
TimeXAI: Unified Archive and Concept-Based Counterfactual
Explanations for Sustainable Energy Time Series

Anonymous submission

Abstract
Explaining AI systems operating on time series data is crucial
in many decision-making areas, such as healthcare, energy,
and public policy-making, which requires interpretable and
transparent explanations to overcome the black-box nature
of models, especially for non-experts. Effective explanations
allow us to understand how a model has learned, which helps
in taking steps to improve robustness, safety, and fairness.
Concept-based explanations have gained traction, offering
insights into AI decisions using higher-level concepts. Con-
currently, in our climate-conscious world, businesses increas-
ingly rely on time series data to enhance energy efficiency
and drive sustainable practices. Yet, several significant chal-
lenges persist. There is a lack of comprehensive archives for
sustainable energy time series data, and current models often
lack robust, regression-explainable methods to interpret their
behavior. Our findings indicate that many existing models are
prone to over-fitting specific open-source datasets, resulting in
a disconnect between their performance in controlled environ-
ments and real-world applications. To address this, we intro-
duced TIMEXAI, a framework that uses counterfactual-based
explanations to uncover these weaknesses and provide deeper
insights into where and why models struggle. To further this
effort, we introduce a comprehensive archive of 78 publicly
available sustainable energy time series datasets and a newly
collected dataset, encompassing a total of over 137 million
hourly instances at a 1Hz sampling rate. Our results strongly
suggest that future work should explore more varied set time
series to better assess model performance and prevent the risk
of over-fitting to specific time series data sets. The archive and
code can be accessed at https://TimeXAI.github.io/.

Introduction
Deep learning has become a cornerstone technology in ana-
lyzing energy time series data, prevalent in scenarios such as
electricity consumption prices, household energy prediction,
and flexibility in the smart grid. Despite its successes, a criti-
cal limitation of deep learning in time series analysis is the
lack of explainability, which is crucial for gaining trust and
actionable insights in these sensitive and impactful domains.
Given the rising electricity consumption prices and the in-
creasing need for sustainable practices, society is actively
searching for ways to change user behavior. This mission is
fueled by rising electricity prices and the urgency of adopting
eco-friendly practices. Current efforts in enhancing explain-
ability for time series analysis primarily focus on pinpointing
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Figure 1: Comparison of our TIMEXAI with TIMEX (Queen
et al. 2023). TIMEXAI directly works with the black-box
model, slightly modifying the original time series x to handle
out-of-distribution (OOD) cases and find counterfactuals. In
contrast, TIMEX builds a white-box model to approximate
the black-box behavior, which may cause OOD scenarios.

significant locations of time series signals that dominate the
model’s prediction in a post-hoc sense. For example, (Shi,
Stebliankin, and Narasimhan 2023) explained their trained
models for water level prediction using LIME, a local in-
terpretable model-agnostic explanation technique (Ribeiro,
Singh, and Guestrin 2016a). On top of this intuitive principle,
perturbation-based methods, including DYNAMASK (Crabbé
and Van Der Schaar 2021) and Extrmask (Enguehard 2023),
offer insights by altering non-salient features to assess their
impact on model output. However, without a theoretical foun-
dation, these ad-hoc designed objectives are often specific
to a single domain and do not generalize to wider scenarios.
One area of focus is how household electricity usage is visu-
ally presented, aiming to create a smarter and more conscious
approach. Energy time series data stands apart with distinct
features. These include noticeable seasonal patterns, recur-
ring sequences over days and seasons, and the predictable
daily rhythm characterized by surges during active hours and
lulls at night. The shift between weekdays and weekends adds
further variability, sometimes punctuated by abrupt surges
linked to external influences. Irregular consumption and de-
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viations from routines contribute to complexity. The intricate
interplay of factors such as weather and household occupancy
adds to this, not to mention the diverse energy types shaping
consumption patterns.

Challenge 1 (WHAT-IF? Counterfactual Explanation).
Consider a black-box model f(·) that takes as input a time se-
ries of energy consumption x ∈ RT from a household within
a smart grid system to predict the corresponding energy
demand category as ‘High Demand’. Traditional methods
might assign importance scores to each entry of x to explain
this prediction. However, they often fail to provide actionable
counterfactual explanations on how to adjust x to x̃ such that
the prediction could shift to ỹ that is ‘Low Demand’. Such
a method would be valuable in understanding how specific
changes in energy consumption patterns could lead to differ-
ent demand outcomes, thus offering deeper insights into the
model’s decision-making process.

Fortunately, forecasting and energy disaggregation have
revolutionized electricity monitoring by leveraging deep
learning algorithms. This enables analyzing consumption
patterns without invasive measurements or appliance sen-
sors. Beyond individual appliance identification and detailed
energy breakdown, offering critical insights for energy plan-
ning and management. This empowers companies to forecast
electricity demands, allocate resources efficiently, optimize
energy use, reduce costs, and contribute to sustainability. This
progress has spurred many studies (Zhang et al. 2021a; Letz-
gus et al. 2021; Siddiqui et al. 2019). However, constrained
by limited datasets in terms of variety and available attributes,
many methods lean exclusively on power or voltage, leading
to less effective real-world outcomes.

