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ABSTRACT

For many domains, from video stream analytics to human activity recognition,
only weakly-labeled datasets are available. Worse yet, the given labels are often
assigned sequentially, resulting in sequential bias. Current Positive Unlabeled
(PU) classifiers, a state-of-the-art family of robust semi-supervised methods, are
ineffective under sequential bias. In this work, we propose DeepSPU, the first
method to address this sequential bias problem. DeepSPU tackles the two interde-
pendent subproblems of learning both the latent labeling process and the true class
likelihoods within one architecture. We achieve this by developing a novel itera-
tive learning strategy aided by theoretically-justified cost terms to avoid collapsing
into a naive classifier. Our experimental studies demonstrate that DeepSPU out-
performs state-of-the-art methods by over 10% on diverse real-world datasets.

1 INTRODUCTION

Motivation. State-of-the-art approaches for learning from data with only only incomplete positive
labels require an accurate estimation of the likelihood that any given positive instance receives a
label, known as the propensity score. However, all existing approaches overlook the fact that the
annotations given for sequential data are often clustered together, and thus the likelihood that a
given instance is labeled is dependent on the labels of the surrounding instances. We refer to this
as sequential bias. Overlooking this sequential bias results in an incorrect propensity score and
significantly reduced classification performance. Ours is the first work to make this observation and
we propose the first solution to this open problem.

Human Activity Recognition (HAR) is a prime example of sequential bias in data. To collect HAR
data, subjects are asked to report their activities while wearing mobile sensors. As study-length in-
creases (collection may take many days), participants leave many activities unlabeled. Additionally,
wearable sensors record data rapidly so large blocks of time get labeled consecutively, also creating
sequential bias. Many more applications, such as intrusion detection from video or illness prediction
from medical records, have similar sequentially-labeled data are are susceptible to sequential bias
(Rodrı́guez-Moreno et al., 2019; Schaekermann et al., 2018). This is a crucial issue as existing meth-
ods show drastically reduced accuracy when sequential bias is not accounted for (as demonstrated
in our Experimental Results).

State-of-the-Art. Positive Unlabeled (PU) classifiers are a family of semi-supervised methods that
learn from incompletely-labeled data without requiring any labeled negative examples (Bekker &
Davis, 2020; Elkan & Noto, 2008; Li & Liu, 2005; Hsieh et al., 2015; Du Plessis et al., 2015; Kiryo
et al., 2017; Bekker & Davis, 2018a; Kato et al., 2019). This is a key strength of PU methods
because representative negative examples, typically required by semi-supervised methods, are often
not feasible to acquire. For instance, in the HAR example, there are infinitely many activities that
an individual is not performing at any given time. Consequentially, participants are only expected
to provide some positive labels for their activities (Vaizman et al., 2017).

Unfortunately, existing PU methods make unrealistically restrictive simplifying assumptions on how
the labels were applied. Specifically, they either assume that there is no bias in the labeling process
(the probability of a sample being an unlabeled positive instance is uniform) (Elkan & Noto, 2008;
Du Plessis et al., 2015; Kiryo et al., 2017) or otherwise only depends on the local attributes of
each instance (Bekker & Davis, 2018a; Kato et al., 2019). This means that existing methods do not
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model sequential bias. And, as we demonstrate in our experiments, these methods are significantly
negatively impacted when a sequential bias is present.

Problem Description and Technical Challenges. Given a dataset of sequences, our goal is to
predict the true class likelihoods of each instance within the given sequence given a subset of labeled
positive instances during training. In particular, we focus on the difficult case where labels have been
assigned with a sequential bias, with sequential bias defined as the case where the likelihood that a
positive instance is labeled varies depending on whether its neighboring instances were labeled.

This problem is challenging due to two difficult interdependent subproblems. First, we have the
dependency problem: if we had a model of the latent labeling process (which we call the propen-
sity model) that allowed us to identify the true unlabeled positive instances, then we could use this
propensity model to train a classifier to produce the true class likelihoods. However, we need these
same true class likelihoods in order to train the propensity model - causing a cyclic dependency. Sec-
ond, standard maximum likelihood estimation inherently assumes all instances are labeled, leading
to a naive classifier in the presence of labeling bias. To capture unlabeled positive instances, a PU
classifier must instead predict an appropriate number of positive instances without simply assuming
all positives instances are labeled.

