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Abstract. This paper addresses the long-standing challenge of recon-
structing 3D structures from videos with dynamic content. Current ap-
proaches to this problem were not designed to operate on casual videos
recorded by standard cameras or require a long optimization time. Aim-
ing to significantly improve the efficiency of previous approaches, we
present TracksTo4D, a learning-based approach that enables inferring
3D structure and camera positions from dynamic content originating
from casual videos using a single efficient feed-forward pass. To achieve
this, we propose operating directly over 2D point tracks as input and
designing an architecture tailored for processing 2D point tracks. Our
proposed architecture is designed with two key principles in mind: (1)
it takes into account the inherent symmetries present in the input point
tracks data, and (2) it assumes that the movement patterns can be ef-
fectively represented using a low-rank approximation. TracksTo4D is
trained in an unsupervised way on a dataset of casual videos utilizing
only the 2D point tracks extracted from the videos, without any 3D
supervision. Our experiments show that TracksTo4D can reconstruct
a temporal point cloud and camera positions of the underlying video
with accuracy comparable to state-of-the-art methods, while drastically
reducing runtime by up to 95%. We further show that TracksTo4D
generalizes well to unseen videos of unseen semantic categories at infer-
ence time.

Keywords: Structure From Motion · Dynamic Videos · 3D Reconstruc-
tion · Equivariance · Symmetries

1 Introduction

Predicting 3D geometry in dynamic scenes is a challenging problem. In this
problem setup, we are given access to multiple images of a scene taken sequen-
tially, e.g., from a monocular video camera, where both the content in the scene
and the camera are moving. Our task is to reconstruct the dynamic 3D posi-
tions of the points seen in the images and the camera poses. This fundamental
problem has gained significant interest from the research community over the
years [5,22,32,57], mainly due to its important applications in many fields such
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Fig. 1: We present TracksTo4D, a method for mapping a set of 2D point tracks
extracted from casual dynamic videos into their corresponding 3D locations and camera
motion. At inference time, our network predicts the dynamic structure and camera
motion in a single feed-forward pass. Our network takes as input a set of 2D point
tracks (left) and uses several multi-head attention layers while alternating between the
time dimension and the track dimension (middle). The network predicts cameras, per-
frame 3D points, and per-world point movement value (right). The 3D point internal
colors illustrate the predicted 3D movement level values, such that points with high/low
3D motion are presented in red/purple colors respectively. These outputs are used to
reproject the predicted points into the frames for calculating the reprojection error
losses. See details in the text. The reader is encouraged to watch the supplementary
video visualizations.

as robot navigation, autonomous driving and 3D reconstruction of general en-
vironments [16]. Importantly, in contrast to static scenes where the epipolar ge-
ometry constraints hold between the corresponding points of different views [14],
determining the depth of a moving point from monocular views is an ill-posed
problem [2]. This causes standard Structure from Motion techniques [28, 36, 49]
to be inadequate in this setup [21].

Previous work and limitations. Many existing approaches for the above problem
make simplifying assumptions that limit their applicability to real-world scenar-
ios. Methods based on orthographic camera models and low-rank assumptions
use matrix factorization techniques [5,22], but the orthographic camera assump-
tion might not be realistic and may cause reconstruction errors. Techniques that
incorporate depth priors often require lengthy optimization processes in order to
make the depth estimates across frames consistent [21,57]. Other physics-based
approaches make assumptions about rigid bones [52,54] or isometric deformable
surfaces [32] and typically involve complex, slow optimization per video. In ad-
dition, they may require foreground-background segmentation of the moving
content, which is not always easily obtained. Alternatively, some methods are
specifically tailored to certain object classes like humans [46], restricting their
domain to those limited cases. Consequently, these prior methods are either not
directly applicable to casual videos, or require long optimization time per video.
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Our approach. We propose TracksTo4D,4 a novel approach for fast reconstruc-
tion of sparse dynamic 3D point clouds and camera poses from casual videos.
Our main idea is to train a neural network on multiple videos to learn the
mapping from the input image sequence to a sequence of the scene’s 3D point
clouds and camera poses. After training, the trained network can be efficiently
applied to new image sequences using a single feed-forward pass, avoiding costly
optimization.

To enhance the method’s ability to generalize across different types of videos
and scenes, we made a crucial design choice: our approach processes point track
tensors as input, rather than operating directly on the image sequence. Specifi-
cally, each entry (n, p) in these tensors represents the 2D position of a tracked
point p in a specific video frame n [5]. Our main insight is that point track
tensors may exhibit more common motion patterns across casual video domains
compared to image pixels. In other words, we argue that processing the raw point
track data rather than scene-specific pixels or features may enable learning class
and scene-agnostic internal feature representations for improved generalization.
Importantly, recent advances in point tracking [9,17] enable efficiently inferring
these point tracks from casual videos using pre-trained models. These two prop-
erties make point track matrices an attractive input for our learning method.

