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Abstract: Recent breakthroughs have used deep learning to exploit evolutionary information in 

multiple sequence alignments (MSAs) to accurately predict protein structures. However, MSAs of 

homologous proteins are not always available, such as with orphan proteins or fast-evolving 

proteins like antibodies, and a protein typically folds in a natural setting from its primary amino 

acid sequence into its three-dimensional structure, suggesting that evolutionary information and 

MSAs should not be necessary to predict a protein’s folded form. Here, we introduce OmegaFold, 

the first computational method to successfully predict high-resolution protein structure from a 

single primary sequence alone. Using a new combination of a protein language model that allows 

us to make predictions from single sequences and a geometry-inspired transformer model trained 

on protein structures, OmegaFold outperforms RoseTTAFold and achieves similar prediction 

accuracy to AlphaFold2 on recently released structures. OmegaFold enables accurate predictions 

on orphan proteins that do not belong to any functionally characterized protein family and 

antibodies that tend to have noisy MSAs due to fast evolution. Our study fills a much-encountered 

gap in structure prediction and brings us a step closer to understanding protein folding in nature. 
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Main Text:  

Half a century after Anfinsen demonstrated a connection between a protein’s amino acid sequence 

and folded three-dimensional conformation, scientists have built deep learning models that finally 

can predict high-resolution protein structures. The recent success of DeepMind’s AlphaFold2 (1) 

and RoseTTAFold (2) in protein structure prediction has mainly been based on advances in deep 

learning, especially transformer-based models (3), and the accumulation of large databases of 

protein sequences and structures that enable effective training of large models. Both these methods 

need as input evolutionary data in the form of multiple sequence alignments (MSAs) of 

homologous sequences aligned to the primary one, a technique which has been a staple of structure 

prediction methods (1, 2, 4–15). By extracting residue-residue covariances from these MSAs, these 

algorithms have been shown to greatly outperform previous approaches, including physics-based 

models, homology-based methods and convolutional neural networks (16) and predict structures 

with atomic-level accuracy for the first time in history. Furthermore, many methods have since 

built upon AlphaFold2 for other prediction tasks in structural biology, including protein-protein 

interactions, disordered regions, and binding sites (17–20).  However, prediction accuracies for all 

these advanced methods drop sharply in the absence of a multitude of sequence homologs from 

which to construct MSAs. 

Instead, we sought to train an algorithm that learns to model protein three-dimensional 

structure without relying on MSA preprocessing (i.e., it is alignment-free). We hypothesize that 

akin to extracting grammatical structure from large collections of natural language corpuses, 

predicting protein structure from protein sequence databases should be possible without having to 

rely on aligned MSAs. The use of deep language models has recently led to major progress in 

language modeling (21) as well as elucidating protein properties (22–25), in protein-protein 

interaction prediction (26, 27), and in viral escape prediction (28) from sequence data. We 

reasoned that the transformer’s attention mechanism used to model long-range relationships in 

natural language sequences should also be applicable to extracting correlations from evolutionary 

relationships present in protein sequences (Fig 1A). In contrast to natural languages, proteins are 

more than merely strings; they are physical chains of amino acids that fold into three-dimensional 

structures. Thus, to model 3D protein structures, we were motivated to incorporate geometric 

intuition into the transformer architecture design.   
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We propose OmegaFold, to our knowledge the first computational method to predict the 

structure of a protein from its primary sequence alone with high accuracy, using a new combination 

of a large pretrained language model for sequence modeling and a geometry-inspired transformer 

model for structure prediction (Fig. 1A). Notably, OmegaFold requires only a single amino-acid 

sequence for protein structure prediction, does not rely on MSAs nor known structures as templates, 

and scales roughly ten-times faster with comparable or better accuracy to MSA-based methods 

such as AlphaFold2 and RoseTTAFold. We demonstrate OmegaFold’s ability to more accurately 

predict the structures of orphan proteins and antibodies, for which evolutionary information is 

scarce or noisy, respectively (Fig. 2).  

 

The OmegaFold model 

The overall model of OmegaFold is conceptually inspired by recent advances in language 

models for natural language processing coupled with deep neural networks used in AlphaFold2. 

We introduce OmegaPLM, a deep transformer-based protein language model (PLM), trained on a 

large collection of unaligned and unlabeled protein sequences, to learn single- and pairwise-residue 

embeddings (or representations) as powerful features that model the distribution of sequences;  

OmegaPLM is able to capture structural and functional information encoded in the amino-acid 

sequences through the embeddings. These are then fed into Geoformer, a new geometry-inspired 

transformer neural network, to further distill the structural and physical pairwise relationships 

between amino acids. Lastly, a structural module predicts the 3D coordinates of all heavy atoms 

(Fig. 1A; Materials and Methods).  

 The key idea behind Geoformer is to make the embeddings from our language model more 

geometrically consistent—amino acid node and pairwise embeddings generate consistent 

coordinates and distance predictions when projected to 3D. While similar in principle to the 

Evoformer module in AlphaFold2 which applied attention mechanisms for information integration, 

ours mainly focuses on vector geometry as opposed to evolutionary variation. It consists of a deep 

stack of 50 Geoformer layers, which is inspired by the fundamental theorem of vector calculus in 

geometry (Fig. 3B). Each Geoformer layer encodes information in node representations (𝑠!) for 

residue 𝑖 and pairwise representations (𝑝!") between residues 𝑖 and 𝑗 by enforcing their geometric 

consistency. Intuitively, we can view the representation of residue 𝑖 in a high-dimensional vector 
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space, and each pairwise representation 𝑝!" is a vector pointing from residue 𝑖 to residue 𝑗, which 

will be used for predicting three-dimensional coordinates and distances. Ideally, coordinates and 

pairwise distances predicted from 𝑠! and 𝑝!" should satisfy properties of Euclidean geometry, such 

as triangular inequality. However, these properties may not always hold if the representation 

vectors and predictions are output from neural networks. Based on these geometric insights, we 

designed a geometry-inspired nonlinear attention module to sequentially update 𝑠!  and 𝑝!" , 

attempting to make them consistent. By stacking Geoformer layers upon the PLM, OmegaFold 

captures the geometry of a protein structure with representations which are then projected onto 3D 

space with an 8-layer structure module (Fig. 1A).  

Intrigued by AlphaFold2’s training, we trained the entire OmegaFold model, with several 

structural objectives, including contact prediction, Frame Aligned Point Error (FAPE) loss (1)—a 

geometrically restricted version of root-mean-squared deviation (RMSD) of relative atomic 

positions—and torsion angle prediction. The full model was jointly trained on ~110,000 single-

chain structures from the Protein Databank PDB (29–31) deposited before 2021 and all single 

domains from the SCOP v1.75 database with at most 40% sequence identity cutoff (32–34). We 

used later-released structures for validation and hyperparameter selection. We also excluded 

protein structures that appeared in our test sets as well as their homologs up to 40% sequence 

identity during training. 