Our Approach: DeepSPU. We propose Deep Sequential PU (DeepSPU), which is the first Posi-
tive Unlabeled method to use a propensity score model that predicts the likelihood that any given
positive instance is labeled while taking sequential bias into account. The propensity score allows
us to train a classifier network given only partially labeled data. We achieve this by developing a
novel learning method that overcomes the cyclic dependency problem by iteratively learning the
propensity score model and the classifier using weakly-labeled data. Further, we introduce the two
novel PU cost terms: the Prior-Matching Costs (PMC) and the Observation-Matching Costs (OMC),
which prohibit the propensity model and classifier from collapsing into incorrect naive solutions.

Contributions. The main contributions of our work are:

• We identify sequential bias, a labeling pattern characteristic of many real-world labeling pro-
cesses, and demonstrate how ignoring this bias significantly impacts the performance of state-of-
the-art PU classifiers.

• We propose the first learning strategy to minimize the bias incurred from sequentially biased PU
data. Namely, we propose an iterative learning strategy and design two novel PU cost terms, Prior-
Matching and Observation-Matching, which prohibit collapse into certain incorrect adversarial
solutions, as justified through theoretical analysis.

• We develop DeepSPU, the first model to mitigate sequential bias. DeepSPU uses the aforemen-
tioned learning strategy to jointly estimate the two interdependent latent variables: the propensity
score and the true class probabilities - without any direct supervision for either learning task.

2 RELATED WORK

PU classifiers, a special type of semi-supervised models, learn from weakly-labeled training data
without requiring any labeled negative examples (Bekker & Davis, 2020). In contrast, semi-
supervised methods lean heavily on having access to both labeled positive and labeled negatives
to learn from weakly supervised data, making them less robust than PU alternatives (Van Engelen
& Hoos, 2020). PU methods are also more robust than a similar family of classifiers known as One
Class (OC) classifiers, as general OC classifiers do not make use of unlabeled data during training
(Khan & Madden, 2009).

There are many approaches to PU learning, such as re-weighting predictions (Zhang & Lee, 2005;
Elkan & Noto, 2008), iteratively identifying reliable examples (Ienco & Pensa, 2016), and most
notably risk minimization (Northcutt et al., 2017; Du Plessis et al., 2015; Kiryo et al., 2017). How-
ever, all these state-of-the-art approaches share the often-unrealistic assumption that no bias exists
in the labeling process, sequential or otherwise. When a bias is present, these methods are sus-
ceptible to learning skewed decision boundaries and thus are prone to making biased and incorrect
classifications (Bekker & Davis, 2020).
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A few recent PU methods have begun to model bias in the labeling process, though none have
captured sequential bias. One approach assumes the likelihood that a given true positive instance
is labeled depends solely on its distance from the negative distribution (Kato et al., 2019), while
others explore the case when this labeling likelihood depends on the general position of the positive
instance in the feature space (Bekker & Davis, 2018a). Our DeepSPU method extends beyond these
methods by coping with both this feature-level bias and the previously-overlooked sequential bias.

3 PROBLEM SETTING

3.1 POSITIVE UNLABELED LEARNING

Positive Unlabeled (PU) learning is the task of training a classifier to predict the true class of each
instance given a set of mostly unlabeled data and only some labeled positive instances (Bekker &
Davis, 2020). Solving this problem requires modeling the likelihood that any given true positive
instance is labeled. This labeling likelihood is referred to as the propensity score (Bekker & Davis,
2018a). Estimating the propensity score is not the same as predicting whether an instance is labeled,
which is often relatively easy. This is because estimating the propensity score corresponds to deter-
mining the likelihood that an instance is labeled conditioned on the instance being a true positive.
We cannot directly estimate this value from the data as we do not know whether or not any given
unlabeled instance is a true positive.