Following this design choice, we design our architecture according to two
principles: (1) process point track tensors, which have a unique structure, and
(2) encode meaningful prior knowledge about the reconstruction problem, as
the problem is ill-posed in general. In the following, we address these desired
properties.

First, we design a network architecture that can effectively and efficiently
handle point track inputs. To do that, we propose a novel layer design that takes
into account the symmetries of the problem: the mapping we aim to learn, from
point track matrices to 3D point clouds and camera poses, preserves two natural
symmetries: (i) the points being tracked can be arbitrarily permuted without
affecting the problem; (ii) the frames containing these points exhibit temporal
structure, adhering to an approximate time-translation symmetry. Following the
Geometric Deep Learning paradigm [6], we build upon recent theoretical ad-
vances in equivariant learning [26] and integrate these two symmetries into our
network architecture using dedicated attention and positional encoding mecha-
nisms.

Second, a key challenge in predicting 3D dynamic motion and camera poses
from 2D point tracks is that this problem is inherently ill-posed without addi-
tional constraints [2]. To address this, we integrate a low-rank movement assump-
tion into our architecture, following the seminal work of [5] which constrained
output point clouds to be linear combinations of basis elements. Specifically,
given an input point track tensor, our architecture equivariantly predicts a small
set of input-specific basis elements. The output point clouds at each time frame
are then defined as a linear combination of these basis elements, with the co-
efficients also predicted by the network. Notably, the first basis is assumed to

4 4D since we have three Euclidean coordinates with an additional time coordinate



4 Kasten et al.

fully represent the 3D static points in the video, while the remaining basis el-
ements capture the 3D dynamic deviations. This structure effectively restricts
the predicted point clouds to have a more specific form, making the problem
more constrained.

Our approach is trained on a dataset of extracted point track matrices [17]
from raw videos without any 3D supervision by simply minimizing the repro-
jection errors, aiming to predict output point clouds that, after undergoing a
perspective projection, will return the original 2D point tracks. In our experi-
ments, TracksTo4D is trained on the Common Pets dataset [38]. We evaluate
our method on test data with GT camera poses and GT depth information for
point tracks, and demonstrate that it produces comparable results to state-of-
the-art methods, while having a significantly shorter inference time by up to
95%. In addition, we show the method’s ability to generalize to out-of-domain
videos.

Contributions. In summary, our contributions are (1) A novel modeling of the
dynamic reconstruction problem via learning on point tracks without 3D super-
vision; (2) A novel deep learning architecture incorporating two key principles:
accounting for the symmetry of the data and encoding low-rank structure in the
predicted point clouds (3) Experiments demonstrating extremely fast inference
time compared to baselines, accurate results, and strong generalization across
other categories.

2 Method

Problem formulation. Given a video of N frames, let M ∈ RN×P×3 be a pre-
extracted 2D point tracks tensor (Fig. 1, left side). This tensor represents the
two-dimensional information about a set of P world points that are tracked
throughout the video. Each element in the tensor, Mi,j,:, stores three values:
(x, y, o) where x, y ∈ R are respectively the observed horizontal and vertical loca-
tions of point j in frame i, and o ∈ {0, 1} indicates whether point j is observed in
frame i or not. Our goal is to train a deep neural network to map the input point
tracks tensor M into a set of per-frame camera poses {Ri(M), ti(M)}Ni=1 and
per-frame 3D points {Xi(M)}Ni=1, where Ri(M) ∈ SO(3), ti(M) ∈ R3, Xi(M) ∈
RP×3 (Fig. 1, right side).

Overview of our approach. Our method receives M ∈ RN×P×3 as input. This
tensor is being processed by a neural architecture composed of multi-head at-
tention layers where the attention is applied in an alternating fashion on the P
and the N dimensions in each layer. These layers are defined in Sec. 2.1. After
a composition of several such layers, the network uses the resulting features in
RN×P×d to predict N camera poses in SO3×R3 and N point clouds in RN×P×3.
These N point clouds are parameterized as a linear combination of K input spe-
cific point cloud bases B1(M), . . . BK(M) ∈ RP×3. This is discussed in detail in
Sec. 2.2. Our network is trained in an unsupervised way on a dataset of videos by
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Fig. 2: The symmetry structure of our problem. Frames (vertical) have time translation
symmetry while points (horizontal) have set permutation symmetry.

minimizing the reprojection error and other regularization losses (Sec. 2.3) that
are used to update the model parameters. Our pipeline is illustrated in Fig. 1

2.1 Equivariant layers for point track tensors

Following the geometric deep learning paradigm, our goal is to design a neural
architecture that respects the underlying symmetries and structure of the data.