 

OmegaPLM outperforms vanilla language models 

As a precursory assessment of our language module, we applied three strategies for 

masking out residues and trained to optimize the standard Bidirectional Encoder Representations 

from Transformers (BERT)-style objective (21) to predict masked residues from the rest of the 

sequence using a cross-entropy loss function (Fig. 3A) mask out a random 15% of residues in 

protein sequences, 2) mask out random consecutive subsequences of 5-8 residues, and 3) mask out 

half of the entire protein sequence. For convenience, we chose the same hyperparameters as those 

used in the popular transformer network ESM-1b (23), including the number of layers and the 

number of heads but with a more lightweight implementation of the attention module (35). After 

pretraining on sequences in UniRef50 (dated at 2021/04) (36), our PLM demonstrates improved 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.21.500999doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.21.500999
http://creativecommons.org/licenses/by-nc-nd/4.0/


July 20th, 2022 
 

language modeling performance over vanilla transformer-based networks as well as contact 

prediction, with much smaller memory requirements (Supplementary Figures S1 & Table S1).  

 

OmegaFold performs well on CASP and CAMEO benchmark datasets 

We assessed OmegaFold’s ability to predict protein structures by testing on two 

benchmarks: a CASP set with 29 of the most challenging proteins from the free-modeling category 

in two recent CASP experiments (37), and a CAMEO dataset with 146 of the most recent single-

chain proteins (appearing in the first six months of the 2022 CAMEO evaluation), spanning a wide 

range of prediction difficulty levels. For comparison, we computed predictions as compared to 

AlphaFold2 and RoseTTAFold run in their default mode with MSAs as input. Remarkably, the 

structures predicted by OmegaFold, with a single sequence as input, were as accurate as the 

advanced MSA-based methods (Fig. 1B).  On the CAMEO dataset, OmegaFold structures had a 

mean local-distance difference test (LDDT) score of 0.82, with comparable accuracy to 

RoseTTAFold structures (0.75 mean LDDT score) and AlphaFold2 structures (0.86 mean LDDT 

score) predicted from MSAs. (LDDTs are a commonly used metric for structure evaluation.) On 

the more challenging CASP dataset, OmegaFold structures were also quite accurate with an 

average TM-score—a common metric for assessing the topological similarity of protein 

structures—of 0.79, slightly lower than that of RoseTTAFold structures (0.81 mean TM-score) 

and equivalent to AlphaFold2 structures (0.79 mean TM-score).  

 

OmegaFold outperforms RoseTTAFold and AlphaFold2 on single-sequence inputs 

We also tested OmegaFold’s relative performance using the single-sequence versions of 

AlphaFold2 and RoseTTAFold on these two datasets. When only a single sequence was given as 

input, their predicted structures were statistically highly inferior to those of OmegaFold (Fig. 1B), 

indicating that the performance of the MSA-based methods drops when evolutionary information 

is not given.   

 

OmegaFold enables accurate predictions on orphan proteins and antibodies 
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We further sought to assess OmegaFold’s performance in predicting challenging structures 

of recently released antibody and orphan proteins from the PDB, for which other methods perform 

poorly. Antibody complementarity-determining regions (CDRs) are the most diverse and variable 

parts of the molecules (38, 39). Because of antibodies’ fast-evolving nature, MSAs on CDRs, 

especially in the CDR3 loops on the heavy chain of the antibodies which—despite being highly 

enriched in amino acid composition— are extremely noisy.  As a result, methods like AlphaFold2 

are unreliable and have very low predicted LDDT (pLDDT) scores (Fig. 2A). Unlike antibodies, 

orphan proteins, by definition, lack sequence and structure homology information, and thus are 

also difficult to predict by MSA-based methods (Fig. 2B, Materials and Methods). On both 

antibody loops and orphan proteins, OmegaFold achieves much higher statistical prediction 

accuracy, in contrast to AlphaFold2, likely due to the advantages of its single sequence-based 

prediction method. 

 

Towards interpretability of OmegaFold 

We sought to understand how the various components of OmegaFold contributed to 

prediction. To test whether Geoformer was boosting the PLM’s performance, we calculated the 

distance (or contact) maps using embeddings from OmegaPLM and each Geoformer layer; and 

computed the evolution of contact accuracy and geometric inconsistency as the number of 

Geoformer layers increased (Fig. 3C & D). We found that the contacts and distances predicted by 

OmegaPLM alone are reasonably accurate. Within the first 20 Geoformer layers we found that the 

geometric inconsistency, measured by violations of the distance triangle inequality, is greatly 

reduced, and the prediction accuracy of contact pairs is much improved.  The remaining Geoformer 

layers appear to focus on reducing the geometric inconsistency until the prediction accuracy 

plateaus. We also demonstrated through ablation studies on component parts of OmegaFold, that 

the components contribute to the performance of the overall model (Table S3). Furthermore, when 

we retrained an AlphaFold2 model with only single sequences as input, we found that it was not 

able to match the prediction quality of OmegaFold. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.21.500999doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.21.500999
http://creativecommons.org/licenses/by-nc-nd/4.0/


July 20th, 2022 
 

OmegaFold improves runtimes by an order of magnitude 

Since MSAs are no longer required for OmegaFold to achieve high-resolution performance, 

its overall runtime is much faster than AlphaFold2, as well as the latest highly-optimized 

ColabFold-AF2 (40) (Fig1. C).  

 In summary, our study leverages a protein language model trained on unaligned sequences 

to predict protein structures from single amino acid sequences alone. We give further evidence 

that such evolutionary information may well be encoded in primary sequences, which can then be 

used as features for structure prediction. As more sequencing data accumulates to feed MSA-based 

methods, OmegaFold fills the interim gap, as well as importantly predicts from sequences for 

which MSAs are difficult to construct. 

We expect that our conceptual advance and further algorithmic development along these 

lines will continue to enable a wide spectrum of protein science applications, such as multi-state 

conformational sampling, where AlphaFold2 has had some success to regions for which 

predictions are challenging (41), variant effect prediction, protein-protein interactions and protein 

docking.  
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Fig. 1 Overview of OmegaFold and Results. (A) Model architecture of OmegaFold.  The primary 

protein sequence is first fed into a pretrained protein language model (OmegaPLM) to obtain 

residue-level node embeddings and residue-residue pairwise embeddings. A stack of Geoformer 

layers then iteratively updates these embeddings to improve their geometric consistency. Lastly, a 

structure module predicts the 3D protein structures from the final embeddings. The predicted 

structure and the embeddings could be fed again as input into another cycle through a recycling 

procedure to predict a more refined structure. (B) Evaluations on recent CAMEO an CASP targets. 