Thus, it is extremely difficult for researchers to fairly com-
pare models and develop new models based on only thus
limited datasets. To fill this gap, we introduced a novel house-
hold dataset for fine-grained designed for evaluating global
and multivariate forecasting and disaggregation models. Fur-
thermore, we develop an open-source archive and toolkit for
benchmarking, referred to as TIMEXAI time series for en-
ergy, which includes a variety of generative models as shown
in Fig.1, to extend appliance signatures and handle instances
of reduced activation through imputation. Additionally, eval-
uating generated time series is still a challenge due to the
lack of accessible user-friendly evaluation tools and public
benchmarks to make the research results more rigorous, and
reproducible. Our TIMEXAI framework consists of three
core components.

The binary mask method for generating explanations in
time series data can lead to limitations in interpretability. By
applying a fixed binary mask to isolate sub-instances, this
approach may lose important contextual information and fail
to capture complex feature interactions. Additionally, it can
produce trivial explanations that do not provide meaningful
insights into the model’s decision-making process.

Challenge 2 (In- and Out-of-Distribution Counterfactual
Explanations for Continuous Predictions). As in chal-
lenge 1, consider a time series dataset x ∈ RK×T repre-
senting hourly energy consumption and variables data from
a building, with a model predicting the future energy demand

as ŷ ∈ RT . To generate a counterfactual explanation that
changes ŷ, typical methods might suggest altering the input
features x in ways that are unrealistic, such as suggesting
changes in factors like weather conditions that are beyond
the model’s control. An ideal approach would involve iden-
tifying realistic changes that can be applied to the energy
consumption data while keeping external factors like weather
or occupancy levels unchanged. For instance, a realistic
counterfactual explanation x̃ would involve adjustments to
energy usage patterns that could lower the predicted demand,
while remaining within practical operational constraints.

In challenge 2, generating realistic counterfactual expla-
nations highlights a common issue with traditional methods.
These methods might suggest impractical changes, such as al-
tering weather conditions, which are often out-of-distribution
(OOD) for the model as shown in Fig.1. This issue mirrors
the limitations of the binary mask approach, which can lead
to explanations that are disconnected from practical realities.
In contrast, a more robust counterfactual method focuses on
feasible adjustments, like modifying energy usage patterns
while keeping external variables unchanged, ensuring that
explanations are both realistic and actionable.

• We examine the limitations of current explanation models
for time series learning through the lens of information
theory and propose a practical objective function.

• We introduce a new Comprehensive Archive, serving as a
downstream evaluation suite, which includes 78 datasets
and features our newly collected dataset from French
households (see Appendix E).

• We have developed an automated toolkit for hyperparam-
eter tuning that supports the training of generative models
and streamlines model evaluation for downstream tasks.

• We employ a diverse set of evaluation metrics to assess
sample and parameter efficiency. For a visual represen-
tation of the TIMEXAI framework, please refer to Ap-
pendix B.

Paper Organization. We begin with an overview of the back-
ground and related work, followed by a detailed description
of the proposed methods. Next, we present the unified archive
and provide comprehensive details on the newly introduced
dataset. Additional information about the policy of collected
data is available in the Appendix E.

Notations and Preliminary
Notations and Problem Formulation. We focus on gener-
ating counterfactual explanations for predictions from time
series models. We assume the model takes as input a multi-
variate time series xi ∈ RC×T , where T is the length of the
time series, and C is the feature dimension, and predicts the
corresponding label yi, which can be a categorical label, a
real value, or a univariate yi ∈ R1×T or multivariate time se-
ries yi ∈ RC×T . Given a specific input xi and the black-box
model’s prediction ypred

i , our goal is to explain the model by
finding a counterfactual time series xcf

i ̸= xi that could have
lead the model to an alternative (counterfactual) prediction
ycf
i . The value of the feature indexed c at time t is denoted



by x[t, c]. A training set D = {(xi,yi)|i ∈ [N ]} consists of
N time series instances xi along with their associated labels
yi, where yi ∈ Y . To develop a generally applicable model
for explainability, we consider explanation methods which
are task-agnostic and treat the to-be-explained model f(·)
as a black box, i.e., the so-called post-hoc, instance-level
explanation methods (Zhang et al. 2021b). In this context, an
explanation refers to a sub-instance of the input time series,
extracted using a saliency mask, which is a sufficient statistic
of the input concerning its label.

As can be observed in the problem statement, in order to
find good post-hoc instance-level time series explanations,
given an observed instance X , one needs to optimize the
choice of binary mask M ∈ {0, 1}T×D with respect to an
underlying objective function, e.g., the information bottle-
neck objective function discussed in the subsequent sections.
In this work, we transform this discrete optimization prob-
lem into a continuous one, and consider stochastic masks.
That is, we define an explanation extractor g(·) as a func-
tion that takes the instance X as input, and outputs a matrix
π = [πt,d]t∈[T ],d∈[D] ∈ [0, 1]T×D. Then, the binary mask
is generated by producing each M [t, d] independently and
according to a Bernoulli distribution with parameter πt,d.

Background and Related Work
Interpretation Methods for Neural Networks. Various
attribution-based interpretation methods have been proposed
in recent years. Some methods focused on local interpre-
tation (Ribeiro, Singh, and Guestrin 2016b; Lundberg and
Lee 2017a; Plumb, Molitor, and Talwalkar 2018; Chen et al.
2018a; Wang, Zhou, and Bilmes 2019) while others are de-
signed for global interpretation (Ghorbani et al. 2019; Nate-
san Ramamurthy et al. 2020). The main idea is to assign
attribution, or importance scores, to the input features in
terms of their impact on the prediction (output). For exam-
ple, such importance scores can be computed using gradients
of the prediction with respect to the input (Selvaraju et al.
2017; Lundberg and Lee 2017b; Shrikumar, Greenside, and
Kundaje 2017; Sundararajan, Taly, and Yan 2017). Some
interpretation methods are specialized for time series data;
these include perturbation-based (Pan, Hu, and Chen 2021),
rule-based (Rajapaksha and Bergmeir 2022), and attention-
based methods (Heo et al. 2018; Lim et al. 2021). One typical
method, Feature Importance in Time (FIT), evaluates the im-
portance of the input data based on the temporal distribution
shift and unexplained distribution shift (Tonekaboni et al.
2020). However, these methods can only produce importance
scores of the input features for the current prediction and
therefore cannot generate counterfactual explanations.