Symmetry analysis. Our input is a tensor M ∈ RN×P×3 representing a se-
quence of N frames each with P point coordinates. This structure gives rise to
two key symmetries: First, the order of the P points within each frame does
not matter - in other words, permuting this axis results in an equivalent prob-
lem [26]. Formally, this axis has a permutation symmetry SP where SP is the
symmetric group on P elements. Second, along the temporal N axis, we have
an approximate translation symmetry arising from the ordered video sequence.
This means that shifting the time frames is required to result in the same shift in
our output. We model this with a cyclic group CN of order N . Both symmetries
are illustrated in Fig. 2. We note that while the cyclic group assumption may
not be entirely accurate, we still find it useful as it helps us to derive appro-
priate parametric layers for our data, similar to how the convolutional layer is
derived for data with translational symmetries such as images. Taken together,
the full symmetry group of the input space is the direct product G = CN × SP

combining these time and point permutation symmetries, acting on RN×P×3

by ((t, σ) · M)n,p,j = Mt−1(n),σ−1(p),j for (t, σ) ∈ G5. Next, we will design an
architecture equivariant to G, to ensure that the model takes into account the
symmetries above.

Linear equivariant layers. Point track tensors can be viewed as a collection of
N individual point tracks, each of which exhibits translational symmetry. The
scenario where an object comprises a set of elements with their own symmetry
group, such as a set of images or graphs, was previously explored in [26]. In that
work, the authors characterized the general linear equivariant layer structure in
5 This is different from the symmetry group studied in [27], where the temporal struc-

ture was not exploited.
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such cases, termed the Deep Sets for Symmetric Elements (DSS) layer. Building
on the DSS approach, our basic linear equivariant layer for the point track tensors
M would take the form:

F (M):,j = L1(M:,j) +

P∑
j′=1

L2(M:,j′) (1)

where Li are linear translation equivariant function (i.e. convolutions), M:,j ∈
RN×d are the columns of M representing all the inputs for a specific tracked
point, F (M):,j ∈ RN×d′

is the output column and d, d′ are the input and output
feature channels respectively. To construct a neural network, these layers can be
interleaved with pointwise nonlinearities, similar to basic convolutional neural
networks.

Implementation via transformers and positional encoding. While the linear layer
design is reasonable, it may not be the optimal choice. To enhance the model, we
design a new layer whose structure follows Equation (1), but incorporates nonlin-
ear layers in the form of transformers [45]. Specifically, our layer F is formulated
similarly to Equation (1), but instead of convolutions (Li) and summations, it
utilizes two self-attention mechanisms and suitable temporal positional encoding
across the N dimension. Formally, our basic layer F : RN×P×d → RN×P×d′

is
computed via four steps, which are described below:

q̄ij = W̄QMij , k̄ij = W̄KMij , v̄ij = W̄V Mij

M̄ij =

N∑
i′=1

exp(q̄ij · k̄i′j)∑N
l=1 exp(q̄ij · k̄lj)

v̄i′j

(2)

qij = WQM̄ij , kij = WKM̄ij , vij = WV M̄ij

F (M)ij =

P∑
j′=1

exp(qij · kij′)∑P
l=1 exp(qij · kil)

vij′
(3)

Here, Mi,j ∈ Rd are the features associated with the j-th point in the i-
th frame. The attention mechanism defined in the first equation above (2) is
augmented with standard temporal positional encoding in the first layer and
replaces the translation equivariant function Li applied to the columns of M
(Eq.(1)). The attention in the second equation (3) implements the set aggrega-
tion (summation) (also in Eq.(1)) applied to the rows of M . As commonly done,
we use transformers with 16 attention heads [45].

2.2 Constraining 3D motion and camera poses via low-rank
assumption

Given our 2D tracks, we aim to characterize the motion of the points by de-
composing them into the global camera motion and the 3D motion of objects
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in the scene. The 2D motion of static scene points provides useful constraints
for estimating the camera motion. However, as previously mentioned, predicting
camera and dynamic 3D motion solely from 2D motion is an ill-posed problem
without additional constraints [2]. We tackle this challenge by adding two mech-
anisms to our architecture: (1) low-rank movement assumption; and (2) specific
modeling of the static scene for camera estimation.