Our predictions (blue) for 7DKI:A, 7EBQ:A, 7ED6:A from CAMEO and T1005, T1056 from 

CASP are highly accurate according to the experimental structures (green). Figures on the right 

show held-out test results on 146 CAMEO targets and 29 challenging CASP targets. OmegaFold 

significantly outperforms AlphaFold2 and RoseTTAFold when only single sequences are provided 
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as input on both standard CAMEO Local Distance Difference Tests (LDDTs) and CASP TM-

scores; OmegaFold performs comparably to AlphaFold2 and RoseTTAFold on the CASP and 

CAMEO test cases when the standard MSAs are used as input. (C) Runtime analysis. OmegaFold 

is significantly faster than AlphaFold2 (ColabFold version) on single-chain proteins with typical 

lengths of around 250, 500 and 1000 residues. ColabFold was used to further decrease the runtimes 

of the MSA search time (pink) and model inference time (red). 
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Fig. 2 OmegaFold performs significantly better than AlphaFold2 in modeling antibody CDR 

H3 regions and predicting structures of orphan proteins. (A) Antibody CDRH3 regions. 

OmegaFold predictions are colored blue; AlphaFold2 predictions,red; and native experimental 

structures, green. CDR H3 regions are highlighted in plots. On CDR3 of nanobody 7QJI and 

CDRH3 loops of antibodies 7KPJ, 7PHU, 7SJS, root mean square distances (RMSDs) of 

OmegaFold loop predictions are significantly lower than AlphaFold2 predictions. The scatter plot 

depicts the comparison on 33 recently released nanobody and antibody proteins with high-

resolution experimental structures. Overall, OmegaFold predictions (RMSD=2.12Å) are 

significantly better than AlphaFold2 predictions (RMSD=2.98 Å), with a P-value of 0.0017. (B) 

Orphan proteins. On orphan proteins 7CG5 (sensor domain of RsgI4), 7F7P (anti-CRISPR, 

AcrIIC4), 7S5L (Cembrene A synthase) and 7WRK (hypothetical protein TTHA1873), TM-

scores—a common metric for assessing the topological similarity of protein structures—of 

OmegaFold predictions are significantly higher than AlphaFold2 predictions. The scatter plot 

shows comparisons on 19 recently released orphan proteins with no homologous sequences 

identified. Overall, OmegaFold predictions (TM-score=0.73) are better than AlphaFold2 

predictions (TM-score=0.60), with a P-value of 0.0238. 
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Fig. 3 Geoformer refines the contact map predicted by protein language model (OmegaPLM) 

through geometric smoothing. (A) OmegaPLM model is pretrained by per-residue mask loss, 

per-motif mask loss and subsequence mask loss on unaligned protein sequences. (B) Geoformer 

layers iteratively smooth node and pairwise embeddings and reduce geometric inconsistency 

among them. Initially, node and pairwise embeddings generated by OmegaPLM reside in a latent 

space with geometric inconsistency (red). In each Geoformer layer, these embeddings are updated 

iteratively to refine the geometric inconsistency: each node embedding was updated with related 

pairwise embeddings, and each pairwise embedding was updated by triangular consistency of 

pairwise embeddings.  (C) Geoformer layers improve geometry of contact predictions. Top L, Top 

L/2, Top L/5 accuracies denote contact prediction precision among top predicted contact pairs. 

Inconsistency is defined as the percentage of predicted distance triples {ij, jk, ik} that violate the 

triangular inequality. It is clear to see that the prediction accuracy improves while inconsistency 

drops with stacked Geoformer layers. (D) Visualization of contact maps. The contact maps 

predicted in the initial, 20th and last Geoformer layer for protein 7EAD_A from the CAMEO 

dataset. In the first 20 layers, Geoformer mainly focuses on resolving the triangular inconsistency, 

which decreases from 0.638 to 0.160. In the last 30 layers, Geoformer mainly refines the details of 

contact prediction, with TopL accuracy increasing from 0.578 to 0.704.  
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1 OmegaPLM: Pre-trained Protein Language Model

Unsupervised pre-trained models have achieved tremendous success in research areas such as natural
language processing (1–4), computer vision (5–8) and single cell analysis (9, 10). The central idea
is to first pre-train the models using large-scale unlabeled data, and then adopt the models to various
downstream tasks with limited labeled data. One of the successful pre-trained models in biology is the
pre-trained protein language models, which has been demonstrated to be able to extract biologically
meaningful representations for various tasks such as protein contact prediction (11–14), protein function
prediction (15,16), zero-shot mutation effect prediction (17), and viral evolution and escape prediction (18,

19).
One of the key components of AlphaFold2 is to predict the interactions between amino acids which

are far apart on the linear sequence by extracting the co-evolution information from Multiple Sequence
Alignment (MSA) using the IPA module (20). However, the MSA information is not always available due
to technical bias introduced by the homologous detection software such as Blast (21) and HHblits (22),
which poses a new computational challenge that how to accurately predict the protein 3D structures solely
based on the protein sequences without relying on the MSA information. However, current machine
learning models could only extract weak co-evolution signals from the protein sequences, which is not
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sufficient to predict the protein 3D structures (23). Instead of constructing a general pre-trained protein
language model (PLM) suitable for various protein tasks, in this work, we aim to design a PLM which could
greatly benefit protein 3D structure prediction. OmegaPLM strikes a good balance between efficiency
and performance, as shown in Figure S1 and Table S1, where OmegaPLM consumes less resources and
performs better.

1.1 OmegaPLM Architecture

An important observation is that the deeper layers of current transformer-based PLMs focus relatively more
on learning protein contacts, whereas the secondary structure information is spread more evenly across
both shallow and deep layers (15). More analysis of the ESM-1b model indicates that long-range protein
contacts could be more accurately predicted by using the attention score from deeper layers compared to
shallow layers. We hypothesize that the co-evolution information could be more efficiently represented by
stacking more self-attention layers and encoding more training data. Therefore, in this work we focus
on designing a memory-efficient self-attention architecture to allow the PLM to go deeper by improving
different components of previous PLMs such as positional encoding function, non-linear transformation
and normalization functions. Similar to the ESM-1b model (12), the overall architecture of OmegaPLM is
a self-attention model (24) in which each token is a single amino acid. The OmegaFold model processes a
protein sequence with a stack of GAU layers from (25) instaed of self-attention layers and multi-layer
perceptrons. Our model contains 66 layers with around 670 million parameters without sharing parameters,
which doubles the layer count of ESM-1b but roughly retains the parameter count. With ni ∈ Rd as the
d-dimensional vector representation of token at position i, we present OmegaPLM in Algorithm 1.

