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ABSTRACT

Large amounts of data are a common requirement for many deep learning ap-
proaches. However, data is not always equally available at large scale for all
classes. For example, on highly optimized production lines, defective samples are
hardly acquired while non-defective samples come almost for free. The defects
however often seem to resemble each other, e.g., scratches on different products
may only differ in few characteristics. In this work, we propose to make use of
the shared characteristics by transferring a stylized defect-specific content from
one type of background product to another. Moreover, the stochastic variations of
the shared characteristics are captured, which also allows generating novel defects
from random noise. These synthetic defective samples enlarge the dataset and in-
crease the diversity of defects on the target product. Experiments demonstrate that
our model is able to disentangle the defect-specific content from the background
of an image without pixel-level labels. We present convincing results on images
from real industrial production lines. Also, we show consistent gains of using our
method to enlarge training sets in classification tasks.

1 INTRODUCTION

Automated Visual Inspection (AVI) is vital for quality control in modern production lines. Despite
the fact that AVI has been studied for decades, it remains a challenging task with many open research
questions await to be answered. One of the main challenges in data-driven AVI is the acquisition
of suitable training data. This is for two reasons: First, collecting a vast amount of labelled data is
usually labor-intensive and time-consuming. In many cases, even experts are required to identify
where and what to look for. However, the acquired label information is task-specific and cannot
be reused or transferred to a new task in most cases. Thus, the tedious labelling process must be
repeated for each new product, even if its defect is similar to other products in people’s eyes. Second,
in real-world scenarios such as highly optimized production lines, a more severe problem emerges:
data imbalance. Only very few defective parts are produced by design. Moreover, the acquired
anomaly images from a single product are lacking diversity and may not capture the full defect
distribution. Training a robust deep neural network model in such conditions is very challenging.

Since collecting sufficient real-world defective samples is impractical, algorithms to synthesize re-
quired images became a focus in research. Image synthesis through Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014) has shown promising performance in recent years. But it
also requires large amounts of balanced data which are not available in most industrial use cases, in
particular for irregular defect patterns and large variation. Therefore, GANs tend to overfit to the
training examples when trained with little data (Karras et al., 2020a).

In this work, we tackle these issues by exploiting cross-domain information: we first define two
sets of domains—foreground domains and background domains. The foreground domain describes
a set of images that contains a specific foreground content to be grouped into a distinctive category,
and each content has a different style. The background domain instead is considered as a group of
images that shares similar structural appearance over the whole image. For example, we can set
foreground domains as defect types and background domains as product types while the styles of
defects indicate their artistic looks such as light or heavy strokes. Building upon StarGAN v2 (Choi
et al., 2020), the concept underlying this work is to transfer and generate foreground contents with
a variety of styles across different background domains, as illustrated in Figure 1.
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Figure 1: The underlying concept of DT-GAN is to transfer and generate foreground contents with
a variety of artistic styles (e.g., light / heavy strokes) across different background domains.

The contributions of this work are three-fold: First, we introduce Defect Transfer GAN (DT-GAN),
a model that learns transferring existing foreground content and generating novel contents onto dif-
ferent backgrounds at the same time. In the real-world scenario, it allows defect inspection networks
to learn from a variety of synthetic defective images by composing the foreground defects together
with various non-defective images from different products. Second, DT-GAN is able to disentangle
the foreground defect-specific content and the defect-irrelevant background in a weakly-supervised
manner. Third, extensive experiments show that our method can generate diverse and real-looking
defective samples even for products with only 20 real defective images. These defective images
generated by DT-GAN boost the performance in defect inspection networks significantly.

2 RELATED WORK

GANs have shown their power in many computer vision tasks such as image synthesis (Lučić et al.,
2019), style translation (Johnson et al., 2016), super-resolution (Ledig et al., 2017), image impaint-
ing (Pathak et al., 2016) and many other applications. To quantify the performance of GANs, visual
quality and the diversity of generated images are considered as two of the most important criteria.
Recent models address these requirements either by dedicated loss functions (Mao et al., 2019b;
Yang et al., 2019) or architectural design (Brock et al., 2019). StyleGAN v2 (Karras et al., 2020b),
the latest state-of-the-art model in image synthesis, introduces stochastic variation in image gener-
ating process by adding per-pixel noise after each convolution. However, it is non-trivial to adapt
the model to transform given input images due to the design of the generator.

In contrast, image-to-image translation methods (Isola et al., 2017) provide a way to recover the
connection between inputs and the generated images while encouraging diversity. For example, Zhu
et al. (2017b) and Huang et al. (2018) impose consistent mappings in latent space to achieve the goal.
Some approaches (Ma et al., 2019; Park et al., 2019) use reference images as guidance to generate
diverse outputs. Mokady et al. (2020) further extends the translation task from styles to contents. It
learns to identify a specific content in a given input (e.g., a specific pair of glasses) and transfer it
to the target image. However, aforementioned methods only consider the translation between two
domains and their extension to multiple domains is non-trivial.

Surface defect detection is one of the important tasks in real-world industrial manufacturing. It
aims at identifying and classifying defects with the help of machine vision. Traditional methods
(Ngan et al., 2011) build models upon hand-crafted feature extractors, which are unstable and out-
performed by deep learning based models. However, the performance and generalization ability of
deep learning approaches are restricted due to limited number of defective samples in real-world
scenarios. Data augmentation aims to enrich the training dataset by introducing different kinds of
invariance for the model to capture. Several recent works (Niu et al., 2020; Zhang et al., 2021)
have proposed to adopt GANs as a data augmentation method to generate realistic defective sam-
ples. Among them, Defect-GAN (Zhang et al., 2021) tries to capture the stochastic variation within
defects by mimicking the defacement and restoration processes. However, it still learns a deter-
ministic mapping between inputs and outputs while DT-GAN achieves multi-modality by varying
styles. Moreover, our method can generate realistic defects with sophisticated patterns copied from
real-world defective samples.
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(a) Generator (b) Mapping Network (c) Style-Content Encoder (d) Discriminator

Figure 2: Overview of all modules in DT-GAN.

3 METHODOLOGY

Our primary aim is to perform unpaired image-to-image translation across multiple foreground do-
mains within a single model. In our use case, the foreground domains refer to the defect types,
which means we want to achieve translations between different types of defects while the back-
ground remains unaffected. We assume that there is always an adequate amount of normal samples
(e.g., non-defective) available, while anomaly samples are rare and hard to acquire.

3.1 PROPOSED FRAMEWORK

Our framework builds on StarGAN v2, a multimodal image-to-image translation model. Given an
input image x ∈ X and an arbitrary domain y ∈ Y , StarGAN v2 generates a domain specific
style code in a learned style space and outputs an image that is stylized to fit the domain of y. Its
network architecture consists of four modules: a generator, a mapping network, a style encoder
and a discriminator. We modify and extend all four modules (see Figure 2) and describe the key
differences in details as below.

Style-Content Separation. Given a latent code z and a domain y, the mapping network M (Fig-
ure 2(b)) generates a style code s = My(z) and a domain specific content c = My(z) in different
branches. It is worth mentioning that My here denotes an output of M corresponding to the domain
y. This feature allows our method to separately model the structural appearance (i.e. content) and
its artistic looks (i.e. style), which is essential because applying different styles to the same content
enriches the diversity of outputs. By randomly sampling z from a standard normal distribution and y
from all available foreground domains, M is able to produce diverse style codes and domain specific
contents.

The encoder E (Figure 2(c)) extracts the style code s = Ey(x) and the domain specific content
c = Ey(x) from an given image x, which reflect the characteristics of reference images instead of
randomly sampled noise.

