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Abstract

Sequence processing has long been a central area of machine learning research.
Recurrent neural nets have been successful in processing sequences for a number
of tasks; however, they are known to be both ineffective and computationally
expensive when applied to very long sequences. Compression-based methods have
demonstrated more robustness when processing such sequences — in particular,
an approach pairing the Lempel-Ziv Jaccard Distance (LZJD) with the k-Nearest
Neighbor algorithm has shown promise on long sequence problems (up to T =
200, 000, 000 steps) involving malware classification. Unfortunately, use of LZJD
is limited to discrete domains. To extend the benefits of LZJD to a continuous
domain, we investigate the effectiveness of a deep-learning analog of the algorithm,
the Lempel-Ziv Network. While we achieve successful proof of concept, we are
unable to improve meaningfully on the performance of a standard LSTM across a
variety of datasets and sequence processing tasks. In addition to presenting this
negative result, our work highlights the problem of sub-par baseline tuning in newer
research areas.

1 Introduction

Sequence processing has been an important focus of the machine learning community for decades.
Due to the ubiquity of sequential data, there is a need for effective algorithms to process this data for
a diverse set of tasks, including classification and time series analysis. Recurrent architectures such
as long short-term memory (LSTM) [1] have been successful in processing sequences for a number
of such tasks in recent years [2]. A known issue of recurrent networks, however, is that they tend to
be both ineffective [3] and computationally expensive [4] when applied to very long sequences.These
challenges have hindered efforts to learn long-term dependencies over sequential data with recurrent
neural nets (RNNs).

Compression-based methods have demonstrated more robustness in tackling the issues associated with
long sequences. The Lempel-Ziv Jaccard Distance (LZJD) [5] takes the Lempel-Ziv compression of
sequences before applying the Jaccard distance to the compressions. An approach pairing LZJD with
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the k-Nearest Neighbor algorithm has been shown to be both more accurate and orders of magnitude
faster than previous techniques for malware classification from byte sequences. However, LZJD is
limited by the fact that it is only applicable in a discrete domain; moreover LZJD is unable to learn
about or exploit the existence of similar compressions since it recognizes only exact matches. This is
not ideal for use in areas such as malware classification, where the underlying data is continually
evolving.

We explore the effectiveness of a deep-learning analog of LZJD, the Lempel-Ziv Network, at
extending LZJD’s benefits to the continuous domain. Despite establishing successful proof of
concept, we fail to consistently improve on the performance of a traditional LSTM over a collection
of datasets and sequence processing tasks.

The rest of the paper is organized as follows. In Section 2, we review LZ compression and various
types of associative memories. In Section 3, the novel Lempel-Ziv based recurrent layer is delineated.
Experimental details and results are presented in Section 4. Finally, we conclude in Section 5.

2 Background
Table 1: LZ compression on
two sequences.

Sequence Compression
aabbaba {a, ab, b, aba}
aabbba {a, ab, b, ba}LZ compression Lempel-Ziv Jaccard Distance (LZJD) [5] uses

Lempel-Ziv (LZ) compression to condense long sequences into
a compact representation consisting of a set of unique subsequences. LZ compression works by
keeping an external memory that store unique subsequences of the input sequence. To determine
which subsequences are placed into the external memory, we traverse the input sequence with a
sliding window. If the subsequence currently selected by the sliding window is already stored in the
external memory, then we increment the “end” index of the window and keep the “start” index fixed,
increasing the size of our window until the subsequence it identifies is not present in the external
memory. Once such a sequence is found, we insert it into the external memory and move the “start”
index of our sliding window to the current “end” index. We repeat this process to locate and insert
successive unique subsequences into the external memory until we have covered the length of the
input sequence.