Algorithm 1: Protein language models based on the Gated Attention Module (GAU)
1 def OmegaPLM( {ni}, dk =256, d =1,280, Nstack =66, dv =2,560):
2 for l ∈ [1, . . . , Nstack] do
3 ri = LayerNorm(ni)
4 ui,vi, gi = SiLU (Linear (ri))
5 {qi} = RoPE({wq ⊙ ui + bq})
6 {ki} = RoPE({wk ⊙ ui + bk})
7 αij = softmaxj

(
logn√
dk

(
qTi kj

)
+ bi−j

)
8 oi = gi ⊙

∑
j αijvj

9 ni += Linear(oi)
10 end
11 return {ni}

Pre-LayerNorm As shown in Algorithm 1, we choose the pre-LayerNorm operation which places the
layer normalization between the residual blocks. As suggested by recent studies, pre-LayerNorm yields

2
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Figure S1: OmegaPLM strikes a great balance between efficiency and performance. This figure is in log
scale both in time and in space. Each model in the plot has four points, where each one grows from 128 to
1024 exponentially in sequence length while decrease from 64 to 8 in batch size simultaneously. Points of
all models in this plot go from bottom left to top right. ProtT5 cannot fit on our testing GPU (Nvidia A100
80GB) with the same data size during training. Value as mean from best 64 rounds of 128 rounds in total.

more stable gradients especially at initialization (27–30). Current prevalent implementations of normaliza-
tion layers in different deep learning packages usually contain element-wise affine transformations with
learnable parameters immediately followed by the linear operations in many pre-layernorm Transformers
including our designed architecture. This configuration is mathematically redundant except for minor
differences caused by choice of optimizers during training. We therefore remove all element-wise affine
transformations in the pre-LayerNorm.

Gated Attention Unit Instead of using multi-headed self-attention (MHSA), we adopt the Gated
Attention Unit (GAU) (line 8 in Algorithm 1), which has shown great promise as an alternative to MHSAs
with smaller memory consumption and faster convergence rate (25). We apply the gate operation after
the attention aggregation and replace the conventional softmax(·) function with relu2(·) to aggregate the
pairwise logits. In particular, we use an extra gating vector gi ∈ Rdv where dv is the dimensionality of the
value vector, which later multiply with the weighted summation of value vj in an element-wise fashion
(line 8).

Similar to conventional transformer models, All the value vectors vi, base vectors ui and gating vectors
gi in GAU (25) are also generated by a sequence of Linear-SiLU operations, which later are used to
produce queries and keys by using element-wise affine operations (line 4, line 5 & line 6 in Algorithm 1).
The original GAU in (25) also suggests that relu2(·) performs better compared to softmax in terms of both
computation speed and convergence rate. This performance and speed gain can only be achieved when

3
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Model Parameter Count
Supervised Contact Prediction

Top-L Top-L/2 Top-L/5

OmegaPLM 670M 0.587 0.7351 0.8412

ESM-1b 650M 0.5666 0.7032 0.8051

ProtBert 420M 0.3287 0.4198 0.5234

ProtT5 11B 0.5728 0.7224 0.8316

Table S1: Supervised contact prediction performance shows OmegaPLM clears performs well. The
contact prediction head is made of ResNets with identical configurations. The training (6,292 proteins)
and test (699 proteins) datasets were selected as subsets of PDB (each protein having < 25% sequence
similarity) using the following filtering conditions: (i) sequence length between 40 and 700, (ii) resolution
better than 2.5 Å, (iii) no domains made up of multiple protein chains, (iv) PDB file with valid Cβ
coordinates (Cα in GLY) no less than 80% compare to the complete protein sequence. Our validation data
keeps the same with (26) except 105 CASP11 test proteins. Proteins having sequence similarity > 25% or
BLAST E-value < 0.1 with any test protein were excluded from training data.

the lengths of training and test proteins are relatively the same. However, it is common that the length of
proteins to be predicted is out of the range of the lengths of training samples. To address this problem, we
choose the softmax operation since it performs better than relu2(·) for sustaining the output distribution of
the aggregated value vectors, as the summation of the attention weights is always 1. Empirically, we find
that models trained with relu2(·) performs considerably worse than their counterparts with softmax when
the input sequence length is out of the range of the trained samples, which is consistent with another study
that models trained with long sequences perform subpar with shorter sequences when using relu2(·) (31).

There are a few other works targeting the extrapolation performance for the attention mechanism. (32)
introduce a hand-craft relative positional bias term added to the pre-softmax logits. (33) argues for scaling
the qk-product not only with inverse square root of dk, but also with log n, where n is the number of tokens
in one sequence. When viewed as a distribution and under certain assumptions, attention scores’ entropy
from the softmax operation oscillates less with varying sequence lengths with the log n scaling (33)
compared to normal

√
dk, which improves generalization in terms of sequence length .

Relative Positional Encoding (RoPE) Attention mechanism is inherently permutation-invariant so it
requires position information when applied to sequence data. Here we apply rotary positional embedding
(RoPE) (34) (line 5 & line 6 in Algorithm 1)) to encode the position information for a pair of amino acids,
which is defined in Algorithm 2. (34) solved this question using the properties of complex numbers, and
we apply such mechanisms into our queries and keys. To further emphasize the impact of relative position
information, we include a bias term bi−j which is specific to positions i and j. Note that the values of
bi−j and bj−i are different. Instead of decreasing the embedding values as the absolute relative position
increases (32), we clip the relative positions to allow extrapolation.
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Algorithm 2: Rotary Relative Positional Embedding
1 def RoPE( {ni}, d=1,280):
2 for l ∈ [1, . . . , d/2− 1] do
3 si,l = sin

(
10, 000−2l/d · i

)
4 ci,l = cos

(
10, 000−2l/d · i

)
5 ni,2l ← ni,2l · ci,l − ni,2l+1 · si,l
6 ni,2l+1 ← ni,2l+1 · ci,l + ni,2l · si,l
7 end
8 return {ni}

Table S2: OmegaPLM Configurations.

No. Layers 66
d 1280
dk 256
dv 2560

No. Attention Head 1
Tying Embeddings for input & prediction head True

Cosine normalization with learned scale (28, 36) at output True
Clipping thresholds of relative positional bias [-64, 64]

Normalization type LayerNorm (37)
Pre- or Post-Norm Pre-Norm

Learnable parameters in normalization False

Hyper-parameters of OmegaPLM The model configurations and the hyper-parameters are presented
in Table S2. We generate the output tokens (35) using tied embeddings and cosine normalization (28, 36).
The clipping thresholds in Table S2 indicate that the relative distance outside the range will be rounded to
the thresholds.

