi,Li = 0,T− ≤ i

]
= EH−

i ∼H−
i |σi,Li=0,T−≤i

[
P
[
Si = S|σi,Li = 0,T− ≤ i,H−

i = H−
i

]]
(7)

where the expectation is taken over all H−
i with positive probability.

We now observe that conditioned on T− ≤ i,H−
i = H−

i , the value of Li always equals 0. This is because Li is a function
of (R0, . . . Ri, R0, . . . , Ri, D), which is determined by Hi. Note that D is deterministic since it contains all the deleted
elements in the stream and is independent of our algorithm. Therefore, since we only consider H−

i with positive probability,
we can drop the conditioning on Li = 0 in the P

[
Si = S|σi,Li = 0,T− ≤ i,H−

i = H−
i

]
term of (7) since it is redundant.

We can similarly drop σi. This is because as Li = 0, the value of Hi is deterministic conditioned on H−
i = H−

i . Notably,
the values of R1, . . . ,Ri are going to be R−

1 , . . . , R
−
i . The same can be said for S1, . . . ,Si−1 and mi. As for R1, . . . ,Ri,

even though their value may be different from R
−
1 , . . . , R

−
i , it is still deterministic conditioned on H−

i = H−
i as the
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decision to add elements in Line 6 is based on the values in H−
i only. Given the above observation, we can rewrite

P [Si = S|σi,Li = 0] as

P [Si = S|σi,Li = 0] = EH−
i ∼H−

i |σi,Li=0

[
P
[
Si = S|T− ≤ i,H−

i = H−
i

]]
We can further replace Si = S with S−

i = S as Li = 0 implies Si = S−
i . Denoting the largest bucket in R−

i with R
−,(b(i))
i ,

it follows that

P [Si = S|σi,Li = 0] = EH−
i ∼H−

i |σi,Li=0

[
P
[
S−
i = S|T− ≤ i,H−

i = H−
i

]]
(a)
= EH−

i ∼H−
i |σi,Li=0

 1(|R(−,b(i))
i |
m−

i

) · 1 [S ⊆ R
(−,b(i))
i ∧ |S| = m−

i

]
(b)
= EH−

i ∼H−
i |σi,Li=0

 1(|R(b(i))
i |
mi

) · 1 [S ⊆ R
(b(i))
i ∧ |S| = mi

]
=

1(|R(b(i))
i |
mi

) · 1 [S ⊆ R
(b(i))
i ∧ |S| = mi

]
where for (a), we have used the induction assumption, and for (b) we have used the fact that Ri = R−

i and mi = m−
i

because of Li = 0. We have therefore proved (6) for both Li = 0 and Li = 1, which completes the proof given (5).

A.2. Properties of sample size

In this section, we state the key properties of CALCSAMPLECOUNT that will be useful in our proofs. We begin by defining
the notion of Suitable sample count (Definition 14), which captures the properties we require in our proofs. We then show
that the output of CALCSAMPLECOUNT is suitable with high probability (Lemma 15).

Definition 14 (Suitable sample count). Given R′, G′, τ ′ such that R′ ̸= ∅ and FILTER(R′, G′, τ ′) = R′, define their
Suitable sample count M∗(R′, G′, τ ′) as the set of all integers like m′ such that m′ ≥ 1, and if we sample a set S′ with
m′ − 1 elements from R′ and an element s′ from R′\S′,

E [|FILTER(R′, G′ ∪ S′ ∪ s′, τ ′)|] ≤ (1− ϵsam/4)|R′| (8)

and
P [f(s′|G′ ∪ S′) ≥ τ ′] ≥ (1− 2ϵsam) (9)

Define the suitable sample count of level i as M∗
i := M∗(R

(b(i))
i , Gi−1, τ

(i)).

Lemma 15. Consider a call to CALCSAMPLECOUNT(R′, G′, τ ′) with values satisfying FILTER(R′, G′, τ ′) = R′ and

R′ ̸= ∅. The number of queries made by CALCSAMPLECOUNT is bounded by O
(
|R′| · log(k)ϵsam3

)
. Furthermore, the output is

a suitable sample count (Definition 14) with probability at least 1− ϵsam
100k10 .

Proof. To bound the number of queries, we note that there will be at most min{|R′|, log(k)} ≤ |R′| calls to REDUCEMEAN,
and each call makes at most

O

(
4

ϵsam
2
log(200k10/ϵsam)

)
= O

(
1

ϵsam
2
·
(
log(k) + log(

1

ϵsam
)

))
,

queries, which implies the lemma’s statement.

We therefore focus on proving that the output is suitable with a probability of at least 1− ϵsam
100k10 .

For a number m′, define the value Im′ as
P [f(s′|G′ ∪ S′) ≥ τ ′] .

where s′, S′ are sampled as in the Definition 14, i.e., S′ has size m′ − 1 and is sampled from R′, and s′ is an element
sampled from R′\S′. Observe that Im′ is the expectation of the Bernoulli random variable 1 [f(s′|G′ ∪ S′) ≥ τ ′], while
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REDUCEMEAN(R′, G′,m′) estimates this mean by repeated sampling. By Hoeffding’s inequality, we conclude that for
each call to REDUCEMEAN(R′, G′,m′),

P [|Im′ − REDUCEMEAN(R′, G′,m′)| ≥ ϵsam/2] ≤ 2e
−
⌈

4
ϵsam2 log(200k11/ϵsam)

⌉
·( ϵsam

2 )2

≤ 2e
− 4

ϵsam2 log(200k11/ϵsam)·( ϵsam
2 )2

≤ 2e− log(200k11/ϵsam)

≤ ϵsam

100k11

The above formula is an upper bound on the probability that a single call to REDUCEMEAN is off by at most ϵsam/2.
Since CALCSAMPLECOUNT makes at most M ≤ k calls, a union bound implies that with probability at least 1− ϵsam

100k10 ,
REDUCEMEAN is off by at most ϵsam

2 for all the calls made in CALCSAMPLECOUNT. In other words,

P
[
∀m′ ∈ [1,min{k − |G′|, |R′|} : |Im′ − REDUCEMEAN(R′, G′,m′)| ≥ ϵsam

2

]
≤ ϵsam

100k10
. (10)

For the rest of the proof, we will show that whenever all of the calls to REDUCEMEAN are off by at most ϵsam
2 , the output is

guaranteed to be a suitable sample count. This implies the Lemma’s statement because of (10).

If M is outputted in Line 10 of Algorithm 4, we conclude that P [IM ] ≥ 1 − 3
2ϵsam, which means M satisfies (9). Note

however that M always satisfies (8) since FILTER(R′, G′ ∪ S′ ∪ s′, τ ′) will always equal ∅.
We therefore assume that the output was some value m′ < M in Line 17 of Algorithm 4. We note that REDUCEMEAN(m′) ≥
1 − ϵsam. This holds because all of the values that m can take in Algorithm 4 satisfy this and the output is m; the value
m = 1 satisfies this cause I1 = 1 and the others satisfy this given the condition for setting m. Since REDUCEMEAN(m′)
was accurate within ϵsam/2 and REDUCEMEAN(m′) ≥ 1− ϵsam, it follows that Im′ ≥ 1− 3

2ϵsam, which implies (9).