Low-rank movement assumption. First, motivated by classical orthographic Non-
Rigid Structure from Motion [5], we constrain the output points to be formulated
by a linear combination of input-specific basis elements. Specifically, given the
input 2D point tracks, M ∈ RN×P×3, our network predicts K point clouds:
B1(M), . . . , BK(M) ∈ RP×3 and N(K − 1) linear coefficients,
{c1k(M)}Kk=2, . . . {cNk(M)}Kk=2, such that

Xi(M) = B1(M) +

K∑
k=2

cik(M)Bk(M) (4)

where Xi(M) ∈ RP×3 is the 3D point cloud at frame i. The point clouds and
coefficients are computed by taking the output of the last equivariant layer as
defined in the previous section and applying invariant aggregations on the respec-
tive dimension resulting in equivariant and invariant outputs. See more details in
the supplementary material. We note that we deliberately chose the coefficient
of B1(M) to be the constant 1, the reason is explained in the next paragraph.

Specific modeling of the static scene for camera estimation. Frequently, casual
video data of dynamic scenes contains many static regions, which can be used
to determine camera poses [59]. We leverage this observation by treating the
first basis element B1(M) ∈ RP×3 as a static approximation for all scene points
and encourage B1(M) as well as the output camera poses to explain the 2D
observations according to this approximation using a "static" reprojection loss
(LStatic, defined in the next section). We note, however, that a static point cloud
is not likely to produce low reprojection errors for the non-static components,
thus the reprojection error necessitates robustness to substantial errors from the
non-static elements. To address this, our network predicts (equivariantly) P mo-
tion level values γ1(M), . . . , γP (M) ∈ R+, one for each point in our dynamic
point cloud, which we use to weight the reprojection errors from B1(M). The
main idea is to give less weight to non-static points so that the static projec-
tion loss can disregard them. Specifically, inspired by [57], each γi(M) defines a
Cauchy distribution that models the reprojection errors for its associated world
point, such that a world point with higher γ is expected to produce a wider error
distribution. Empirically, as noted by [57], the Cauchy distribution tends to be
more robust for modeling reprojection error uncertainties compared to Gaussian
noise modeling [18]. Then, LStatic, minimizes the negative log-likelihood under
this assumption. See details in Sec. 2.3.
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2.3 Training and losses

Model outputs. Given the input 2D point tracks M ∈ RN×P×3, our network
produces outputs as a function of M : linear bases and coefficients
B1(M), . . . , BK(M) ∈ RP×3, {c1k(M)}Kk=2, . . . , {cNk(M)}Kk=2 ∈ R which define
a dynamic point cloud X1(M), · · · , XN (M) ∈ RP×3,γ1(M), . . . , γP (M) ∈ R+

movement level values, and (R1(M), t1(M)), . . . , (RN (M), tN (M)) ∈ SO(3)×R3

camera poses.
We use these network outputs to define a self-supervised loss function with

respect to the current network weights and M which is defined by:

L = λReprojectLReproject + λStaticLStatic + λNegativeLNegative + λSparseLSparse (5)

Reprojection loss. The reprojection loss encourages the consistency between the
output 3D point clouds and camera poses, to the input 2D observations:

LReproject =
1∑N

i=1

∑P
j=1 M

o
ij

N∑
i=1

P∑
j=1

Mo
ijR(Xij , Ri, ti,M

xy
ij ) (6)

where R(Xij , Ri, ti,M
xy
ij ) is the reprojection error when projecting the point

Xij with the camera pose (Ri, ti) with respect to the measured point Mxy
ij :

R(Xij , Ri, ti,M
xy
ij ) =

∥∥∥∥ (RT
i (Xij − ti))1,2

(RT
i (Xij − ti))3

−Mxy
ij

∥∥∥∥ (7)

Static loss. As discussed in Sec. 2.2, to better constrain the camera poses, the
first predicted basis element B1(M) ∈ RP×3 defines a static (fixed in time)
point cloud approximation. Our network also predicts a movement coefficient
γj(M) for each world point that defines a zero-mean Cauchy distribution. Given
γj and the reprojection error rij = R(B1j , Ri, ti,M

xy
ij )6 of the jth point of B1

that is projected by the ith camera, the negative log-likelihood of rij distributed
according to the γj-zero-mean Cauchy distribution is proportional to:

C(rij , γj) = log

(
γj +

r2ij
γj

)
(8)

Note, that this loss reduces the contribution of the reprojection errors for points
with high γ, but also encourages γ to be small, i.e. encouraging the static point
cloud to represent the dynamic scene when possible. Our static loss is the mean
negative log-likelihood over all observed points in all frames:

LStatic =
1∑N

i=1

∑P
j=1 M

o
ij

N∑
i=1

P∑
j=1

Mo
ijC(R(B1j , Ri, ti,M

xy
ij ), γj) (9)

6 We denote the jth 3D point of Bk ∈ RP×3 by Bkj ∈ R3. The 3 elements of this point
are denoted by Bkj1, Bkj2, Bkj3 ∈ R (see (11)).
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Table 1: Pet evaluation. Top: Baseline method results for structure or camera esti-
mation (or both). Bottom: Our results with several configurations. (C),(D), or (CD)
respectively indicate the object categories in the training set: cats, dogs, or both. BA
and FT respectively indicate a post-processing of Bundle Adjustment or fine-tuning.