1.2 Training

Training Objective Unlike ESM-1b (12) or any other protein language models (38), to train OmegaPLM,
we setup a number of different objectives, we adopt the objective functions used in BERT (1) and
spanBERT (39) as our framework upon which we modify different parts to acquire different variants of
the objective function as follows,

1. BERT loss. For each sequence, 15% tokens are selected as targets to be predicted, 80% of which
are replaced with a [mask] token, 10% of which are replaced with a random amino acid, and the
final 10% stay what they are. This procedure is the same as the loss function used in the ESM-1b
work (12);

2. SpanBERT-like loss. We sample the span length from Poisson distribution with λ = 7 and clip
the sampled value at 5 and 8 and then mask the tokens consecutively according to the span length.
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Unlike SpanBERT, we still use the output embeddings from the corresponding tokens to perform
prediction rather than the boundary tokens of the spans.

3. Sequential masking, where we mask either the first half or the second half of the sequence, akin to
Prefix Language Modeling (4, 40)

Moreover, we assign different weights for these loss terms. The weights for the first two loss functions are
0.45 and the last one is 0.1.

Focal Loss We observe that many of the amino acids can be accurately predicted with its short-range
sequence context. This creates an easy prediction task for the model to learn and causes the model to
overly focus on short-range relations. To address this problem, we adopt the focal loss (41) to down-weight
the easy targets and make the model focus more on capturing the long range relationships among different
amino acids.

Data We train OmegaPLM using the Uniref50 (42) dataset with version 2021 04. During the training
process, we randomly sample center protein sequences from Uiref50 (42) as the input data, where each
batch contains 4,096 sequences and each sequence is padded or cropped to 512 residues. To fit one batch
into the GPU memory, we adopt the gradient checkpoint technique on 23 of the 66 layers in the training
process. Since OmegaPLM is trained for 3D structure prediction, we utilize 99.99% of the data for training
and the rest of sequences for validation.

Parameter Initialization All the weights in the output projection layers and biases are initialized as
zeros following (20, 43). All the other weights are initialized using the normal distribution with zero mean
and standard deviation of 0.02 following (25).

Recipe OmegaPLM is implemented in PyTorch (44) and trained for 2,560 GPU Nvidia A100 80G days.
We use the token-dropout scheme as in the ESM-1b model (12) during pre-training and AdamW (45)
algorithm as our optimizer for OmegaPLM. The peak learning rate is set to 5e-4 and all the other
parameters of AdamW stay as default in PyTorch. The warm-up of learning rate starts from 2.5e-6 and
follows a cosine scheme for 12.5k steps, the linear weight decay starts at step 100k and lasts 500k steps.
The learning rate stays constant at 2e-5 for another 100k steps. In addition, gradients of all parameters
are clipped based on the norm at 0.3 (46) to address the spikes of the loss and gradient norms during
training (47–50). In the hardware setup, we find the training process is accelerated by incorporating the
PowerSGD (51) gradient compression with rank 32 to reduce the communication loads across different
GPUs. Empirically we find PowerSGD improve 30% of the training speed. Though this compression
introduces noise into the gradients, we find such noise inconsequential compared to the speed gain in
convergence. Default precision format in Nvidia A100 GPUs is set to TensorFloat-32 for matrix operations.
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We do not change this setting as IEEE float16 causes overflow issues during training and IEEE float32
slows computation considerably. In validation, we clip the long proteins to the first 1,024 residues.

2 Geoformer: Geometric Transformer for Structure Prediction

2.1 Geoformer Architecture

The 3D structure prediction of AlphaFold2 is driven by two important modules: triangle attention on edge
representations and the Invariant Point Attention (IPA) in Structure Module. The triangle attention relies
on the “triangle multiplicative update” on the edge representations to enforce the edge representation
to satisfy the triangle inequality of amino-acid distances, which significantly improves the feasibility of
predicted structures based on the MSA data. The geometric consistency of AlphaFold2 is maintained on
the high-dimensional edge representations which later are integrated into node representations to generate
the coordinate of each atom. However, geometric consistency in the high-dimensional space does not
guarantee consistency in the Euclidean space because of the large amount of non-linear operations applied
to the high-dimensional representation in the model. This posts a new computational challenge that on one
hand the edge representations are to be optimized in the high-dimensional space to sufficiently capture the
rich geometric information while on the other hand the real geometric consistency can only be checked
after the representations are projected into the Euclidean space. To address this problem, we design a
new structural module, named Geoformer, which could optimize high-dimensional representations to
capture complex interaction patterns among amino acids while still maintaining geometric consistency in
the Euclidean space.

Algorithm 3: Geometric Transformer
1 def Geoformer( Aaa(i), {ni}, {wij}, N1 = 50, N2 = 8, dn = 256, dw = 128):
2 for l ∈ [1, . . . , N1] do
3 {ni} += NodeAttention({ni}, {wij})
4 {ni} += NodeTransition({ni})
5 {wij} += Node2Edge({ni}))
6 for k ∈ [1, 2] do
7 {wij} += EdgeAttention({wij})
8 end
9 {wij} += EdgeTransition({wij}))

10 end
11 for l ∈ [1, . . . , N2] do
12 {ni}, {x⃗i} += StructureModule({ni}, {wij})
13 {wij} += 3Dprojection(Aaa(i), {x⃗i})
14 {wij} += EdgeAttention({wij})
15 end
16 return {ni}, {wij}
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As shown in Algorithm 3, we update the node embedding {ni} based on two factors: 1) the attention
between node i and any other node j and 2) the edge embedding {wij} capturing the interactions between
i and j in a more direct way. For each node, Geoformer first aggregates the information from all the
other nodes to generate a basic node representation (NodeAttention and NodeTransition functions in line
3-4 in Algorithm 3). Next, we produce another temporal edge representation solely based on the node
representation inferred from the previous step using the function Node2Edge. Similar to NodeAttention,
we also update edge representations {wij} based on all the other edges using a transformer-based model
EdgeAttention, which is also the function we rely on to achieve geometric consistency in the high
dimensional space. We repeat this process 50 times to generate both node and edge representations
for each residue and residue pair. In the last 8 layers of Geoformer (lines 11-15), we aim to maintain
the geometric consistency in the Euclidean space. In particular, we first translate the inferred node and
edge representation of a protein to a temporal 3D structure by using the StructureModule function
implemented by AlphaFold2 (line 24-31 in Algorithm 20 in AlphaFold2). xi is the coordinates for the
atoms in amino acid i. We then translate the temporal 3D structure back to the high dimensional space by
using the 3Dprojection function whose outputs have the same dimensionality as the wij . In this way,
the updated edge representation contains the information indirectly encoded from the 3D space. Another
EdgeAttention function is applied to achieve geometric consistency for the newly updated wij . Eventually,
both node representation ni and edge representation wij from the last layer are used to predict the 3D
coordinates and connected to the loss functions. Note that we omit the LayerNorm operation on the set
variables such as {wij} to simplify the notation.