It remains to show (8). Sampling S′ and s′ as before,

ES′,s′ [|FILTER(R′, G′ ∪ S′ ∪ s′, τ ′)|] = ES′,s′

[∑
e∈R′

1 [e ∈ FILTER(R′, G′ ∪ S′ ∪ s′, τ ′)]

]

(a)
= ES′,s′

 ∑
e∈R′\(S′∪s′)

1 [e ∈ FILTER(R′, G′ ∪ S′ ∪ s′, τ ′)]


where for (a), we have used the fact that FILTER(A,B, τ) ∩B is ∅ for any sets A and B. Letting e′ be a random sample
from R′\(S′ ∪ s′), this implies that

ES′,s′ [|FILTER(R′, G′ ∪ S′ ∪ s, τ ′)|] = ES′,s′

[
|R′\(S′ ∪ s′)| · Ee′

[
1 [e′ ∈ FILTER(R′, G′ ∪ S′ ∪ s′, τ ′)]

]]
≤ |R′| · ES′,s′ [Ee′ [1 [e′ ∈ FILTER(R′, G′ ∪ S′ ∪ s′, τ ′)]]]

= |R′| · PS′,s′,e′ [e
′ ∈ FILTER(R′, G′ ∪ S′ ∪ s′, τ ′)]

(a)
= |R′| · PS′,s′,e′ [f(e

′|G′ ∪ S′ ∪ s′) ≥ τ ′]

where for (a), we have used the fact that since m′ < M ≤ k − |G′|, we have |G′ ∪ S′ ∪ s′| < k, which implies
e′ ∈ FILTER(R′, G′ ∪ S′ ∪ s′, τ ′) is equivalent to f(e′|G′ ∪ S′ ∪ s′) ≥ τ ′. Note however that since S′ ∪ s′ is a
random subset of size m′ and e′ is a random sample of R′\(S′ ∪ s′), we have PS′,s′,e′ [f(e|G′ ∪ S′ ∪ s′) ≥ τ ′] equals
Im′+1 (note that m′ + 1 ≤ M because we had assumed earlier that m′ < M ). Since m′ ̸= M , we conclude that
REDUCEMEAN(R′, G′,m′ + 1) ≤ 1− ϵsam, which implies Im′+1 ≤ 1− ϵsam

2 , which implies (8).

The above lemma effectively shows that mi ∈M∗
i holds with high probability right after RECONSTRUCT(j) is called for

some j ≤ i. To prove our approximation guarantee, we will need a stronger result that shows this holds at an arbitrary point
in the stream. Before stating the result, we define the pre-count history of a level as, effectively, its history without mi.
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Definition 16 (Pre-count History). We define the Pre-count History of Level i as

H−m
i := (R0, R1, . . . , Ri, R0, R1, . . . , Ri, S1, . . . , Si−1). (11)

Note that this is similar to the definition of Hi in (3), with the difference that mi is no longer included. Analogously, we
define the random variable H−m

i as

H−m
i := (R0,R1, . . . ,Ri,R0,R1, . . . ,Ri,S1, . . . ,Si−1).

Lemma 17. At any point in the stream, for any i ≥ 1,

P
[
mi /∈M∗

i |T ≥ i,H−m
i = H−m

i

]
≤ ϵsam

100k10

Proof. The proof follows in the same manner as Lemma 12.

We prove the claim by induction on the update stream. Initially, the claim holds trivially since T ≥ i is impossible.
Assuming the lemma’s statement holds before an update, we will show that it holds for the new values as well. Let the
superscript − denote the values before the insertion, e.g., T− denotes the number of levels before insertion, and T denotes
the number of levels after insertion.

As before, let Li denote a random variable that is set to 1 if RECONSTRUCT(j) is called for some j ≤ i and set to 0
otherwise. We will show that

P
[
mi /∈M∗

i |T ≥ i,H−m
i = H−m

i ,Li = Li

]
≤ ϵsam

100k10

for both Li = 0 and Li = 1. For Li = 1, the claim follows from Lemma 15. As for Li = 0, we note that this implies
T− ≥ i because if T− were < i, then T would have been equal to T− because Li = 0 means that RECONSTRUCT(j) was
not invoked for any j ≤ i. Let (H−m

i )− denote the value of pre-count history before the update. By the law of iterated
expectation, it suffices to show

P
[
mi /∈M∗

i |T ≥ i,T− ≥ i,H−m
i = H−m

i , (H−m
i )− = (H−m

i )−,Li = 0
]
≤ ϵsam

100k10
(12)

for all (H−m
i )− that have positive probability conditioned on T ≥ i,H−m

i = H−m
i ,Li = 0. As before, we can drop

the T ≥ i,H−m
i = H−m

i ,Li = 0 from the condition since they are implied by (H−m
i )− = (H−m

i )−. We can further
replace mi /∈M∗

i with m−
i /∈ (M∗

i )
−, where (M∗

i )
− is the set of suitable sample counts for level i before the update, as

determined by (H−m
i )−. This is because both mi and M∗

i are unchanged through the update (note that M∗
i is a function of

Ri, Gi−1 and (Ri, Gi−1) = (R−
i , G

−
i−1)). This changes (12) to the induction hypothesis, which finishes the proof.

A.3. Approximation guarantee

In this section, we prove the approximation guarantee of our algorithm.

Our analysis is based on a novel relaxation function that may be of independent interest. We first introduce the relaxation
function f ′ and show that it is a lower bound on f(GT \D) (Lemma 18). We then bound the contribution of each level to the
relaxation function (Lemmas 19 and 20), to prove the desired OPT

2 − ϵ bound.

We begin with some definitions. For 1 ≤ i ≤ T , define the quantities fi and di as

fi := f(Si|Gi−1), τ (i) := (1 + ϵbuck)
b(i) · τ, di := |D ∩ Si| · (1 + ϵbuck) · τ (i).

We note that

f(GT ) =

T∑
i=1

(f(Gi)− f(Gi−1)) =

T∑
i=1

f(Si|Gi−1) =

T∑
i=1

fi. (13)

17
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We can also bound f(GT \D) in terms of f(GT ) and di as

f(GT \D) =

T∑
i=1

(f(Gi\D)− f(Gi−1\D)) =

T∑
i=1

f(Si\D|Gi−1\D)

≥
T∑

i=1

f(Si\D|Gi−1)

(a)

≥
T∑

i=1

(f(Si|Gi−1)− f(D ∩ Si|Gi−1))

≥
T∑

i=1

f(Si|Gi−1)−
T∑

i=1

∑
e∈D∩Si

f(e|Gi−1)

(b)

≥
T∑

i=1

fi −
T∑

i=1

di (14)

where the first three inequalities follow from submodularity (in particular, (a) follows from the fact that f(A\B) ≥
f(A)− f(B) for any sets A,B) and (b) follows from the fact that f(e|Gi−1) ≤ (1 + ϵbuck) · τ (i) for all e ∈ Si.

For i ∈ [1, T + 1], Define f ′
i as

f ′
i =

{
min{fi,mi · τ (i)} − di If i ≤ T

(1− 4ϵsam)
(

1−ϵopt

1+ϵopt

OPT
2 −

∑
j≤T mj · τ (j)

)
If i = T + 1

Our next lemma shows that
∑T+1

i=1 f ′
i is a lower bound for the value of output.

Lemma 18. Assume that
f(Gopt) ≤ OPT ≤ (1 + ϵopt)f(Gopt).

Then

f(GT \D) ≥
T+1∑
i=1

f ′
i .

Proof. We divide the proof into two cases, depending on whether or not f ′
T+1 > 0.

Case 1: f ′
T+1 ≤ 0. In this case, by (14),

f(GT \D) ≥
T∑

i=1

fi −
T∑

i=1

di ≥
T∑

i=1

(
min{fi,mi · τ (i)} − di

)
=

T∑
i=1

f ′
i ≥

T+1∑
i=1

f ′
i .

Where the last inequality uses the assumption f ′
T+1 ≤ 0.

Case 2: f ′
T+1 > 0. We first claim that |GT | < k:

f ′
T+1 > 0 =⇒

1− ϵopt

1 + ϵopt

OPT
2
−

T∑
j=1

mj · τ (j) > 0. (15)

which further implies that

kτ
(a)
=

OPT
2
≥

1− ϵopt

1 + ϵopt

OPT
2

(b)
>

T∑
j=1

mj · τ (j) ≥
T∑

j=1

mj · τ = |GT | · τ.

18
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Here, we have used the definition of τ for (a) and (15) for (b). Therefore, |GT | < k as claimed.