Foreground/Background (FG/BG) Disentanglement. The generator G (Figure 2(a)) translates
an input image x into an output image G(x, s̃, c̃) according to given domain specific style code s̃ and
content c̃, which are provided either by the mapping network M when generating from random noise
or by the style-content encoder E when transferring an existing content from a reference image. To
achieve a FG/BG disentanglement, we split the channels of the three-dimensional feature map
(i.e., H × W × C) at the bottle neck of G into two parts. The model is then forced to encode
the background into the first channels and the domain specific content ĉ into the latter channels by
classification losses as discussed in Section 3.2. ĉ can then be replaced with content c̃ from the target
domain. The adaptive instance normalization (AdaIN) (Huang & Belongie, 2017) is then used to
inject s̃ into c̃ during the decoding process while the background BGG(x) is decoded separately.
StarGAN v2 learns FG and BG together which leads to a conditional relationship between both.
Our disentanglement and separate encoding break this conditioning and therefore enable our method
to freely combine FG and BG as well as learn the full variation of FG content. Finally, BGG(x)
and c̃ are concatenated together and then fused before output.
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Multi-task discriminator with auxiliary classifiers. The discriminator D (Figure 2(d)) is a multi-
task discriminator with two auxiliary classifiers: a foreground domain classifier and a background
domain classifier. This feature strengthens the disentanglement of FG and BG by first ensuring the
input image x contains a domain specific content that can be recognized by the foreground domain
classifier independent of the background. Later, each branch Dy in the multi-task discriminator
D is trained to determine if an image x is a real image of its foreground domain or a fake image
G(x, s, c) generated by G. Apart from that, one extra branch BGcls is attached to decide whether
the background information of the input images is well preserved.

Content Transfer. Mokady et al. (2020) introduced a concept that a model should be able to identity
the difference between two domains when one of the domains contains a feature that the other does
not have. We refer to this concept as ‘anchor’ and extend to multiple domains (>2) by the FG/BG

disentanglement, the multi-task discriminator and the foreground content classifier in D. We treat
domain Normal as the anchor domain i.e. set the domain specific content to zero, because a normal
image has no domain specific content in our definition. As a result, we can now transfer contents
between all combination of FG and BG domains (see Figure 10).

Compared to StarGAN v2, our method not only models style codes and contents separately but also
disentangles the foreground and background of an image in a weakly-supervised manner. These
features allow explicit control over output images by combining desired style codes and contents
from one of the subnetworks with the input images. Therefore, it leads to higher variance regarding
the location, structural pattern and artistic style of defects in the synthetic images of DT-GAN.

3.2 TRAINING OBJECTIVES

Given an image x ∈ X , its original foreground domain y ∈ Y and its background domain p ∈ P ,
the following objectives are used to train our framework.

Adversarial loss. In the training phase, a noise vector z ∈ Z and a target foreground domain ỹ ∈ Y
are sampled randomly. Both of them are fed to M , producing a target style code s̃ and a target
content c̃ as follows: s̃, c̃ = Mỹ(z). Goal of the training is to ensure that s̃ and c̃ are sampled from
the distribution over styles and contents of the target domain ỹ. The generator G then combines
an image x with s̃ and c̃ and learns to generate an output image G(x, s̃, c̃) that is indistinguishable
from real images in the target domain ỹ. We encourage this behavior by using an adversarial loss
same as in Choi et al. (2020)

Ladv = Ex,y

[
logDy(x)

]
+ E

x,ỹ,z[log (1−Dỹ(G(x, s̃, c̃)))] , (1)

where Dy and Dỹ are the output branches of D that correspond to the source domain y and the
target domain ỹ, respectively.

Style-content reconstruction loss. Similar to StarGAN v2, to enforce the generator G takes the
style code s̃ and the domain specific content c̃ into consideration during the generation process, we
employ a style-content reconstruction loss

Lsty con = E
x,ỹ,z

[
‖s̃− SE(G(x, s̃, c̃))‖

1

]
+ E

x,ỹ,z

[
‖c̃− CE(G(x, s̃, c̃))‖

1

]
. (2)

This objective urges the style-content encoder E to recover s̃ and c̃ from G(x, s̃, c̃). Here, the style-
content encoder E learns a mapping from an image to its style and content domains, which allows
G to synthesize an image with given s and c from reference images at test time.

Diversity loss. In order to further boost the diversity of output images from G, we introduce a
loss that encourages diversity as follows: for a pair of random latent codes z1 and z2 we compute
s̃i, c̃i = Mỹ(zi) for i ∈ {1, 2} and enforce a different outcome of the generator G for differently
mixed style and content input pairs:

Lds = E
x,ỹ,z1,z2

[
‖G(x, s̃1, c̃2)−G(x, s̃2, c̃1)‖1

]

+ E
x,ỹ,z1,z2

[
‖G(x, s̃1, c̃1)−G(x, s̃2, c̃2)‖1

]

+Σm,n,o

[
E
x,ỹ,z1,z2

[
‖G(x, s̃m, c̃n)−G(x, s̃o, c̃o)‖1

]]
,

(3)

where m,n ∈ {1, 2|m 6= n} and o ∈ {1, 2}. Driven by this term, the generator G is forced to
discover meaningful style features and contents that eventually lead to diversity in generated images.

4



Under review as a conference paper at ICLR 2022

We ignore the denominator ‖z1 − z2‖1 of the original diversity loss (Mao et al., 2019a) for stable
training as in StarGAN v2.

Cycle consistency loss. To ensure that the generated image G(x, s̃, c̃) preserves the domain-
invariant properties of its input image x, we impose the cycle consistency loss (Zhu et al., 2017a)

Lcyc = E
x,y,ỹ,z

[
||x−G(G(x, s̃, c̃), ŝ, ĉ)||

1

]
, (4)

where ŝ, ĉ = Ey(x) is the extracted style code and domain specific content of the input image x,
and y is the original domain of x. By learning to reconstruct the input image x with given style
code ŝ and content ĉ, the generator G is then further encouraged to disentangle the background, the
domain specific content and the style code.

Content consistency loss. Besides the cycle consistency loss, we apply another constraint to en-
force that the detached domain specific content from G is consistent with the one retrieved from E
according to

Lcon cyc = E
x,y,ỹ,z

[
‖FGG(x)− ĉ‖

1

]
+ E

x,y,ỹ,z

[
‖FGG(G(x, s̃, c̃))− c̃‖

1

]
, (5)

where ĉ = Ey(x), c̃ = Eỹ(x), FGG(x) and FGG(G(x, s̃, c̃)) are the pop-out domain specific
content from input image x and generated image G(x, s̃, c̃), respectively.

Classification losses. We employ two classification losses: the first one is the foreground content
classification loss

LFG cls = Exreal,y

[
− logDFG cls(y|xreal)

]
+ E

xfake,ỹ

[
− logDFG cls(ỹ|xfake)

]
, (6)

which aims to ensure that the domain specific content is properly encoded and carries enough infor-
mation from the target domain. The second one is the background classification loss

LBG cls = Exreal,p

[
− logDBG cls(p|xreal)

]
+ Exfake,p

[
− logDBG cls(p|xfake)

]
, (7)

where p is the corresponding background type of xreal and xfake. With the help of this objective,
the generator G learns to preserve the domain-invariant characteristics of its input image x while
dissociating the foreground domain specific part.

Full objective. Our full objective functions can be summarized as

min
G,F,E

max
D

Ladv + λsty con Lsty con − λds Lds + λcyc Lcyc+

λcon cyc Lcon cyc + λFG cls LFG cls + λBG cls LBG cls ,
(8)

where λsty, λds, λcyc , λcon cyc, λFG cls and λBG cls are the hyperparameters for each term.