Counterfactual Explanations for Time Series Models.
There also works that generate counterfactual explanations
for time series models. (Dhaou et al. 2021) proposed an
association-rule algorithm to explain time series prediction
by finding the frequent pairs of timestamps and generating
counterfactual examples. (Nemirovsky et al. 2022) proposed
a general explanation framework that generates counterfac-
tual examples using residual generative adversarial networks
(RGAN); it can be adapted for time series models. However,

these works either fail to generate realistic counterfactual
explanations (due to discretization error) or fail to generate
feasible counterfactual explanations for time series models.
In contrast, our TimeXAI as a principled variational causal
method (Wang et al. 2020; Mao et al. 2021b; Gupta et al.
2021) can naturally generate realistic and feasible counterfac-
tual explanations. Such advantages are empirically verified
in .
Bayesian Deep Learning and Variational Autoencoders.
Our work is also related to the broad categories of variational
autoencoders (VAEs) (Sirojan, Phung, and Ambikairajah
2018) (which use inference networks to approximate poste-
rior distributions) and Bayesian deep learning (BDL) (Wang,
Wang, and Yeung 2015; Wang and Yeung 2016; Wang 2017;
Huang, Wang, and Mak 2019; Wang et al. 2019; Wang and
Yeung 2020; Ding et al. 2022) models (which use a deep
component to process high-dimensional signals and a task-
specific/graphical component to handle conditional/causal
dependencies). (Lin et al. 2022) proposed the first VAE-based
model for generating causal explanations for graph neural
networks. (Louizos et al. 2017; Pawlowski, Coelho de Castro,
and Glocker 2020) proposed the first VAE-based models for
performing causal inference and estimating treatment effect.
However, none of them addressed the problem of counterfac-
tual explanation, which involves solving an inverse problem
to obtain the optimal counterfactual input. In contrast, our
TimeXAI is the first VAE-based model to address this chal-
lenge, with theoretical guarantees and promising empirical
results. From the perspective of BDL (Wang and Yeung 2016,
2020), TimeXAI uses deep neural networks to process high-
dimension signals (i.e., the deep component in (Wang and
Yeung 2016)) and uses a Bayesian network to handle the
conditional/causal dependencies among variables (i.e., the
task-specific or graphical component in (Wang and Yeung
2016)). Therefore, TimeXAI is also the first BDL model for
generating counterfactual explanations.
A Look at Existing Datasets and Data Augmentation. Re-
cently, generative models have excelled at producing syn-
thetic data that closely resembles authentic data, making them
invaluable for tasks like data augmentation, imputation (Jeha
et al. 2021), scenario simulation, and style transformation.
Three main strategies are employed for generating time-series
data. Auto-regressive models decompose sequence distribu-
tions into conditional probabilities, modeling them through
maximum likelihood principles. While effective for stepwise
forecasting, ARNs might lack diversity in sequence genera-
tion. Auto-encoders(AEs) (Demir et al. 2021) and Variational
Auto-encoders (Vahdat and Kautz 2020) use an encoder-
decoder architecture for sequential generation. However, AEs
heavily rely on existing patterns, potentially constraining va-
riety. Generative Adversarial Networks (GANs) (Donahue,
McAuley, and Puckette 2018; Jeha et al. 2021; Yoon, Jarrett,
and Van der Schaar 2019; Wang, Yan, and Oates 2017) aim to
map the distribution of real data sequences to random noise,
allowing flexible sampling and diverse sequence generation.
GANs incorporate extra information to guide their generator
and discriminator modules, enabling effective learning of
joint probability distributions. Prior works like RCGAN (Es-
teban, Hyland, and Rätsch 2017), WaveGAN (Yamamoto,



Song, and Kim 2020), and Continuous RNN-GAN (C-RNN-
GAN (Mogren 2016)) (Mogren 2016) integrate both temporal
dynamics and static features into generation. While studies
like (Yoon, Jarrett, and Van der Schaar 2019) have formulated
GAN-based time-series generation with enhanced temporal
dynamics, these often use custom evaluation settings. How-
ever, there’s a lack of benchmarks to assess generative data
in energy time series scenarios.

Concept-Based Counterfactual Explanation
We generate counterfactual explanations via counterfactual
inference. Our goal is to find the optimal counterfactual ex-
planation x̃ defined below.
Definition 1 (Optimal Counterfactual Explanation).
Given a factual observation x and prediction ŷ, the optimal
counterfactual explanation x̃ for the counterfactual outcome
for ỹ is

x̃ = argmaxx′ p(Yx=x′(c) = ỹ),

where c = (c) and the counterfactual likelihood is defined as

p(Yx=x′(c) = ỹ)

=
∑
c

p (y = ỹ|do (x = x′) , c) p(c|x = x,y = ŷ).