This explication of LZ compression also reveals some of its weaknesses. Let A,B,C be sub-
sequences present in an external memory arising from LZ compression of a sequence. Let
A = {1.29, 7.89, 0.11}, B = {1.28, 7.91, 0.10}, and C = {5.01, 2.63, 2.17}. It is clear that A
and B are very similar to each other, and both are substantially different from C. Yet the LZ
compression algorithm is unable to express this nuance and treats all three subsequences as being
equally dissimilar, and so we end up with two nearly identical subsequences, A and B, in our external
memory. We hope that by combining the insights of LZJD with the functionality of an RNN, we can
give LZ compression the flexibility to handle similar subsequences while maintaining its effectiveness
as a tool for finding compact representations of long sequences.

Associative memories We require an associative memory to perform two essential functions -
we must be able to insert new items into the memory, and we must be able to query the memory
for information about items it already contains. This enables an associative memory to mimic the
function of LZJD’s external memory. By first querying the memory for information about prospective
inputs, we can be sure to input only items (i.e. subsequences or their representations) that have not
been previously inserted. Here we review the three types of associative memories with which we
experimented in our LZ Layer.

Hopfield Networks [6] are among the best known associative memories. Designed to store and retrieve
patterns, in response to a query q Hopfield networks will return the pattern in memory most similar to
q, or an average of similar patterns. In [7], Ramsauer et al. develop a modern Hopfield network for
continuous states, with exponential storage capacity. Because patterns can be retrieved from memory
in one update step, this Hopfield network is ideal for use in deep learning architectures. We utilize a
static version of their Hopfield layer to perform the insert and query functions of associative memory.

Vector Symbolic Architectures (VSA) use high-dimensional vectors to imitate symbolic processing.
VSAs are typically equipped with three crucial operations - a bundling operation, a binding operation,
and an unbinding operation [8]. The bundling operation takes in two input vectors and outputs a
third vector similar to both inputs, and is denoted by a simple addition sign. The binding operation
B is used to pair two vectors together, while the unbinding operation B+ undoes this pairing.
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For example, by assigning concepts such as “Age” and values such as “30” to high-dimensional
vectors, we could set John = B(Age, 30). Then, using the unbinding function, we could perform a
lookup, resulting in B+(John,Age) = 30. By combining binding and bundling, we can create more
complex representations, such as Jane = B(Age, 25) +B(Weight, 120). However, the accuracy of
the unbinding operation decreases as the number of terms bundled together increases. Maximizing
this accuracy as bundle size increases is a key consideration in the choice of binding operation.

With a few additional specifications, a VSA can act as an associative memory. First, we fix a “tag”
vector. Then, we bind every vector we want to insert into the associative memory to the tag vector.
Our memory then becomes the bundling of all the (vector, tag) pairs. To add a new vector v to the
memory, we simply bundle again: memorynew = memoryold + B(v, tag). To query the memory
for a vector q, we compute B+(memory, q) = t̂ag. If t̂ag ≈ tag, we conclude that q is stored in the
associative memory. On the contrary, if t̂ag 6≈ tag, we can assume q is not in the associative memory.

In this paper, we construct associative memories using a VSA. For the bundling operation, we use
simple element-wise addition. For the binding and unbinding operations, we experimented with the
two different paradigms discussed in the remainder of this section.

Vector-Derived Transformation Binding (VTB) defines the binding operation B as follows: for d a

perfect square, d′ = d1/2, we have B : Rd × Rd → Rd where B(x, y) = Vyx =

ñ
V ′y 0

0
. . .

ô
x and

Equation 1.

V ′y = d1/4


y1 y2 · · · yd′

y1+d′ y2+d′ · · · y2d′

...
...

. . .
...

y1+(d−d′) y2+(d−d′) · · · yd


(1)

The unbinding operation, the approximate in-
verse of B, is specified by B+(x, y) = V >y x.
In [9], Gosmann and Eliasmith found VTB to
be an improvement over traditional binding op-
erations such as circular convolution, as the as-
sociated unbinding operation retained a higher
accuracy even when many terms were bound together. Additionally, with VTB, increased bindings
had less effect on the vector norm, making VTB more suited for use in neural networks.