Consider an element s ∈ Gopt. By Lemma 8, R̂T+1 = ∅ and therefore s /∈ R̂T+1. Since s ∈ R̂0, there is an index i ∈ [0, T ]

such that s ∈ R̂i but s /∈ R̂i+1. By Lemma 5, this means that either f(s|Gi) < τ or |Gi| = k. Since |Gi| ≤ |GT | < k, we
conclude that f(s|Gi) < τ , which by submodularity implies f(s|GT ) < τ . Now note that

OPT
1 + ϵopt

≤ f(Gopt) ≤ f(GT ∪Gopt) ≤ f(GT ) +
∑

s∗∈Gopt

f(s∗|GT ) ≤ f(GT ) + k · τ = f(GT ) +
OPT
2

.

Rearranging and using (13), we obtain

T∑
i=1

fi = f(GT ) ≥
OPT

1 + ϵopt
− OPT

2
=

OPT(2− (1 + ϵopt))

2(1 + ϵopt)
=

OPT
2
· (

1− ϵopt

1 + ϵopt
).

Since in (14) we show that f(GT \D) ≥
∑T

i=1 fi −
∑T

i=1 di, this implies that

f(GT \D) ≥
1− ϵopt

1 + ϵopt

OPT
2
−

T∑
i=1

di

(a)
=

T∑
i=1

(
mi · τ (i) − di

)
+

(
1− ϵopt

1 + ϵopt

OPT
2
−

T∑
i=1

mi · τ (i)
)

≥
T∑

i=1

(
min{fi,mi · τ (i)} − di

)
+

(
1− ϵopt

1 + ϵopt

OPT
2
−

T∑
i=1

mi · τ (i)
)

(b)

≥
T∑

i=1

(
min{fi,mi · τ (i)} − di

)
+ (1− 4ϵsam)

(
1− ϵopt

1 + ϵopt

OPT
2
−

T∑
i=1

mi · τ (i)
)

=

T+1∑
i=1

f ′
i

where for (a) we have just added and subtracted
∑T

i=1 mi · τ (i), and for (b), we have used the assumption f ′
T+1 > 0.

Lemma 19. For all i, if mi ∈M∗
i , then

E
[
f ′
i

∣∣T ≥ i,Hi = Hi

]
≥ (1− 3ϵsam) ·mi · τ (i)

for all Hi such that P [T ≥ i,Hi = Hi] > 0.

Proof. Since P [T ≥ i,Hi = Hi] > 0, we conclude that Ri ̸= ∅. By Lemma 12, Si is a uniform sample of size
mi from R

b(i)
i . Let si,1, . . . , si,mi

be a random ordering of Si and let Si,<j and Si,>j denote {si,1, . . . , si,j−1} and
{si,j+1, . . . , si,mi

} respectively. It follows that

fi =

mi∑
j=1

f(si,j |Gi−1 ∪ Si,<j)

≥
mi∑
j=1

f(si,j |Gi−1 ∪ Si,<j ∪ Si,>j)

≥
mi∑
j=1

min{τ (i), f(si,j |Gi−1 ∪ Si,<j ∪ Si,>j)}

It is also clear that

mi · τ (i) ≥
mi∑
j=1

min{τ (i), f(si,j |Gi−1 ∪ Si,<j ∪ Si,>j)}
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As before, using the shorthand σi to denote T ≥ i,Hi = Hi,

E
[
min{fi,miτ

(i)}
∣∣∣σi

]
≥

mi∑
j=1

E
[
min{τ (i), f(si,j |Gi−1 ∪ Si,<j ∪ Si,>j)}

∣∣∣σi

]
≥

mi∑
j=1

E
[
τ (i)1

[
f(si,j |Gi−1 ∪ Si,<j ∪ Si,>j) ≥ τ (i)

] ∣∣∣σi

]
=

mi∑
j=1

τ (i)E
[
1
[
f(si,j |Gi−1 ∪ Si,<j ∪ Si,>j) ≥ τ (i)

] ∣∣∣σi

]
=

mi∑
j=1

τ (i)P
[
f(si,j |Gi−1 ∪ Si,<j ∪ Si,>j) ≥ τ (i)

∣∣∣σi

]
(a)
= mi · τ (i) · P

[
f(si,mi

|Gi−1 ∪ Si,<mi
) ≥ τ (i)

∣∣∣σi

]
where (a) follows from the fact that si,1, . . . , si,mi

was a random permutation.
We now note that by Lemma 12, Si,<mi

is a random subset of size mi − 1 from R
(b(i))
i and si,mi

is a random element in
R

(b(i))
i \Si,<mi

. Therefore, given the assumption mi ∈M∗
i , (9) implies that

P
[
f(si,mi

|Gi−1 ∪ Si,<mi
) ≥ τ (i)

∣∣∣σi

]
≥ 1− 2ϵsam.

Therefore,

E
[
min{fi,miτ

(i)}
∣∣∣σi

]
≥ (1− 2ϵsam) ·mi · τ (i). (16)

Furthermore, given the definition of di, we have

E [di|σi] = (1 + ϵbuck) · τ (i) · E
[
|Si ∩D|

∣∣∣σi

]
(a)
= (1 + ϵbuck) · τ (i) ·

|R(b(i))
i ∩D|
|R(b(i))

i |
mi

(b)

≤ (1 + ϵbuck) · τ (i) ·mi · ϵdel. (17)

where (a) follows from the uniform sample assumption of Lemma 12, and (b) follows from the restriction |R(b(i))
i ∩D| ≤

ϵdel · |R(b(i))
i | given in Lemma 7. We note however that (1 + ϵbuck) · ϵdel ≤ ϵsam because of the way the parameters were set

in Section 3.6. Therefore, the claim follows from (16) and (17) by the linearity of expectation:

E
[
min{fi,miτ

(i)} − di

∣∣∣σi

]
≥ (1− 2ϵsam) ·mi · τ (i) − ϵsam · τ (i) ·mi = (1− 3ϵsam) ·mi · τ (i).

Lemma 20. For any value i ≥ 15,

E

T+1∑
j=i

f ′
j

∣∣∣∣∣T+ 1 ≥ i,H−m
i = H−m

i

 ≥ (1− 4ϵsam)

1− ϵopt

1 + ϵopt

OPT
2
−
∑
j<i

mj · τ (j)


for all H−m
i such that P

[
T+ 1 ≥ i,H−m

i = H−m
i

]
> 0.

Proof. We divide the proof into two parts. In the first part, we prove the result when i = T + 1. Note that we can determine
whether i = T + 1 by examining H−m

i , as i = T + 1 if and only if Ri = ∅. In part 2, we extend this result to the general
case using induction.

5Note that we do not impose the restriction i ≤ T + 1 when specifying the range for i since, effectively, this is done by conditioning
on the event T+ 1 ≥ i.
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Part 1. If i = T + 1, then by definition of f ′
T+1,

E

T+1∑
j=i

f ′
j

∣∣∣∣∣T+ 1 ≥ i,H−m
i = H−m

i

 = f ′
T+1 = (1− 4ϵsam)

1− ϵopt

1 + ϵopt

OPT
2
−
∑
j<i

mj · τ (j)


We, therefore, focus on the case of i < T + 1.

Part 2 We prove the claim by a backward induction on i. We note that T ≤ k because we always have at least one sample
in |Si| as long as Ri ̸= ∅. Therefore, if i > k + 1, then P

[
T+ 1 ≥ i,H−m

i = H−m
i

]
= 0 and there is nothing to prove.

If i = k + 1, then given P
[
T+ 1 ≥ i,H−m

i = H−m
i

]
> 0 we must have i = T + 1, and the claim follows from Part 1.

Assume the claim holds for i+ 1, we prove it holds for i as well. Since in this part, we assumed i ̸= T + 1 we can conclude{
T+ 1 ≥ i,H−m

i = H−m
i

}
=
{
T ≥ i,H−m

i = H−m
i

}
.

