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ABSTRACT

Many recent studies have shown that the perception of speech can be decoded from
brain signals and subsequently reconstructed as continuous language. However,
there is a lack of neurological basis for how the semantic information embedded
within brain signals can be used more effectively to guide language reconstruction.
Predictive coding theory suggests the human brain naturally engages in continu-
ously predicting future words that span multiple timescales. This implies that the
decoding of brain signals could potentially be associated with a predictable future.
To explore the predictive coding theory within the context of language recon-
struction, this paper proposes PREDFT (FMRI-to-Text decoding with Predictive
coding). PREDFT consists of a main decoding network and a side network. The
side network obtains brain predictive coding representation from related brain
regions of interest (ROIs) with a self-attention module. This representation is then
fused into the main decoding network for continuous language decoding. Experi-
ments are conducted on two popular naturalistic language comprehension fMRI
datasets. Results show that PREDFT achieves current state-of-the-art decoding per-
formance on several evaluation metrics. Additional observations on the selection
of ROIs, along with the length and distance parameters in predictive coding further
guide the adoption of predictive coding theory for language reconstruction.

1 INTRODUCTION

Reconstructing natural language from functional magnetic resonance imaging (fMRI) signals of-
fers potential insights into understanding language formation in the human brain. Recent studies
have attempted to leverage brain signals with computational language models to generate coherent,
naturally flowing languages Bhattasali et al. (2019); Wang et al. (2020); Affolter et al. (2020); Zou
et al. (2021). This advancement is achieved by combining brain responses to linguistic stimuli with
computational language models together to craft fluent language. For example, Tang et al. (2023)
used a GPT (Radford et al., 2018) model to generate semantic candidates with beam search algorithm,
and then brain signals are employed to select the content that is more aligned with the semantic
content perceived by humans. Xi et al. (2023) proposed to obtain brain representation as the input for
language model and achieves language reconstruction in a sequence-to-sequence machine translation
manner (Sutskever et al., 2014).

Despite efforts in developing model architectures and utilizing language models for fMRI-to-text
decoding, existing research often overlooks how natural language is encoded in the human brain and
how its representation within language models. Predictive coding (McClelland & Rumelhart, 1981;
Rao & Ballard, 1999; Friston & Kiebel, 2009) provides a powerful theory for a unified view of neural
encoding and decoding. It suggests that the human brain naturally makes predictions of upcoming
contents over multiple timescales when receiving current phonetic stimuli. Previous neuroscience
studies (Willems et al., 2016; Okada et al., 2018) have already evidenced such speech prediction in
the human brain through fMRI. Caucheteux et al. (2023) further investigated the predictive coding
theory by exploring the linear mapping between language model activations and brain responses.
They demonstrated that such mapping would be enhanced if predictive content is used to construct the
representation in the language model. The predictive coding theory provides insights into the brain
decoding process: Brain signals can potentially provide information about the upcoming content to be
decoded in different time scales. However, whether the information extracted from brain predictive
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(a) Prediction Score of Subject-1 (b) Prediction Score of Subject-2 (c) Prediction Score of Subject-3

(d) ROI Prediction Score of Subject-1 (e) ROI Prediction Score of Subject-2 (f) ROI Prediction Score of Subject-3

Figure 1: Results of the predictive coding verification experiment on three subjects in LeBel’s dataset.
For sub-figure (a) to (c), the x-axis measures the prediction distance and lines of different colors
indicates prediction length. For sub-figure (a) to (c), the x-axis indicates different ROIs.

coding could help facilitate fMRI-to-text decoding and how to make use of such prediction remains
an open problem.

To investigate predictive coding in fMRI-to-text decoding, we first conduct a preliminary experiment
to analyze the capability of brain signals in predicting future content and their associative relationship
with the representations of language models. We verify the predictive coding ability of brain
signals and identify regions of interest (ROIs) in the brain that are most related to the predictive
coding functions. Based on the observations, we propose PREDFT which jointly models language
reconstruction and brain predictive coding. PREDFT is an end-to-end model with a main decoding
network for language reconstruction and a side network for providing brain predictive coding
heuristics. The main decoding network consists of an encoding model for spatial-temporal feature
extraction and a Transformer (Vaswani et al., 2017) decoder for language generation. At the same
time, the side network extracts and fuses ROIs related to brain predictive coding, and then builds
connections to the main decoding network through attention mechanism.

Experiments are conducted on two popular naturalistic language comprehension fMRI datasets
LeBel’s dataset (LeBel et al., 2023) and Narratives dataset (Nastase et al., 2021). First, we present the
overall decoding performance of PREDFT. We show that its decoding accuracy outperforms existing
proposed methods in terms of a series of language evaluation metrics. Second, we explore whether
the selection of ROIs for the side network will affect the decoding performance of PREDFT. We show
that the side network brings more advancement with signals from the parietal-temporal-occipital
(PTO) area, verifying its function for predictive coding. Last, we analyze the length of time for
adopting brain predictive function to better understand how the human brain makes predictions over
multiple timescales and its impact on language reconstruction performance.

The main contributions of this paper can be summarized as follows: (i) To the best of our knowledge,
we first investigate the impact of brain predictive coding phenomenon on fMRI-to-text decoding.
(ii) We propose the PREDFT model for fMRI-to-text decoding, which features effectively utilizing
brain predictive coding representation to improve decoding performance through a side network and
end-to-end training. (iii) Comprehensive experiments show that PREDFT benefits from the joint
modeling of brain predictive coding and achieves current state-of-the-art decoding performance.
Further analysis shows how brain predictive coding can be used in decoding across temporal scales
and spatial brain regions.
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2 PREDICTIVE CODING VERIFICATION

𝑑 = 4

He could still hear and feel that sharp metal …
cCurrent heard word

LM

Brain predictive coding

𝑃 4,2 𝐿𝑀(“He”) = 𝑅 𝐿𝑀 “He” ⊕ 𝐿𝑀 “and feel” − 𝑅(𝐿𝑀(“He”))

He could still hear and feel that sharp metal …
cLM current word embedding LM future word embedding

𝑙 = 2

Figure 2: Example of how predictive coding verifica-
tion experiment is conducted.

In this section, we elaborate on predictive cod-
ing in human brain by analyzing the correla-
tion between brain responses triggered by spo-
ken words and activations of language model
with the spoken words as natural language in-
put. Following previous study (Caucheteux
et al., 2022), the brain score R(X) =
corr(f(X), Y ) is first defined, which mea-
sures the pearson correlation between lan-
guage model activations X ∈ RM×D and
brain responses Y ∈ RN×V . f indicates a lin-
ear ridge regression model with ℓ2-regularization for linear mapping. M and N stand for the number
of words and fMRI frames; D and V stand for the output dimension of language model and number of
voxels in brain. Similar to Caucheteux et al. (2023), prediction score P(d,l)(X) = R(X⊕Xd

l )−R(X)

is proposed. Xd
l indicates the representation of future predicted words, with prediction length l

measuring the length of continuous future words and prediction distance d measuring the distance
from current word to the first predicted future word. An example is shown in Figure 2. If the
representation of current heard word “He” is denoted as X , then the representation of future words
“and feel” is denoted as X4

2 . The output of pre-trained language model (Radford et al., 2019) is
applied as activation and we always choose the activation of the first word within each fMRI frame as
X . Prediction score reflects the degree of predictive coding. A positive value suggests long-range
prediction helps improve the correlation between language model activations and brain responses.

Verification is conducted on LeBel’s dataset and Narratives dataset. Following Tang et al. (2023)’s
setting on LeBel’s dataset, three subjects are picked for experiment. For the Narratives dataset, 230
subjects are selected. In this section, we only analyze results on the LeBel’s dataset. Additional
experiments on the Narratives dataset are presented in Appendix C.1. Figure 1 (a)-(c) show the
prediction score of three subjects, with prediction length l ranging from 1 to 11 and prediction
distance d ranging from 0 to 12. Figure 1 (d)-(f) show prediction score of regions of interests (ROIs).
Three ROI areas are selected: “Random” indicates randomly picked ROIs. “Whole” indicates using
all the ROIs from brain surface. “BPC” denotes the ROIs associated with predictive coding. Superior
temporal, middle temporal, inferior parietal, supramarginal are chosen for BPC region. The specific
ROIs for experiments depend on the applied cortical parcellation (Appendix A.4).

Three findings can be summarized from the experimental results. (i) For all tested prediction length l,
the prediction score first increases and then drops when prediction distance d extends. (ii) The peaking
point of prediction score for too long (e.g. l = 10, 11) or too short (e.g. l = 1, 2) prediction lengths
comes earlier when prediction distance d extends. A proper prediction length, such as l = 4, 5, 6,
typically results in a higher prediction score compared to excessively long or short prediction lengths.
(iii) Prediction score of ROIs related to predictive coding is significantly higher than that of the entire
brain or randomly selected ROIs.