Holographic Reduced Representation (HRR) provides an alternative way of implementing symbolic
AI. Our HRR associative memory works very similarly to its VTB counterpart - only the binding
operation is changed.

HRR was first introduced by in [10]. Circular convolution and fast Fourier transforms were used
to define a binding operation , where s = a b = F−1(F(a) � F(b)). By defining an identity

function F(a+)F(a) = 1, an inverse a+ for a is established, where a+ = F−1
(

1
F(a)

)
. Then,

unbinding proceeds as follows: s a+ ≈ b.

This HRR, however, has some considerable limitations. First, the inverse a+ is numerically unstable,
necessitating the use of a pseudo-inverse, differing by the reciprocal of the complex magnitude, in
its place. Additionally, once more than ten bound pairs are bundled together, the accuracy of the
unbinding operation, used for querying in the context of associative memories, is severely diminished.
These concerns are mitigated in work done by [11] [12]; [11] defines a new complex unit magnitude
projection which, when applied to each input of the binding operation before binding takes place,
allows for accurate unbinding with up to 100× more bound vectors. Furthermore, by ensuring that all
the vectors used in the HRR are unitary, the projection guarantees that the true inverse is equivalent
to the numerically stable and computationally cheaper pseudo-inverse, eliminating one source of
error and providing major speed-ups during implementation. We make use of this improved HRR in
building our HRR Associative Memory.

3 The Lempel-Ziv Layer

RNN Cell

Query r Insert

Associative
Memory

Novelty
Score

Reset

RNN Cell
ĥt

r̂

p

ht

ht−1 ĥt+1

xt xt+1

Figure 1: Diagram of a Lempel-Ziv layer.

The LZ layer (see Figure 1)
begins with a standard RNN
Cell, which takes in the hid-
den state from the previous
time step (ht−1) and the in-
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put for the current time step (xt) and outputs a new preliminary hidden state (ĥt). In a traditional
RNN, we might stop here, and just consider ĥt to be ht, the hidden state which is passed along as
input when the next item in the sequence is processed by the RNN. However, in the LZ layer, we want
to perform the LZ digest-creating behavior on this preliminary hidden state ĥt, as the hidden state is
the neural representation of the subsequence of data that the traditional LZ compression algorithm
would analyze.

Thus, we query the associative memory to ask if we have seen ĥt before. The query returns a
reconstructed vector r̂, which we compare to a vector r — the tag vector if using a VTB or HRR
associative memory, or ĥt itself if using a Hopfield associative memory. The closer r̂ is to r, the more
similar ĥt is to something already stored in memory. We pass r̂ and r into a learnable bilinear layer,
combined with a sigmoid activation function and a Bernoulli layer, to determine if ĥt is sufficiently
dissimilar to anything we have seen before, i.e., if r̂ is sufficiently far from r, to insert ĥt into
the associative memory as a new value. We refer to this bilinear-sigmoid-Bernoulli combination
as a novelty score, and it returns p = 1 if it judges ĥt to be new enough to insert, and p = 0
otherwise. 1 Because the novelty score is learnable, we theorize that it will allow our LZ Layer to treat
similar, though not identical, subsequence representations differently than it treats vastly different
subsequences, avoiding the problem with traditional LZ compression described in Section 2. Once p

is computed, p ∗ ĥt is inserted into the associative memory. This is the neural equivalent of inserting
unseen subsequences into the external memory during LZ compression.