Abs Rel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ ATE ↓ RPE Trans ↓ RPE Rot ↓ Time
Dyn. All Dyn. All Dyn. All Dyn. All (mm) (mm) (deg) (min)

D-SLAM [42] - - - - - - - - 5.08 3.60 0.20 0.16
ParticleSFM [59] - - - - - - - - 12.79 6.95 0.51 11.00
RCVD [21] 0.40 3.6E+07 0.43 0.72 0.75 0.90 0.92 0.96 43.95 25.77 2.31 20.00
CasualSAM [57] 0.09 0.06 0.93 0.97 0.99 0.99 1.00 1.00 6.90 3.95 0.22 1.3E+02
MiDaS [3] 0.16 6.2E+04 0.78 0.71 0.97 0.88 1.00 0.93 - - - 0.15

Ours (C) 0.11 0.08 0.88 0.92 0.99 0.98 1.00 1.00 8.96 3.79 0.23 0.15
Ours (C)+BA 0.11 0.08 0.88 0.92 0.99 0.98 1.00 1.00 4.22 2.86 0.17 0.15
Ours (C)+FT 0.09 0.06 0.90 0.96 1.00 0.99 1.00 1.00 4.00 2.74 0.16 4.86
Ours (D) 0.12 0.08 0.85 0.91 0.99 0.99 1.00 1.00 8.03 3.54 0.23 0.15
Ours (D)+BA 0.12 0.08 0.85 0.91 0.99 0.99 1.00 1.00 4.19 2.83 0.17 0.15
Ours (D)+FT 0.09 0.06 0.88 0.96 1.00 0.99 1.00 1.00 3.98 2.74 0.16 4.86
Ours (CD) 0.12 0.08 0.85 0.91 0.98 0.98 1.00 1.00 8.11 3.68 0.24 0.15
Ours (CD)+BA 0.12 0.08 0.85 0.91 0.98 0.98 1.00 1.00 4.21 2.86 0.17 0.15
Ours (CD)+FT 0.09 0.06 0.90 0.96 1.00 0.99 1.00 1.00 3.98 2.74 0.16 4.86

Table 2: Out-of-training-domain evaluation . Evaluation metrics on monocular
videos from [56]. The table has the same structure as Tab. 1.

Abs Rel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ ATE ↓ RPE Trans ↓ RPE Rot ↓ Time
Dyn. All Dyn. All Dyn. All Dyn. All (mm) (mm) (deg) (min)

D-SLAM [42] - - - - - - - - 7.96 10.91 0.07 0.18
ParticleSFM [59] - - - - - - - - 26.66 23.83 0.20 2.13
RCVD [21] 0.19 2.6E+05 0.69 0.75 0.95 0.95 0.96 0.98 1.6E+02 3.2E+02 3.43 7.00
CasualSAM [57] 0.05 0.03 0.95 0.99 0.99 1.00 1.00 1.00 7.81 10.09 0.06 22.00
MiDaS [3] 2.8E+04 2.7E+05 0.59 0.58 0.73 0.72 0.83 0.80 - - - 0.02

Ours (C) 0.08 0.06 0.89 0.95 0.99 0.99 0.99 1.00 32.06 47.99 0.45 0.04
Ours (C)+BA 0.08 0.06 0.89 0.95 0.99 0.99 0.99 1.00 8.67 12.36 0.08 0.04
Ours (C)+FT 0.07 0.03 0.94 0.98 0.99 1.00 1.00 1.00 7.98 11.64 0.08 0.59
Ours (D) 0.08 0.07 0.92 0.93 0.99 0.98 0.99 1.00 33.77 51.64 0.61 0.04
Ours (D)+BA 0.08 0.07 0.92 0.93 0.99 0.98 0.99 1.00 8.40 12.06 0.08 0.04
Ours (D)+FT 0.05 0.03 0.97 0.99 0.99 1.00 0.99 1.00 8.15 11.88 0.09 0.59
Ours (CD) 0.10 0.08 0.93 0.94 0.99 0.99 1.00 1.00 36.17 53.94 0.67 0.04
Ours (CD)+BA 0.10 0.08 0.93 0.94 0.99 0.99 1.00 1.00 8.62 12.49 0.08 0.04
Ours (CD)+FT 0.06 0.03 0.97 0.99 0.99 1.00 0.99 1.00 8.04 11.84 0.09 0.59