Side Network𝜙Main Network𝜃

Input fMRI Sequence 𝐹𝑖𝑗

𝑓𝑖,𝑗
𝑇 𝑓𝑖,𝑗

𝑇+1 𝑓𝑖,𝑗
𝑇+2

Input Word Sequence 𝑈𝑗

<s> He could still hear and feel that

sharp metal ripping explosion that …

<s> hear and explosion

that of heat …

…

Predicted Words 𝑉𝑗

𝑢𝑗
𝑇

𝑢𝑗
𝑇+1 𝑢𝑗

𝑇+2

CE Loss of original input CE Loss of predicted words

Total Loss

𝑣𝑗
𝑇 𝑣𝑗

𝑇+1

𝑣𝑗
𝑇+2

⨁

       𝜃DecEncoder𝜃Enc
Encoder𝜙Enc

Decoder𝜙Dec

Figure 3: The framework of PREDFT in the training stage.

The above verification experiment
highlights the correlation between
representation of language model
and brain predictive coding. One
possible explanation for the phe-
nomenon is that both language mod-
els and brain predictive coding are
similar in the objective of upcom-
ing words prediction. This in-
spires us with the following moti-
vation: While predictive coding has
been verified from the perspective
of brain and language model align-
ment, could it help in reconstructing
natural language from brain signals? We propose PREDFT for investigating the effectiveness of
utilizing brain prediction in fMRI-to-text decoding. Details are introduced in the next section.
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3 METHODOLOGY

Main Network𝜃

Transformer
Encoder

FIR Model
Time

Positional
Embedding

fMRI
Encoder

Transformer
Decoder Layer

Predictive Coding
Attention Layer

Q×

Side Network Encoder Output

Enc

PH

Dec

QH

Enc

MH

Figure 4: The main decoding network of PREDFT.

We first formalize
the fMRI-to-text de-
coding task. Given
a naturalistic lan-
guage comprehen-
sion fMRI dataset
D := {⟨Fi,j , Uj⟩},
where Uj is the j-th period of text stimuli and Fi,j is the fMRI images collected while the i-th subject
is hearing the text stimuli Uj . The fMRI-to-text decoding task aims to build a model M that decodes
U ′
j = M(Fi,j) to maximize the text similarity between U ′

j and Uj . Specifically, the text stimuli
Uj := {uT

j , u
T+1
j , . . . , uT+k

j } contains k+1 text segments of auditory content presented to test
subject from time step T . Similarly, Fi,j := {fT

i,j , f
T+1
i,j , . . . , fT+k

i,j } consists of the same number
of continuous fMRI images, and each f t

i,j matches ut
j at corresponding time step t. An example is

shown in the input side of Figure 3. We propose PREDFT, which integrates brain predictive coding in
the language reconstruction process. As shown in Figure 3, PREDFT is denoted as Mθ,ϕ, containing
a main network Mθ for decoding and a side network Mϕ for predictive coding. We first introduce
the main decoding network Mθ which can reconstruct accurate text from fMRI with computational
language models. Then we elaborate on the side network Mϕ which extracts and exploits brain
predictive coding. Finally, the fusion of brain predictive coding representation and the joint training
of Mθ and Mϕ are detailed. A notation table is displayed in Table 3.

3.1 MAIN NETWORK FOR DECODING

Conv 3x3x3

4D Volumetric 
Brain Data

2D Brain
Surface Data

Group Norm

ReLU

Add

Linear Layer

Linear Layer

ReLU

Figure 5: The fMRI encoder
with different types of fMRI
images as input.

As shown in Figure 3 and 4, the main network Mθ consists of an
encoder MθEnc and a decoder MθDec . The encoder MθEnc is stacked
with fMRI encoder, finite impulse response (FIR) model (Huth et al.,
2016), and Transformer encoder (Vaswani et al., 2017). As shown
in Figure 5, the fMRI encoder is designed differently for two types
of fMRI image. 4D volumetric fMRI image Fi,j ∈ Rw×h×d×(k+1)

where w, h, d, k+1 represents the width, height, depth and time steps
records the activity of the whole brain. Voxel-level normalization
is first applied for each image f t

i,j ∈ Fi,j (detailed in Appendix A),
and the fMRI image after normalization is denoted as f̂ t

i,j , which is
then fed into the 3D-CNN module. The 3D-CNN module contains
L layers of group normalization (Wu & He, 2018), ReLU activation,
and convolution layer (LeCun & Bengio), with residual connection
(He et al., 2016). The size of fMRI image f̂ t

i,j is progressively reduced by convolution layer and
finally downsized to f̂ t

i,j ∈ Rw′×h′×d′×c where c is the number of output channels. A flatten layer
and a linear layer are used to obtain a one-dimensional vector xt

i,j ∈ Rdm as the output of the
3D-CNN module. 2D fMRI image Fi,j ∈ Rds×(k+1) records the activity of brain surface. For this
situation, we directly apply linear layers to gradually reduce the dimension of each image f t

i,j ∈ Fi,j .
The output xt

i,j ∈ Rdm remains the same dimension as the output of 3D-CNN module.

After the fMRI encoder, FIR model gt is applied to compensate for the latency of blood-oxygen-
level-dependent (BOLD) signal. For k+1 continuous fMRI images with t ∈ {T, T+1, . . . , T+k},
the temporal transformation gt concatenates k−k∗ future fMRI images to form the representation at
time step t:

gt : Rk×dm → Rk∗×(dm(k−k∗))

xt
i,j 7→ concat(xt

i,j , x
t+1
i,j , . . . , x

t+(k−k∗)
i,j ), t ∈ {T, T+1, . . . , T+k∗}.

(1)

where k−k∗ is the number of delays. A linear layer W ∈ R(dm (̇k−k∗))×dm is used to fuse delayed
brain responses and recover xt

i,j back to its original dimension dm. After learning the spatial
features of fMRI images, the representations with learnable time positional embeddings, denoted
as H0

θEnc
∈ Rk∗×dm , are sent into a Transformer encoder to capture temporal features within given
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intervals. The output of the Transformer encoder is HP
θEnc

= MθEnc(H
0
θEnc

), where P is the number of
Transformer encoder layers.

Side Network𝜙

Transformer
Encoder

Transformer
Decoder

ROIs Extraction
& Fusion

FIR Model
Time

Positional
Embedding

Main Network
Enc

MH

Figure 6: The side network of PREDFT.

Finally, the output from
MθEnc , i.e., HP

θEnc
, is fed into

the decoder MθDec . MθDec

contains modules within a
standard Transformer decoder
consisting of masked self-
attention layers and encoder-
decoder attention layers. Besides, additional predictive coding attention layers are designed to
integrate brain predictive coding representations inherited from the side network for improving
decoding accuracy. More details about the predictive coding attention layer will be introduced in
Section 3.3. The input word sequence Uj is tokenized and sent into a word embedding layer to
obtain representations H0

θDec
. We denote the input of the (l+1)-th self-attention layer as H l

θDec
, so the

self-attention is calculated by

Self-Attn(H l
θDec

W l
Q, H

l
θDec

W l
K , H l

θDec
W l

V ) = softmax(
H l

θDec
W l

Q(H
l
θDec

W l
K)⊤

√
dk

)H l
θDec

W l
V , (2)

where W l
Q,W

l
K ,W l

V ∈ Rdm×dk are the parameter matrices of projecting query, key, value in the
(l+1)-th corresponding layer (i.e., here is the self-attention layer) for simplicity. The encoder-decoder
attention aims to integrate fMRI representations. It takes H l

θDec
as query and HP

θEnc
for key and value:

ED-Attn(H l
θDec

W l
Q, H

P
θEnc

W l
K , HP

θEnc
W l

V ) = softmax(
H l

θDec
W l

Q(H
P
θEnc

W l
K)⊤

√
dk

)HP
θEnc

W l
V . (3)

The design of masks for self-attention and encoder-decoder attention remains the same as vanilla
Transformer. The output of MθDec is denoted as HQ

θDec
where Q is the number of decoder layers.

3.2 SIDE NETWORK FOR PREDICTIVE CODING

Figure 7: Mask of predic-
tive coding attention.

The idea of designing a side network Mϕ for representing brain pre-
dictive coding is motivated by predictive coding theory (McClelland &
Rumelhart, 1981; Rao & Ballard, 1999; Friston & Kiebel, 2009), which
indicates the human brain naturally makes predictions about future words
over multiple timescales. Since brain predictive coding has been verified
from the perspective of brain and language model alignment (the linear
mapping between language model activations and brain responses), we
seek to exploit it by training a neural network to well represent regions
involved in prediction, and fusing brain predictive coding representations
in fMRI-to-text decoding.