4 EXPERIMENTS

We evaluated the images generated by DT-GAN through a series of experiments both quantitatively
and qualitatively. Finally, we demonstrate the benefits of our generated images when being used as
data augmentation for a defect classification task on limited data.

Dataset. All experiments were performed on a real industrial dataset: a Surface Defect Inspection
(SDI) dataset that contains three different kinds of products from production lines and samples from
each product are classified into three mutually exclusive classes: Normal, Scratch and Spot.
All of the images are grayscale. Detailed statistics of the dataset are summarized in Appendix
A. Note that only the training set was used in GAN training, the test set was left untouched for
final evaluation in classifier training. For a fair comparison, all images were resized to 128 × 128
resolution for both GAN training and classifier training, which was also the highest resolution used
in the baselines for image generation. For comparison, we also conducted experiments on the widely
used MVTec Anomaly Detection dataset (Bergmann et al., 2019) in Appendix E.4.

4.1 DEFECT GENERATION

Baselines. As discussed in Section 3, DT-GAN can either use the mapping network to randomly
generate styles and defects, or it can use the style-content encoder to extract both from reference
images. We refer to these cases as ‘latent-guided’ and ‘reference-guided’, respectively.
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Since the two ways of guidance are fundamentally different, we evaluated them against two sets
of baselines: Our reference-guided image generation was compared to Mokady et al. (2020) and
StarGAN v2, because both of them can perform a reference-guided translation. Note that Mokady
et al. (2020) can only translate between two domains while StarGAN v2 and DT-GAN can achieve
multi-domain translation within a single model. Images generated through the latent-guided part
of DT-GAN were compared to state-of-the-art GANs in image synthesis: BigGAN (Brock et al.,
2019) and StyleGAN v2 (Karras et al., 2020b). We set BigGAN to condition on defect types during
training while StyleGAN v2 was trained unconditionally. All baselines were trained from scratch
with the public implementations provided by the authors1.

4.1.1 QUANTITATIVE EVALUATION

Metrics. We employed the commonly used frechet inception distance (FID) (Heusel et al., 2017) to
evaluate both the visual quality and the diversity of the generated images. We also report the kernel
inception distance (KID) (Binkowski et al., 2018) which is a more stable metric for small sets of
images like our SDI dataset. Lower FID and KID scores indicate better performance.

Both scores are shown in Table 1. We observe that methods like BigGAN and StyleGAN v2, which
perform defect synthesis purely based on latent codes, generally provide unsatisfactory results on
the SDI dataset, presumably due to the small number of defective samples that were available.
These methods then struggle to capture the complex and irregular patterns of defects. We also
experimented with augmentation methods for GAN training (Karras et al., 2020a; Zhao et al., 2020)
but did not find a consistent improvement (see Appendix E.2). We thus only report the best scores.

Reference-guided synthesis methods like Mokady et al. (2020) and StarGAN v2 seem to generate
more realistic images. The scores of StarGAN v2 on a single product are omitted here because
generating images with specified background is not possible due to its network design—the product
type changes in output images, which we refer to as ‘identity-shift’. As seen in Table 1, our method
achieves better scores in all cases. We believe this is due to the fact that our method allows free
combination of foreground defects and backgrounds, making the generated images more diverse
even with a small number of training samples.

Table 1: Quantitative comparison of DT-GAN with baseline image synthesis methods using FID
and KID. Note that the reported values are not comparable between columns, because they were
calculated on different training sets.

Method
FID↓ KID↓

A B C All A B C All

Mokady (2020) 68.69 66.90 36.21 58.63 0.050 0.036 0.030 0.036
StarGAN v2 - - - 37.70 - - - 0.013
StyleGAN v2 90.10 52.95 138.09 35.34 0.072 0.027 0.186 0.013
BigGAN + DiffAug 218.74 134.41 270.89 155.88 0.220 0.121 0.378 0.099
Ours 58.43 36.44 22.68 29.73 0.025 0.013 0.012 0.009

4.1.2 QUALITATIVE EVALUATION

We present a qualitative comparison with the baseline methods in latent-guided image synthesis
in Figure 3. To make a fair comparison, we trained StyleGAN v2 and BigGAN on each product
separately to have control on background products. Note however, that images from DT-GAN were
always obtained from a single model. We can see that some generated samples from StyleGAN
v2 do not contain clear defects, and samples from BigGAN present abnormal grid patterns. Both
methods do not take images as inputs but generate synthetic images according to a given latent code
which contains information for both FG and BG. This conditioning leads to limited diversity in
the output images. On the other hand, StarGAN v2 performs translation based on input images but
suffers from the same entanglement issue. Thus, it fails to preserve the background, which results in
artifacts or identity-shift in its outputs. Our network architecture that disentangles foreground and
background seems to mitigate these issues. See Appendix E.4 for more images.

1We could not obtain the code of Defect-GAN to reproduce their results.
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(a) Normal-to-Scratches (b) Normal-to-Spots

Figure 3: Qualitative comparison of latent-guided image synthesis results. In each subfigure: on
the left, defective images are fully generated from random noise. On the right, random defects are
synthesized onto given normal samples. Note that BigGAN* denotes it was trained with DiffAug.

(a) Normal-to-Scratches (b) Normal-to-Spots

Figure 4: Qualitative comparison of reference-guided image synthesis results on the SDI
dataset. Each method transforms the given source images into target foreground domains (e.g.,
Scratches) with the styles and contents extracted from the reference images.

Also for reference-guided image synthesis, where we used different background and foreground
reference images as illustrated in Figure 4, only our method produces high quality images with
preserved background from the source and transferred foreground defect from the reference.

Ablation study. We visually demonstrate the effect of each component we added to DT-GAN
compared to StarGAN v2 in Figure 5, using the examples of both latent- and reference-guided image
synthesis from Normal to Scratches. The quantitative evaluation can be found in Appendix E.3.

Column (a) corresponds to StarGAN v2 and highlights the drawback of entangled FG/BG again
(i.e. the identity-shift in the background). We first tackle this problem by modeling the style code
and foreground content explicitly and feeding them separately to the generator. This leads to a better
preservation of the background structure in column (b) for the reference-guided subnetwork, but not
for the latent-guided synthesis on the bottom of Figure 5. Thus, we add a foreground classifier in
the discriminator in (c) to ensure the output image contains the desired foreground content (scratch).
Similarly, we introduce a background classifier to the discriminator in column (d). Note that the
additional product type labels can be acquired automatically from production lines.

For column (e), we add the separate decoders for foreground and background in the generator which
are fused only in the end. This enhances the preservation of background characteristics like lighting
even more. Imposing an additional penalty for foreground content extracted from a normal sam-
ple as described in Section 3.1 leads to another visual improvement of the foreground edges for
reference-guided synthesis in column (f). Finally, inspired by StyleGAN, we incorporate adaptive
noise injection to the mapping network, which significantly boosts the performance of our latent-
guided image synthesis as shown in column (g).

Styling. We visually demonstrate the effect of style codes in our method by randomly sampling
those and combining them with fixed reference background and foreground images in Figure 6,
where a variety of artistic styles can be seen on the output columns.
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Figure 5: Ablation study. (a) The baseline StarGAN v2. (b) + Style-Content branches. (c) + Fore-
ground classifier. (d) + Background classifier. (e) + Separately decoding foreground and background
in G. (f) + Anchor foreground domain (e.g. Normal). (g) + Noise injection in Mapping Network.

(a) Normal-to-Scratches (b) Normal-to-Spots

Figure 6: Visual effect of randomly sampled style codes on fixed pairs of reference background
(Source) and foreground (Content) images.

4.2 DT-GAN FOR DATA AUGMENTATION

We also evaluated our method as a data augmentation method for defect classification on the SDI
dataset. We defined one task ‘general’, where the classifier was trained on images from all products
at once, while task ‘single product’ only used the subset of images for one product.