Formally, let D = {(X(j),L(j))}Nj=1 be a dataset D of N sequence pairs, where X(j) is a sequence
of real values and L(j) is a sequence of binary label indicators, |X(j)| = |L(j)|. For readability, we
drop the superscript j and describe our approach in terms of one sequence. Let X = (x1, x2, ..., xT )
be a sequence of T real values (which we refer to as a sequence of instances), and L = (`1, `2, ..., `T )
be an associated sequence of label indicators such that `i = 1 if xi is labeled positive, and is 0
otherwise. Additionally, for each feature-label sequence pair there is an unobserved binary true
class sequence, Y = (y1, y2, ..., yT ), yi ∈ {0, 1}, representing the underlying classes of the instance.
In addition to yi being unavailable during training, Pr(yi = 1|`i = 1) = 1 as we assume there
are no labels for negative instances, while Pr(`i = 1|yi = 1) 6= 0 as we assume not all positive
instances are labeled.

We consider both feature-level and sequential biases in the labeling process. Feature-level bias
assumes the propensity score for a positive instance depends on local features of the instance and
thus Pr(`i = 1|yi = 1) 6= Pr(`i = 1|yi = 1, xi). Sequential bias assumes the propensity score
of a positive instance can also depend on the label status of preceding instances, `1:i−1, and thus
Pr(`i = 1|yi = 1) 6= Pr(`i = 1|yi = 1, x1:i, `1:i−1). We call a propensity score that captures
sequential and feature-level bias a sequential propensity score qi = Pr(`i = 1|yi = 1, x1:i, `1:i−1).

Our goal is to train a classifier gθ(·) with parameters θ to solve the binary classification problem,
such that gθ(X) = PrY (Y |X). During training, only the features X and label status indicator L are
observed while the true class Y is unobserved. Notation used summarized in Appendix A.6.

3.2 BACKGROUND ON EMPIRICAL PU RISK MINIMIZATION

In standard positive-negative binary classification, the risk of a classifier gθ is given as:

R(gθ) = πEp[C+(g(x))] + (1− π)En[C−(g(x))],

where Ep and Ep are the distribution over the positive and negative instances respectively, and C+

is the loss incurred from predicting gθ(x) given that the true instance is positive while C− is the
loss incurred from predicting gθ(x) when the true instance is negative. Several recent works have
focused on reformulating the above risk into a “positive-unlabeled” risk that takes expectations over
the labelled and unlabeled distributions rather than the positive and negative distributions, as the
latter two distributions can not be estimated directly from PU data (Kiryo et al., 2017; Du Plessis
et al., 2015). Directly minimizing the empirical PU risk has been successful in the unbiased SCAR
setting (Du Plessis et al., 2015; Kiryo et al., 2017)

Additionally, Bekker et al. proposed a PU risk for the SAR setting, where there is bias in the labeling
that is a function of the feature values of each instance (Bekker & Davis, 2018a). For classifier gθ
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this risk is given as:

R(gθ) =πcE`
[ 1

e(x)
C+(g(x)) +

(
1− 1

e(x)

)
C−(g(x))

]
+ (1− πc)Eu[C−(gθ(x))],

(1)

where e(x) is the propensity score and represents the probability that a positive instance is labeled.
In the formulation proposed by Bekker et al. the propensity score is only a function of the local
feature values x.

A classifier that directly minimizes Bekker’s PU risk has not been proposed for the case where both
the propensity core e(x) and the posterior PY (Y |X) are unknown. This is due to the difficulty
of estimating both the propensity score and the posterior jointly, which arises from the fact that
in the above risk the perceived performance of the estimated posterior gθ (and thus the gradients
incurred) is based on the estimate of the propensity score and vice versa. Ergo, a poor estimate of
the propensity score can lead the classifier gθ to a poor solution while a poor classifier gθ leads to an
inaccurate estimator of the propensity score.