We first give a sketch of the proof. By Lemma 17, we can expect mi ∈M∗
i with high probability. As long as mi ∈M∗

i , by
Lemma 19,

E [f ′
i |σi] > (1− 4ϵsam) ·miτ

(i).

Furthermore, we can utilize the induction hypothesis to conclude that

E

 ∑
j≥i+1

f ′
j

∣∣∣∣∣σi

 ≥ (1− 4ϵsam)

1− ϵopt

1 + ϵopt

OPT
2
−
∑

j<i+1

mj · τ (j)


Adding the two expressions above results in the desired bound. To prove the lemma’s statement, we formalize the above
sketch while also carefully considering the case of mi /∈M∗

i .

Let the shorthand σ−m
i denote T ≥ i,H−m

i = H−m
i . By the law of total expectation,

E

∑
j≥i

f ′
j

∣∣∣∣∣σ−m
i

 = Emi∼mi|σ−m
i

E
∑

j≥i

f ′
j

∣∣∣∣∣σ−m
i ,mi = mi


= Emi∼mi|σ−m

i

E
f ′

i +
∑

j≥i+1

f ′
j

∣∣∣∣∣σ−m
i ,mi = mi


= Emi∼mi|σ−m

i

E
f ′

i1 [mi ∈M∗
i ] + f ′

i1 [mi /∈M∗
i ] +

∑
j≥i+1

f ′
j

∣∣∣∣∣σ−m
i ,mi = mi

 (18)

Note that
{
σ−m
i ,mi = mi

}
is the same as {T ≥ i,Hi = Hi }. By Lemma 19, if mi ∈M∗

i , and P
[
mi = mi | σ−m

i

]
> 0,

then
E
[
f ′
i

∣∣T ≥ i,Hi = Hi

]
≥ (1− 3ϵsam) ·mi · τ (i)

Therefore,

E
[
f ′
i · 1 [mi ∈M∗

i ]
∣∣∣σ−m

i ,mi = mi

]
≥ (1− 3ϵsam)mi · τ (i) · 1 [mi ∈M∗

i ]

Furthermore, if mi /∈M∗
i ,

E
[
f ′
i

∣∣T ≥ i,Hi = Hi

]
≥ −di ≥ −(1 + ϵbuck) · τ (i) ·mi ≥ −2k · τ (i),

where the first inequality follows from the fact that min{fi,miτ
(i)} ≥ 0 and the last inequality follows from mi ≤ k and

1 + ϵbuck ≤ 2. Therefore,

E
[
f ′
i · 1 [mi /∈M∗

i ]
∣∣∣σ−m

i ,mi = mi

]
≥ −2k · τ (i) · 1 [mi /∈M∗

i ] .
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Plugging the above inequalities in (18), we obtain

E

∑
j≥i

f ′
j

∣∣∣∣∣σ−m
i


≥ Emi∼mi|σ−m

i

(1− 3ϵsam) ·mi · τ (i) · 1 [mi ∈M∗
i ]− 2k · τ (i)1 [mi /∈M∗

i ] + E

 ∑
j≥i+1

f ′
j

∣∣∣∣∣σ−m
i ,mi = mi


Define B as

B := ϵsam ·mi · τ (i) · 1 [mi ∈M∗
i ]− 2k · τ (i) · 1 [mi /∈M∗

i ]− (1− 4ϵsam) ·mi · τ (i) · 1 [mi /∈M∗
i ] .

It follows that

E

∑
j≥i

f ′
j

∣∣∣∣∣σ−m
i

 ≥ Emi∼mi|σ−m
i

(1− 4ϵsam) ·mi · τ (i) +B + E

 ∑
j≥i+1

f ′
j

∣∣∣∣∣σ−m
i ,mi = mi


≥ Emi∼mi|σ−m

i

(1− 4ϵsam) ·mi · τ (i) + E

 ∑
j≥i+1

f ′
j

∣∣∣∣∣σ−m
i ,mi = mi

+ Emi∼mi|σ−m
i

[B]

For the first term, we observe that

E

 ∑
j≥i+1

f ′
j

∣∣∣∣∣σ−m
i ,mi = mi

 = ESi∼Si|σ−m
i ,mi=mi

E
 ∑
j≥i+1

f ′
j

∣∣∣∣∣σ−m
i ,mi = mi,Si = Si


(a)

≥ ESi∼Si|σ−m
i ,mi=mi

(1− 4ϵsam)

1− ϵopt

1 + ϵopt

OPT
2
−
∑

j<i+1

mj · τ (j)


= (1− 4ϵsam)

1− ϵopt

1 + ϵopt

OPT
2
−
∑

j<i+1

mj · τ (j)


where for (a), we have used the induction hypothesis together with iterated expectation. Formally, assume that in addition to{
σ−m
i ,mi = mi,Si = Si

}
, we further condition on the value of Ri+1, Ri+1. Then we have conditioned on{

σ−m
i ,mi = mi,Si = Si,Ri+1 = Ri+1,Ri+1 = Ri+1

}
,

which is the same as conditioning on
{
T ≥ i,H−m

i+1

}
, which is the same as conditioning on

{
T+ 1 ≥ i+ 1, H−m

i+1

}
.

Therefore,

Emi∼mi|σ−m
i

(1− 4ϵsam) ·mi · τ (i) + E

 ∑
j≥i+1

f ′
j

∣∣∣∣∣σ−m
i ,mi = mi


≥ Emi∼mi|σ−m

i

(1− 4ϵsam) ·mi · τ (i) + (1− 4ϵsam)

1− ϵopt

1 + ϵopt

OPT
2
−
∑

j<i+1

mj · τ (j)


= Emi∼mi|σ−m
i

(1− 4ϵsam)

1− ϵopt

1 + ϵopt

OPT
2
−
∑
j<i

mj · τ (j)


= (1− 4ϵsam)

1− ϵopt

1 + ϵopt

OPT
2
−
∑
j<i

mj · τ (j)

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where the first inequality follows from (19), To finish the proof, it suffices to show that

Emi∼mi|σ−m
i

[B] ≥ 0

Note however that, since we assumed T ≥ i, we can assume that mi > 0 by definition of M∗
i . By definition of B,

B =
(
ϵsam ·mi · τ (i) · 1 [mi ∈M∗

i ]
)
−
(
2k · τ (i) · 1 [mi /∈M∗

i ]
)
−
(
(1− 4ϵsam) ·mi · τ (i) · 1 [mi /∈M∗

i ]
)

≥ τ (i) · (1 [mi ∈M∗
i ] · (ϵsam)− 1 [mi /∈M∗

i ] · (2k + k))

≥ τ (i) · (1 [mi ∈M∗
i ] · (ϵsam)− 1 [mi /∈M∗

i ] · (3k))

where the first inequality follows from mi ≤ k. This further implies

Emi∼mi|σ−m
i

[
B
∣∣∣σ−m

i ,mi = mi

]
≥ τ (i) ·

(
P
[
mi ∈M∗

i |σ−m
i

]
· ϵsam − 3kP

[
mi /∈M∗

i |σ−m
i

])
(a)

≥ τ (i)
(
ϵsam

2
− 3ϵsam

100

)
> 0

Where (a) follows from Lemma 17 and the fact that 1− ϵsam/100k
10 > 1/2.

Setting i = 1 in the above Lemma completes the proof of Theorem 2 as

E [f(GT \D)]
(a)

≥ E

[
T+1∑
i=1

f ′
i

]
≥ (1− 4ϵsam) ·

1− ϵopt

1 + ϵopt

OPT
2

where (a) follows from Lemma 18.

A.4. Query complexity

In this section, we analyze the query complexity of our algorithm. First, In section A.4.1, we analyze the query complexity
of each call to RECONSTRUCT as it is the main building block of our algorithm. Next, in section A.4.2, we show how to
utilize this result for bounding the expected amortized query complexity of our algorithm. Throughout the section, we use V
as the ground set containing all of the elements of the stream.