Besides, we incrementally varied the amount of real Normal data available for classifier training:
4500, 6600, 12000 and 18600. In the case of defective images, all of them were always used due to
the small amount unless otherwise specified. As backbone we used a ResNet-50 (He et al., 2016a)
with ImageNet pretrained weights. For experiments with synthetic data, we attached an auxiliary
domain classifier to the network through a Gradient Reversal Layer (Ganin & Lempitsky, 2015).

Table 2: Quantitative comparison of the baseline methods on defect classification task at the scale
of 12000 images/class. The reported values are the achieved error rates (%) over five runs.

Method ResNet-50 EfficientNet-b4

No-Aug 21.64±1.24 12.06±0.64
Trad-Aug 12.58±0.81 9.33±0.73
Mokady (2020) 11.11±1.19 13.26±1.13
StarGAN v2 13.07±1.30 12.25±0.79
StyleGAN v2 11.55±1.79 11.68±0.76
BigGAN+DiffAug 11.45±0.61 12.06±0.50
Ours 9.9±0.69 9.14±1.02
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Since the SDI dataset is highly imbalanced, we oversampled the minority classes (Ling et al., 1998)
unless the data was balanced through synthetic images. Additionally, we always applied traditional
data augmentation techniques like random horizontal flips, jittering and lighting (Shorten & Khosh-
goftaar, 2019) except where noted. All following results were evaluated by the achieved error rates
over five runs with different random seeds.

Effectiveness of synthetic data. We first compare classifier performance for no augmentation (No-
Aug), traditional data augmentation (Trad-Aug), and a combination of traditional augmentation
with synthetic images for GAN methods including DT-GAN. We also introduce a stronger back-
bone, EfficientNet-b4 (Tan & Le, 2019), to demonstrate that our results are not confined to a specific
network. Table 2 shows that our method is the only one that improves performance for both back-
bones, presumably due to the combination of high visual image quality and diversity in our samples.

Table 3: Experimental results on using different amount of synthetic images generated by DT-GAN
to train classifiers. The left-most column stands for number of samples per class to be classified.
The training set of the baselines is balanced by oversampling while ours is by synthetic images.

Dataset
Size

20A All

Trad-Aug Ours Trad-Aug Ours

4500 15.55±0.63 14.28±1.25 12.75±0.61 11.04±0.76
6600 16.69±0.76 14.41±3.12 13.07±1.57 10.60±0.48
12000 16.95±1.02 14.22±1.53 12.05±0.81 9.90±0.69
18600 16.12±2.19 15.36±0.86 12.37±0.32 10.21±0.96

Impact of dataset size. Motivated by the limited availability of data in real-world production sce-
narios, we therefore evaluated DT-GAN for data augmentation on a subset of the full SDI dataset
(All), which only contains 20 defective samples in product A for each defect type (20A). In this case,
DT-GAN was also trained on the reduced subset. As shown in Table 3, there is a clear improvement
when synthetic images from DT-GAN are used as data augmentation, even for the extremely limited
data subset. Further results on single product classifiers can be found in Appendix E.1.

Table 4: Cross-domain effect on single product classifiers trained with reference-guided synthetic
images at the scale of 12000 images/class.

Trad-Aug vA vB vC vABC

A 13.81±2.36 11.81±2.65 12.72±2.87 11.99±1.63 11.09±3.49
B 6.80±1.64 6.40±1.34 6.60±1.52 6.59±1.34 5.60±1.34
C 16.57±3.20 13.14±2.81 11.23±0.80 14.85±1.73 11.42±0.96

Cross-domain effect. We hypothesized that limited data can be counteracted by transferring de-
fects across multiple background products, if there are at least some defects that occur on multiple
products (See Appendix E.1 for further discussion). We tested this approach by comparing the per-
formance of classifiers trained on synthetic images with defects from a specific source (vA, vB, vC)
to classifiers trained on images with defects from all products (vABC). As we can see in Table 4,
the best performances are reached by the models that take over defects from other products. We
interpret this as support for our hypothesis and its practical usefulness.

5 CONCLUSION

We propose a novel method, DT-GAN, which allows diverse defect synthesis both by generating
from randomly sampled noise and by following the guidance of given reference images. Due to
explicit style-content separation and FG/BG disentanglement, DT-GAN achieves higher image
fidelity, better variance in defects and full control over background and foreground while being
sample-efficient. We demonstrated the feasibility and benefits of DT-GAN on a real industrial defect
classification task and the results show our method provides consistent gains even with limited data
and boosts the performance of classifiers compared to state-of-the-art image synthesis methods. For
future investigation, we aim to represent defects more explicitly (e.g., localization) to improve the
explainability of the model and also enhance the model transferability to unseen products.
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REPRODUCIBILITY STATEMENT

We aim for full reproducibility by publishing the source code and dataset with the final version of
the paper. Besides, we provide descriptions of the training details in Appendix B, the evaluation
setup in Appendix C and the network architecture in Appendix D.
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A THE SURFACE DEFECT INSPECTION DATASET

The Surface Defect Inspection (SDI) dataset consists of 20,414 images at 128 × 128 resolution.
It contains three background domains—product A, product B and product C, each can be further
classified into three foreground domains—Normal, Scratches and Spots. Figure 7 shows
example images of the SDI dataset. To be noticed that the dataset is highly imbalanced not only
between normal and defective samples but also between different products as shown in Table 5.
This sets a more challenging task when training deep neural networks like GANs and downstream
classifiers.

For each foreground and background domains, we randomly select 50 images for a joint valida-
tion/test set, which is then further split into separate sets in the ratio of 3:7, and use all remaining
images as training sets for GAN and classifier training. We present the distribution of the training
set when training DT-GAN in Table 6. Note that the normal samples used in GAN training are only
a subset of all available samples in Normal and we keep the rest of them for generating defective
samples at test time. For classifier training, we show the statistics in Table 7, where the number
of normal samples involved in classifier training increase incrementally. The validation set is used
to select the best model during classifier training while the test set is left untouched until the final
evaluation. Both of the validation and test set are inaccessible by DT-GAN.

Table 5: Distribution of the full SDI dataset.

Overview

A B C

Normal 6250 6250 6250
Scratches 340 167 121
Spots 108 670 258

Table 6: The training set for DT-GAN and
the baseline image synthesis methods.

Overview

A B C

Normal 700 700 700
Scratches 290 117 71
Spots 58 620 208

Table 7: The training, validation and test set for classifier training, where N increases
incrementally—1500, 2200, 4000 and 6200.

Train Validation Test

A B C A B C A B C

Normal N N N 12 18 15 38 32 35
Scratches 290 117 71 14 16 15 36 34 35
Spots 58 620 208 14 16 15 36 34 35

B TRAINING DETAILS

DT-GAN. We follow the training scheme as described in StarGAN v2 with minor modifications. To
fit the model on a single Nvidia GTX TITAN X, the batch size is reduced to four while the model is
still trained for 100,000 iterations. The training time is about three and a half days on the dedicated
GPU with the modified network architecture2 and loss functions mentioned in Section 3 in PyTorch
(Paszke et al., 2017). We set λsty = 1, λds = 1, λcyc = 1, λcon cyc = 1, λcls = 1 and λBG cls = 1 for the
SDI dataset. All other design choices remain the same as in StarGAN v2.