The side network Mϕ consists of an encoder MϕEnc to represent re-
gions of interests (ROIs) related to predictive coding, and a decoder
MϕDec to learn mapping between ROIs representations and predicted
words. As shown in Figure 3 and 6, the encoder MϕEnc takes Fi,j :=

{fT
i,j , f

T+1
i,j , . . . , fT+k

i,j } as input. The ROIs extraction layer generates
Rij := {rTi,j , r

T+1
i,j , . . . , rT+k

i,j } from Fi,j . Each rti,j ∈ Rdr extracted
from f t

i,j is the concatenation of ROIs related to brain predictive coding
as verified in Section 2. The ROIs fusion layer is a fully connected feed-
forward network that outputs the representation rti,j ∈ Rdm . The same
FIR model in the main decoding network is applied to compensate for
the delays of the BOLD signal. Learnable time positional embedding is
added to rti,j before entering into the Transformer encoder. The output
of Transformer encoder is denoted as HM

ϕEnc
, serving as the representation

of brain predictive coding. HM
ϕEnc

plays an essential role in PREDFT, as
it will be fused into the main network to verify the effectiveness of brain predictive coding in the
fMRI-to-text decoding task.
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The side network decoder MϕDec consists of Transformer decoder layers. It takes predicted future
words Vj := {vTj , v

T+1
j , . . . , vT+k

j } as input. Each vtj is extracted from original input word sequence
ut
j , and stands for l future words with prediction distance d (recall the definition in Section 2).

The side network decoder MϕDec follows the conventional practice of masked self-attention and
encoder-decoder attention, which has been elaborated in Equation 2 and Equation 3 of Section 3.1.

3.3 PREDICTION FUSION AND JOINT TRAINING

This subsection details how the brain predictive coding representation HM
ϕEnc

from the side network
is fused into the main decoding network. As shown in Figure 4 and 6, the brain predictive coding
representation HM

ϕEnc
, which is the output of MϕEnc , plays as key and value for the predictive coding

attention module in the main network. The query of predictive coding attention layer is the output
from the previous Transformer decoder layer. The predictive coding attention is formularized as:

PC-Attn(H l
θDec

W l
Q, H

M
ϕEnc

W l
K , HM

ϕEnc
W l

V ) = softmax(
H l

θDec
W l

Q(H
M
ϕEnc

W l
K)⊤

√
dk

)HM
ϕEnc

W l
V . (4)

The mask Mpc ∈ Rkt×k∗
of predictive coding attention is shown in Figure 7. kt and k∗ are the

numbers of input tokens and fMRI signals, respectively. The predictive coding attention mask Mpc is
designed in this way: For each token in the text fragment ut

j , all the predictive coding representations
after time step t are allowed to attend, while previous representations are masked.

Side NetworkMain Network

Input fMRI Sequence 𝐹𝑖,𝑗

𝑓𝑖,𝑗
𝑇 𝑓𝑖,𝑗

𝑇+1 𝑓𝑖,𝑗
𝑇+2

Generated Word Sequence

<s> He could still hear and feel that

sharp metal ripping explosion that …

…

…

Words generated auto-regressively

𝑓𝑖,𝑗
𝑇+𝑘

Encoder ℳ𝜙EncEncoder ℳ𝜃Enc
       ℳ𝜃Dec

Figure 8: The framework of PREDFT in the inference
stage. The decoder in side network is discarded.

As shown in Figure 3, PREDFT is trained
in an end-to-end manner. The main decod-
ing network Mθ and the side network Mϕ

share the same word embedding layer, whose
parameters are only updated with the gra-
dient flow from Mθ during training. The
training objective follows a left-to-right auto-
regressive language modeling manner for
both Mθ and Mϕ. Following Mθ and Mϕ

are two language model heads. The cross-
entropy training loss for Mθ is

LMain = −
n∑

t=1

logP (yt|y<t, Uj ; θ), (5)

where Uj is the input and yt is the t-th generated token. Similarly, the training loss for Mϕ is

LSide = −
n∑

t=1

logP (zt|z<t, Vj ;ϕ), (6)

where Vj is the input of side network and zt is the t-th generated token. The joint training of Mθ and
Mϕ is to optimize the total loss L = LMain + λLSide, where λ is a hyper-parameter.

During the inference stage, the decoder in side network is discarded. The purpose of this decoder is
to assist the training of encoder for obtaining predictive coding representation. Once the encoder has
been trained, the decoder is no longer necessary. As illustrated in Figure 8, the input is fMRI sequence
Fi,j , and the decoder in main network is responsible for generating words in an auto-regressive
manner, incorporating fMRI representation and predictive coding representation.

4 EXPERIMENTAL SETTINGS AND RESULTS

We conduct extensive experiments to (i) evaluate the decoding performance of PREDFT (ii) analyze
how brain predictive coding improves PREDFT. First, we introduce the experimental setups, includ-
ing baselines and evaluation metrics in Section 4.1. The selection of hyper-parameters and more
details are detailed in Appendix A. Then we present the decoding performance, regions of interest
selection analysis, and prediction length and distance analysis in Section 4.2. We also elaborate
more experimental analyses including decoding error distribution in Appendix D, ablation study in
Appendix E, and case analysis in Appendix F.
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Table 1: The performance of different models in within-subject fMRI-to-text decoding in LeBel’s
dataset. 10 continuous fMRI images (equals to 20 seconds) are sampled for decoding.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE1-R ROUGE1-P ROUGE1-F BERTScore
Su

b-
1

Tang’s (Tang et al., 2023) 22.25 6.03 0.83 0.00 20.16 19.12 19.44 80.84
BrainLLM (Ye et al., 2023) 24.18 8.36 3.06 1.11 24.17 19.31 21.16 83.26

MapGuide (Zhao et al., 2024) 27.11 10.02 3.78 1.54 25.17 24.64 24.83 82.66
PREDFT w/o SideNet 27.91 10.26 3.50 1.29 18.59 49.00 26.82 81.35

PREDFT 34.95 14.53 5.62 1.78 23.79 49.95 32.03 82.92

Su
b-

2

Tang’s (Tang et al., 2023) 23.05 6.65 1.83 0.00 20.85 19.54 20.01 81.33
BrainLLM (Ye et al., 2023) 23.69 8.06 2.37 0.00 23.63 19.29 21.02 83.40

MapGuide (Zhao et al., 2024) 26.40 9.68 2.78 0.97 26.72 21.13 23.65 82.78
PREDFT w/o SideNet 26.23 9.54 3.46 1.44 50.28 17.41 25.69 81.42

PREDFT 32.46 11.77 3.95 0.84 24.90 38.43 30.01 82.52

Su
b-

3

Tang’s (Tang et al., 2023) 23.08 6.83 2.41 0.82 21.66 20.07 20.66 81.50
BrainLLM (Ye et al., 2023) 24.90 10.15 4.76 1.75 24.15 19.49 21.34 83.82

MapGuide (Zhao et al., 2024) 26.41 9.97 3.71 1.25 25.33 23.91 24.53 82.84
PREDFT w/o SideNet 26.89 10.11 3.84 1.78 15.72 55.13 24.31 81.48

PREDFT 33.22 12.91 4.29 1.76 23.22 44.31 30.24 82.11

Table 2: The performance of different models in cross-subject fMRI-to-text decoding in Narratives
dataset. Length denotes the length of time windows for continuous fMRI frames.

Length Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE1-R ROUGE1-P ROUGE1-F BERTScore

10
UniCoRN (Xi et al., 2023) 20.64 5.03 1.40 0.45 15.56 25.47 19.23 75.35

PREDFT w/o SideNet 18.08 3.98 1.05 0.28 14.96 26.21 18.96 75.26
PREDFT 24.73 8.39 3.92 1.86 14.07 35.28 19.53 78.52

20
UniCoRN (Xi et al., 2023) 18.02 4.71 1.32 0.4 18.01 29.46 20.82 74.88

PREDFT w/o SideNet 20.37 3.86 1.03 0.19 17.42 22.15 19.45 75.16
PREDFT 25.98 5.61 1.36 0.21 19.61 25.43 22.09 78.20

40
UniCoRN (Xi et al., 2023) 21.76 5.43 1.17 0.34 19.76 35.33 25.30 74.40

PREDFT w/o SideNet 18.01 4.72 1.27 0.34 16.41 34.36 22.16 75.07
PREDFT 27.80 8.29 2.00 0.54 19.53 38.95 25.96 78.63

4.1 BASELINES AND EVALUATION METRICS

We test both within-subject and cross-subject fMRI-to-text decoding tasks in experiment (detailed in
Appendix A.2). Following the setting in Tang et al. (2023), the LeBel’s dataset (LeBel et al., 2023) is
used for within-subject decoding. Tang’s model (Tang et al., 2023), BrainLLM (Ye et al., 2023), and
MapGuide (Zhao et al., 2024) are selected as compared methods. The Narratives dataset (Nastase
et al., 2021) contains more subjects and is usually used for cross-subject decoding. UniCoRN (Xi
et al., 2023) is selected as baseline. Detailed introduction of the compared methods are presented in
Appendix A.1. For experiments on LeBel’s dataset, we show results of different subjects, while for
experiments on Narratives dataset, we show results of different fMRI sequence lengths.