2.2 Node Update

The NodeAttention function provides expressive node representations by integrating all the node and
edge representations using the self-attention layers. The computational graph is defined as the follows,

qi,ki,vi = Linear(n(ℓ−1)
i )

bij = Linear(wij)

αij = softmaxj

(
1√
c
qTi kj + bij

)
oi = sigmoid(Linear(nℓ−1

i ))⊙
∑
j

αijvj

nℓ
i = Linear (oi)

(1)

Here ni and wij in the first layer are the node and edge representations extracted from the OmegaPLM
module, respectively. bij is a linear projection of wij , which is used as the bias term inside the attention
function capturing the interactions between node embedding ni and nj . Similar to the Algorithm 1, we
also find the presence of the gate operation allows a much simpler attention mechanism than conventional
MHSA without too much quality loss. NodeTransition in Algorithm 3 is a standard two feed-forward layer
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with relu activation function.

2.3 Edge Update

EdgeAttention achieves geometric consistency by simultaneously considering all the other edge embed-
dings wij using the following equations,

ãij, b̃ij = sigmoid (Linear(wij))⊙ Linear(wij)

qij,kij,vij, bij = Linear(wij)

gij = sigmoid(Linear(wij))

αitj = softmaxt

(
1√
c
qTij(kit + ktj) + bit + btj

)
oij = gij ⊙

(∑
k

αitj(vit + vtj + ãti ⊙ b̃tj)

)
wij = Linear (oij)

(2)

The edge embedding wij is updated based on various types of interactions involving a third node t. Note
that AlphaFold2 uses four triangular multiplicative operations to maintain this consistency including
“outgoing edge attention”, “incoming edge attention”, “starting node attention”, and “ending node at-
tention”. As shown in Equation 2, EdgeAttention defines two new interaction terms which integrate
both the self-attention and bi-linear models. First, instead of using different self-attention mechanisms
as AlphaFold2, we add the key value kit and ktj together as the new key value and multiply with query
qij . So far as we know, this is the first model which leverages the summation of the key values to capture
the interactions among three entities. Second, we integrate the bi-linear interaction between ati and
btj is inside the attention function for calculating oij . In this way, we design one universal function
to implement the four functions of AlphaFold2, which significantly reduces the computational burden.
Similar to NodeTransition, EdgeTransition is a standard two feed-forward layer with the relu activation
function. In the Node2Edge function, edge embedding wij is updated by the outer product of linear
projection of ni and nj .

ai, bi = Linear(ni)

wij = Linear (ai ⊗ bj) .
(3)

2.4 Geometric Atom Embedder

The last eight layer of Geoformer includes the Geometric Atom Embedder, where we incorporate the
Invariant Point Attention (IPA) module and the rotation/transition matrix representations in AlphaFold2 for
the coordinate generation (line 12-14 in Algorithm 3). The StructureModule function translates the node
embedding ni to a protein structure, which is represented by the 3D coordinates x⃗i ∈ R14×3 for amino acid
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i. An amino acid has a maximum of 14 atoms and each atom is associated with a 3D coordinate. Function
StructureModule (line 24-31 in Algorithm 20 in AlphaFold2) predicts 3D coordinates by optimizing the
Transition and Rotation matrices. Based on this temporal 3D structure, function 3Dprojection produces a
new type of interaction based on three types of information extracted from the predicted temporal protein
structures {xi}: 1) the amino acid types of i and j; 2) the relative positions of each atom in amino acid i
and j in different frames; 3) the relative angles between the vectors of each atom in amino acid i and j in
different frames. The 3D-based interaction vector is projected by a Multilayer Perceptron (MLP) to match
the dimension of edge embedding. The function 3Dprojection is defined in Algorithm 4.

Algorithm 4: 3Dprojection
1 def 3Dprojection( Aaa(i) ∈ RL, {x⃗i} ∈ RL×14×3, n = 3):
2 for i, j ∈ [1, L] do

// Embed all atom pair distances:
3 dij = ||x⃗i − x⃗j||

// Embed all atom frames

4 f
(n)
aa(i) = Framen(x⃗i)
// Embed distances in both rough and fine bins

5 aij = Linear(OneHot(dij, bins = [3.25A, 20.75A, 16]))
6 bij = Linear(OneHot(dij, bins = [2.3125A, 21.6875A, 64]))

// Embed frame-position directed distance in Euclidean
space:

7 c
(n)
ij = OneHot(R(x⃗i, f

(n)
aa(j)), bins = [−16Å, 16Å, 64], space = Euclidean)

// Embed frame-position angle distance in spherical space:

8 e
(n)
ij = OneHot(R(x⃗i, f

(n)
aa(j)), binsϕ = [0, 2π, 12], binsψ = [0, 2π, 12], space = Spherical)

// Embed pair amino acid types:
9 gij = Linear(aij + bij)

10 hij = Linear(conactn({c(n)ij }) + conactn({e(n)
ij }))

11 zij = Aaa(i) + Aaa(j)
12 wij = Linear(zij ⊗ (gij + hij))

13 end
14 return {wij}

Here dij is the distance between atoms i and j from two amino acids. aij and bij are embeddings
based on one hot vectors of Euclidean distance between atoms i and j. The difference between aij and
bij is the ways of their bin constructions. Function Framen returns the frame f (n)

aa(j) that represents the
local coordinate system with Cα, Cβ and N atoms of amino acid aa(j), and function R is a projection
function which returns the 3D coordinates xi in the n-th coordinate systems f (n)

aa(j) defined based on the
amino acid associated with atom j. For each amino acid, we use eight-frame coordinate systems defined
by AlphaFold2 (Section 1.8 in the supplementary of AlphaFold2). aa(i) is the amino acid type that atom
i belongs to. zij represents the one-hot embedding related to the types of amino acids that atoms i and j
are associated with. We use an embedding matrix A ∈ R20×d to represent each of the 20 types of amino
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Figure S2: Performance of structure prediction with recycling. OmegaFold reaches reasonable performance
without recycling, and achieves highest performance after around 10 recycles.

acids, where d denotes the dimension of the continuous embedding. Note that this embedding is not
position-specific and we refer to this embedding as type embedding because it corresponds to the type of
amino acids. cij and eij are designed to model the relative positions of two atoms in different coordinate
systems in both the Euclidean space and the spherical space. In particular, as it requires two angles ϕ
and ψ to describe a location in the spherical space, we discretize these two angles into two sets of bins
binϕ and binψ. The amino-acid embedding zij and physical location embeddings gij and hij are later
integrated together by using the outer product operation.