As the last step of the neural layer, we set ht = (1 − p) ∗ ĥt. Setting ht determines the length of
the subsequence to consider next for insertion into the associative memory, which in traditional LZ
compression is done by adjusting the boundaries of the sliding window that passes over the input
sequence. If we have just inserted ĥt into the associative memory (p = 1), that is an indication
that we have identified a unique subsequence of the input. Thus, when looking for the next unique
subsequence, we do not wish to consider any of the previous data points in the time series. In LZ
compression, we set the starting index of the sliding window to the current endpoint. In the neural
model, this corresponds to clearing out the hidden state, and setting ht = 0, effectively erasing any
knowledge of prior steps in the sequence. However, if we have not inserted ĥt (i.e. p = 0), that
means our current subsequence is not unique, so we would like to extend the subsequence by one
time-step and evaluate its novelty again. In that case, we do not reset ht, and let ht = ĥt. Once we
determine ht, we are ready to process the next step in the time series. After processing the entire
sequence, we can return a list of all the ĥt’s, with a corresponding mask of p’s indicating which ĥt’s
were significant enough to input into the associative memory. We can also return the associative
memory itself, which will give a different representation of this same information.

4 Experiments and results
Table 2: Sample input for the addition problem:
the desired output is 0.56+0.49=1.05.

0.33 0.56 0.78 0.21 0.49 0.83
0 1 0 0 1 0Addition problem We began by testing our LZ

layer, implemented in PyTorch, on the addition
problem, a classic example used to assess RNN performance. The input to the addition problem
is two sequences of equal length. The first sequence contains real numbers between zero and one,
uniformly sampled. The second sequence, considered an indicator sequence, is all zeroes except
for two randomly chosen entries, one in the first half of the sequence and one in the second half of
the sequence, which are ones. The desired output of the RNN is the sum of the two entries in the
first sequence that are selected by the indicator sequence (see Table 2). RNNs are evaluated against
a baseline model which predicts a sum of 1, regardless of the input sequence; this model has an
expected mean squared error (MSE) of 0.167. Our setup of the addition problem mirrored as best as
possible that of [13].

First, we present results from an LZ Layer with a Hopfield Network Associative Memory and LSTM
RNN cell (LZHOP). For a sequence length of 200, we set a hidden size of 128 and a batch size of
256. For a sequence length of 400 we keep the same hidden size, but decrease the batch size to 50
due to memory constraints. For all experiments, we use the RMSProp optimizer with a learning rate

1By removing the final Bernoulli layer, we can make the novelty score p a continuous value between 0 and 1,
which we can interpret as the probability that ĥt has not previously been inserted into the associative memory.
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of 10−3 and a decay rate of 0.9, and our model contains only one LZ Layer. We include results from
a traditional LSTM, trained with the same parameters, as a point of comparison. In Figure 2, we see
that the LZHOP Layer reaches final error rates comparable to those of an LSTM, and can be trained
in fewer epochs. This speed advantage over an LSTM grows as the sequence length increases (see
Appendix A).
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Figure 2: Addition problem results — LZ Layer
with Hopfield Associative Memory.

Although the initial results from the LZHOP
Layer were very promising, this model was
not scalable to longer sequence lengths because
the Hopfield Network associative memory had
quadratic run-time behavior. We next turned our
attention to associative models requiring less
computational overhead, with the hope that they
would replicate the improvements achieved in
the LZHOP Layer. We began with the LZ Layer
with a VTB Associative Memory and LSTM
RNN cell (LZVTB). In each experiment, we use
a batch size of 50, with a hidden size of 256, as

the VTB memory requires that the hidden size be a perfect square. Again, we use an RMSProp
optimizer with a learning rate of 10−3 and a decay rate of 0.9 and compare our results to a traditional
LSTM with the same parameters. In Figure 3, we see that the LZVTB Layer also reaches error
rates comparable to those of an LSTM, and is still able to train in fewer epochs. However, there are
occasional dramatic spikes in the loss, indicating undesirable unstable behavior in the model. We
believe this behavior occurred because not every vector inserted into the VTB Associative Memory
was orthogonal.
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Figure 3: Addition problem results — LZ
Layer with VTB Associative Memory
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Figure 4: Addition problem results — LZ
Layer with HRR Associative Memory

To address some of the stability issues with the VTB Associative Memory, we turned to a new,
HRR-based associative memory. We used the same parameters as in the LZHOP experiments, to
enable easy comparison of the results, and found that an LZ Layer with an HRR Associative Memory
and LSTM RNN cell (LZHRR) was able to replicate the stability of the LZHOP model while being
less computationally expensive and requiring less memory. In addition to approaching comparable
error rates, the LZHRR model also required fewer epochs to train than the LZHOP model (see Figure
4). This evidence persuaded us that the LZHRR model would be a viable approach to many sequence
processing problems.