Automatic evaluation metrics including BLEU (Papineni et al., 2002), ROUGE (Lin, 2004) and
BERTScore (Zhang et al., 2019) are applied to measure the decoding performance of different
models. BLEU measures the n-gram overlap between decoded content and ground truth. ROUGE-N
comparing the consistency of N-grams between the decoded content and the ground truth. BERTScore
measures semantic similarity between decoded content and ground truth through a BERT model.
Specifically, BERTScore-F1, BLEU at different cutoffs of 1/2/3/4 and the precision, recall, and
F1-score of ROUGE-1 are adopted in our experiments. More details are shown in Appendix A.3.

4.2 DECODING PERFORMANCE

We compare the decoding performance of different models on automatic evaluation metrics. The
results of within-subject decoding in LeBel’s dataset are shown in Table 1. Ten continuous fMRI
images, corresponding to a 20s time interval with a repetition time (TR) of 2s, are sampled for
experiments. PREDFT outperforms all the compared models on three tested subjects in BLEU-1 and
ROUGE1-F, and achieves a maximum 34.95% BLEU-1 score and 32.03% ROUGE1-F score. As to
BERTScore, PREDFT maintains a very narrow gap to the best performed model. We surprisingly
find the PREDFT without side network also beats some baseline models. And PREDFT significantly
benefits from the incorporation of side network, demonstrating the feasibility of applying predictive
coding to improve decoding accuracy.
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Figure 9: The performance of PREDFT with different ROIs selected in the side network. Complete
results are shown in Table 10 and Table 11.

The results of cross-subject decoding in Narratives dataset are shown in Table 2. To further investigate
the effect of fMRI sequence length on decoding model performance, experiments are separately
conducted with fMRI sequence length of 10, 20, and 40, which equals to 15s, 30s, and 60s of fMRI
with 1.5s TR in Narratives dataset. Despite UniCoRN’s good performance in some evaluation metrics
like ROUGE1-R, PREDFT achieves the best overall performance on all three experiments with
different fMRI sequence lengths. Specifically, it achieves the highest BLEU-1 score of 27.8% on
decoding 40 continuous fMRI frames. From the relatively low results of BLEU-2/3/4, we find all
the models struggle to generate long accurate text. This indicates decoding continuous language
accurately is still challenging. We don’t observe significant differences in the impact of fMRI
sequence length on the performance of the decoding models. Moreover, decoding on a within-subject
basis generally yields better results than cross-subject decoding.

4.3 REGIONS OF INTERESTS SELECTION

To better understand whether PREDFT benefits from introducing brain predictive coding, we select
different regions of interest (ROIs) for the side network to test their impacts on decoding performance.
Aligned with previous analysis on predictive coding verification (see Section 2), three types of ROIs
are selected: (a) “Random” means we randomly pick ROI area from the brain. (b) “Whole” means
the whole human cerebral cortex is applied for the side network. (c) “BPC” denotes the ROIs related
to brain predictive coding as verified in Section 2. It consists of Superior Temporal Sulcus (STS),
Inferior Frontal Gyrus (IFG), Supramarginal Gyrus (SMG) and Angular Gyrus. BPC also covers
most of the regions known for their significant role in language processing, like Auditory Cortex
(AC), Prefrontal Cortex (PFC), and Broca area. The specific regions used in experiment are listed
in Appendix A.4. Experiments are conducted in LeBel’s dataset and Narratives dataset and results
are illustrated in Figure 9. Figure 9 (a)-(c) display the decoding performance of three subjects from
LeBel’s dataset, and Figure 9 (d)-(f) show cross-subject decoding performance with different fMRI
sequence lengths in the Narratives dataset. BLEU-1 and ROUGE1-F are selected to reflect the overall
decoding performance under different settings.

Generally speaking, BPC area leads to the best performance on both datasets, while whole ROIs
selection leads to sub-optimal decoding performance. However, random selection of ROIs results
in poor decoding accuracy, both in the Narratives dataset with cross-subject decoding setting and
LeBel’s dataset with within-subject decoding setting. The experimental results are consistent with
the findings in predictive coding verification. Two conclusions could be drawn from the above ROIs
analysis. First, the predictive coding information can only be decoded from specific regions of the
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Figure 10: The impact of prediction length l and distance d on decoding performance. Results are
averaged across three subjects in the LeBel’s dataset. Per-subject results are shown in Figure 17, 18,
and 19 respectively.

human brain. Second, brain predictive coding can be beneficial to fMRI-to-text models with proper
network architecture design (e.g. our design of PREDFT).

4.4 PREDICTION LENGTH AND DISTANCE ANALYSIS

In this section, we investigate the impact of prediction length and prediction distance on the decoding
performance of PREDFT. Same as the definition in Section 2, prediction length l measures the
length of continuous future predicted words. Prediction distance d is the distance from the first word
within each fMRI frame to the first future word. Experiments are conducted on LeBel’s dataset
and Narratives dataset. For the LeBel’s dataset, decoding performance of all the three subjects with
prediction length l ranging from 1 to 12 and prediction distance d ranging from 0 to 12 are tested.
Figure 10 displays the average decoding performance of the three subjects. More results for each
subject are presented in Appendix C.2. For the Narratives dataset, the prediction length is restricted
as l = 2 and the prediction distance ranges from 0 to 10 due to the computational cost. We also
try different fMRI sequence lengths under this setting and results are displayed in Appendix C.1.
BLEU-1 and ROUGE1-F are chosen for evaluating fMRI-to-text decoding performance.

As shown in Figure 10, we observe a similar phenomenon as the predictive coding verification
experiment in Figure 2. The information decoded from the process of brain predictive coding can
improve the fMRI-to-text decoding performances, with a dependence on how far into the future
humans are presumed to predict and how long the predicted content is. The decoding performance of
PREDFT first rises then falls as prediction distance d increases for most prediction lengths. For a short
(e.g. l = 2, 3) or long (e.g. l = 9, 10) prediction length, the rising point of decoding performance
comes earlier compared to a medium prediction length (e.g. l = 6, 7, 8). An inappropriate prediction
length, whether excessively short (e.g. l = 1) or long (e.g. l = 11, 12), will result in poor performance.
This is somewhat different from the predictive coding verification where short or long prediction
length will still contribute to the increment of prediction score marginally.

5 RELATED WORK

fMRI-to-text Decoding. Most existing studies focused on aligning fMRI signal to a limited
vocabulary of items and performing word-level decoding (Bhattasali et al., 2019; Wang et al., 2020;
Affolter et al., 2020; Zou et al., 2021), or sentence-level classification (Pereira et al., 2018; Sun et al.,
2019). Recently, researchers turned to powerful pre-trained language models for open-vocabulary
fMRI-to-text decoding. For example, Tang et al. (2023) designed a pipeline model where the encoder
is responsible for identifying the most possible word sequence among candidates generated by the
GPT model with beam search. Zhao et al. (2024) further improved Tang’s method by applying
contrastive learning to pre-train an fMRI-text mapper. Xi et al. (2023) proposed a three-phase training
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framework UniCoRN which applies BART (Lewis et al., 2020) model for generation. Ye et al. (2023)
proposed BrainLLM by concatenating fMRI embedding with word embedding as input prompt to
fine-tune a Llama2 (Touvron et al., 2023) model.

Brain Predictive Coding. Predictive coding theory (McClelland & Rumelhart, 1981; Rao &
Ballard, 1999; Friston & Kiebel, 2009) aims to propose a potential unifying theory for computational
and cognitive neuroscience (Millidge et al., 2021). It was initially proposed as a neuroscientific
theory (Mumford, 1991) and subsequently developed into its mathematical form of cortical responses
(Friston, 2008). Although originally formulated to investigate brain visual processing, it was also
extended to language processing in the human brain in previous work (Garrido et al., 2009; Wacongne
et al., 2011). Predictive coding suggests that human brain naturally makes predictions about future
words and sentences when it perceives natural language stimuli. Such hypothesis has already been
evidenced by correlating word or phonetic surprisal with fMRI or EEG (Willems et al., 2016; Okada
et al., 2018; Donhauser & Baillet, 2020; Heilbron et al., 2022). Caucheteux et al. (2023) further
verified a predictive coding hierarchy in the human brain listening to speech by investigating the
linear mapping between modern language models and brain responses.