Regularization losses. As in [27] we regularize the observed points to be in front
of the camera by:

LNegative = −
N∑
i=1

P∑
j=1

Mo
ij Min(RT

i (Xij − ti))3, 0) (10)

We further find it beneficial to regularize the deviation from the static approxi-
mation B1 to be sparse for static points, i.e. points with low γ values:

LSparse =
1

P (K − 1)

K∑
k=2

P∑
j=1

1

3γj
(|Bkj1|+ |Bkj2|+ |Bkj3|) (11)

where γ is detached from the gradient calculation for this loss.

3 Experiments
In this section, we conduct experiments to verify our proposed network’s perfor-
mance on real-world casual videos. We began by training the network on specific
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Table 3: Ablation study. The contribution of different parts from our method. See
details in the text.

Abs Rel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ Rep.(pix.) ↓ ATE ↓ RPE Trans ↓ RPE Rot ↓
Dyn. All Dyn. All Dyn. All Dyn. All Dyn. All (mm) (mm) (deg)

Set of Sets 0.27 0.15 0.60 0.77 0.87 0.94 0.97 0.99 9.86 5.33 16.87 5.53 0.39
No LStatic 0.77 0.36 0.25 0.46 0.48 0.70 0.68 0.82 1.00 0.86 96.20 29.86 0.99
No γ 0.22 0.16 0.66 0.73 0.93 0.91 0.99 0.97 4.54 2.41 13.91 4.86 0.29
K=30 0.14 0.09 0.81 0.90 0.97 0.98 0.99 0.99 4.88 2.78 9.39 3.68 0.23
K=2 0.11 0.08 0.88 0.91 0.98 0.98 1.00 1.00 8.58 3.56 9.31 3.86 0.25
DSS 1.65 0.58 0.19 0.35 0.34 0.60 0.47 0.74 63.75 70.60 34.90 22.63 1.64
No LSparse 0.17 0.13 0.79 0.80 0.95 0.94 1.00 0.99 4.57 2.73 11.79 7.99 0.55
Full 0.11 0.08 0.88 0.92 0.99 0.98 1.00 1.00 3.98 1.97 8.96 3.79 0.23

domains and then evaluated its accuracy and running time on unseen videos
from both, training and unseen domains.

Training procedure. We trained our network on the cat and dog partitions
from the COP3D dataset [38], which contains a diverse set of casual real-world
videos of pets. Our networks were trained from scratch three times to test our
generalization capability between semantic categories: once on the cat partition,
once on the dog partition, and once on both partitions combined. In total, we
used 733 cat videos and 753 dog videos for training. We trained our networks
for 7000 and 3500 epochs for the single-class and multi-class setups respectively.
Training our method lasts about one week on a single Tesla V100 GPU with
32GB memory. We used the Adam optimizer [19] with a learning rate of 10−4.
Our method assumes known camera internal parameters which are provided by
the dataset and used to normalize the point tracks as a preprocessing step. More
technical details are provided in the supplementary material. We use K = 12
bases in all our experiments (Sec. 2.2).

Evaluation data. To assess our framework’s performance on pet videos, we
curated a new dataset7 consisting of 21 casual videos of dogs and cats, each
video containing 50 frames. These videos were captured using an RGBD (RGB-
Depth) sensor. The depth maps were used as ground truth for evaluating the
reconstructed structure. We extracted the cameras by running COLMAP on the
images while masking out the pet areas with dilatated masks provided by [62].
The cameras were scaled to millimeter units using the provided GT depth. Note
that our network did not see this test data during training and it was not used
to tune our hyperparameters.

Additionally, to evaluate our method on out-of-domain evaluation data, we
used the Nvidia Dynamic Scenes Dataset [56]. Specifically, while our network
was trained on pet videos, this dataset contains other dynamic object types,
e.g. human, balloon, truck, and umbrella, with a different camera motion type.

7 While the COP3D dataset provides cameras that were extracted by COLMAP [36],
we note that this evaluation data is insufficient in our case. This is because the dy-
namic structure was captured as well in part of their reconstruction which indicates
that its reconstruction might not be accurate. Furthermore, the coordinates system
units of these reconstructions are unknown. Finally, this dataset does not have any
depth map information for evaluating the dynamic structure.
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The dataset contains 8 dynamic scenes which are captured by 12 synchronized
cameras, enabling accurate depth estimation which is treated as GT for evalu-
ating monocular depth estimation. The ground truth camera poses were calcu-
lated by [36] with the synchronized multiview camera rig and the ground truth
dynamic masks. Similarly to [23] we simulated 8 monocular dynamic video se-
quences using the camera rig, each with 24 frames, and used them for evaluation.