We start by defining a quantity that will be important in our proofs.

Definition 21 (Potential). For any i ≥ 1 and any element e ∈ R̂i, we define the element’s potential with respect to level i,
denoted by P (e, i), as the single number satisfying f(e|Gi−1)

τ ∈ [(1 + ϵbuck)
P (e,i)−1, (1+ ϵbuck)

P (e,i)). For elements e /∈ R̂i,
we define P (e, i) to be zero. Additionally, we define the potential of level i as Pi :=

∑
e∈V P (e, i) =

∑
e∈R̂i

P (e, i). We
also define Pi for i > T + 1 to be 0.

We will use Pi instead of Pi when we want to emphasize the fact that these values are random.

Lemma 22. The potential P satisfies the following properties for all i ≥ 1:

∀e ∈ R̂i : P (e, i) ∈
[
1, log1+ϵbuck

(4k)
]

(19)

|R̂i| ≤ Pi ≤ |R̂i| · log1+ϵbuck
(4k) (20)

PT+1 = 0 and ∀i ≤ T : Pi > 0 (21)

Proof. For the first result, note that since e ∈ R̂i, given Lemma 5, we have e ∈ FILTER(R̂i−1, Gi−1, τ), which implies
f(e|Gi−1) ≥ τ . Therefore, P (e, i) ≥ 1. On the other hand, we note that since e ∈ R̂i, we have e /∈ D. Therefore,

2kτ = OPT ≥ f(Gopt) ≥ f(e) ≥ f(e|Gi−1).

It follows that f(e|Gi−1)
τ ≤ 2k. Note however that, by definition,

f(e|Gi−1)

τ
≥ (1 + ϵbuck)

P (e,i)−1 =⇒ P (e, i) ≤ log1+ϵbuck
(
f(e|Gi−1)

τ
) + 1.
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Therefore,

P (e, i) ≤ log1+ϵbuck
(2k) + 1 ≤ log1+ϵbuck

(2k) + log1+ϵbuck
(2) = log1+ϵbuck

(4k).

The second equation in the claim follows from the first one since P (e, i) = 0 for e /∈ R̂i.

The third equation in the claim follows from the second equation and Lemma 8.

Lemma 23. For any i ∈ [1, T ], and any e ∈ V , P (e, i) ≥ P (e, i+ 1) and therefore, Pi ≥ Pi+1.

Proof. If e /∈ R̂i+1, the claim holds trivially cause the right-hand side will equal zero.

Otherwise, we note that e ∈ R̂i because R̂i+1 ⊆ R̂i given Lemma 5. The claim now follows from the fact that
Gi ⊆ Gi+1.

A.4.1. RECONSTRUCTION

In this section, we bound the query complexity of invoking RECONSTRUCT. It is clear from Algorithm 1 that RECONSTRUCT
works by sampling Si from Ri, forming Ri+1 = FILTER(Ri, Gi), and repeating the process with i ← i + 1. We can
therefore bound its query complexity by bounding

1. The number of times the while-loop is executed. We will obtain this result in Lemma 26 after bounding the decrease in
the potential of each level in Lemma 24

2. The number of queries inside the while-loop. We do this using Lemma 15.

We use the above results to establish a bound on the total number of queries made by RECONSTRUCT in Lemma 27.

As we want to state results that hold for an arbitrary level i, throughout this section, we will assume that we call
RECONSTRUCT(j) with a value of Rj satisfying FILTER(Rj , Gj−1, τ) = Rj = Rj . Given Lemma 5, this assump-
tion is going to be valid in our algorithm. We note that since we are considering the data structure right after calling
RECONSTRUCT, the values Ri and Ri and R̂i will be the same for i ≥ j after the call.

Lemma 24. Assume we are given sets Rj , Gj−1 satisfying FILTER(Rj , Gj−1, τ) = Rj , and we invoke RECONSTRUCT(j)
with (Rj , D) set to (Rj , ∅), obtaining the (random) values T,Sj , . . .ST,Rj+1, . . .RT+1. If ϵsam < 1

4 , for each i ≥ j,

E
[
Pi −Pi+1

∣∣T ≥ i,H−m
i = H−m

i

]
≥ ϵsam

8
· |R(b(i))

i |

for all H−m
i such that P

[
T ≥ i,H−m

i = H−m
i

]
> 0, where H−m

i is defined as in Definition 16.

Proof. We first observe that since we are considering these values right after we invoke RECONSTRUCT(j), we have
R̂i = Ri. We first give a sketch of the proof. For each i ≥ j, by Lemma 15, mi ∈ M∗

i with probability at least
1− ϵsam/k

10. By definition of M∗
i , mi ∈ M∗

i means that in expectation, at least ϵsam/4 fraction of the elements in R
b(i)
i

satisfy Pi+1(b, e) ≤ Pi(b, e)− 1. As for the case mi /∈M∗
i , since this only happens with low probability, we can handle it

using the bound Pi+1 ≤ Pi.

Formally, using the shorthand σ−m
i instead of T ≥ i,H−m

i = H−m
i ,

E
[
Pi −Pi+1

∣∣σ−m
i

]
= P

[
mi ∈M∗

i |σ−m
i

]
· E
[
Pi −Pi+1

∣∣σ−m
i ,mi ∈M∗

i

]
+ P

[
mi /∈M∗

i |σ−m
i

]
· E
[
Pi −Pi+1

∣∣σ−m
i ,mi /∈M∗

i

]
≥ P

[
mi ∈M∗

i |σ−m
i

]
· E
[
Pi −Pi+1

∣∣σ−m
i ,mi ∈M∗

i

]
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where the inequality follows from the fact that Pi − Pi+1 is always non-negative given Lemma 23. By Lemma 15, we can
further bound this as

E
[
Pi −Pi+1

∣∣σ−m
i

]
≥ P

[
mi ∈M∗

i |σ−m
i

]
· E
[
Pi −Pi+1

∣∣σ−m
i ,mi ∈M∗

i

]
≥ (1− ϵsam

100k10
) · E

[
Pi −Pi+1

∣∣σ−m
i ,mi ∈M∗

i

]
(a)

≥ 1

2
· E
[
Pi −Pi+1

∣∣σ−m
i ,mi ∈M∗

i

]
=

1

2
· Emi∼mi|σ−m

i ,mi∈M∗
i

[
E
[
Pi −Pi+1

∣∣σ−m
i ,mi = mi

]]
(22)

where for (a), we have used the fact that ϵsam < 1
4 . Finally, we observe that

Pi − Pi+1 =
∑
e∈Ri

P (e, i)−
∑

e∈Ri+1

P (e, i+ 1) =
∑
e∈Ri

P (e, i)−
∑
e∈Ri

P (e, i+ 1)

=
∑

e∈R
(b(i))
i

(P (e, i)− P (e, i+ 1) ) +
∑

e∈Ri\R(b(i))
i

(P (e, i)− P (e, i+ 1) )

(a)

≥
∑

e∈R
(b(i))
i

(P (e, i)− P (e, i+ 1) )

≥
∑

e∈R
(b(i))
i

1 [P (e, i)− P (e, i+ 1) ≥ 1]

(b)
=

∑
e∈R

(b(i))
i

1
[
f(e|Gi) < τ (i) or |Gi| ≥ k

]
(c)
=
∣∣∣R(b(i))

i

∣∣∣− ∣∣∣FILTER(R
(b(i))
i , Gi, τ

(i))
∣∣∣

=
∣∣∣R(b(i))

i

∣∣∣− ∣∣∣FILTER(R
(b(i))
i , Gi−1 ∪ Si, τ

(i))
∣∣∣.