6 DISCUSSION

This paper explores the integration of predictive coding theory into model design for decoding fMRI
signals into natural language. First, we analyze the effect of brain predictive coding by linearly
mapping the activations of the computational auto-regressive language model to brain responses. Then
we verify those effects across different temporal and spatial scales. Motivated by the observations, an
fMRI-to-text decoding model PREDFT is proposed, which utilizes a side network to capture and fuses
brain prediction into the language reconstruction process. Comprehensive experiments demonstrate
the superior decoding performance of PREDFT benefits from integrating brain predictive coding.

While existing studies have successfully mapped the representations drawn from auto-regressive
language models with brain responses to auditory language stimuli (Tang et al., 2023), the reasons
behind this success are still controversial. A possible explanation is that both the language models and
humans follow a next-word prediction pattern while learning language-related knowledge. However,
Antonello & Huth (2024) questioned this hypothesis and claimed that language models can be used
for predicting brain responses because they generally capture a wide variety of linguistic phenomena.
Based on the existing analysis of the predictive coding theory, we further explored the potential of
applying predictive coding heuristics into fMRI-to-text decoding. We show the effect of predictive
coding on language decoding in different ROIs, prediction lengths, and prediction distance. This
finding provides a novel view of the temporal and spatial scales in predictive coding.

Non-invasive neural decoding is an emerging research topic. PREDFT fuses brain predictive coding in
language reconstruction. One disturbing fact is that human not always predict the right future words,
which might become distraction in the decoding process. Despite the improvement in decoding
performance in PREDFT, we find it’s still challenging to reconstruct natural language from fMRI
signals. The challenges can be summarized as follows: First, the noise inherited from collecting
fMRI data is a natural barrier to decoding. Second, different from fMRI-to-image decoding (Wang
et al., 2024; Scotti et al., 2024) whose experimental setting is requiring subjects look at pictures
one by one with certain intervals, the fast spoken word rate isn’t compatible with the low temporal
resolution of fMRI data in fMRI-to-text decoding. So part of the brain responses are not recorded in
fMRI. Such a hypothesis has been evidenced through experiments in Appendix D. Building a dataset
with high temporal resolution devices may alleviate this problem. Considering the quality of current
naturalistic language comprehension fMRI dataset (mostly building upon 3T scanner), we think it’s
better to change the evaluation standard from word-level to semantic-level, as reflected in case study.

The limitations of this work include: (i) Experiments are only conducted on fMRI datasets, i.e.,
LeBel’s dataset, Narratives. Exploration of other experimental setups (e.g. visual stimuli Pereira
et al. (2018)) and different modalities of signals (e.g. magnetoencephalogram (MEG)) is an emerging
direction. (ii) Contents that are not expected by the subjects might make it difficult for the brain
predictive coding function to decode. We leave it as future work to analyze this effect.
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A EXPERIMENTAL SETTINGS

A.1 BASELINE METHODS

In this part, we briefly introduce the compared baseline methods in experiments.

• Tang’s method (Tang et al., 2023): The model first applies an encoding model to predict how
subject’s brain responds to natural language. The linear encoding model capture the simulate the
brain responses to stimulus. A GPT model with beam search decoding algorithm is applied in
decoding fMRI signal to text. The beam contains k most likely candidate word sequences, and the
sequence with most similarity to the encoded brain signal is chosen as final generated content.

• MapGuide (Zhao et al., 2024): This model improves Tang’s method on the fMRI encoding process
by applying contrastive learning. Specifically, the MapGuide framework follows a two-stage
fMRI-to-text decoding manner. The stage-A pre-trains a robust fMRI-to-text mapper. The mapper
first optimize Mean Squared Error loss between predicted text and ground truth, and then optimize
the infoNCE loss between original fMRI representation and masked fMRI representation. The
stage-B is similar to Tang’s model. A GPT model (Radford et al., 2018) generates candidate word
through beam search and the highest possible word is chosen based on the similarity between
projected text embedding and GPT output.

• BrainLLM (Ye et al., 2023): This approach tackles the task of decoding text from functional
magnetic resonance imaging (fMRI) data by employing an auto-regressive generation method. It
involves using the decoded representations from fMRI directly as inputs for a large language model
(LLM). This method eliminates the dependency on the accuracy of pre-constructed candidate
phrases, thereby enhancing the fidelity and robustness of text generation from brain activity data.
In practice, we try Llama-2 (Touvron et al., 2023) for the large language model in generation.
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• UniCoRN (Xi et al., 2023): UniCoRN provides a unified encoder-decoder framework for EEG and
fMRI to text decoding. The training of UniCoRN follows a three-stage manner. The fMRI encoder
is first pre-trained with a cognitive signal reconstruction task to capture spatial feature. Then a
Transformer encoder is stacked into the fMRI encoder to capture temporal connections. Finally
BART (Lewis et al., 2020) is fine-tuned to translate fMRI representation into natural language in
the generation stage.

A.2 DATASETS AND SPLITTING METHODS

Experiments are conducted on two popular naturalistic language comprehension fMRI datasets.
The Narratives (Nastase et al., 2021) is currently the largest naturalistic language comprehension
fMRI dataset, containing recordings from 345 subjects listening to 27 diverse stories. Since the data
collection process involves different machines, only fMRI data with 64×64×27 voxels is considered,
which leads to 230 subjects. The predictive coding verification applies the AFNI-nonsmooth pre-
processing method (2D brain surface data). For the fMRI-to-text decoding experiment, fMRIPrep
version (4D whole brain data) is selected to follow the settings in Xi et al. (2023). The LeBel’s dataset
(LeBel et al., 2023) contains eight subjects participating a passive natural language listening task.
Following Tang’s setting (Tang et al., 2023), only subject-1, subject-2, and subject-3 are applied in
both predictive coding verification and fMRI-to-text decoding experiment (2D brain surface data).

How to split datasets for training and evaluation is a matter of debate in fMRI-to-text decoding (Xi
et al., 2023). Generally speaking, dataset splitting can be categorized into two main approaches:
within-subject splitting and cross-subject splitting. Under the within-subject splitting setting, fMRI
signal and text pairs ⟨Fi,j , Uj⟩ of training, validation, and test set all comes from one subject, namely
i is fixed. While in cross-subject data splitting, fMRI signal comes from different test subjects, i.e., i
is not fixed for training, validation, and test set. Ye et al. (2023); Tang et al. (2023); Zhao et al. (2024)
trained and evaluated models within subject in LeBel’s dataset. Xi et al. (2023) applied cross-subject
splitting in Narratives dataset, but has been identified to have data leakage issue (Yin et al., 2023).
To avoid data leakage and test model’s cross-subject generalization ability, we apply the splitting
method proposed in Yin et al. (2023), which follows two rules in the dataset splitting process: (i)
fMRI signals collected from specific subject in validation set and test set will not appear in training
set, which means the trained encoder cannot get access to any brain information belonging to subjects
in test or validation set. (ii) Text stimuli in validation set and test set will not appear in training set.

A.3 EVALUATION METRICS

• BLEU (Papineni et al., 2002): BLEU (Bilingual Evaluation Understudy) is an algorithm for
evaluating the quality of text which has been machine-translated from one natural language to
another. Quality is considered to be the correspondence between a machine’s output and ground
truth label. Neither intelligibility nor grammatical correctness are not taken into account. BLEU is
calculated in the following way. The geometric average of the modified n-gram precisions pn are
first computed, with n-gram up to length N and positive weight wn summing to one. The brevity
penalty BP is computed through

BP =

{
1 if c > r
e(1−r/c) if c ≤ r

(7)

where c is the candidate translation lenght and r is the effective reference corpus length. Then the
BLEU score is calculated.