Classifiers. We train all the classifiers that use ResNet-50 as backbone for 100 epochs with the
SGD optimizer (Ruder, 2016) and batch size 256. The initial learning rate is 0.001, momentum is
0.9 and weight decay is 1e-4. A learning rate scheduler is set to reduce the learning rate by factor
of 0.1 when the validation loss stops decreasing for 5 epochs. The same setting also applies to
EfficientNet-b4, except the batch size is reduced to 128. Although DT-GAN can synthesize realistic
defective samples, we notice that there still exists a domain gap between the generated samples
and the real samples. To explore the full potential of the generated samples, we attach an auxiliary

2We based our implementation on source code from StarGAN v2: https://github.com/clovaai/stargan-v2
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(a) Normal

(b) Scratches

(c) Spots

Figure 7: Overview of the SDI dataset.

source classifier to distinguish between synthetic and real samples. Then, this classifier is connected
to the backbone (e.g. ResNet-50) through a Gradient Reversal Layer. With the help of the Gradient
Reversal Layer, the backbone is forced to extract the shared features between synthetic and real
samples, which ensures all training samples are effectively learned.

We design a two-layer perceptron that connects to the average pooling layer in ResNet-50 as shown
in Figure 8. Note that the usual fully connected layer after the average pooling in ResNet-50 remains
the same and is not affected by the extra branch we added. Inspired by Chen et al. (2018), a three-
layer perceptron is used for EfficientNet-b4 instead as shown in Figure 9. Its layers are initialized
with a random normal distribution, where the standard deviation is set to 0.01 for the first two layers
and 0.05 for the output layer. The biases for all layers are set to 0.

14



Under review as a conference paper at ICLR 2022

Figure 8: ResNet-50 with GRL. Figure 9: EfficientNet-b4 with GRL.

C EVALUATION SETUP

Generated samples from DT-GAN. DT-GAN requires images as input for generating synthetic
data. At test time, we translated each Normal image in the SDI dataset into four defective images:
two with Scratches and two with Spots. The translations were performed by two subnetworks:
by the mapping network M using random noise (‘latent-guided’) and by the style-content encoder
E using a reference image (‘reference-guided’). We first randomly sampled one latent code for
each defective foreground domain. Similarly, we also randomly sampled one reference image from
the training set for each defective foreground domain. The corresponding style codes and defect
contents were then produced by the two subnetworks respectively and fed to the generator for target
image generation.

We conducted classification experiments separately on images generated from the two subnetworks
and a mixture set of both (i.e. 50% from each subnetwork). Experiments show consistent gains
of using synthetic images generated from DT-GAN (Table 8). We observe that the latent-guided
synthetic images in general perform better than the reference-guided one, while the mixture set
provides more stable results with regard to the standard deviation. Presumably the mixture set
benefits from the combination of samples from reference-guided synthesis, which are well aligned
with the original defect distribution, and the samples from latent-guided synthesis, i.e. from random
noise, which adds novel but plausible defects to the dataset. In the main text, we report the results
of the mixture set for all experiments, including the quantitative evaluation of DT-GAN.

Table 8: Classification results with regard to the synthetic images generated from the two subnet-
works and the mixture set.

Dataset
Size

All

Trad-Aug Latent Reference Mix

4500 12.75±0.61 10.72±0.96 11.48±0.88 11.04±0.76
6600 13.07±1.57 10.34±1.86 11.55±1.64 10.60±0.48
12000 12.05±0.81 9.90±1.26 10.40±0.99 9.90±0.69
18600 12.37±0.32 11.04±1.26 12.12±0.75 10.21±0.96

Frechét inception distance (FID) and Kernel inception distance (KID). We used the feature
vectors from the last average pooling layer of the ImageNet pretrained Inception-V3 to calculate
both scores. For each test image from the Normal domain, we translated it into a synthetic defective
image of each defect domain. The style codes and contents for the translation were acquired in two
ways: by randomly sampling from the standard normal distribution and by randomly sampling a
reference image from the train set of a defect domain. To calculate the FID and KID score, we
generated 4000 defective samples per product per defect domain for each way of guidance, and
formed the mixture set by randomly sampling 2000 images per product per defect domain from
each way. The reported FID and KID scores were then computed between the defective images in
the training set and the mixture set of synthetic defective images. The same procedure was applied
when computing scores on single product subsets of the SDI dataset. For example, for product A,
we calculated the scores between the defective image of product A in the training set and the mixture
set of synthetic defective images of product A.

D NETWORK ARCHITECTURE

In this section, we provide the architectural details of all four modules in DT-GAN.
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Table 9: Generator architecture.
(a) Encoder

Layer Resample Norm Output Shape

Image x - - 128 × 128 × 3

Conv 1×1 - - 128 × 128 × 128
ResBlk AvgPool IN 64 × 64 × 256
ResBlk AvgPool IN 32 × 32 × 512
ResBlk AvgPool IN 16 × 16 × 512

ResBlk - IN 16 × 16 × 512
ResBlk - IN 16 × 16 × 512

(b) Background Decoder (c) Foreground Decoder

Layer Resample Norm Output Shape

Input - - 16 × 16 × 448

ResBlk - IN 16 × 16 × 448
ResBlk - IN 16 × 16 × 512
ResBlk - IN 16 × 16 × 512
ResBlk Upsample IN 32 × 32 × 512
ResBlk Upsample IN 64 × 64 × 256
ResBlk Upsample IN 128 × 128 × 448

Layer Resample Norm Output Shape

Input - - 16 × 16 × 64

ResBlk - AdaIN 16 × 16 × 64
ResBlk - AdaIN 16 × 16 × 256
ResBlk - AdaIN 16 × 16 × 256
ResBlk Upsample AdaIN 32 × 32 × 256
ResBlk Upsample AdaIN 64 × 64 × 128
ResBlk Upsample AdaIN 128 × 128 × 64

(d) Fusion

Layer Resample Norm Output Shape

Input - - 128 × 128 × (448 + 64)

Conv 1×1 - - 128 × 128 × 3

Table 10: Mapping network architecture.
(a) Shared Layers

Layer Activation Output Shape

Latent z - 16

Linear ReLU 512
Linear ReLU 512
Linear ReLU 512
Linear ReLU 512

(b) Style Code (c) Content

Layer Activation Output Shape

Input - 512

Linear ReLU 512
Linear ReLU 512
Linear ReLU 512
Linear - 64

Layer Resample Activation Noise Output Shape

Input - - - 512

Reshape - - - 1 × 1 × 512
ResBlk Upsample IN True 2 × 2 × 512
ResBlk Upsample IN True 4 × 4 × 512
ResBlk Upsample IN True 8 × 8 × 256
ResBlk Upsample IN True 16 × 16 × 128
Conv 1×1 - IN True 16 × 16 × 64

Generator (Table 9). For the SDI dataset, the encoder part of the generator consists of three down-
sampling blocks and two intermediate blocks (Table 9 (a)), all of them are pre-activation residual
units (He et al., 2016b). Then the encoded feature map is split channel-wise into background (Ta-
ble 9 (b)) and foreground (Table 9 (c)). Both of them are then carried through separate decoders. We
use the instance normalization (IN) and the adaptive instance normalization (AdaIN) as indicated.
The style code is injected into all AdaIN layers to modulate the affine transformations. Note that

16



Under review as a conference paper at ICLR 2022

Table 11: Style-content encoder and discriminator architectures.
(a) Shared Layers

Layer Resample Norm Output Shape

Input x - - 128 × 128 × 3

Conv 1×1 - - 128 × 128 × 64
ResBlk AvgPool - 64 × 64 × 256
ResBlk AvgPool - 32 × 32 × 512
ResBlk AvgPool - 16 × 16 × 512

(b) Style Code / Discriminator and BG Classifier (c) Content / FG Classifier

Layer Resample Norm Output Shape

Input - - 16 × 16 × 512

ResBlk AvgPool - 8 × 8 × 512
ResBlk AvgPool - 4 × 4 × 512
LReLU - - 4 × 4 × 512
Conv 4×4 - - 1 × 1 × 512
LReLU - - 1 × 1 × 512
Reshape - - 512
Linear ∗K - - D ∗K

Layer Resample Norm Output Shape

Input - - 16 × 16 × 512

LReLU - - 16 × 16 × 512
Conv 1×1 ∗K - - 16 × 16 × 64 ∗K

AdaIN is only used in the foreground decoder. The outputs of both decoders are only fused in the
end (Table 9 (d)).