In words, we search for the optimal x̃ that would have
shifted the model prediction from ŷ to ỹ while keeping (c)
unchanged. Since the definition of counterfactual explana-
tions in def:counter involves causal inference with the inter-
vention on x, we need to first identify the causal probability
p(y = ỹ|do(x = x′), c) using observational probability, i.e.,
removing ‘do’ in the equation. The theorem below shows that
this is achievable.
Theorem 2. Let c = {c1, . . . , cm} represent a set of con-
cepts, and let p(c|x,y) denote the posterior distribution
of the concept variables. The effect of an action, denoted
by p(y = ỹ|do(x = x′), c), can be identified by the ex-
pectation of the posterior distribution over the concepts
Ep(c|x′) [p (ỹ|c)] .

We provide the complete proof in Appendix A. We can
now rewrite our equation as:

Lcf =p(c1,...,cm|x=x,y=ŷ) p(z|x′)[p(ỹ|z)], (0.1)

where c = (c1, . . . , cm) and p(c|x = x,y = ŷ) is ap-
proximated by qϕ(c|x = x,y = ŷ). We use Monte Carlo
estimates to compute the expectation, iteratively compute
the gradient ∂Lcf

∂x′ (via back-propagation) to search for the
optimal x′ in a way similar to (Wang et al. 2019; Mao et al.
2021a), and use it as x̃ (see the complete algorithm in Ap-
pendix A).

A New Archive with Data Augmentation
In our proposed dataset, we employed a specialized Smart-
Plug, to facilitate a comprehensive approach to energy data
collection and analysis. These Smart Plugs offer a wide range
of functionalities that enable us to not only monitor the energy
consumption patterns of various electrical devices but also

exercise control over their operation. This ability to interact
with devices at the plug level is crucial for obtaining granular
insights into energy consumption behaviors. The SmartPlug
serves as a multifunctional tool with several key applications
and features. Firstly, it enables real-time energy consump-
tion monitoring of connected devices, allowing us to track
their power usage over time. This information is valuable
for understanding the energy usage patterns and identifying
potential efficiency improvements. Moreover, the SmartPlug
provides a means for remotely controlling electrical devices,
facilitating energy conservation strategies by allowing users
to switch off devices when not in use, even when away from
home. Further details on the policy for the collected data
are provided. Additionally, all relevant sustainable energy
data can be accessed in the TIMEXAI-ARCHIVE module,
designed for user-friendly interaction.

from TimeXAI import load_dataset
dataset = load_dataset("Archive/Etth2",

split="train")

As alluded earlier, generative Models offer an approach to
enhance energy time series datasets through augmentation,
imputation, and addressing missing value gaps. Evaluating
these models is crucial, as we tackle challenges related to
fidelity, usability and diversity.

Generative Adversarial Networks. Consider the gen-
eral data set where each instance consists of two elements:
static and temporal features (that occur over time, e.g., vi-
tal signs). Let S be a vector space of static features, X
of temporal features, where s ∈ S, and x ∈ X be ran-
dom vectors that can be instantiated with specific values
at each time step t ∈ T . We consider tuples of the form
(s,x) with some joint distribution p. The goal is to train
discriminator D to learn a density p̂(s,x) that best approxi-
mates p(s,x). This is a high-level objective and depending
on the lengths, dimensionality, and distribution of the data
may be difficult to optimize in the standard GAN frame-
work. Therefore, as stated in (Yoon, Jarrett, and Van der
Schaar 2019; Shi, Srey, and Tsang; Jeha et al. 2021) in-
spired by the autoregressive, the joint can decomposition as
p(s,x) = p(s)

∏T
t=1 p(xt|s,x1:t−1) to focus specifically on

the conditionals, yielding the complementary and simpler ob-
jective of learning a density p̂(xt|s, X1:t−1) that best approx-
imates p(xt|s,x1:t−1) at any time t. Importantly, this breaks
down the sequence-level objective (matching the joint distri-
bution) into a series of stepwise objectives (matching the con-
ditionals). Global objective: minp̂ D(p(s,x)||p̂(s,x)), and
local objective minp̂ D(p(xt|s,xt−1)||p̂(xt|s,xt−1)). Using
a real set for supervision via maximum likelihood training,
the latter takes the form of the Kullback-Leibler divergence.
The objective, then, will be a combination of the GAN ob-
jective global and local, this is common for Progressive Self
Attention GANs for Synthetic Time Series (PSA-GAN)(Jeha
et al. 2021), WaveGAN(Yamamoto, Song, and Kim 2020),
GTGAN (Jeon et al. 2022), and TimeGAN (Yoon, Jarrett,
and Van der Schaar 2019). For an in-depth theoretical state,
refer to Appendix C.

What defines good generated data for sustainable en-
ergy? Good generated data for energy forecasting and dis-



aggregation should possess several key characteristics from
an energy perspective. These characteristics include fidelity,
usability, and variety.
1. Fidelity assesses the ability of generated data to replicate

essential characteristics of the real energy data, making
them indistinguishable from real data. This is quantita-
tively evaluated with a discriminative score, which gauges
a classifier’s accuracy in distinguishing real from syn-
thetic data. A low score indicates faithful representation
of real properties.

2. Usability involves maintaining practical and predictive
qualities in synthetic data. Generated data should support
forecasting and disaggregation, retaining predictive ca-
pabilities of the real energy data. Usability is assessed
with a predictive score derived by training a predictor on
synthetic data and measuring MAE and RMSE. A low
score signifies capture of real data’s predictive traits.