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(8)

The maximum N is set as 4 with wn = 1/4, corresponding to the BLEU-4 score.
• ROUGE (Lin, 2004): ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a suite

of metrics often employed to evaluate the quality of automatic text summarization and machine
translation in natural language processing (NLP). It assesses similarity by comparing machine-
generated content against one or more reference texts. ROUGE scores range from 0 to 1, with 1
indicating the highest level of similarity. Specifically, ROUGE-Precision measures the accuracy of
the machine-generated content by assessing how closely it matches the reference content in terms of
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Table 3: Notation Table of different symbols in Methodology.
Symbol Definition

D Naturalistic language comprehension fMRI dataset
Uj The j-th input text stimuli
Fi,j Input fMRI image of i-th subject hearing text stimuli Uj

Vj The j-th input predicted word sequence extracted from Uj

Ri,j Predictive coding related ROIs extracted from Fi,j

Mθ,ϕ The PREDFT model
Mθ The main network of PREDFT
Mϕ The side network of PREDFT
MθEnc The encoder in the main network
MθDec The decoder in the main network
MϕEnc The encoder in the side network
MϕDec The decoder in the side network
HP

θEnc
The output of MθEnc

HQ
θDec

The output of MθDec

HM
ϕEnc

The output of MϕEnc , also the input of MθDec

content. A higher precision score indicates that the machine-generated content includes a significant
portion of relevant information from the reference content, while minimizing the inclusion of
extraneous or irrelevant details. ROUGE-Recall measures the extent to which a machine-generated
content captures the information contained in a reference content. It is particularly useful for
assessing how much of the key content from the reference is retained by the machine-generated
output. A higher recall score suggests that the model has effectively captured a significant portion of
the reference information. However, it is important to note that a high recall value may sometimes
indicate the inclusion of redundant information, which could potentially lead to a decrease in
precision. ROUGE-F1 helps in maintaining this balance by combining both precision and recall
into a single value.

A.4 IMPLEMENTATION DETAILS

Cortical Parcellation. For the LeBel’s dataset, we apply the cortical parcellation provided by Tang
et al. (2023). “Auditory” region is applied for the BPC region in PREDFT. For the random ROIs
selection, we randomly choose 1000 voxels from brain surface data. For the Narratives dataset, the
latest version of Destrieux atlas (Destrieux et al., 2010) is applied for cortical parcellation, which leads
to 74 regions per hemisphere. We use six regions of interests that have been proven in (Caucheteux
et al., 2023) to contribute to brain prediction, including superior temporal sulcus, angular gyrus,
supramarginal gyrus, and opercular, triangular, orbital part of the inferior frontal gyrus. In the
ROIs selection experiment, G_and_S_cingul-Ant, G_and_S_subcentral, G_and_S_transv_frontopol,
G_orbital, S_front_middle, S_subparietal are selected in random ROIs experiment.

Hyper-parameters. For the predictive coding verification experiment, we use ‘RidgeClassifierCV’
regressor from scikit-learn (Pedregosa et al., 2011) to predict the continuous features and align
language models to brain, with 10 possible penalization values log-spaced between 10−1 and 108.
The linear model is evaluated on held out data, using 10 cross-validation for brain score of each
subject. In practice, Principal Component Analysis (Abdi & Williams, 2010) is applied to reduce the
dimension of GPT-2 output (768) to 20. The output of eighth layer in GPT-2 is applied as activation.

4D volumetric whole brain data in Narratives dataset and 2D brain surface data is applied for the
fMRI-to-text decoding experiment. For 4D brain data, voxel-level normalization is first performed
to raw 4D fMRI data, which separately normalizes the values of each voxel over the time domain.
This normalization highlights the relative activation of a specific voxel within given intervals. In the
main decoding network, the 3D-CNN module contains L = 18 layers. The numbers of Transformer
encoders and decoders are set to P = 4 and Q = 12 respectively. For the side network, both are
set as M = N = 6. We apply the BART(Lewis et al., 2020) tokenizer for the Narratives dataset,
and the tokenizer provided in Tang et al. (2023) for the LeBel’s dataset. PREDFT is trained from
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Figure 11: The general framework of PREDFT. The italic words in the input word sequence stand for
the first heard word of each fMRI image while the bold words stand for the prediction words.
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       ℳ𝜃Dec

Figure 12: The illustration of PREDFT without SideNet

scratch with 40 epochs and the initial learning rate is set as 5e-4 which eventually decays to 1e-5.
The hyper-parameter λ for jointly training the main and side networks is set to 1 for fMRI sequence
of length 10, and 0.5 for sequence of length 20 and 40 in Narratives dataset. For baseline methods
we strictly follow the settings in the proposed paper. All experiments are conducted on NVIDIA
A100-80G GPUs. The total parameters for PREDFT is around 200 million. The time complexity of
PREDFT is the same as vanilla Transformer, which is O(lhn2), where n is the input length of word
sequence, l is the batch size, h is the number of attention heads.
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Figure 14: The impact of prediction distance on decoding performance in Narratives dataset.

B DETAILED ILLUSTRATION OF PREDFT

In this section, we present the detailed framework of PREDFT in Figure 11 and illustration of PREDFT
without SideNet which is used as compared baseline in experiments in Figure 12. We also make a
notation table 3 for the symbols mentioned in the Methodology part.

C SUPPLEMENTARY EXPERIMENTS

C.1 EXPERIMENTS ON THE NARRATIVES DATASET
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Figure 13: Predictive coding verification on the Narratives
dataset with prediction length l = 2.

Two kinds of experiments on the Nar-
ratives dataset are presented in this
section. For the predictive coding ver-
ification, 230 subjects in the Narra-
tives dataset are selected for the ex-
periment. The brain score is averaged
across subjects and computed within
one fMRI frame, namely N is set as 1.
The output of eighth layer in GPT-2
is applied as activation and we always
choose the activation of the first word
within each fMRI frame as X . Due to
the high computational cost of this ex-
periment, we don’t test changing pre-
diction length and prediction distance
like we try in the LeBel’s dataset. In-
stead, the prediction length l is set as
2 and the prediction distance d ranges from 0 to 11.

Figure 13(a) reports the prediction score across individuals with 95% confidence intervals. Results
show prediction score P(d,l)(X) first increases and peaks at d = 4, then decreases as the prediction
distance d increases, and finally goes down below zero when the prediction distance comes to d = 11.
We also conduct regions of interest (ROIs) analysis. Six regions related to brain predictive coding,
including superior temporal sulcus, angular gyrus, supramarginal gyrus, and opercular, triangular, and
orbital part of the inferior frontal gyrus in the left hemisphere, are selected for experiments. Sub-figure
(b) shows the prediction score of six ROIs across individuals with 95% confidence intervals. The
prediction distance is set at d = 4 for the best predictive performance, as reflected in sub-figure (a).
All the selected ROIs show positive responses to prediction words.

For the fMRI-to-text decoding experiment, similar to the prediction length and distance experiment
on LeBel’s dataset, we analyze the changing of prediction length and distance to the decoding
performance on the Narratives dataset. Experiments are conducted with a fixed window length l = 2
and the influence of prediction distance to decoding performance is reflected through BLEU-1 score.
Figure 14 shows the results with different fMRI sequence lengths. We notice a similar phenomenon
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as the predictive coding verification experiment. The trend of BLEU-1 score first rises then falls as
prediction distance d increases. PREDFT achieves the best performance with d around 4.

C.2 EXPERIMENTS ON THE LEBEL’S DATASET

We analyze the influence of prediction length and distance per subject. Figure 17, 18 and 19 show
results on subject-1, subject-2, subject-3 respectively. All the three subjects show very similar
trends in the changing of decoding performance. Align with the conclusions in Section 4.4, despite
occasional fluctuations, the decoding performance first rises and then falls when prediction distance
extends. Moreover, the best performance comes with a medium prediction length and distance.

D DECODING ERROR ANALYSIS
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Figure 15: An example of the experiment for decoding error
analysis. PosID and PosPCT stand for the word position index of
truth and the percentage of index respectively.

In this section, we design an ex-
periment that analyzes the posi-
tional distribution of incorrectly
decoded words. Figure 15 is
an example of two successive
fMRI frames containing seven
and four spoken words respec-
tively. Three kinds of errors
during decoding are defined: (i)
The decoding model M fails to
generate the correct word (e.g.
“could” is incorrectly decoded
as “should”). (ii) The decoding
model M generates redundant
words (e.g. repetitive “and”).
(iii) Corresponding words are
missing during decoding (e.g.
“sharp metal ripping” is missing
in output). Although some of the generated words are semantically consistent with the ground truth,
we apply the strict exact match to facilitate automatic evaluation. Three position counting methods for
corresponding errors are proposed: (i) If decoded word is wrong, position index of the corresponding
truth word is marked as wrong. (ii) If decoded words are redundant, position index of the last matched
truth word is marked as wrong. (iii) If decoded words are missing, position indices of all the missing
truth words are marked as wrong. Since different fMRI frames contain different numbers of spoken
words, the relative positions of incorrect words within each frame, namely the percentage of index
(PosPCT), are considered. The error probability of one specific position is the proportion of errors at
this position to the total number of errors. Table (a) in Figure 15 illustrates the positional distribution
of incorrectly decoded words in the example. The distribution is calculated at ten percentiles from
10% to 100%. As some positions like 10% or 90% are minority in all statistical positions, we also
add the error probabilities of the first and last 50% respectively, as shown in table (b).