Mapping Network (Table 10). The mapping network consists of four shared linear layers (Table 10
(a)) and two separate branches: one for generating style codes (Table 10(b)) and one for contents
(Table 10(c)). Each of them is further divided into K output branches, where K denotes the number
of domains. The dimension of the input, the output style code and the output content is set to 16, 64,
and 16 × 16 × 64, respectively. The latent code is sampled from the standard normal distribution.
Note that we apply per-pixel noise after each convolution in the content branch, which we have
observed to increase the diversity of generated defects significantly (cf. Figure 5 (g)).

Style-Content Encoder (Table 11). The style-content encoder consists of a CNN (Table 11 (a)) with
two branches (Table 11 (b) and (c)) as in the mapping network. Each branch has K outputs, where
K is the number of domains. Three pre-activation residual blocks are shared among two branches,
followed by a specific structure for each branch. The output dimension D in Table 11 is set to 64,
which denotes the dimension of the style code.

Discriminator (Table 11). The discriminator is a multi-task discriminator with two auxiliary clas-
sifiers for the foreground content and the background. The structure is almost identical to the style-
content encoder, except D is set to 1 for real/fake classification. The background classifier acts in
parallel to final linear layer in Table 11 (b) and provides the logits for background classification. The
foreground classifier instead acts on top of the output in Table 11 (c) and four more pre-activation
residual layers are applied to encode the content into logits for foreground content classification.

E ADDITIONAL RESULTS

E.1 ADDITIONAL RESULTS ON THE SDI DATASET

We provide additional reference-guided image synthesis results on the SDI dataset in Figure 10.
We demonstrate all the possible transfers among all foreground domains. Both style codes and
contents are extracted from the reference images. To be noted that DT-GAN can append and remove
foreground defects not only onto Normal samples but also to defective samples. For example,
in the fifth column of Figure 10, the original scratch in the source image is removed and only the
defects from the reference images are presented in the output images.

Besides, we present additional evaluations showing the effectiveness of our synthetic data according
to Table 3. As seen in Table 12, the synthetic images from DT-GAN also boost the performance in
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Figure 10: Reference-guided image synthesis results on the SDI dataset. The first row and the first
column are the real images sampled from the dataset, while the rest are synthetic images generated
by the proposed DT-GAN. Our model provides translations between different foreground domains
(Normal, Scratches and Spots) with styles and contents extracted from reference images
while the backgrounds from source images are well preserved.

single product classifiers, where the classifiers were trained on the subset of images for one product
(A, B, C) instead of the full dataset (ABC).

As discussed in Section 4.2, we assumed that the data-insufficiency problem can be mitigated by
transferring defects across multiple background products. To examine if this assumption holds, we
compared the performance of classifiers trained on synthetic images with defects from a specific
source (vA, vB, vC) to classifiers trained on images with defects from all products (vABC). The
results on the cross-domain effect with regard to different sizes of the training set are shown in
Table 13. We again notice that using our synthetic data is beneficial. Moreover, in most cases the
performance is further improved by exploiting cross-domain information (i.e. by transferring defects
from other products). We interpret this as support for our assumption and the practical usefulness of
our method in the real-world scenario. The case of cross-domain image synthesis when the desired
combination is not presented in the training set is covered in the study on the MVTec Anomaly
Detection dataset (Bergmann et al., 2019) (see Appendix E.4).
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Table 12: Quantitative results for DT-GAN as a data augmentation method to train general and single
product classifiers. The left-most column indicates the number of samples per class, including all
images from the training set plus increasing amounts of synthetic images. In the first row, 20A refers
to the case of 20 real defective samples for product A, while All refers to the full training set.

Dataset
Size

20A

A B C ABC

Trad-Aug Ours Trad-Aug Ours Trad-Aug Ours Trad-Aug Ours

4500 35.09±2.62 27.64±3.12 7.8±1.48 5.6±1.67 15.24±1.90 13.14±1.70 15.55±0.63 14.28±1.25
6600 39.64±2.28 27.64±1.65 8.8±1.64 6.2±1.64 15.81±1.73 12.38±1.65 16.69±0.76 14.41±3.12
12000 34.18±4.39 28.55±7.32 5.8±0.45 5.6±1.14 16.19±1.17 10.86±1.28 16.95±1.02 14.22±1.53
18600 39.45±7.06 32.55±5.04 7.2±0.84 5.2±1.10 14.86±0.85 13.14±2.06 16.12±2.19 15.36±0.86

Dataset
Size

All

A B C ABC

Trad-Aug Ours Trad-Aug Ours Trad-Aug Ours Trad-Aug Ours

4500 16.00±1.04 10.18±1.75 8.79±0.45 5.60±1.51 17.13±6.62 14.09±2.27 12.75±0.61 11.04±0.76
6600 14.90±1.38 10.54±1.22 7.60±1.51 6.80±3.11 15.23±2.33 11.42±0 13.07±1.57 10.60±0.48
12000 13.81±2.36 6.72±1.65 6.80±1.64 4.60±0 16.57±3.20 13.90±2.57 12.05±0.81 9.90±0.69
18600 13.63±2.22 10.54±2.45 6.80±1.79 4.99±1.87 15.62±0.85 11.61±1.24 12.37±0.32 10.21±0.96

Table 13: Cross-domain effect on single product classifiers trained with reference-guided synthetic
images at all scales. Note that here A, B and C stand for 3 products in the SDI dataset while vA, vB,
vC and vABC indicate the defects are copied from which reference set.

Dataset
Size

A

Trad-Aug vA vB vC vABC

4500 16.00±1.04 12.90±2.61 13.08±1.65 14.90±2.46 15.27±3.49
6600 14.90±1.38 13.99±1.89 11.26±1.04 14.36±4.04 16.00±2.85
12000 13.81±2.36 11.81±2.65 12.72±2.87 11.99±1.63 11.09±3.49
18600 13.63±2.22 12.72±5.22 14.36±3.83 14.18±5.05 13.81±8.56

Dataset
Size

B

Trad-Aug vA vB vC vABC

4500 8.79±0.45 7.80±2.15 5.60±1.14 10.19±0.84 6.79±1.30
6600 7.60±1.51 6.80±1.65 7.80±1.10 8.00±2.34 6.00±1.41
12000 6.80±1.64 6.40±1.34 6.60±1.52 6.59±1.34 5.60±1.34
18600 6.80±1.79 6.19±1.78 4.40±1.14 6.60±1.95 5.99±1.58

Dataset
Size

C

Trad-Aug vA vB vC vABC

4500 17.14±4.62 14.85±0.52 16.76±2.58 13.90±1.98 12.00±1.59
6600 15.23±2.33 13.14±1.24 13.90±2.29 14.28±1.34 12.57±1.57
12000 16.57±3.20 13.14±2.81 11.23±0.80 14.85±1.73 11.42±0.96
18600 15.62±0.85 13.71±1.73 15.99±6.75 12.57±3.26 12.95±2.98

E.2 ADDITIONAL FID AND KID RESULTS ON THE SDI DATASET

We provide additional results in the case of training GANs with augmentation methods in Table 14.
Augmentation methods like ADA (Karras et al., 2020a) or DiffAug (Zhao et al., 2020) are proposed
to adapt GAN training to limited data. We applied these augmentation methods to StyleGAN v2 and
BigGAN, because these state-of-art image synthesis methods are not optimized for small dataset.
However, incorporating the augmentation methods in training GANs on the SDI dataset is not always
beneficial. The performance of StyleGAN v2 is largely degraded when using ADA, potentially due
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to the conflict between augmentation methods and the decentralized location of defects—in the SDI
dataset, defects can occur anywhere on the surface. This is in contrast to datasets that were used
to evaluate the aforementioned augmentation methods in GANs, where the objects are centralized
(e.g., ImageNet (Deng et al., 2009), Cifar (Krizhevsky & Hinton, 2009)) and their attributes (e.g.,
beard, eye glasses in CelebA (Liu et al., 2015)) only occur in specific images parts.