2.5 Recycling

Similar to AlphaFold2 and RoseTTAFold, we also employ a recycling procedure to iteratively refine the
quality of structure prediction. We find that with the prediction accuracy improves with the number of
recycles and saturates after about 10 recycles (Fig. S2).

2.6 Datasets

We download the protein structure data from the PDB website (https://www.rcsb.org/) and split each PDB
file into multiple single chains. A protein is removed if 1) it contains RNA fragments or 2) more than
90% of its residues are unknown amino acids which are marked as ‘X’ or 3) one of its chains can not be
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parsed by PDBparser of biopython (52). Next, we cluster all the sequences using MMseqs2 (53) with
sequence identity threshold 100% and only keep the cluster centers. For the selected proteins, we perform
40% clustering using MMseqs2 and calculate a static sampling rate for each protein chain. The rate is
inverse to the size of the cluster the sample belongs to.

2.6.1 Validation Data

We use two validation datasets. The first CASP dataset includes challenging free-modeling (FM) targets
from recent CASP13 and CASP14: T0950, T0953s1, T0953s2, T0955, T0957s1, T0957s2, T0958, T0960,
T0963, T0968s1, T0968s2, T1005, T1008, T1026, T1027, T1029, T1030, T1031, T1032, T1033, T1038,
T1043, T1046s1, T1046s2, T1049, T1056, T1064, T1082, T1099.

A second dataset includes recently targets with a wide range of prediction difficulty from CAMEO
from date1 to date2: 7RPY:A, 7PB4:I, 7FJS:L, 7U2R:A, 7AAL:A, 7KO9:A, 7RKC:A, 7EQH:A, 7U4H:A,
7ETS:B, 7E4S:A, 7F3A:A, 7LXK:A, 7EAD:A, 7DKI:A, 7ESH:A, 7VNO:A, 7Z79:B, 7RW4:A, 7W5M:A,
7WNW:B, 7OPB:D, 7EQE:A, 7N0E:A, 7T4Z:A, 7ED6:A, 7NUV:A, 7TV9:C, 7ZCL:B, 7VWT:A, 7PC6:A,
7NQD:B, 7TXP:A, 7PC4:A, 7QRY:B, 7FEV:A, 7FIW:B, 7RPR:A, 7OA7:A, 7EBQ:A, 7YWG:B, 7UGH:A,
7F0A:A, 7U5Y:A, 7NDE:A, 7QIL:A, 7X4E:A, 7OD9:C, 7TBU:A, 7W26:A, 7X4O:B, 7NMI:B, 7WRK:A,
7QSS:A, 7LI0:A, 7RGV:A, 7VSP:C, 7X8J:A, 7QDV:A, 7E52:A, 7RCW:A, 7TNI:C, 7PC3:A, 7N29:B,
7F2Y:A, 7ZGF:A, 7T03:A, 7MYV:B, 7BLL:A, 7MQ4:A, 7X9E:A, 7F6J:C, 7EJG:C, 7V4S:A, 7QAP:A,
7ACY:B, 7MLA:B, 7QAO:A, 7WWR:A, 7QSU:A, 7PZJ:A, 7V1K:A, 7SGN:C, 7Z5P:A, 7N3T:C, 7EGT:B,
7O4O:A, 7CTX:B, 7VNX:A, 7YXG:A, 7QS5:A, 7X8V:A, 7MKU:A, 7RPS:A, 7MS2:A, 7QBP:A,
7QS2:A, 7EHG:E, 7PRQ:B, 7S2R:B, 7R74:B, 7W5U:A, 7O0B:A, 7TA5:A, 7WWX:A, 7Q51:A, 7SXB:A,
7WCJ:A, 7LXS:A, 7OSW:A, 7WRP:A, 7PNO:D, 7WJ9:A, 7RCZ:A, 7U5F:D, 7WME:A, 7RXE:A,
7B0K:A, 7ERN:C, 7R63:C, 7SJL:A, 7BI4:A, 7W1F:B, 7ED1:A, 7RAW:A, 7SO5:H, 7VOH:A, 7Q05:E,
7QBZ:A, 7PSG:C, 7P0H:A, 7MHW:A, 7P3I:B, 7ULH:A, 7R09:A, 7F0O:B, 7EQB:A, 7EFS:D, 7TZE:C,
7W74:A, 7PXY:A, 7PW1:A, 7E5J:A, 7V8E:B, 7ERP:B, 7R5Y:E.

2.7 Structure-based Sampling

Given limited computation resources, we need to crop long proteins to fit the GPU memory for each
learning epoch. Previous deep learning models usually sample a sub-sequence with fixed length (20).
Adjacent residues in a protein sequence are usually closed in the 3D structure. However, sampling and
cropping proteins solely based on protein sequences will decrease the number of residue pairs in which
two amino acids are far apart in the sequence but close in the 3D space. To address this problem, we
introduce the consecutive structure sampling approach to allow the model to extract long-range contact
information from the data pool more efficiently. We first cluster all the sequences at the chain level. Each
cluster and each protein in the cluster have the same probability to be sampled. Within each sampled
protein, we uniformly sample a residue rc and then sample a continuous structural fragment centered
around this by maximizing the following function,
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max
S

∑
ri∈S

1

d(rc, ri)2
− λ ∗ |C| (4)

s.t.

|S| = Ncrop,∀ci ∈ C, |ci| ≥ 32

where function d(·, ·) measures the Euclidean distance between the Cβ atoms of a pair of amino acids (for
Alanine we use its Cα atom). S is the residue set we already select and Ncrop is total number of the amino
acids we want to select based on the size of GPU memory. C is the set of continuous sub-sequences in this
select 3D structure fragment, |C| is the number of sub-sequences and λ is a pre-defined hyper-parameter
which is set as 0.004 in experiments. For each sub-sequence ci ∈ C, the residues are continuous on
the sequence and located on the same chain. The central idea of this optimization problem is that we
want to select Ncrop amino acids around rc in the 3D space without too many sub-sequences, which is
implemented by adding the second term to penalize the number of sub-sequences. At the same time, we
also require the length of each sub-sequence ci to be at least 32 to prohibit too short sub-sequences.