UCR Time Series Archive The UCR Time Series Archive [14] is a collection of 128 datasets for
time series classification problems created to ameliorate the phenomenon of cherry-picking datasets
that yield good results in ML research. We trained an LZHRR model, along with an LSTM baseline
model, on every single dataset in the UCR Archive, and the full results are shown in Table 3 in
Appendix A. For both the LZ Layer and the LSTM, we chose a hidden size of 256. The models
were trained using the Adam optimizer with a learning rate of 10−3 for 500 epochs. For the LZ
Layer, we additionally tested the performance with various bias b initializations over the Bilinear
layer, where b ∈ {0, 1,−1}. Figure 5 shows the differences in accuracy between the LZ Layer and
the LSTM on the UCR datasets. Overall, the LZ Layer outperforms a traditional LSTM in 46.88% of
the datasets, but there are instances in which it significantly underperforms the LSTM. Moreover, to
run the UCR trials, we implemented our LZ Layer and LSTM in both PyTorch and JAX, the deep
learning library from Google. Implementation in JAX dramatically improved the performance of both
models in terms of computational time and accuracy. The accuracy improvement is shown in Figure
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(b) Bias: -1
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Figure 5: Improvement by an LZHRR Layer
over an LSTM with different bias initializa-
tions. Points above 100% indicate datasets on
which the LZ Layer outperformed the LSTM.
In (a) improvement is achieved in 44.53% of
the datasets, in (b) 42.19% of the datasets,
and in (c) 35.94% of the datasets. Overall the
performance in 46.88% of the datasets is im-
proved by the LZLayer. The size of the circle
is proportional to the amount of improvement.

10 in Appendix A — LSTM accuracy is improved on 69.53% of datasets, and LZ Layer accuracy is
improved on 79.68% of datasets.

PS-MNIST Permuted Sequential MNIST (PS-MNIST) [15] is another benchmark for comparing
recurrent networks, in which the 784 pixels of the MNIST images are presented sequentially to an
RNN following the application of a fixed permutation. We tested the LZHRR layer on the PS-MNIST
dataset and compared its performance to that of an LSTM and the Shuffle RNN (SRNN) from [13].
All the recurrent networks were trained with a hidden size of 256 and a batch size of 64. The models
were optimized using the Adam optimizer with a learning rate of 10−4 for 300 epochs. Figure
6 shows the accuracy curve on the test set of all three models. The performance of LZLayer on
PS-MNIST is better than SRNN and close to LSTM.

5 Conclusions
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Figure 6: Accuracy curve of the LZLayer,
LSTM, and SRNN on the test set of PS-
MNIST.

This paper proposes a novel RNN for processing
long sequences, where we pair a traditional LSTM
cell with an associative memory to mimic the process
of LZ compression. We experimented with Hopfield
Network, VTB, and HRR associative memories and
ultimately settled on HRR as providing the best com-
bination of stability, speed, and memory usage. After
running our LZHRR layer on all 128 datasets of the
UCR Time Series Archive, we found that the LZ network generally underperforms a traditional
LSTM, regardless of sequence length. We hypothesize that this is because the HRR process is too
noisy to replicate the function of the external memory in LZ compression faithfully. However, more
robust associative memories come with an additional set of runtime and memory challenges, as hinted
at by our experiments with Hopfield associative memories.