In the above derivation, the second equality follows from the fact that P (e, i+ 1) = 0 for e /∈ Ri+1, inequality (a) follows
from Lemma 23, (b) follows from the fact that if |Gi| ≥ k, then P (e, i + 1) < P (e, i) will hold for e ∈ Ri because
P (e, i) ≥ 1 and P (e, i+1) = 0, and if |Gi| ≠ k, then P (e, i) < P (e, i+1) is equivalent to f(e|Gi) < τ (i) for e ∈ R

(b(i))
i .

Finally, (c) follows from the definition of FILTER.

Therefore,

E
[
Pi −Pi+1

∣∣σ−m
i

]
≥ 1

2
· Emi∼mi|σ−m

i ,mi∈M∗
i

[
E
[
Pi −Pi+1

∣∣σ−m
i ,mi = mi

]]
≥ 1

2
· ϵsam

4
|Rb(i)

i |

where the first inequality follows from (22) and the final inequality follows from (8).

We now prove the following auxiliary lemma

Lemma 25. Let X0,X1, . . . ,Xn be a sequence of integer positive variables such that Xi ≤ Xi−1 and

E [Xi | X1 = X1, . . . ,Xi−1 = Xi−1] ≤ (1− ε′)Xi−1.

Let T denote the first index i such that XT = 0 and assume that X0 = N for some fixed integer N . Then E [T] ≤ log(N)+1
poly(ε′) .

Proof. Let Ti denote the first index such that XTi ≤ (1− ε/2)iN . We claim that

E [Ti −Ti−1] ≤ poly(
1

ε′
). (23)
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By Markov’s inequality,

P [Xi > (1− ε′/2)Xi−1 | X1 = X1, . . . ,Xi−1 = Xi−1] ≤
1− ε′

1− ε′/2
≤ 1− ε′/2.

Therefore, because the mean of a geometric random variable with parameter p is 1
p , it follows that in expectation, we need to

increase the index i at most O( 1
ε′ ) times before we decrease Xi by a factor of 1− ε′/2. Since Xi ≤ Xi−1, this implies (23).

Therefore, letting T ′
i denote the first index such that XT ′

i
≤ 1

2iN , it follows that

E
[
T′

i −T′
i−1

]
≤ log 1

1−ε′/2
(2)O(

1

ε′
) =

1

poly(ε′)

Note however that T ′
log(N)+1 = T because Xi are integers. Therefore,

E [T] ≤ E
[
T′

log(N)+1

]
=

log(N)+1∑
i=1

E
[
T′

i −T′
i−1

]
≤ log(N) + 1

poly(ε′)
.

Lemma 26. Assume we are given sets Rj , Gj−1 satisfying FILTER(Rj , Gj−1, τ) = Rj , and we invoke RECONSTRUCT(j)
with (Rj , D) set to (Rj , ∅), obtaining the (random) values T,Sj , . . .ST ,Rj+1, . . .RT+1. The expected value of T− j is
bounded by poly(log(|Rj |), log(k), 1

ε ).

Proof. As before, we note that R̂i = Ri for any i ≥ j because we are considering the values right after invoking
RECONSTRUCT(j).

Recall that by Lemma 22, we have

|Ri| ≤ Pi ≤ |Ri| · log1+ϵbuck
(4k)

Given Lemma 24, for i ≥ j,

E
[
Pi −Pi+1|σ−m

i

]
≥ ϵsam

8
|Rb(i)

i |
(a)

≥ ϵsam

8

|Ri|⌈
log1+ϵbuck

(2k)
⌉ ≥ ϵsam

8

Pi

log21+ϵbuck
(4k)

=
ϵsam

8

Pi

log2(4k)
· log2(1 + ϵbuck)

(b)

≥ ϵsam

8

Pi

log2(4k)
· ϵbuck

2

16

≥ ϵsam · ϵbuck
2

160 log2(4k)
· Pi

where for (a), we have used the fact that Rb(i)
i was the largest bucket, and for (b), we have used the inequality log(1+x) ≥ x

4
for x < 1

Setting ε′ = ϵsam·ϵbuck
2

160 log2(4k)
, it follows that

E
[
Pi+1|σ−m

i

]
≤ (1− ε′) · Pi,

Since the value of P1, . . . ,Pi is deterministic conditioned on σ−m
i , which further implies

E [Pi+1|Pi = Pi, . . . ,P1 = P1] ≤ (1− ε′) · Pi. (24)

Formally, if Pi ̸= 0, we have T ≥ i given Lemma 22. Therefore, by iterated expectation,

E [Pi+1|Pi = Pi, . . . ,P1 = P1] = E [Pi+1|Pi = Pi, . . . ,P1 = P1,T ≥ i]

= E [E [Pi+1|Pi = Pi, . . . ,P1 = P1,T ≥ i,Hi = Hi]]

= E [E [Pi+1|T ≥ i,Hi = Hi]]

≤ (1− ε′)Pi
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where the third equality follows from the fact that P1, . . . ,Pi is deterministic conditioned on {T ≥ i,Hi = Hi }. If
Pi = 0, then (24) holds trivially because Pi+1 ≤ Pi = 0.

Observe that

1

ε′
= poly(log(k),

1

ε
)

and that

Pj ≤ log1+ϵbuck
(4k)|Rj |.

The claim now follows from Lemma 25.

Lemma 27. The expected number of queries made by calling RECONSTRUCT(i) is |R̂i| · poly(log(|R̂i|), log(k), 1
ε ), where

|R̂i| refers to the size of R̂i after the update.

Proof. Before stating the proofs, we note that the set R̂i itself does not change during RECONSTRUCT(i). Therefore, the
value |R̂i| is deterministic when conditioned on the value of the data structure before the update.

We now note the algorithm for reconstruction first sets Ri to the new value of R̂i, and then starts building the levels.
Therefore, by Lemma 15, when each iteration of the while-loop in algorithm 1 is executed, the call to CALCSAMPLECOUNT
makes at most O((|R̂i|) · poly(log(k), 1

ϵ )) queries. By Lemma 26, in expectation, the while-loop is executed at most
poly(log(|R̂i|), log(k), 1

ε ) times. Since FILTER and bucketing make at most O(|R̂i|) queries, the claim follows from
Lemma 26.

A.4.2. AMORTIZATION

In this section, we bound the expected amortized query complexity of the insert and delete operations. We begin by bounding
the number of levels T at an arbitrary point in the update stream. We state this result in Lemma 28. Next, in Lemma 29, we
show how to bound the expected amortized query complexity of the algorithm by charging back each call of RECONSTRUCT
to the updates that triggered it.

Lemma 28. At any point in the stream, the expected number of levels E [T] is at most poly(log(n), log(k), 1
ε ).

Proof. We note that this lemma is different from Lemma 26 because we are claiming that the number of levels is always
bounded in expectation, while Lemma 26 can only bound E [T− j] right after a call to RECONSTRUCT(j). In particular,
this also means that we can no longer assume R̂i = Ri. The proof follows using a similar technique as Lemma 26. We first
claim that a variant of Lemma 24 still holds. More formally, we claim that

E
[
Pi −Pi+1

∣∣T ≥ i,H−m
i = H−m

i

]
≥ ϵsam

16
· |R(b(i))

i | (25)

for any i ≥ 1. The proof follows with the exact same logic as the proof of Lemma 24. Using the shorthand σ−m
i to denote

T ≥ i,H−m
i = H−m

i (Definition 16), for all i ≥ 1,

E
[
Pi −Pi+1

∣∣σ−m
i

]
≥ P

[
mi ∈M∗

i |σ−m
i

]
· E
[
Pi −Pi+1

∣∣σ−m
i ,mi ∈M∗

i

]
(a)

≥ (1− ϵsam

100k10
) · E

[
Pi −Pi+1

∣∣σ−m
i ,mi ∈M∗

i

]
≥ 1

2
· E
[
Pi −Pi+1

∣∣σ−m
i ,mi ∈M∗

i

]
=

1

2
· Emi∼mi|σ−m

i ,mi∈M∗
i

[
E
[
Pi −Pi+1

∣∣σ−m
i ,mi = mi

]]
(26)

where for (a) we have now used Lemma 17 instead of 15.
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Next, we observe that