As described in the following section our proposed DeepSPU method does succeed in learning
the propensity score and gθ jointly by minimizing the PU risk directly. DeepSPU overcomes the
aforementioned difficulty of training the two latent variables through risk minimization by using a
novel iterative training algorithm coupled with additional regularization terms.

4 METHODOLOGY

4.1 OVERVIEW

We now describe a general estimation procedure for sequentially biased PU data, along with a spe-
cific model for learning in this setting.

4.2 SEQUENTIAL BIAS LEARNING STRATEGY

There are 2 major components to our proposed learning strategy. First, we employ an innovative
Iterative Learning Strategy, iteratively training a classifier model and a propensity score model by
minimizing the positive unlabeled risk (Bekker & Davis, 2020). This is achieved without explicit
feedback of the two estimated latent variables. Second, we design two novel PU cost (regularization)
terms that are employed during the iterative training. These cost terms prevent the networks from
converging on naive solutions which minimize the PU risk but do not result in correct probability
distributions for the latent target variables.

4.2.1 ITERATIVE LEARNING STRATEGY

As stated in section 3.2 typical classifiers for fully-labeled data are trained to minimize the expected
value of a loss function C, known as the risk. If the propensity score is known then the standard risk
R can be expressed in terms of expectations over only positive and unlabeled distributions, instead
of the positive and negative distributions (Du Plessis et al., 2015; Bekker & Davis, 2018a). Thus,
to train our model we express the empirical positive unlabeled risk, RPU, in terms of our novel
sequential propensity score qi as:

RPU(g,q|X,L) =
1

T

( ∑
xi|`i=1

( 1

qi
C+(g(xi)) +

(
1− 1

qi

)
C−(g(xi))

)
+

∑
xi|`i=0

(C−(g(xi)))
)
,

(2)

where C+ is the loss incurred from predicting g(x) assuming that the true class is positive, C−
is the loss incurred from predicting g(x) assuming the true class is negative, and qi = Pr(`i =
1|x1:i, `1:i−1) is the propensity score of the i-th instance. If our propensity scores are accurate, then
minimizing the above equation will correspond to minimizing the true risk. This means that in effect
we can learn the same classifier that we would have found if we had been given fully labeled data.
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Theorem 1. If qi = Pr(` = 1|yi = 1, x1:i, `1:i−1) for i = 1 : T , thenRpu(g, q|X,L) is an unbiased
estimation of the true risk R(g|Y ).

A proof of this theorem is given in Section A.4 of the Appendix. As stated, Theorem 1 indicates
that we can train a classifier on positive and unlabeled data if we have accurate propensity scores.
However, the propensity score is in general an unobserved observed variable to use as a target during
training, and thus there is no straightforward way to minimize the PU risk. The naive approach
would be to simply learn the parameters of the classifier g and propensity model q simultaneously
by minimizing Equation 2. However, there is no guarantee that Equation 2 is an unbiased estimate of
the true risk if the estimated propensity scores are incorrect (and thus no indication that this would
yield a good classification model). We propose to overcome this challenge with a novel Iterative
Learning Strategy, outlined below.

We begin training the a classification model and propensity score model by initializing the propensity
scores with “good” estimates, acquired by assuming the labeling likelihood c = Pr(`i = 1|yi = 1)
is constant for all positive instances. c is easily computed given a prior on the class π = Pr(y = 1)
(Bekker & Davis, 2020), and has been shown to be successfully estimated from the initial data set
(Jain et al., 2016). We show how to derive c from π in the appendix.

Next, we train a propensity model and a classification model iteratively in separate interleaved
stages. That is, at each stage of training, either the parameters of the propensity model or clas-
sification model are updated independently from each other.

4.2.2 REGULARIZING COST TERMS

It is possible to minimize Equation 2 by naively setting qi = 1 ∀ i and g(xi) = `i. In this case,
the classifier does not predict the instance’s true class, and instead erroneously predicts whether or
not an instance is labeled (Bekker & Davis, 2018a). To avoid this adversarial solution, we propose
two cost terms. First, we add the Prior-Matching Costs (PMC), which drives the percentage of
predicted positives to match the percentage of true positive we expect according to our prior. The
PMC is given by the KL divergence between the unconditioned distribution of predicted positives
and Bern(π), the Bernoulli distribution parameterized by the true class prior π:

PMC(X) = KL(Pr(ŷ = 1|Θ)||Bern(π)). (3)

Thus, the number of predicted positives are driven to match the expected number of true positives.
By definition, the PMC will be larger than the number of labeled instances, and thus Equation T1
will incur a high penalty cost for the adversarial solution.