To improve the speed of the LZ Layer, we transitioned its code from PyTorch to JAX. To facilitate a
fair comparison, we did the same for the LSTM baselines, which had been developed in PyTorch by
other researchers in this area. We were surprised to find that our re-implementation improved both
the runtime and the accuracy of the original baseline models. While our baselines where selected
from respectable, published work [13], our results highlight that using baselines naively from prior
works can lead our evaluations and conclusions astray. We hypothesize that this may be in part due to
the niceness of the research area, as fewer people have spent time tuning these baselines to ensure
robust performance. This mimics problems recently seen in other areas of ML reproducibility, where
we have observed that improving the baselines mitigates any benefits of the new technique, resulting
in “false discoveries” [16, 17, 18, 19] and increasing the effort required to replicate results [20, 21].
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A Supplemental Results

A.1 Addition problem

0 200 400 600 800 1000
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

 L
o

ss

MSE Addition Problem, Length 200

LSTM

LZLayer + Hopfield

0 200 400 600 800 1000
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

 L
o

ss

MSE Addition Problem, Length 400

LSTM

LZLayer + Hopfield

Figure 7: Addition problem results — LZ Layer with Hopfield Associative Memory.
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Figure 8: Addition problem results — LZ Layer with VTB Associative Memory.
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Figure 9: Addition problem results — LZ Layer with HRR Associative Memory.
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A.2 UCR Time Series Archive

Table 3: UCR Dataset

Dataset LSTM
LZLayer
b = 0

LZLayer
b = 1

LZLayer
b = −1 Dataset LSTM

LZLayer
b = 0

LZLayer
b = 1

LZLayer
b = −1

ACSF1 55.0 44.0 43.0 51.0 Adiac 72.38 64.45 51.92 70.08
AllGestureWiimoteX 41.0 41.43 40.14 40.71 AllGestureWiimoteY 53.29 53.29 50.14 52.57
AllGestureWiimoteZ 44.57 41.71 38.57 43.57 ArrowHead 78.86 80.57 81.14 83.43

Beef 90.0 83.33 83.33 83.33 BeetleFly 85.0 85.0 90.0 85.0
BirdChicken 70.0 70.0 70.0 70.0 BME 79.33 81.33 81.33 80.0

Car 85.0 83.33 78.33 81.67 CBF 87.44 88.44 87.89 87.78
Chinatown 97.38 97.38 97.67 97.08 ChlorineConcentration 83.33 74.74 66.72 80.26

CinCECGTorso 81.96 83.12 82.25 83.48 Coffee 100.0 100.0 100.0 100.0
Computers 58.4 57.2 56.8 56.8 CricketX 56.15 53.85 47.44 55.38
CricketY 60.26 57.18 56.15 59.23 CricketZ 58.21 55.13 50.77 56.92

Crop 72.1 4.17 69.71 73.16 DiatomSizeReduction 95.75 95.42 95.75 96.41
DistalPhalanxOutlineAgeGroup 73.38 70.5 71.94 70.5 DistalPhalanxOutlineCorrect 71.38 73.55 73.91 72.83

DistalPhalanxTW 64.75 65.47 66.19 69.06 DodgerLoopDay 56.25 62.5 61.25 55.0
DodgerLoopGame 83.33 84.06 84.78 84.78 DodgerLoopWeekend 98.55 98.55 98.55 97.1

Earthquakes 67.63 66.19 66.91 64.75 ECG200 90.0 90.0 89.0 90.0
ECG5000 93.2 93.16 92.82 93.13 ECGFiveDays 96.05 96.05 96.52 96.17

ElectricDevices 49.7 54.69 53.56 53.4 EOGHorizontalSignal 43.37 40.06 37.29 43.65
EOGVerticalSignal 27.07 8.29 25.41 8.29 EthanolLevel 68.6 25.2 25.2 25.2

FaceAll 81.83 79.23 78.82 80.83 FaceFour 84.09 86.36 85.23 85.23
FacesUCR 79.85 79.37 79.07 80.2 FiftyWords 70.99 66.15 62.42 69.89