Pi − Pi+1 =
∑
e∈R̂i

(P (e, i)− P (e, i+ 1))

≥
∑

e∈R
(b(i))
i ∩R̂i

1 [P (e, i)− P (e, i+ 1) ≥ 1]

≥
∑

e∈R
(b(i))
i ∩R̂i

1
[
f(e|Gi) < τ (i) or |Gi| ≥ k

]
=

∑
e∈R

(b(i))
i

1
[
f(e|Gi) < τ (i) or |Gi| ≥ k

]
−

∑
e∈R

(b(i))
i \R̂i

1
[
f(e|Gi) < τ (i) or |Gi| ≥ k

]
(a)

≥
∑

e∈R
(b(i))
i

1
[
f(e|Gi) < τ (i) or |Gi| ≥ k

]
−

∑
e∈R

(b(i))
i ∩D

1
[
f(e|Gi) < τ (i) or |Gi| ≥ k

]
≥

∑
e∈R

(b(i))
i

1
[
f(e|Gi) < τ (i) or |Gi| ≥ k

]
− |R(b(i))

i ∩D|

=
∣∣∣R(b(i))

i

∣∣∣− ∣∣∣FILTER(R
(b(i))
i , Gi, τ

(i))
∣∣∣− |R(b(i))

i ∩D|
(b)

≥
∣∣∣R(b(i))

i

∣∣∣− ∣∣∣FILTER(R
(b(i))
i , Gi, τ

(i))
∣∣∣− ϵdel|R(b(i))

i |

where for (a), we have used the fact that Ri\R̂i ⊆ D, and for (b), we have used Lemma 7. Therefore,

E
[
Pi −Pi+1

∣∣σ−m
i

]
+

ϵdel

2
|R(b(i))

i | ≥ 1

2
Emi∼mi|σ−m

i ,mi∈M∗
i

[
E
[
Pi −Pi+1

∣∣σ−m
i ,mi = mi

]]
+

ϵdel

2
|R(b(i))

i |

≥ 1

2
Emi∼mi|σ−m

i ,mi∈M∗
i

[∣∣∣R(b(i))
i

∣∣∣− ∣∣∣FILTER(R
(b(i))
i , Gi, τ

(i))
∣∣∣ ∣∣∣∣∣ σ−m

i ,mi = mi

]

≥ 1

2
· ϵsam

4
|Rb(i)

i |

where the first inequality follows from (26), and the final inequality follows from Lemma 12, together with Equation (8).

Since ϵdel ≤ ϵsam/16, it follows that

E
[
Pi −Pi+1

∣∣σ−m
i

]
≥ ϵsam

16
|Rb(i)

i |.

We can conclude from Lemma 7 that |R̂i| ≤ |Ri| ≤ 3
2 |Ri| ≤ 2|Ri|. Therefore,

E
[
Pi −Pi+1|σ−m

i

]
≥ ϵsam

16
|Rb(i)

i | ≥
ϵsam

16

|Ri|
log1+ϵbuck

(4k)

(a)

≥ ϵsam

32

|R̂i|
log1+ϵbuck

(4k)

(b)

≥ ϵsam

32

Pi

log21+ϵbuck
(4k)

=
ϵsam

32

Pi

log2(4k)
· log2(1 + ϵbuck)

(c)

≥ ϵsam

32

Pi

log2(4k)
· ϵbuck

2

20

where for (a), we have used |R̂i| ≤ 2|Ri|, for (b) we have used Lemma 22, and for (c) we have used the inequality
log(1 + x) ≥ x

4 for x < 1 and the assumption ϵbuck ≤ 1/10

Defining ε′ := ϵsam
32 log2(4k)

· ϵbuck
2

20 , it follows that

E
[
Pi+1|σ−m

i

]
≤ (1− ε′) · Pi,
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As before, this further implies

E [Pi+1|Pi = Pi, . . . ,P1 = P1] ≤ (1− ε′) · Pi.

Formally, if Pi ̸= 0, we have T ≥ i given Lemma 22. Therefore, by iterated expectation,

E [Pi+1|Pi = Pi, . . . ,P1 = P1] = E [Pi+1|Pi = Pi, . . . ,P1 = P1,T ≥ i]

= E [E [Pi+1|Pi = Pi, . . . ,P1 = P1,T ≥ i,Hi = Hi]]

= E [E [Pi+1|T ≥ i,Hi = Hi]]

≤ (1− ε′)Pi

as claimed. If Pi = 0, then (24) holds trivially because Pi+1 ≤ Pi = 0. Note however that

1

ε′
= poly(log(k),

1

ϵ
)

and

P1 ≤ log1+ϵbuck
(4k)|R̂1|.

The claim now follows from Lemma 25.

Lemma 29. The amortized query complexity of our algorithm is at most poly(log(n), log(k), 1
ϵ )

Proof. For queries that were not caused by RECONSTRUCT, each insertion or deletion can cause at most O(T) queries
where T denotes the number of levels at the time of update, which is bounded by poly(log(n), log(k), 1

ϵ ) given Lemma 28
and the fact that |R̂1| ≤ n.

We will therefore consider the number of queries made by RECONSTRUCT. The main idea is as follows. We charge the cost
of each invocation of RECONSTRUCT(i) to the updates that caused it. In other words, we charge the cost to the insertion
updates corresponding to Ri\Ri if RECONSTRUCT(i) was triggered by an insertion and we charge the cost to the deletion
updates corresponding to R

(b(i))
i ∩D if RECONSTRUCT(i) was triggered by a deletion. Each time RECONSTRUCT(i) is

invoked for some i, the expected number of queries made is |R̂i|poly(log(|R̂i|), log(k), 1
ϵ ). However, this cost is spread

across at least |R̂i|
poly(log(n),log(k), 1ε )

updates because of the reconstruction condition (see Claim 31). Therefore, each update is

charged at most poly(log(n), log(k), 1
ε ) for each of the levels it affects. Since the expected number of levels at the time

of the update is at most poly(log(n), log(k), 1
ε ) by Lemma 28, the claim follows. Note that here we are using different

sources of randomness for bounding the expectation of T and bounding the number of queries for each reconstruction. The
value of T is determined at the time of the update, while the number of queries is determined at a later time, i.e., when
RECONSTRUCT is actually triggered. In our proof, we we first bound T by relying on the randomness of the algorithm
before the update. We then condition on the randomness of the algorithm before the update, and bound the number of
queries of each subsequent reconstruction by relying on the randomness of the algorithm after the update.

Formally, for an update u, a level i, and a time t,6 let Qu,i,t denote the number of queries charged to u by an invocation
of RECONSTRUCT(i) at time t. If RECONSTRUCT(i) was not invoked, or RECONSTRUCT(i) does not charge u, then set
Qu,i,t = 0. We need to show that for each u,

E

∑
i,t

Qu,i,t

 ≤ poly(log(n), log(k),
1

ϵ
). (27)

Let Tu denote the number of levels when u is inserted, we will show that

E

∑
i,t

Qu,i,t | Tu = Tu

 ≤ (Tu + 1)poly(log(n), log(k),
1

ϵ
). (28)

6Here “time” refers to an update in the stream. We use the word time to avoid confusion with u, and because the actual nature of the
update at time t will not play an important role.
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This would imply (27) given Lemma 28. To prove this, we first observe that∑
i,t

1 [Qu,i,t > 0] ≤ Tu + 1.

This is because for any fixed i, u there is at most one invocation of RECONSTRUCT(i) that can charge to u. In particu-
lar, u can only be charged by the first invocation of RECONSTRUCT(i) after u, if there have not been any invocations
of RECONSTRUCT(j) for j < i between u and this invocation of RECONSTRUCT(i). Since u is never charged by
RECONSTRUCT(i) for i > Tu + 1, the claim follows.