Such experiment is conducted on UniCoRN and PREDFT. Positional decoding error distribution and
sum of error probability are analyzed. Results are shown in Figure 16. We find the error probability
of last heard words in TR is significantly higher than words heard at the beginning. However, the
error probabilities of decoding the first and last half of text are supposed to be the same in normal
cases. This phenomenon leads to the hypothesis that the information of some heard words, especially
the last few words in each TR, is lost in fMRI data. It’s caused by the discrete sampling feature
of fMRI: Due to the constraints of MRI scanner in strength and speed of switching the magnetic
gradients, the fMRI signal is sampled discretely with a fixed time interval called repetition time
(TR) in order to achieve the balance between spacial and temporal resolution. The repetition time
in fMRI-to-text decoding task is usually around two seconds. However, the average speaking rate
of human is about three words per second. If pauses between sentences are excluded, the word rate
within one sentence will increase to five per second. This feature of fMRI leads to the information loss
problem in fMRI-to-text decoding: While brain responses of the first few heard words are recorded
in one fMRI frame, information of the last heard words is lost due to the low temporal resolution,
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(a) Decoding error distribution with length=10 (b) Decoding error distribution with length=20 (c) Decoding error distribution with length=40

(d) Sum of decoding error with length=10 (e) Sum of decoding error with length=20 (f) Sum of decoding error with length=40

Figure 16: Information loss of different models under different fMRI sequence lengths in Narratives.

Table 4: Decoding performance of PREDFT under different hyper-parameter λ in Narratives.

Length λ BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE1-R ROUGE1-P ROUGE1-F

10

1 24.73 8.39 3.92 1.86 14.07 35.28 19.53
0.75 22.32 4.44 0.87 0.12 16.57 19.77 17.96
0.5 22.56 4.59 1.26 0.41 15.84 19.54 17.44

0.25 21.13 5.21 1.26 0.35 14.00 26.67 18.25

20

1 18.33 5.00 1.37 0.48 15.60 31.97 20.90
0.75 21.15 4.71 1.22 0.44 20.58 27.13 23.35
0.5 25.98 5.61 1.36 0.21 19.61 25.43 22.09

0.25 25.21 5.59 1.35 0.24 20.46 26.24 22.95

40

1 20.56 5.20 1.24 0.26 21.92 28.74 24.82
0.75 26.73 7.13 1.55 0.49 19.21 31.17 23.72
0.5 27.80 8.29 2.00 0.54 19.53 38.95 25.96

0.25 20.28 4.73 0.84 0.21 22.12 28.40 24.82

making decoding these words difficult. The latency of BOLD signal complicates the theoretical
explanation of this phenomenon. But based on experimental results and previous study (Liao et al.,
2002) which indicates the latency of fMRI response is about six seconds, exactly an integer multiple
of repetition time (1.5s or 2s), the hypothesis of information loss is reasonable.

From sub-figure (a), (b), (c) in Figure 16, we surprisingly find PREDFT successfully reduces the
error probability of the last few decoded words compared to UniCoRN. This implies the predictive
coding information in brain could be utilized to alleviate the information loss, and such alleviation
of information loss is closely related to the decoding accuracy. To better illustrate the degree of
information loss, we propose a novel index information loss slope φ measuring the growth rate of
error probability from the first half of decoded content to the last half,

φ =

∑10
i=6 pi −

∑5
i=1 pi

0.5
, (9)

where pi stands for the error probability of i% position. φ is expected to be around zero, as the error
probabilities of different positions are supposed to be the same without information loss. However,
the φ values of all compared models are high, indicating that all models suffer from information loss.
PREDFT successfully mitigates information loss to some extent. As shown in sub-figure (d), (e), (f)
of Figure 16, the φ score of PREDFT is lower than compared models on all the three experiments
with different fMRI sequence lengths.
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Table 5: Decoding performance of PREDFT under different hyper-parameter λ in LeBel’s dataset.

λ BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE1-R ROUGE1-P ROUGE1-F
Su

b-
1 1 34.95 14.53 5.62 1.78 23.79 49.95 32.03

0.75 27.26 10.07 3.47 1.47 16.10 54.56 24.75
0.5 34.97 13.43 4.68 1.42 24.42 43.72 31.21

0.25 27.32 9.61 3.13 0.00 16.22 53.38 24.64

Su
b-

2 1 32.46 11.77 3.95 0.84 24.90 38.43 30.01
0.75 20.21 7.25 2.64 0.62 13.89 55.16 22.07
0.5 19.23 6.96 2.28 0.55 12.80 62.37 21.09

0.25 30.33 11.28 4.02 1.55 20.31 40.82 26.93

Su
b-

3 1 33.22 12.91 4.29 1.76 23.22 44.31 30.24
0.75 33.17 11.06 2.97 0.00 25.84 34.75 29.49
0.5 31.89 11.08 3.54 1.15 24.22 35.59 28.63

0.25 29.62 10.18 3.09 0.70 20.05 43.23 27.15

E ABLATION STUDY

Four aspects of ablation experiments are conducted to analyze PREDFT. First we test whether the
side network for brain prediction really improves decoding accuracy. The model PREDFT without
side network (PREDFT w/o SideNet) is built with the same settings as PREDFT during training
except for only keeping the main decoding network (the cross-attention layers in main decoding
network are removed). The results of this model’s decoding performance are listed in Table 1 and
Table 2, same as not using ROIs in side network (“None” in the table). The performance of PREDFT
w/o SideNet is significantly worse than PREDFT in all the three experiments with different fMRI
sequence length. It also performs worse than UniCoRN under most cases, which might be attributed
to the pretrained language model used in UniCoRN. For the three test subjects in LeBel’s dataset, the
decoding accuracy without side network also gets severe decrement.

Besides, the decoding error distribution of PREDFT w/o SideNet is counted to verify whether the side
network helps alleviate information loss. As shown in Figure 16, the error distribution of PREDFT
w/o SideNet across different positions is similar to that of UniCoRN. The probability of decoding
error increases as the word position moves backward within one fMRI frame, peaking at the position
of the last word. PREDFT w/o SideNet severely suffers from information loss as shown in sub-figure
(d), (e), (f) of Figure 16, with the highest information loss slope. The ablation experiments provide
solid evidence on the effectiveness of the side network in PREDFT.

We also test the influence of hyper-parameter λ to decoding performance of PREDFT. As shown in
Table 4 and Table 5, four different λ values ranging from 0.25 to 1 are tested in experiments with
different fMRI sequence lengths (the Narratives dataset) and different subjects (the LeBel’s dataset).
Empirically, PREDFT achieves relatively good decoding accuracy with λ = 0.5 and λ = 1 in all
experiments.

Finally, we conduct a chance-level experiment to verify that our model learns language reconstruction
from fMRI response instead of random signals. Specifically, we randomly shuffle the order of the
input fMRI images, and maintain all other hyper-parameters. The results are shown in Table 6 and
Table 7. We notice that chance-level PREDFT performs extremely poor.

Table 6: The performance of different models in within-subject fMRI-to-text decoding in LeBel’s
dataset. 10 continuous fMRI images (equals to 20 seconds) are sampled for decoding.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE1-R ROUGE1-P ROUGE1-F BERTScore

S1

Chance-level PREDFT 20.34 3.75 0.20 0 15.48 20.41 17.45 77.7
PREDFT 34.95 14.53 5.62 1.78 23.79 49.95 32.03 82.92

S2

Chance-level PREDFT 18.96 2.96 0 0 15.04 20.37 17.18 78.02
PREDFT 32.46 11.77 3.95 0.84 24.90 38.43 30.01 82.52

S3

Chance-level PREDFT 19.48 3.58 0.28 0 15.17 19.35 16.96 78.24
PREDFT 33.22 12.91 4.29 1.76 23.22 44.31 30.24 82.11
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Table 7: The performance of different models in cross-subject fMRI-to-text decoding in Narratives
dataset. Length denotes the length of time windows for continuous fMRI frames.

Length Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE1-R ROUGE1-P ROUGE1-F BERTScore

10 Chance-level PREDFT 19.92 2.60 0 0 13.28 22.80 16.72 76.23
PREDFT 24.73 8.39 3.92 1.86 14.07 35.28 19.53 78.52

20 Chance-level PREDFT 19.53 2.45 0 0 14.94 21.55 17.58 75.39
PREDFT 25.98 5.61 1.36 0.21 19.61 25.43 22.09 78.20

40 Chance-level PREDFT 20.31 2.88 0.41 0 15.39 24.76 18.80 75.58
PREDFT 27.80 8.29 2.00 0.54 19.53 38.95 25.96 78.63

F CASE STUDY

Some fMRI-to-text decoding cases are analyzed in this section. We show cases from Narratives
dataset and LeBel’s dataset with fMRI sequence length 10. Some of the selected samples are displayed
in Table 8 and Table 9 respectively.