Fish 85.14 86.86 87.43 86.29 FordA 78.94 74.17 74.32 72.88
FordB 70.62 68.4 68.77 64.2 FreezerRegularTrain 93.19 93.16 92.98 93.16

FreezerSmallTrain 69.58 68.74 68.6 68.67 Fungi 85.48 86.02 85.48 85.48
GestureMidAirD1 53.08 54.62 53.08 55.38 GestureMidAirD2 52.31 53.85 55.38 54.62
GestureMidAirD3 24.62 19.23 15.38 19.23 GesturePebbleZ1 85.47 84.3 86.05 84.88
GesturePebbleZ2 75.95 72.78 72.78 72.78 GunPoint 94.67 94.0 94.0 94.0

GunPointAgeSpan 94.3 89.24 87.97 90.82 GunPointMaleVersusFemale 99.68 99.37 99.05 99.05
GunPointOldVersusYoung 100.0 100.0 100.0 100.0 Ham 66.67 67.62 66.67 67.62

HandOutlines 91.89 35.95 35.95 35.95 Haptics 43.51 42.86 41.56 44.81
Herring 64.06 65.62 59.38 62.5 HouseTwenty 73.11 72.27 72.27 73.95

InlineSkate 34.55 33.64 29.82 34.73 InsectEPGRegularTrain 100.0 100.0 100.0 100.0
InsectEPGSmallTrain 100.0 100.0 99.6 100.0 InsectWingbeatSound 63.08 63.43 62.93 62.93
ItalyPowerDemand 95.53 96.4 97.08 95.72 LargeKitchenAppliances 43.2 43.2 42.93 42.4

Lightning2 67.21 68.85 70.49 67.21 Lightning7 64.38 65.75 64.38 63.01
Mallat 92.71 92.2 92.71 92.03 Meat 91.67 81.67 65.0 90.0

MedicalImages 70.66 71.32 68.55 70.39 MelbournePedestrian 92.78 90.45 88.56 91.84
MiddlePhalanxOutlineAgeGroup 52.6 55.84 61.04 58.44 MiddlePhalanxOutlineCorrect 76.29 81.44 78.69 80.41

MiddlePhalanxTW 53.25 56.49 54.55 50.65 MixedShapesRegularTrain 90.68 88.21 88.74 88.91
MixedShapesSmallTrain 84.0 84.16 83.22 84.54 MoteStrain 85.46 86.42 86.9 87.06

NonInvasiveFetalECGThorax1 92.77 90.94 87.18 90.64 NonInvasiveFetalECGThorax2 92.72 90.64 87.33 92.52
OliveOil 76.67 40.0 40.0 56.67 OSULeaf 53.72 51.24 53.72 52.07

PhalangesOutlinesCorrect 79.14 75.99 75.29 78.32 Phoneme 10.07 9.97 8.97 10.02
PickupGestureWiimoteZ 68.0 68.0 66.0 62.0 PigAirwayPressure 10.1 10.1 10.1 8.17

PigArtPressure 21.63 20.19 22.12 21.15 PigCVP 11.06 11.06 11.54 12.02
PLAID 44.13 43.58 41.53 44.69 Plane 98.1 98.1 96.19 98.1

PowerCons 100.0 100.0 100.0 100.0 ProximalPhalanxOutlineAgeGroup 80.49 85.37 83.9 82.93
ProximalPhalanxOutlineCorrect 85.22 81.44 81.79 82.47 ProximalPhalanxTW 80.0 81.95 79.02 80.0

RefrigerationDevices 38.93 35.2 36.27 38.67 Rock 60.0 50.0 44.0 54.0
ScreenType 38.4 39.73 42.93 38.13 SemgHandGenderCh2 90.17 90.17 90.17 88.67

SemgHandMovementCh2 67.56 58.67 62.22 67.33 SemgHandSubjectCh2 89.33 86.44 87.11 88.44
ShakeGestureWiimoteZ 56.0 64.0 54.0 60.0 ShapeletSim 49.44 47.78 50.0 56.11