Evaluation results. Qualitative visualizations are presented in Fig. 3. 8 We also
show a visualization of the movement level values, γ in Fig. 4. For comparisons,
we chose state-of-the-art methods that as our method, can be applied to raw
casual videos that were captured by standard pinhole camera models and do not
need any static or dynamic segmentation. We evaluated both, the camera poses
and the structure accuracies. Comparison results for the pet-test-set and out-of-
domain dataset are presented in Tables 1 and 2 respectively. The camera poses
are evaluated compared to the GT, using the Absolute Translation Error(ATE),
the Relative Translation Error(RTE), and the Relative Rotation Error(RRE)
metrics after coordinates system alignment. We compare three training config-
urations of our method of training only on cats, only on dogs, and on both.
As can be seen in the tables, the results are similar in all 3 cases. Our output
camera poses as inferred by the network are already accurate and outperform
some of the prior methods. We further show the results of our method after a
single and short round of Bundle Adjustment, which makes our method better
than all baselines on the pet sequences, and comparable on the out-of-domain
cases.

Importantly, Tables 1 and 2 also compare the method’s runtime. It can be
seen that our method, even with bundle adjustment, is the fastest camera pre-
diction method. Tables 1 and 2 also show structure evaluation with the depth
evaluation metrics [10] on the sampled point tracks. They demonstrate that our
inferred structure is almost comparable to the state-of-the-art [57] while taking
significantly shorter running times (a few seconds for our method versus more
than two hours for [57] on pet videos). Short (0.6-5 minutes), per-sequence fine-
tuning makes our method’s accuracy comparable to [57]. In terms of running
time, our method is a bit slower than MiDaS [3], which only provides depth
maps without cameras, but achieves much better results. We note that in con-
trast to the other methods that predict the dynamic depth, ours does not use
any depth-from-single-image prior. Note that our method running times include
the point tracking time that is performed by [17] as a pre-process.

Ablation study To evaluate the contribution of our different method parts we
run an ablation study which is presented in Tab. 3. In this study, the training
was always done on the cat partition from COP3D and evaluated on our test
data which contains dogs and cats. First, we performed an ablation study on
our transformer architecture by taking the architecture suggested by [27] ("Set

8 The reader is encouraged to watch the supplementary videos for better 4D percep-
tion.
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Fig. 3: Qualitative Results. Top. Frames from 2 different test video sequences
with point tracks marked with corresponding colors. Bottom. A 3D visualization of
our method’s outputs, from two time stamps. The camera trajectory is present as
gray frustums, whereas the current camera is marked in red. The reconstructed 3D
scene points are presented in corresponding colors to the input tracks on the top. The
scene is observed from the same viewpoint, enabling the visualization of the dynamic
reconstructed structure.

Fig. 4: γ Visualization. We show a visualization of the γ outputs of our network
that are described in Sec. 2.2. In each video sequence, we show the input tracks, where
each color visualizes its movement level value, γ. Purple marks static points with low γ
whereas red marks dynamic points with high γ. Note, that our network did not get any
direct supervision for these values, but only the raw point tracks predictions from [17].
The γ visualizations for cats were produced by the model that was only trained on dogs
and vice versa. We note that our model generalizes well to out-of-domain (non-pet)
cases as well.

of Sets") or the DSS architecture that uses only linear layers [26] ("DSS"). As
the table shows our architecture ("Full") achieved significantly better results.
To test the losses in our framework, we also evaluated the following: (1) ignoring
the γ outputs and using regular reprojection error on B1 for all points ("No
γ"); (2) removing our sparsity loss ("No LSparse"); and (3) removing the static
loss ("No LStatic"). In all cases, the error increased whereas in the later one,
the results became much worse. We further ablate the choice of K = 12 as the
number of linear bases, by trying 2 extreme numbers of K = 30,K = 2 (we saw
no significant differences when we used nearby choices such as K = 11). As can
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be seen in the table, when K = 30 the output is not regularized enough and
produces a higher depth error for the dynamic part. For K = 2 the depth is
regularized but the reprojection error ("Rep. (pix.)") gets higher due to over-
regularization. Overall, this study justifies our design choices ("Full").