Equation 4 could be solved by dynamic programming in a very efficient way. For a protein to be
cropped, we first concatenate all the chains of that protein into one sequence with n chains and a total
length of L. Then we design a temporal variable Fi,j(0 ≤ i ≤ L, 0 ≤ j ≤ Ncrop), which indicates that the
maximum score we could achieve among the first i residues. At this step, we select j residues and residue
i has to be one of them. All the sub-sequences have at least length 32. We use another temporal variable
Gi,j(0 ≤ i ≤ L, 0 ≤ j ≤ Ncrop) to denote the maximum value among the first i residues. However,
residue i is not necessary in the j residues we select. We need to require all the fragments to have at least
length 32. The relationship between Fi and Gi is Fi = maxj∈[0,i]Gj . The only difference between F and
G is that F requires residue i in the selected residue set but G does not have this requirement. F and G
can be calculated by using the following recursion formula,

Fi,j = max



Fi−1,j−1 +
1

d(rc, ri)2
, i > 0, j > 0;

Gi−32,j−32 +
∑

i−31≤t≤i

1

d(rc, rt)2
− λ, i ≥ 32, j ≥ 32;

−∞

(5)

Gi,j = max



Fi−1,j, i > 0, j ≥ 0;

Gi−1,j, i > 0, j ≥ 0;

0, i = 0, j = 0;

−∞

(6)

The maximum value of Equation 4 is obtained at GL,Ncrop . By recording the generation process of
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Table S3: OmegaFold Training Protocol
Model First Stage Second Stage Last Stage

Sequence crop size 256 320 384
Batch size 128 128 128

Learning rate 5e-4 1e-4 5e-5
Structural violation loss weight 0.0 1.0 1.0

Dynamic sampling strategy Average Sampling Hard Sample Mining Gradient Harmonization
Training time ≈7d ≈10d ≈10d

Number of epoches 20k 20k 15k

this optimal solution, we can collect the amino acids on the path to get sets S and C. For a selected set S,
we first generate the sequence embedding for each sub-sequence using OmegaPLM separately and then
concatenate them together as the embedding of the 3D structure fragment. In order to use OmegaPLM, we
need to specify a new residue index to calculate the positional embedding as the new data is not continuous.
We set the gap as 64 for the residue index between different sub-sequences, making the pair embedding of
different sub-sequences into two separate bins.

Curriculum Learning with Dynamic Sampling

In the training process of OmegaFold, we dynamically change the sampling rate of each training data
because we find that there exists a significant amount of protein chains whose structures are hard to predict.
One of the reasons is that a protein chain might need to interact with other biological entities such as
RNAs and proteins to form a stable 3D structure. There is another set of proteins for which 3D structures
are inherently hard to predict as there are few homologous templates existing in the training data or the
co-evolution information extracted from data is sparse.

To alleviate the influence of proteins without stable structures and encourage the learning of hard
proteins, we assign each protein 3D fragment a sampling rate and adjust the sampling rate according to
the LDDT score for the Cα atom calculated based on the temporal predicted structures during training. If
the fragment has never been calculated by the model, the sampling rate is set to 1.0. If only a part of the
fragment has been trained, the sampling rate is adjusted according to the partial prediction. In particular,
we adopt three different strategies for three different training stages. At the first training stage (20,000
epochs), we do not add extra sampling rate adjustment to stabilize the training process. At the second
training stage (20,000 epochs), we lower the sampling rate of fragments with an average per-residue
LDDT-Cα greater than 0.6. The sampling rate factor linearly decreases from 1.0 to 0.0 when the LDDT-Cα
ranges from 0.6 to 1.0, which encourages the model to focus on hard samples. At the last training stage
(15,000 epochs), inspired by (54), we lower the sampling rate of fragments with the average LDDT-Cα
either greater than 0.9 or less than 0.5, which indicates they are either easy or unstable proteins that are
impossible to fit. Specifically, when the LDDT-Cα ranges from 0.0 to 0.5, the sampling rate linearly
increases from 0.5 to 1.0. When the LDDT-Cα is between 0.5 and 0.9, the sampling rates are all set to 1.0.
When the LDDT-Cα ranges from 0.9 to 1.0, the sampling rate decreases from 1.0 to 0.0.
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Table S4: Ablation Study
Model validation LDDT

OmegaFold (ensemble) 0.816
OmegaFold (single) 0.801

AlphaFold2 with single sequence input 0.344
Retrained AlphaFold2 with single sequence input 0.476

OmegaPLM with structure module (no Geoformer) 0.198

2.8 Training

Loss function We train the OmegaFold system using the contact loss, FAPE loss, torsion angle loss,
and structure violation loss as in AlphaFold2. We discard experimentally resolved loss which does not
influence the folding performance. We also discard masked MSA prediction loss since we no longer use
MSAs as input.

L =

LFAPE + 0.5Laux + 0.3Ldist + 0.01Lconf first stage

LFAPE + 0.5Laux + 0.3Ldist + 0.01Lconf + 1.0Lviol second and last stage
(7)

Parameter Initialization The weights of all the output linear layers are initialized as zeroes and the
biases in linear layers before the sigmoid function are initialized as ones while the weights are zeros. All
the other linear layers are initialized with Glorot Uniform initialization.

Recipe The protein language model and 3D structure prediction model are trained separately as the
protein language model includes more unlabeled training data. In this stage, we freeze the protein language
model and only optimize the 3D structure prediction model by using the AdamW (55) algorithm with
default parameters. The batch size stays 128 through the whole training process. The learning rate linearly
increases from 0 to 5e-4 during the first 1,000 steps, stays 5e-4 for next 19,000 steps, then changes to 1e-4
for another 20,000 steps and is fixed as 5e-5 for the last 15,000 steps (Table S3). We also clip the gradient
norm using the threshold of 0.1. We use the function torch.nn.utils.clip grad norm in PyTorch (56), which
clips the gradient after collecting the gradients of all the samples using the all-reduce operation.

2.9 Ablation Study

We conduct a series of ablation studies on the OmegaFold system. To evaluate the contribution of
OmegaPLM and Geoformer, we test models with the following configurations on the CAMEO validation
dataset: the original ensemble version of OmegaFold, a single OmegaFold model without ensembling,
DeepMind’s AlphaFold2 with a single sequence as input, re-trained AlphaFold2 model with single-
sequence input, and an end-to-end model with only OmegaPLM and structure module. Table S4 indicates
that both OmegaPLM and Geoformer have a critical contribution to OmegaFold’s superior performance.
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Notably, after retraining with single sequences as input, without the language model, AlphaFold2 is not
able to predict structure with comparable performance.

References and Notes

1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional
transformers for language understanding,” in Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational
Linguistics, Jun. 2019, pp. 4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

2. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsuper-
vised multitask learners,” 2019.

3. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Advances in Neural

Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 1877–1901. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

4. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and
P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,”
Journal of Machine Learning Research, vol. 21, no. 140, pp. 1–67, 2020. [Online]. Available:
http://jmlr.org/papers/v21/20-074.html

5. K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision
learners,” 2021. [Online]. Available: https://arxiv.org/abs/2111.06377

6. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of
visual representations,” in Proceedings of the 37th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119. PMLR,
13–18 Jul 2020, pp. 1597–1607. [Online]. Available: https://proceedings.mlr.press/v119/chen20j.html

7. T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton, “Big self-supervised models are strong
semi-supervised learners,” arXiv preprint arXiv:2006.10029, 2020.
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