ShapesAll 75.0 73.0 68.5 72.83 SmallKitchenAppliances 37.07 35.73 38.13 37.33
SmoothSubspace 90.0 89.33 88.0 89.33 SonyAIBORobotSurface1 72.55 71.71 71.05 71.55

SonyAIBORobotSurface2 82.9 82.69 82.79 82.9 StarLightCurves 91.68 93.19 90.0 92.98
Strawberry 96.22 96.49 35.68 95.95 SwedishLeaf 84.96 7.36 81.76 82.72
Symbols 87.04 86.33 86.33 86.33 SyntheticControl 92.0 90.0 89.33 91.0

ToeSegmentation1 58.77 59.65 59.65 61.4 ToeSegmentation2 76.92 77.69 76.15 76.92
Trace 77.0 77.0 64.0 77.0 TwoLeadECG 90.43 84.64 82.18 85.34

TwoPatterns 92.48 91.73 90.42 92.38 UMD 92.36 94.44 95.14 94.44
UWaveGestureLibraryAll 95.42 94.78 94.03 95.06 UWaveGestureLibraryX 76.35 74.4 72.84 74.96
UWaveGestureLibraryY 69.1 67.11 65.69 68.43 UWaveGestureLibraryZ 69.71 66.78 66.08 67.53

Wafer 99.61 99.56 99.56 99.56 Wine 75.93 70.37 48.15 72.22
WordSynonyms 58.46 59.09 55.96 59.09 Worms 51.95 49.35 42.86 51.95
WormsTwoClass 59.74 63.64 61.04 66.23 Yoga 84.87 83.7 83.87 85.1
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A.3 JAX v PyTorch
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) Improvement by JAX over PyTorch in LSTM
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Figure 10: Accuracy improvement from JAX over PyTorch implementation in both LSTM (a) and LZLayer (b).
Points above 100% indicate datasets on which the implementation in JAX outperformed the implementation in
PyTorch. The accuracy of the LSTM is improved in 69.53% of the datasets and the accuracy of the LZ Layer is
improved in 79.68% of the datasets. The size of the circle is proportional to the amount of improvement.

A.4 Memory copy problem

The LZHRR layer, implemented in PyTorch, was also tested on the memory copy problem. Though
the results were not particularly revealing, we include them here in the appendix for completeness.

The copy problem tests an RNN’s ability to memorize the first N items in a long sequence. As input,
the RNN receives a sequence of N significant items, drawn from a fixed set M of symbols, followed
by T − 1 “blank” inputs, a special delimiter symbol, and N more blank items. The desired output
is N + T blank symbols, followed by the N original significant items (see Table 4). We compare
to a baseline model which outputs a constant sequence after it sees the delimiter symbol; this base
solution has a cross-entropy of N lnM

T+2N .

In conjunction with [13], we chose parameters of N = 10, M = 8, a batch size of 20, and a hidden
size of 128. We tested T = 100, 200, 300, 500, 1000, and 2000, training each model for 1000 epochs.
Again, we use the RMSProp optimizer with a learning rate of 10−3 and a decay rate of 0.9, and a
model with only one LZ Layer. We also include results from a traditional LSTM, trained with the
same parameters, for an additional point of comparison.

For every choice of T , the LSTM outperformed the LZ Layer. However, as the sequence length
increased, the gap between the performance of the LZ Layer and that of the LSTM shrunk. Interest-
ingly, this was not due to LSTM performance deteriorating as the sequences lengthened but rather
because the LZ Layer improved significantly.

Table 4: Sample input and output for the copy problem with N = 5, M = 3, T = 10. ? denotes a
special delimiter symbol; in practice, it can be a digit not used in the memorization sequence.

1 2 3 2 1 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 2 1
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Figure 11: Cross entropy losses on the memory copy problem with varying sequence lengths for an
LZ Layer with HRR Associative Memory (left) and an LSTM (right).
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