4 Related Work
Simultaneous Localization and Mapping (SLAM) and Structure from Motion
(SfM) SfM pipelines seek to recover static 3D structure and camera poses from
unordered images. [1, 36,39,43,49]. Learning-free pipelines [36] are effective but
require repeated applications of Bundle Adjustment (BA) [44]. [7, 27] presented
a method for learning prior from a dataset of multiview image sets, to accelerate
SfM pipelines by using equivariant deep networks. Monocular Simultaneous Lo-
calization and Mapping (SLAM) methods [4, 11, 28, 29, 40, 48, 55, 60, 61] extract
camera poses from video sequences while defining a scene map with keyframes.
These methods assume static scenes, fail to produce the cameras in scenes with
large portions of dynamic motion, and cannot reproduce dynamic parts of the
scene. DROID-SLAM [42] used synthetic data with ground truth 3D supervi-
sion for learning to predict camera poses via deep-based BA on keyframes while
excluding dynamic objects. ParticleSfM [59] filters out 2D dynamic content for
reproducing the cameras in dynamic scenes, using its pre-trained motion predic-
tion network. Both, [42,59] do not infer the dynamic 3D structure.

Orthographic Non-Rigid SfM (NRSfM) Bregler et al. [5] introduced a factoriza-
tion method for computing a non-rigid structure and rotation matrices from a
point track matrix, by assuming a low dimensional basis model. While follow-up
papers improved accuracies with different regularizations [8, 15, 22, 31] or neu-
ral representations [20, 30, 37], the orthographic camera model assumption is in
general not valid for casual videos. Furthermore, these methods often assume
background subtraction as a preprocessing. Even though a follow-up work pro-
posed factorization solutions for pinhole cameras [13], its sensitivity to noise [16],
makes it impractical for casual videos.

Test-time optimization for dynamic scenes Recent methods [21,25,57,58] fine-
tuned the monocular depth estimation from a pre-trained model [34,35] using op-
tical flow constraints [41], for obtaining consistent dense depth maps for a monoc-
ular video. [57] further optimized motion maps for handling scenes with large
dynamic motion. [12, 50] use depth from single image estimations, to improve
novel view synthesis in dynamic scenes. [24] further optimizes for the unknown
camera poses together with the dynamic radiance field optimization. [32, 33]
model a single deformable surface from a monocular video by applying isometric
constraints. LASR [52], ViSER [53] and BANMo [54] optimize for a dynamic
surface by assuming rigid bones and linear blend skinning weights. However, all
the above-mentioned methods require per-scene optimization, resulting in slow
inference. Recently, [38] presented the Common Pets in 3D (COP3D) dataset
that contains casual, in-the-wild videos of pets, and used it to learn priors for
novel view synthesis in dynamic scenes.
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Point tracking There has been a recent advance in 2D point tracking by learning
[9,17], or optimization [47] techniques. Concurrently, [51] presented a method for
jointly performing 2D tracking and 3D lifting, by learning to track with depth
supervision while applying an as-rigid-as-possible loss. However, their method
cannot predict camera poses or identify static parts directly.

5 Conclusions and limitations

We presented TracksTo4D, a novel deep-learning framework that directly
maps 2D motion tracks from casual videos into their corresponding dynamic
structure and camera motion. Our approach features a deep learning architec-
ture that considers the symmetries in the problem with designed intrinsic con-
straints to handle the ill-posed nature of this problem. Notably, our network
was trained using only raw supervision of 2D point tracks extracted by an off-
the-shelf method [17] without any 3D supervision. Yet, it implicitly learned to
predict camera poses and 3D structures while identifying the dynamic parts.
During inference, our method demonstrates significantly faster processing times
compared to previous methods while achieving comparable accuracy. Further-
more, our network exhibits strong generalization capabilities, performing well
even on semantic categories that were not present in the training data.

Limitations and future work. While our experiments demonstrated that our net-
work is efficient, accurate, and capable of generalizing to unseen video categories,
there are several limitations and future work directions that we would like to
address. First, our method cannot handle videos with too rapid motion, and in
general, is limited by the accuracy of the tracking method [17]. We note that
any future improvements with point tracking in terms of accuracy and inference
time will directly improve our method as well. Our method assumes enough mo-
tion parallax to constrain the depth values and fails to generate accurate cam-
era poses without it. A future and interesting work would be to try combining
depth-from-single-image prior as additional inputs to our network for handling
cases with minimal motion parallax and improving accuracies. While we found
K = 12 basis elements to be effective for our evaluation set, balancing complex-
ity reduction and motion representation, we acknowledge this fixed number may
not capture all possible scene dynamics. Future work could explore automati-
cally inferring the optimal number of bases per scene. Lastly, our network can
handle up to about 1000 point tracks in 50 frames in one inference step when
running on a single GPU. A possible extension to handle denser point clouds
could involve querying point tracks iteratively while maintaining a shared state,
but this approach remains to be explored.
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