3. Explainability. Our framework not only includes metrics
to evaluate the explanation methods but also benchmarks
various other methods (e.g., LIME (Lim et al. 2019),
Gradient-based methods (Simonyan, Vedaldi, and Zis-
serman 2013)). Notably, these methods are easily acces-
sible via the TimeXAI toolkit. The code below demon-
strates DeepAR’s explaining performance using GRAD (Si-
monyan, Vedaldi, and Zisserman 2013) metric on real data,
GTGAN, and TIMEGAN.
from TimeXAI import Explainer
explain=Explainer(real_x=X,

gen_model=["TimeVAE"],
black_box_model="DeepAR",
method="TimeXAI", metric="CCR")

Experiments and Use Case
In this section, we evaluate the performance of our TimeXAI
method alongside existing approaches using generated and
real-world datasets available in our proposed archive. For
each dataset, we assess different methods based on three key
metrics: (1) prediction accuracy, (2) counterfactual accu-
racy, and (3) counterfactual change ratio, with the latter
being the most critical metric. The specific implementation of
these metrics varies across datasets (see details in Appendix
E).

Baselines and Implementations
We compare TimeXAI with several leading methods for
generating explanations for deep learning models, includ-
ing Regularized Gradient Descent (RGD) (Wachter, Mittel-
stadt, and Russell 2017), Gradient-weighted Class Activation
Mapping (GRADCAM) (Selvaraju et al. 2017), Gradient SHap-
ley Additive exPlanations (GRADSHAP) (Lundberg and Lee
2017b), Local Interpretable Model-agnostic Explanations
(LIME) (Ribeiro, Singh, and Guestrin 2016b), Feature Impor-
tance in Time (FIT) (Tonekaboni et al. 2020), Case-crossover
APriori (CAP) (Dhaou et al. 2021), and Counterfactual Resid-
ual Generative Adversarial Network (COUNTERGAN) (Ne-
mirovsky et al. 2022) (see ?? for further details). Notably,
among these baselines, only RGD and CounteRGAN can
produce actionable explanations. Other methods, such as FIT

Table 1: Average CCR for intra-dataset and cross-dataset
settings. The average CCR is computed across 6 counterfac-
tual action settings (Low→High, High→Low, Low→Low+,
High→High+, High→High) for each model and dataset. The
last row displays the average CCR over all 6 dataset settings
for each method.

CounteRGAN RGD GradCAM GradSHAP LIME FIT CAP TimeXAI (Ours)

→Dataport 1.148 1.140 1.125 0.910 0.928 1.065 1.028 1.320
→ETTh1 1.220 1.245 1.060 0.970 1.030 1.185 0.935 1.385
→ETTh2 1.275 1.195 1.040 1.020 1.015 1.135 1.025 1.370

ESS (ours) 1.130 1.095 0.895 0.995 1.085 1.060 0.970 1.275
REDD 1.140 1.120 0.885 1.060 1.065 1.075 1.010 1.340
REFIT 1.160 1.170 0.880 1.040 0.990 1.085 0.965 1.335

Average 1.188 1.160 0.980 1.005 1.020 1.110 0.990 1.340

(designed specifically for time series models), only provide
importance scores as explanations; therefore, some evaluation
metrics may not apply to them (indicated as ‘-’ in tables). To
ensure a fair comparison, the prediction model in all baseline
explanation methods uses the same neural network architec-
ture as the inference module in our TimeXAI. Further details
on the architecture, training, and inference can be found in
the Appendix. Partial results are presented here due to space
limitations; additional results and scripts are available in the
Supplementary Materials.

Use case of Archive
Forecasting Task. For this particular task, we bench-
mark generated data against various baselines, including
DeepAR (Salinas et al. 2020), an autoregressive recurrent
neural network; Diffusion denoising model D3VAE (Li et al.
2022), proposed recently used in Electricity AP dataset show
good result against DeepAR; Transformers (Xu et al. 2020),
improved time series prediction, we implement a Probabilis-
tic Transformer (Tang and Matteson 2021) for this task. Our
TIMEXAI toolkit provides a diverse selection of cutting-edge
models suitable for energy forecasting purposes.

Dissagregation Task. To assess the effectiveness of the
generated data in training Energy Disaggregation models, we
utilize the sequence-to-sequence (S2S) (Chen et al. 2018b)
and sequence-to-point (S2P) (Zhang et al. 2021a) as a base-
line. This model combines CNNs and LSTM networks to
capture temporal dependencies and is trained on both gen-
erated and real data. The performances of the model are
evaluated on real data, providing insights into the quality and
suitability of the generated data.

Training: Initially, we train selected models (T-
Forcing, TimeVAE, GTGAN, TimeGAN, RCGAN, C-RNN-
GAN, PSA-GAN, WaveGAN) on each dataset. GTGAN,
TimeGAN, and RCGAN maintain similarity to real structure,
while PSA-GAN and WaveGAN layers adapt for stability
based on experiments. We then assess discriminators (com-
prising 5 GRU layers) and TCN-based encoders (Franceschi,
Dieuleveut, and Jaggi 2019) for Discriminative and Context-
FID scores. Our dataset archive might not optimally match
tasks as indicated by Table ?? ratings, so benchmarking in the
main paper gives priority to Dataport, Electricity AP, and the
new TIMEXAI-ESS dataset for forecasting; REDD, REFIT,
Uk-DALE, TIMEXAI-ESS for disaggregation. Evaluating
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Figure 2: Visualizing t-SNE plots for different datasets, organized in rows. Left to right, the plots depict outcomes using different
models. Each column provides the visualization for each of the 8 benchmarks. Magenta denotes actual data, and cyan denotes
synthetic. PCA visualizations are provided in Appendix G of the Supplementary Materials.

optimal downstream model effectiveness involves training
with Real+Generated data. Other dataset results are provided
in the Appendix G of Supplement Materials.