Table 14: Quantitative comparison of DT-GAN with baseline image synthesis methods using FID
and KID. Note that the reported values are not comparable between columns, because they are
calculated on different training sets. The scores of StarGAN v2 on single products are omitted
because generating images with specified background is not possible due to its network design.

Method
FID↓ KID↓

A B C All A B C All

Mokady et al. (2020) 68.69 66.90 36.21 58.63 0.050 0.036 0.030 0.036
StarGAN v2 - - - 37.70 - - - 0.013
StyleGAN v2 90.10 52.95 138.09 35.34 0.072 0.027 0.186 0.013
StyleGAN v2 + ADA 149.66 42.75 135.69 76.16 0.138 0.019 0.191 0.055
BigGAN 235.66 192.89 193.61 151.43 0.248 0.199 0.276 0.115
BigGAN + DiffAug 218.74 134.41 270.89 155.88 0.220 0.121 0.378 0.099
Ours 58.43 36.44 22.68 29.73 0.025 0.013 0.012 0.009

E.3 ABLATION STUDY WITH REGARD TO FID AND KID SCORES

We report the FID and KID scores of the ablation study in Table 15. We notice that both subnetworks
show positive correlation to each modification except for structural change as in (a) and (e) . Among
the two subnetworks, the reference-guided subnetwork outperforms the latent-guided one in the
beginning, which is due to the fact that transferring existing contents is easier than generating them
from random noise. This effect is also observed in Figure 5. However, the performance of the latent-
guided subnetwork improves significantly after applying per-pixel noise injection. The subnetwork
can now output non-deterministic foreground contents even for a fixed input vector which results
in better visual quality and higher diversity of generated defects. In the main text, the scores of the
mixture set are reported.

Table 15: Ablation study with regard to FID and KID scores.

FID↓ KID↓

Latent Reference Mix Latent Reference Mix

(a) Baseline StarGAN v2 37.73 37.99 37.70 0.013 0.013 0.013
(b) + Style-Content branches 43.90 32.61 33.36 0.017 0.011 0.011
(c) + Foreground classifier 37.14 32.34 27.69 0.014 0.011 0.008
(d) + Background classifier 34.12 32.50 30.23 0.011 0.011 0.010
(e) + Separately decoding

foreground and background in G 48.52 38.11 34.79 0.017 0.015 0.011
(f) + Anchor foreground domain (e.g. Normal) 43.66 37.45 32.15 0.019 0.015 0.011
(g) + Noise injection in Mapping Network 33.05 34.42 29.73 0.009 0.011 0.009

E.4 ADDITIONAL RESULTS ON THE MVTEC ANOMALY DETECTION DATASET

The MVTec Anomaly Detection dataset (Bergmann et al., 2019) contains 15 different object and
texture categories for anomaly detection. The dataset is formed of non-defective image for training
and both non-defective and defective images with various kinds of defects for testing. The pixel-level
annotations of all defective images are also provided. It is worth noting that the MVTec Anomaly
Detection dataset is relatively small scale in number of images, where the number of training images
is ranging from 60 to 391. Moreover, the number of defective images for each defect category in the
test set is varying only from 8 to 30, which is relatively limited considering the sophisticated pattern
of defects.
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We conducted image synthesis experiments on a subset of MVTec Anomaly Detection dataset,
where we selected four texture categories: Carpet, Leather, Wood and Tile for our targeted sce-
nario i.e. surface defects. Furthermore, we aggregated some of the original defect types defined in
the MVTec Anomaly Detection dataset into scratches and spots according to their visual ap-
pearance. We then simply added the subset of the MVTec Anomaly Detection dataset to the training
set together with the SDI dataset for training DT-GAN. Details of the resulting dataset are shown in
Table 17. Note that the small scale of available data posts a major challenge for training generative
models.

Quantitative Evaluation. We present additional quantitative results on the subset of the MVTec
Anomaly Detection dataset in Table 16, following the same evaluation setup as described in Ap-
pendix C. As shown in Table 16, our method achieves the best scores in Carpet and Wood, which
supports our claim that DT-GAN generates synthetic images with higher fidelity and more diverse
defect. However, we also observe that StyleGAN v2 seems to outperform our method in Leather
and Tile.

Please note that FID and KID are not optimized to evaluate such a small dataset, there the results
should only be interpreted together with the qualitative results.

Note the we again omit the FID and KID of StarGAN v2 because it is not cable of generating images
for a specified product due to the ‘identity-shift’, which is also explained in detail in the qualitative
evaluation.

Table 16: Quantitative comparison of DT-GAN with baseline image synthesis methods using FID
and KID. Note that the reported values are not comparable between columns, because they were
calculated on different training sets.

Method
FID↓ KID↓

Carpet Leather Tile Wood Carpet Leather Tile Wood

Mokady (2020) 41.87 60.26 275.12 81.71 0.04 0.03 0.29 0.04
StarGAN v2 - - - - - - - -
StyleGAN v2 51.37 51.60 225.96 140.01 0.05 0.03 0.23 0.12
BigGAN + DiffAug 34.47 101.70 391.54 113.32 0.03 0.07 0.42 0.07
Ours 22.79 86.13 321.35 75.83 0.01 0.07 0.36 0.03

Qualitative Evaluation. For qualitative results, we again discuss the ‘latent-guided’ and ‘reference-
guided’ synthesis separately.

We present the ‘latent-guided’ image synthesis results of StyleGAN v2 in Figure 11 and Figure 12
and BigGAN in Figure 13 and Figure 14. The results are acquired by training one model for each
product and then generating 16 images from randomly sampled latent codes from each of them.
As pointed out in Section 4.1.2, both methods can not adapt well on small dataset. They suffer
from model collapsing and show signs of overfitting by generating images similar to the training
data. For example, StyleGAN v2 generates images either with no clear defect or identical to the
training set (e.g., Leather in Figure 11 and Product B in Figure 12). The overfitting we observe
here also explains the better FID and KID scores in Table 16. For Tile, we can see clear signs of
mode collapse in the generated Tile images of StyleGAN v2. Similarly, BigGAN produces images
with single mode and abnormal patterns (e.g., grid structure and gray edges). Unlike StyleGAN v2
and BigGAN, StarGAN v2 and our method both require images as input (i.e. Source). Therefore,
we randomly sampled two Normal images and applied eight defects which are generated from
randomly sampled latent codes to each of them. As seen in Figure 15 and Figure 16, StarGAN v2
fails to preserve the background from the given input images due to the highly entangled FG and
BG. Also it fails to generates legit and diverse defects without separately modeling the style and the
content. In contrast to aforementioned methods, our DT-GAN produces images with higher fidelity
and more diversity in defect patterns as shown in Figure 17 and Figure 18. We believe this again
prove the importance of style-content separation and FG/BG disentanglement, which we introduce
in Section 3.1.