Note however that

E [Qu,i,t | Tu = Tu] = E [Qu,i,t | Qu,i,t > 0,Tu = Tu]P [Qu,i,t > 0 | Tu = Tu] .

We claim that

E [Qu,i,t | Qu,i,t > 0,Tu = Tu] ≤ poly(log(n), log(k),
1

ϵ
). (29)

If this is shown, then it would imply Equation (28) because∑
i,t

E [Qu,i,t | Tu = Tu]

=
∑
i,t

E [Qu,i,t | Qu,i,t > 0,Tu = Tu]P [Qu,i,t > 0 | Tu = Tu]

≤

∑
i,t

P [Qu,i,t > 0 | Tu = Tu]

 poly(log(n), log(k),
1

ϵ
)

=

∑
i,t

E [1 [Qu,i,t > 0] | Tu = Tu]

 poly(log(n), log(k),
1

ϵ
)

=

E

∑
i,t

1 [Qu,i,t > 0]

∣∣∣∣∣ Tu = Tu

 poly(log(n), log(k),
1

ϵ
)

≤ (E [Tu + 1 | Tu = Tu] ) poly(log(n), log(k),
1

ϵ
)

= (Tu + 1)poly(log(n), log(k),
1

ϵ
)

We divide the proof of (29) into two parts. Let R̂i,t denote the value of R̂i right after time t.

Claim 30.

E

[∑
u′

Qu′,i,t

∣∣∣∣Qu,i,t > 0,Tu = T, R̂i,t = R̂i,t

]
≤ |R̂i,t| · poly(log(n), log(k),

1

ϵ
)

for all i, t such that P [Qu,i,t > 0,Tu = T ] > 0.

Proof. We assume that t ≥ u as otherwise Qu,i,t = 0. Let rt denote the random bits the algorithm uses in time t. By the
law of iterated expectation, it suffices to show that

E

[∑
u′

Qu′,i,t

∣∣∣∣Qu,i,t > 0,Tu = T, R̂i,t = R̂i,t, r1 = r1, . . . , rt−1 = rt−1

]
≤ |R̂i,t| · poly(log(n), log(k),

1

ϵ
).

for all values of r1, . . . , rt−1 such that

P
[
Qu,i,t > 0,Tu = T, R̂i,t = R̂i,t, r1 = r1, . . . , rt−1 = rt−1

]
> 0.
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We note however that 1 [Qu,i,t > 0] ,Tu are both a function of r1, . . . , rt−1. Specifically, Tu is a function of r1, . . . , ru−1

and 1 [Qu,i,t > 0] is a function of r1, . . . , rt−1 because Qu,i,t > 0 if we invoke RECONSTRUCT(i) at time t, which is
determined by r1, . . . , rt−1, and if there have been no reconstructions of level j ≤ i between times u and t, which is again
determined by r1, . . . , rt−1. Therefore, we can drop Qu,i,t > 0,Tu = T from the conditioning. We note that R̂i,t is also
deterministic conditioned on r1, . . . , rt−1, and it can also be dropped. Therefore, it suffices to show that

E

[∑
u′

Qu′,i,t

∣∣∣∣∣ r1 = r1, . . . , rt−1 = rt−1

]
≤ |R̂i,t| · poly(log(n), log(k),

1

ϵ
).

Note however that
∑

u′ Qu,i,t is the number of queries made at time t for executing RECONSTRUCT(i) (and is zero if
RECONSTRUCT(i) is not invoked). This is independent of r1, . . . , rt−1 and depends only on rt. Therefore, Lemma 27
completes the proof.

Claim 31. If |R̂i,t| > 0,

Qu,i,t ≤
∑

u′ Qu′,i,t

|R̂i,t|
poly(log(n), log(k),

1

ϵ
).

Proof. If RECONSTRUCT(i) is not called at time t, then the claim holds trivially. Otherwise, we need to show that the cost

of this reconstruction is spread across at least |R̂i,t|
poly(log(k), 1ε )

updates. We will drop the subscript t throughout the proof for

convenience. Let R−
i denote the value of Ri before the invocation of RECONSTRUCT(i), and let (R(b(i))

i )− denote the
largest bucket in R−

i . If |R−
i | = 0 then |R̂i| = 1 and the claim holds trivially as

∑
u′ Qu′,i,t ≥ Qu,i,t. We therefore assume

that |R−
i | > 0.

Note that R−
i is the same as the value of Ri the previous time that level i was constructed (i.e., RECONSTRUCT(j) was

invoked for some j ≤ i). Given the condition for invoking RECONSTRUCT(i), there have been either ≥ 3
2 |R

−
i | insertions

or ≥ ϵdel|(R(b(i))
i )−| deletions since the last reconstruction. Note that ϵdel|(R(b(i))

i )−| ≥ |R−
i |

poly(log(k), 1ε )
because (R

(b(i))
i )−

is the largest bucket in R−
i and there are a total of

⌈
log1+ϵbuck

(2k)
⌉
≤ poly(log(k), 1

ε ) buckets. Therefore, both when
RECONSTRUCT(i) is triggered by an insertion and when it is triggered by a deletion, RECONSTRUCT(i) spreads its cost

across at least |R−
i |

poly(log(k), 1ε )
updates. Therefore,

Qu,i,t ≤
∑

u′ Qu′,i,t

|R−
i |

poly(log(n), log(k),
1

ϵ
). (30)

Given Lemma 7, right before the update that triggers reconstruction, we have |R̂i| ≤ 2|Ri|. Additionally, the update can

increase |R̂i| by at most 1. Therefore, |R̂i| ≤ 2|R−
i |+ 1. Therefore, since we assumed |R−

i | > 0, we have |R−
i | ≥

|R̂i|
3 ,

and the claim follows from Equation (30).

Given the above claims, if |R̂i,t| > 0,

E
[
Qu,i,t | Qu,i,t > 0,Tu = Tu, R̂i,t = R̂i,t

]
≤

E
[∑

u′ Qu′,i,t | Qu,i,t > 0,Tu = Tu, R̂i,t = R̂i,t

]
|R̂i,t|

poly(log(n), log(k),
1

ϵ
).

≤ poly(log(n), log(k),
1

ϵ
),

This also holds if |R̂i,t| = 0 because in this case, no queries are charged to u. Iterated expectation now implies Equation
(29), finishing the proof.

The above lemma implies Theorem 3 as claimed.
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A.5. Proof of Theorem 1

We use the parallel run algorithm outlined in Section 3.5. We will show that this algorithm has expected amortized query com-
plexity of poly(log(n), log(k), 1

ε ) per update, and the expected submodular value of the output is at least ( 12 −O(ϵ))f(Gopt).
Each time an element is inserted or deleted, the operation affects at most O(poly(log(k), 1

ε ) parallel runs. Given Theo-
rem 3, the expected amortized query complexity of each of these algorithms per update is at most poly(log(n), log(k), 1

ε ).
Therefore, the expected amortized query complexity of the algorithm per update is poly(log(n), log(k), 1

ε ) as claimed.

It remains to analyze the approximation guarantee. Consider one of the runs with the parameter OPTp satisfy-
ing f(Gopt) ≤ OPTp ≤ (1 + ϵ)f(Gopt). Consider a modified algorithm where instead of inserting elements with
f(e) ∈ [ϵOPTp/2k,OPTp] into run p, we had inserted all elements e such that f(e) ≤ OPTp. We claim that this would
not have changed the final output of the run p. This is because all elements with f(e) ≤ OPTp/2k are filtered out
from R1 and R1. Therefore, the values of R1 and R1 (and therefore the values of T,R2, . . . , Rt, R2, . . . , RT , S1, . . . ST )
would not change, and so the output would stay the same. For the modified algorithm however, Theorem 2 implies that
f(GT \D) ≥ ( 12 −O(ϵ))f(Gopt), finishing the proof.
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