Experimental Platform. The experiments are performed
on four NVIDIA A40 GPUs and 40 Intel(R) Xeon(R) Silver
4210 CPU @ 2.20GHz. The models are implemented in
PyTorch.

Discussion

In this section, we discuss our findings on forecasting and
disaggregation. Synthetic samples closely resemble origi-
nal data, with GTGAN achieving the smallest deviation in
Context-FID at 4.2%, while TimeVAE exhibits the highest
deviation at 52.3%. PSA-GAN competes well with GTGAN,
offering an initial exploration of GANs in forecasting. GT-
GAN emerges as a robust sample generator for both tasks,
consistently excelling in discrimination and prediction across
datasets. C-RNN-GAN shows promise in forecasting for Uk-
DALE and Dataport. Context-FID confirms these findings,
and Figure 3 further demonstrates this alignment by reveal-
ing that GTGAN and PSA-GAN closely overlap with the
real set. Models trained using a combination of real data and
GTGAN outperform models trained solely on either real data
or GTGAN individually (compare magenta and cyan rows in
Table2). However, GTGAN and PSA-GAN show resilience
with minor noise on TIMEXAI-ESS, due to ample, cleaned
training data. TimeGAN encounters challenges with certain
datasets. These results underscore GTGAN’s superiority, par-
ticularly for Transformer (≈ 32% better than DeepAR) and
D3VAE (≈ 37% better than DeepAR), while TimeGAN
maintains competitiveness.

In disaggregation, Table 2 shows that GTGAN, PSA-
GAN, and C-RNN-GAN compete, with TimeVAE lag-
ging. TimeGAN’s competitiveness with pristine data like
TIMEXAI-ESS underscores its efficacy, slightly trailing GT-
GAN and PSA-GAN. We also consider Figure 4, where
GTGAN excels in short-term patterns but lags in capturing
long-term trends. Notably, Figure 5 highlights TimeGAN’s
effectiveness. Our ablation study aims to illuminate these
dynamics further.

Figure 3: Visualizing t-SNE plots for different datasets, orga-
nized in rows. Left to right, the plots depict outcomes using
different models. Each column provides the visualization for
each of the 8 benchmarks. Magenta denotes actual data, and
cyan denotes synthetic. PCA visualizations are provided in
Appendix G of the Supplementary Materials.

Conclusions and future research

This paper introduces TIMEXAI, a pioneering open-source
framework and archive that integrates both traditional and ad-
vanced time series generative models. TIMEXAI addresses
the actionability and feasibility requirements for counter-
factual explanations in time series prediction by proposing
TIMEXAI, the first self-interpretable model that meets these
criteria. Theoretical analysis demonstrates that TIMEXAI
effectively identifies causal effects between time series inputs
and outputs, even in the presence of confounding variables,
thereby providing causal counterfactual explanations. Em-
pirical results confirm that TIMEXAI achieves competitive
prediction accuracy and generates actionable and feasible ex-
planations. TIMEXAI also offers a comprehensive platform
for reliable model training, data generation, and experiment
tracking. Additionally, we introduce the TIMEXAI-ESS
dataset to enhance disaggregation and forecasting tasks. A
case study highlights GTGAN’s superior performance on
benchmark tasks, such as augmentation and missing value
handling in energy time series. We anticipate that TIMEXAI
and TIMEXAI-ESS will attract significant interest and ben-
efit from continued community contributions.



Table 2: Predictive Score (MAE, RMSE) for disaggregation downstream tasks ”Fridge consumption” (Lower is Better) ↓ indicates
that lower values are better. Real data (magenta row) and fusion of real data and most valid generated case (cyan row). Values
corresponding to best performance are bolded.

Metric Method ↓ Uk-DALE REFIT REDD TimeXAI-ESS

Baseline → S2S S2S S2S S2S S2S S2S S2S S2S

M
A

E
↓

(L
ow

er
th

e
B

et
te

r)

TimeVAE .896±.088 .890±.001 .864±.001 .860±.002 .929±.007 .913±.010 .839±.030 .830±.010
GTGAN .254±.016 .251±.007 .291±.002 .290±.004 .316±.012 .310±.003 .220±.024 .223±.025
TimeGAN .628±.032 .621±.033 .622±.038 .617±.039 .640±.002 .634±.003 .538±.012 .537±.030
C-RNN-GAN .256±.040 .254±.012 .639±.012 .638±.013 .830±.030 .828±.010 .732±.102 .730±.003
PSA-GAN .253±.001 .252±.002 .330±.049 .331±.010 .331±.000 .328±.023 .330±.012 .325±.041
WaveGAN .286±.006 .282±.007 .643±.000 .642±.031 .336±.030 .332±.001 .237±.018 .231±.002
T-Forcing .757±.020 .754±.008 .741±.010 .740±.011 .833±.003 .829±.004 .624±.012 .619±.007

Real .198±.002 .194±.001 .193±.008 .188±.002 .186±.001 .183±.002 .161±.012 .156±.013
Real+GTGAN .197±.001 .186±.003 .193±.018 .193±.019 .196±.030 .196±.031 .163±.012 .163±.013

R
M

SE
↓

(L
ow

er
th

e
B

et
te

r)