Despite the relatively good automatic evaluation performance, all the models struggle to decode
generally accurate content, especially in (i) generating fluent and coherent sentences. During the
experiment we observed that two types of fMRI-to-text decoding methods encounter different
problems. The Bayesian decoding method (e.g. Tang’s model, MapGuide) is able to generate
grammatically fluent sentences. However, it’s hard to decode correct semantic information. While
fine-tuning method (e.g. UniCoRN, PREDFT) sometimes struggle to decode fluent sentences, it can
also decode some key concepts from fMRI signals. (ii) capturing fine-grained semantic meanings
(e.g. “jealous of her”, “don’t have my driver’s license”) (iii) decoding specific terminology (e.g.
name “Mary”, location “florida”) or complicated phrases (e.g. “sharp metal ripping explosion”). We
find PREDFT successfully decodes some high-level semantic concepts and key words. For example,
as shown in the bold words in Table 8, PREDFT conveys the meaning of “the best dream” while
UniCoRN fails to in case1. In case2, PREDFT decodes the meaning of “he and Mary prepare to
sleep”. Generally speaking, PREDFT performs better than UniCoRN. More cases are shown in Table
9. PREDFT decodes the semantic of some key phrases in case 1-4. Case 5 is a bad case, where the
model generates too much repetitve and wrong words.

Table 8: Cases of decoded content in Narratives dataset. Bold words indicate key phrases.

Case1

Truth: It was more real than any dream he had ever had in his life. He could still
hear and feel that sharp metal ripping explosion that searing wave of heat. He sat
UniCoRN: It’s than I just a said of a a the hand. You have I the the the you I I I in
to at the to to sit.
PREDFT: It’s a more than normal just good dream about to said. He open the
eyes I have be her I like she and and and he and of under the next and I look the
platform

Case2

Truth: He couldn’t shake the thought out of his mind. It persisted all through the
day until dinner. He was still brooding as he and Mary got ready for bed. Guy
dear. Hm oh no. Anything wrong
UniCoRN: And I know a Dean and a eyes it. And of the first and the and a to guy
him. I said I to to him out and And to in that in the end.
PREDFT: He don’t know my girl you of the eyes but his girl sleep he and he said
and he said and the to the and and which I not wrong. But the Guy
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Table 9: Cases of decoded content in LeBel’s dataset. Bold words indicate key phrases.

Case1

Truth: stories about our lives we’re both from up north we’re both kind of to the
neighborhood this is in florida we both went to college not great colleges but man
we graduated and i’m actually finding myself a little jealous of her because she has
this really cool job washing dogs
PREDFT: and i was well no she were close to we and our family gonna things that
she gonna that of we’re the neighborhood i spend the time in the college and were
to the and gonna to i were not in our and a little bit her and it was a amazing and she

Case2

Truth: it was silent and lovely and there was no sound except for ch ch ch ch ch ch
ch ch and i was enjoying myself and enjoying the absence of anger and enjoying
these few hours i knew i’d have of
PREDFT: it was in not sound and it was a way like it the and that that that it and it
that that that i was able to enjoy i to months and was happy that never back to the

Case3

Truth: and we start walking and uh we get to this um lots of uh lights and uh the
roads are getting wider and wider and there’s more cars and i see um lots of stores
you know and dollar stores and and then we cross over us
PREDFT: and we were to walk around and we were to spend the time and we were
ready what i what i see a store and i was come to the end of the store i
know and i and you were the and

Case4

Truth: and um i don’t have a baby you know so i can leave whenever i want i smoked
all seven cigarettes on the way home and people who have never smoked cigarettes
just think disgusting and but unless you’ve had them and held them dear
PREDFT: and um i and i know a lot girl know what i was do and i have no children
to the time and i have been a lot time to think and i smoked cigarettes and i have to
ever to me to life

Case5

Truth: i get home and how sweet that’ll be we are chain smoking off each other oh
that’s almost out come on and we we go through this entire pack until it’s gone and
then i say you know what uh this is a little funny but you’re gonna have to show me
the way to get home because although i’m twenty three years old i don’t have my
driver’s license yet and i just jumped out
PREDFT: i was to home and were able to each other and my what like of to the i were
were to the time life and you like to i i am to know i i i time that lot bit girl i not be to
do of to way and do a for i gonna five hundred old was know a to that i was a to of

Table 10: The performance of PREDFT when different ROIs are selected for the side network under
within-subject decoding setting in LeBel’s dataset.

ROIs BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE1-R ROUGE1-P ROUGE1-F

Su
b-

1 None 27.91 10.26 3.50 1.29 18.59 49.00 26.82
Random 20.21 7.25 2.64 0.62 13.89 55.16 22.07
Whole 26.82 9.83 3.75 1.61 14.66 58.08 23.28
BPC 34.95 14.53 5.62 1.78 23.79 49.95 32.03

Su
b-

2 None 26.23 9.54 3.46 1.44 50.28 17.41 25.69
Random 21.02 7.55 2.35 0.57 11.75 62.75 19.64
Whole 27.26 10.19 3.14 1.06 16.52 53.10 24.90
BPC 32.46 11.77 3.95 0.84 24.90 38.43 30.01

Su
b-

3 None 26.89 10.11 3.84 1.78 15.72 55.13 24.31
Random 22.46 8.61 3.33 1.50 11.09 64.83 18.81
Whole 29.09 11.29 4.41 1.92 18.02 49.27 26.28
BPC 33.22 12.91 4.29 1.76 23.22 44.31 30.24
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Table 11: The performance of PREDFT when different ROIs are selected for the side network under
cross-subject decoding setting in Narratives dataset.

Length ROIs BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE1-R ROUGE1-P ROUGE1-F

10

None 18.08 3.98 1.05 0.28 14.96 26.21 18.96
Random 16.83 3.04 0.63 0.13 16.71 19.23 17.28
Whole 21.99 4.51 0.83 0.25 17.36 22.83 19.43
BPC 24.73 8.39 3.92 1.86 14.07 35.28 19.53

20

None 20.37 3.86 1.03 0.19 17.42 22.15 19.45
Random 16.11 3.28 0.55 0.12 19.27 24.29 21.44
Whole 23.55 6.39 1.33 0.39 15.66 30.98 20.72
BPC 25.98 5.61 1.36 0.21 19.61 25.43 22.09

40

None 18.01 4.72 1.27 0.34 16.41 34.36 22.16
Random 19.71 5.01 1.22 0.39 20.02 29.61 24.55
Whole 24.67 5.81 1.14 0.39 20.53 29.46 24.16
BPC 27.80 8.29 2.00 0.54 19.53 38.95 25.96
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Figure 17: The impact of prediction length and prediction distance on decoding performance of
subject-1 in LeBel’s dataset.
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Figure 18: The impact of prediction length and prediction distance on decoding performance of
subject-2 in LeBel’s dataset.

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11

Prediction Distance

BLEU-1 ROUGE1-F

0
5

10
15
20
25

0 1 2 3 4 5 6 7 8 9 101112

Prediction Distance

BLEU-1 ROUGE1-F

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 101112

Prediction Distance

BLEU-1 ROUGE1-F

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 101112

Prediction Distance

BLEU-1 ROUGE1-F

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 101112

Prediction Distance

BLEU-1 ROUGE1-F

0

10

20

30

0 1 2 3 4 5 6 7 8 9 101112

Prediction Distance

BLEU-1 ROUGE1-F

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 101112

Prediction Distance

BLEU-1 ROUGE1-F

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 101112

Prediction Distance

BLEU-1 ROUGE1-F

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 101112

Prediction Distance

BLEU-1 ROUGE1-F

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 101112

Prediction Distance

BLEU-1 ROUGE1-F

0
5

10
15
20
25

0 1 2 3 4 5 6 7 8 9 101112

Prediction Distance

BLEU-1 ROUGE1-F

0

10

20

30

0 1 2 3 4 5 6 7 8 9 101112

Prediction Distance

BLEU-1 ROUGE1-F

(a) Prediction length 𝑙 = 1 (b) Prediction length 𝑙 = 2 (c) Prediction length 𝑙 = 3 (d) Prediction length 𝑙 = 4

(e) Prediction length 𝑙 = 5 (f) Prediction length 𝑙 = 6 (g) Prediction length 𝑙 = 7 (h) Prediction length 𝑙 = 8

(i) Prediction length 𝑙 = 9 (j) Prediction length 𝑙 = 10 (k) Prediction length 𝑙 = 11 (l) Prediction length 𝑙 = 12

Figure 19: The impact of prediction length and prediction distance on decoding performance of
subject-3 in LeBel’s dataset.
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