For ‘reference-guided’ image synthesis, the results of Mokady et al. (2020) are shown in Figure 19
and Figure 20 while the results of StarGAN v2 are in Figure 21 and Figure 22. We can observe a

21



Under review as a conference paper at ICLR 2022

clear shift in color in all the outputs from Mokady et al. (2020). Moreover, Mokady et al. (2020)
can only transfer content between two domains. In order to perform translation from a non-defective
sample to a defective one, we trained a model for each type of defect and for each product. This sums
up to be 13 models (Scratches and Spots for 6 categories and Scratches only for Tile). The
results from the intended use within one background domain can be found on the diagonal and are
marked in red in both Figure 19 and Figure 20. We still show the images that we feed in images from
other background domains. As expected, the model then fails to preserve the background of given
source images and introduce artifacts to the outputs. Similarly, StarGAN v2 does not preserve the
background from the input images. Without style-content separation and FG/BG disentanglement,
we observe that StarGAN v2 encodes the background characteristics together with the foreground
content of the reference images, which results in identity-shits in its output images. Moreover, the
output images either show no clear defect or contain abnormal patterns which sabotage the fidelity.
On the contrary, our method can faithfully transfer the foreground content of reference images across
given background of different products as shown in Figure 23 and Figure 24, which demonstrate
the effectiveness of the style-content separation and FG/BG disentanglement we introduced in
Section 3.1.

It is also worth noting that our method can perform cross-domain image synthesis even the desired
combination is not presented in the training set. We demonstrate this on product Tile, which only
has images with Scratches but no Spots. As shown in Figure 18 and Figure 24, DT-GAN can
generated spots one given Tile images. However, this kind of transformation is most useful when
the desired combination is reasonable for the downstream applications.

Limitation and Future Work. We have demonstrated the feasibility of the proposed DT-GAN by
incorporating more products from the MVTec Anomaly Detection dataset in our training procedure.
Intensive experiments have shown that the generated images from DT-GAN yielded better results
compared to the baseline image synthesis methods. However, we noticed that despite the diverse
patterns of the generated defects, DT-GAN tends to apply the styles learned from the SDI dataset
also to the samples from the MVTec Anomaly Detection dataset. For example, we can observe some
”halo” effects in Leather and Wood in Figure 18 and some of the generated scratches in Figure 17
and Figure 23 are rather weakly pronounced. We hypothesize this can be counteracted by explicitly
localizing the defect and enforcing the model to learn conditional relationships between ‘styles’ and
different backgrounds. We aim to address these issues in future work.
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Table 17: Overview of our formation of the MVTec Anomaly Detection sub-dataset. The first
column represents the original defect types in the MVTec Anomaly Detection dataset while the first
row stands for the defect types in our targeted scenario. We list the ID of samples we took from the
MVTec Anomaly Detection dataset and show the number of samples in row Sum.

(a) Carpet

Scratches Spots

Color 011, 012, 014, 016, 017 000, 003, 004, 007, 015, 018
Thread 000 - 018 -
Hole - 000 - 016

Sum 24 23

(b) Leather

Scratches Spots

Color 001, 003, 005, 007, 009, 011, 013, 015, 018 000, 002, 006, 008, 010, 012, 014
Cut 000 - 018 -
Fold 000 - 006, 009 - 016 -
Glue 003, 009, 010, 016, 017 000 - 002, 005 - 009, 011 - 015, 018
Poke - 000 - 017

Sum 48 39

(c) Tile

Scratches Spots

Crack 000 - 016 -

Sum 17 0

(d) Wood

Scratches Spots

Color 003, 005 -
Scratch 001 - 006, 008 - 010, 013 - 016, 018 - 020 000 - 016
Hole - 000 - 004, 006 - 009
Combined 008 001, 002, 009

Sum 19 12
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Figure 11: Latent-guided image synthesis results of StyleGAN v2 on the SDI dataset and the MVTec
AD dataset. We train a model for each product and generate 16 Scratches images from randomly
sampled latent codes.
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Figure 12: Latent-guided image synthesis results of StyleGAN v2 on the SDI dataset and the MVTec
AD dataset. We train a model for each product and generate 16 Spots images from randomly
sampled latent codes.
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Figure 13: Latent-guided image synthesis results of BigGAN with DiffAug on the SDI dataset and
the MVTec AD dataset. We train a model for each product and generate 16 Scratches images
from randomly sampled latent codes.
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Figure 14: Latent-guided image synthesis results of BigGAN with DiffAug on the SDI dataset and
the MVTec AD dataset. We train a model for each product and generate 16 Spots images from
randomly sampled latent codes.
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Figure 15: Latent-guided image synthesis results of StarGAN v2 on the SDI dataset and the MVTec
AD dataset. The model is trained on a joint set of aforementioned datasets and performs translation
from Normal to Scratches. Note that without the style-content separation and the FG/BG

disentanglement, StarGAN v2 not only fails to preserve the background from the given Source
image but also fail to generates legit defects.
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Figure 16: Latent-guided image synthesis results of StarGAN v2 on the SDI dataset and the MVTec
AD dataset. The model is trained on a joint set of aforementioned datasets and performs translation
from Normal to Spots. Note that without the style-content separation and the FG/BG disentan-
glement, StarGAN v2 not only fails to preserve the background from the given Source image but
also fail to generates legit defects.
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Figure 17: Latent-guided image synthesis results of DT-GAN on the SDI dataset and the MVTec
AD dataset. The model is trained on a joint set of aforementioned datasets and performs translation
from Normal to Scratches. Note the our model takes input Source images as background and
only synthesizes the foreground defects from randomly sampled latent code compared to StyleGAN
v2 and BigGAN.
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Figure 18: Latent-guided image synthesis results of DT-GAN on the SDI dataset and the MVTec
AD dataset. The model is trained on a joint set of aforementioned datasets and performs translation
from Normal to Spots. Note the our model takes input Source images as background and only
synthesizes the foreground defects from randomly sampled latent code compared to StyleGAN v2
and BigGAN.
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Figure 19: Reference-guided image synthesis results of Mokady et al. (2020) on the SDI dataset and
the MVTec AD dataset. We train a model for each product and each defect type. Then we translate
Normal images to Scratches by taking the Source as background and applying the foreground
defect from Reference to it.
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Figure 20: Reference-guided image synthesis results of Mokady et al. (2020) on the SDI dataset and
the MVTec AD dataset. We train a model for each product and each defect type. Then we translate
Normal images to Spots by taking the Source as background and applying the foreground defect
from Reference to it.
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Figure 21: Reference-guided image synthesis results StarGAN v2 on the SDI dataset and the MVTec
AD dataset. The model is trained on a joint set of aforementioned datasets and performs translation
from Normal to Scratches by taking the Source as background and applying the foreground
defect from Reference to it. Note that without the style-content separation and the FG/BG disen-
tanglement, StarGAN v2 not only fails to preserve the background from the given Source image but
also fail to generates legit defects.
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Figure 22: Reference-guided image synthesis results of StarGAN v2 on the SDI dataset and the
MVTec AD dataset. The model is trained on a joint set of aforementioned datasets and performs
translation from Normal to Spots by taking the Source as background and applying the fore-
ground defect from Reference to it. Note that without the style-content separation and the FG/BG

disentanglement, StarGAN v2 not only fails to preserve the background from the given Source
image but also fail to generates legit defects.
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Figure 23: Reference-guided image synthesis results DT-GAN on the SDI dataset and the MVTec
AD dataset. The model is trained on a joint set of aforementioned datasets and performs translation
from Normal to Scratches by taking the Source as background and applying the foreground
defect from Reference to it.
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Figure 24: Reference-guided image synthesis results of DT-GAN on the SDI dataset and the MVTec
AD dataset. The model is trained on a joint set of aforementioned datasets and performs translation
from Normal to Spots by taking the Source as background and applying the foreground defect
from Reference to it.
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