TimeVAE 1.344±.012 1.344±.013 1.296±.008 1.291±.002 1.387±.012 1.387±.013 1.154±.142 1.154±.143
GTGAN .380±.018 .380±.019 .316±.001 .314±.007 .375±.016 .373±.017 .380±.002 .378±.001
TimeGAN .944±.060 .940±.001 .934±.002 .931±.003 .960±.036 .957±.002 .962±.005 .958±.001
C-RNN-GAN .484±.001 .477±.002 .452±.001 .451±.001 .485±.046 .486±.047 .352±.042 .382±.043
PSA-GAN .381±.005 .379±.002 .360±.002 .460±.013 .442±.004 .440±.005 .444±.012 .440±.003
WaveGAN .628±.000 .627±.001 .625±.001 .623±.002 .504±.000 .504±.001 .405±.018 .400±.001
T-Forcing .434±.027 .434±.028 1.001±.004 1.001±.005 1.251±.002 1.244±.003 1.250±.007 1.243±.003

Real .337±.008 .337±.001 .348±.015 .348±.016 .374±.013 .374±.014 .224±.006 .224±.007
Real+GTGAN .337±.004 .331±.009 .346±.003 .348±.001 .372±.001 .371±.004 .224±.001 .220±.002
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Figure 4: Forecasting performance on TimeXAI-ESS Test set
(real) using DeepAR trained on generated and real TimeXAI-
ESS Train set.

Reproducticibility Statement
The necessary information to replicate our experiments can
be found in Supplementary Materials. Training specifics are
outlined in Appendices A, B, C, and D, with additional ex-
periment settings in Section F. Access the code we used is
available at: https://TimeXAI.github.io/.
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Lim, B.; Arık, S. Ö.; Loeff, N.; and Pfister, T. 2021. Temporal
fusion transformers for interpretable multi-horizon time se-
ries forecasting. International Journal of Forecasting, 37(4):
1748–1764.

Lin, W.; Lan, H.; Wang, H.; and Li, B. 2022. OrphicX: A
Causality-Inspired Latent Variable Model for Interpreting
Graph Neural Networks. In CVPR.
Louizos, C.; Shalit, U.; Mooij, J. M.; Sontag, D.; Zemel, R.;
and Welling, M. 2017. Causal effect inference with deep
latent-variable models. Advances in neural information pro-
cessing systems, 30.
Lundberg, S. M.; and Lee, S.-I. 2017a. A unified approach
to interpreting model predictions. Advances in neural infor-
mation processing systems, 30.
Lundberg, S. M.; and Lee, S.-I. 2017b. A Unified Approach
to Interpreting Model Predictions. In Guyon, I.; Luxburg,
U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan,
S.; and Garnett, R., eds., Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.
Mao, C.; Chiquier, M.; Wang, H.; Yang, J.; and Vondrick,
C. 2021a. Adversarial Attacks are Reversible with Natural
Supervision. In ICCV.
Mao, C.; Gupta, A.; Cha, A.; Wang, H.; Yang, J.; and Von-
drick, C. 2021b. Generative Interventions for Causal Learn-
ing. In CVPR.
Mogren, O. 2016. C-RNN-GAN: Continuous recurrent
neural networks with adversarial training. arXiv preprint
arXiv:1611.09904.
Natesan Ramamurthy, K.; Vinzamuri, B.; Zhang, Y.; and
Dhurandhar, A. 2020. Model agnostic multilevel explana-
tions. Advances in neural information processing systems,
33: 5968–5979.
Nemirovsky, D.; Thiebaut, N.; Xu, Y.; and Gupta, A. 2022.
CounteRGAN: Generating counterfactuals for real-time re-
course and interpretability using residual GANs. In Cussens,
J.; and Zhang, K., eds., Proceedings of the Thirty-Eighth Con-
ference on Uncertainty in Artificial Intelligence, volume 180
of Proceedings of Machine Learning Research, 1488–1497.
PMLR.
Pan, Q.; Hu, W.; and Chen, N. 2021. Two Birds with One
Stone: Series Saliency for Accurate and Interpretable Multi-
variate Time Series Forecasting. In IJCAI, 2884–2891.
Pawlowski, N.; Coelho de Castro, D.; and Glocker, B. 2020.
Deep structural causal models for tractable counterfactual in-
ference. Advances in Neural Information Processing Systems,
33: 857–869.
Plumb, G.; Molitor, D.; and Talwalkar, A. S. 2018. Model
agnostic supervised local explanations. Advances in neural
information processing systems, 31.
Queen, O.; Hartvigsen, T.; Koker, T.; He, H.; Tsiligkaridis,
T.; and Zitnik, M. 2023. Encoding Time-Series Explanations
through Self-Supervised Model Behavior Consistency. In
NeurIPS.
Rajapaksha, D.; and Bergmeir, C. 2022. LIMREF: Local
Interpretable Model Agnostic Rule-based Explanations for
Forecasting, with an Application to Electricity Smart Meter
Data. arXiv preprint arXiv:2202.07766.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016a. ” Why
should i trust you?” Explaining the predictions of any classi-
fier. In Proceedings of the 22nd ACM SIGKDD international



conference on knowledge discovery and data mining, 1135–
1144.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016b. ” Why
should i trust you?” Explaining the predictions of any classi-
fier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 1135–
1144.
Salinas, D.; Flunkert, V.; Gasthaus, J.; and Januschowski, T.
2020. DeepAR: Probabilistic forecasting with autoregressive
recurrent networks. International Journal of Forecasting,
36(3): 1181–1191.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual expla-
nations from deep networks via gradient-based localization.
In Proceedings of the IEEE international conference on com-
puter vision, 618–626.
Shi, J.; Stebliankin, V.; and Narasimhan, G. 2023. The Power
of Explainability in Forecast-Informed Deep Learning Mod-
els for Flood Mitigation. arXiv preprint arXiv:2310.19166.
Shi, Y.; Srey, P.; and Tsang, I. ???? Dynamic-Aware GANs:
Time-Series Generation with Handy Self-Supervision.
Shrikumar, A.; Greenside, P.; and Kundaje, A. 2017. Learn-
ing important features through propagating activation dif-
ferences. In International conference on machine learning,
3145–3153. PMLR.
Siddiqui, S. A.; Mercier, D.; Munir, M.; Dengel, A.; and
Ahmed, S. 2019. Tsviz: Demystification of deep learning
models for time-series analysis. IEEE Access, 7: 67027–
67040.
Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013. Deep in-
side convolutional networks: Visualising image classification
models and saliency maps. arXiv preprint arXiv:1312.6034.
Sirojan, T.; Phung, B. T.; and Ambikairajah, E. 2018. Deep
Neural Network Based Energy Disaggregation. In 2018 IEEE
International Conference on Smart Energy Grid Engineering
(SEGE), 73–77.
Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic
attribution for deep networks. In International conference on
machine learning, 3319–3328. PMLR.
Tang, B.; and Matteson, D. S. 2021. Probabilistic Trans-
former For Time Series Analysis. In Beygelzimer, A.;
Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds., Advances
in Neural Information Processing Systems.
Tonekaboni, S.; Joshi, S.; Campbell, K.; Duvenaud, D. K.;
and Goldenberg, A. 2020. What went wrong and when?
Instance-wise feature importance for time-series black-box
models. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Bal-
can, M.; and Lin, H., eds., Advances in Neural Information
Processing Systems, volume 33, 799–809. Curran Associates,
Inc.
Vahdat, A.; and Kautz, J. 2020. NVAE: A Deep Hierarchical
Variational Autoencoder. In Larochelle, H.; Ranzato, M.;
Hadsell, R.; Balcan, M.; and Lin, H., eds., Advances in Neural
Information Processing Systems.
Wachter, S.; Mittelstadt, B.; and Russell, C. 2017. Counterfac-
tual explanations without opening the black box: Automated
decisions and the GDPR. Harv. JL & Tech., 31: 841.

Wang, H. 2017. Bayesian Deep Learning for Integrated
Intelligence: Bridging the Gap between Perception and In-
ference. Ph.D. thesis, Hong Kong University of Science and
Technology.
Wang, H.; Mao, C.; He, H.; Zhao, M.; Jaakkola, T. S.; and
Katabi, D. 2019. Bidirectional inference networks: A class
of deep bayesian networks for health profiling. In AAAI,
volume 33, 766–773.
Wang, H.; Wang, N.; and Yeung, D. 2015. Collaborative deep
learning for recommender systems. In KDD, 1235–1244.
Wang, H.; and Yeung, D.-Y. 2016. Towards Bayesian deep
learning: A framework and some existing methods. TDKE,
28(12): 3395–3408.
Wang, H.; and Yeung, D.-Y. 2020. A Survey on Bayesian
Deep Learning. CSUR, 53(5): 1–37.
Wang, S.; Zhou, T.; and Bilmes, J. 2019. Bias also matters:
Bias attribution for deep neural network explanation. In
International Conference on Machine Learning, 6659–6667.
PMLR.
Wang, Y.; Menkovski, V.; Wang, H.; Du, X.; and Pechenizkiy,
M. 2020. Causal discovery from incomplete data: A deep
learning approach.
Wang, Z.; Yan, W.; and Oates, T. 2017. Time series classi-
fication from scratch with deep neural networks: A strong
baseline. In 2017 International joint conference on neural
networks (IJCNN), 1578–1585. IEEE.
Xu, H.; Liu, Q.; Xiong, D.; and van Genabith, J.
2020. Transformer with depth-wise lstm. arXiv preprint
arXiv:2007.06257.
Yamamoto, R.; Song, E.; and Kim, J.-M. 2020. Parallel Wave-
GAN: A fast waveform generation model based on generative
adversarial networks with multi-resolution spectrogram. In
ICASSP 2020-2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 6199–6203.
IEEE.
Yoon, J.; Jarrett, D.; and Van der Schaar, M. 2019. Time-
series generative adversarial networks. Advances in neural
information processing systems, 32.
Zhang, J.; Sun, J.; Gan, J.; Liu, Q.; and Liu, X. 2021a. Improv-
ing Domestic NILM Using An Attention-Enabled Seq2Point
Learning Approach. In 2021 IEEE Intl Conf on Dependable,
Autonomic and Secure Computing, Intl Conf on Pervasive
Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), 434–439.
IEEE.
Zhang, Y.; Tiňo, P.; Leonardis, A.; and Tang, K. 2021b. A
survey on neural network interpretability. IEEE Transactions
on Emerging Topics in Computational Intelligence, 5(5): 726–
742.


	Introduction
	Notations and Preliminary
	Background and Related Work
	Concept-Based Counterfactual Explanation
	A New Archive with Data Augmentation
	Experiments and Use Case
	Baselines and Implementations
	Use case of Archive
	Discussion

	Conclusions and future research
	Reproducticibility Statement