Additionally, if the estimated propensity scores match the true propensity scores, then our propensity
score multiplied by the class probability of the i-th instance will equal the probability that the i-th
instance is labeled, as stated in Theorem 2. This informs our next cost term.
Theorem 2. If qi = Pr(`i = 1|x1:i, `1:i−1, yi = 1) is the sequential propensity score of the i-th
instance, then Pr(`i = 1|xi, `i−1) = qi · Pr(yi|xi).

The proof is given in Appendix A.5.

In short, we propose to explicitly encourage the product of the estimated propensity scores and
predicted class probabilities to match the observed labels. We accomplish this by adding the Binary
Cross Entropy (BCE) between them as next cost term. We refer to this as the Observation-Matching
Costs (OMC), as it requires our propensity score and class predictions to match the observed data:

OMC(X) = −
N∑
j=1

T∑
i=1

`
(j)
i log

(
ŷ

(j)
i q

(j)
i

)
(4)

We thus propose a final combined cost function sequentially biased PU data as follows:
L(Φ,Θ) = I · JQφ(gΘ) + (1− I) · JgΘ(Qφ),

where I is an indicator variable that equals 1 if we’re updating the parameters of the classification
model gΘ and is 0 otherwise, and J is the cost term defined as:

Ja(b) = RPU + λ1PMC + λ2OMC, (5)
with λ1 and λ2 being weights on the corresponding cost terms and Ja(b) corresponding to the above
equation as a function of b while a is held constant.
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4.3 THE DEEPSPU MODEL FOR SEQUENTIALLY BIASED DATA

We now propose a specific model to minimize Equation 5. Our model, DeepSPU, consists of three
sub-networks: 1) the Representation Network, which learns a robust representation of the input
data, 2) the Sequential Propensity Network, which models the likelihood that an instance is labeled
given that it is positive, and 3) the Classification Network, which models the likelihood that a given
instance belongs to the positive class. The Sequential Propensity Network, used only during the
training stage, is crucial in the training of the Classification Network as it allows us to train the
Classification Network given only weakly-labeled training data. After training, the Classification
Network can be deployed without the Sequential Propensity Network to predict the true class of
new instances. Detailed pseudo-code is available in the appendix.

4.3.1 REPRESENTATION NETWORK

The Sequential Propensity Network and the Classification Network both share a common base
representation of the input data. This shared representation is modeled by a recurrent neu-
ral network (RNN) BΩ with parameters Ω, such that BΩ takes in the sequence of input data
X = (x1, x2, · · · , xT ) and maps each element of the sequence to a corresponding latent repre-
sentation H = (h1, h2, · · · , hT ). Each latent representation hi is given by hi = Fh(xi, hi−1), with
the specific form of Fh determined by the choice of RNN network. Our implementation of Deep-
SPU uses a Gated Recurrent Unit (GRU) for the RNN (Cho et al., 2014), though the same principles
apply to other RNN architectures.

4.4 SEQUENTIAL PROPENSITY NETWORK

The aptly-named Sequential Propensity Network models the propensity score conditioned on the
local feature values of each instance and the feature values of all preceding instances, along with the
label indicators of all preceding instances. The first component of this sub-network is another GRU
that for each label `i produces a latent representation si conditioned on all previous labels. In effect,
si summarizes the label subsequence `1 to `i into one latent variable. This GRU is coupled with
a feed-forward network (FFN) that takes in the latent label representation si−1, the previous label
indicator `i−1, and the representation of the input features learned by the Representation Network
hi in order to produce the propensity score qi of the ith instance. With Φ representing the learnable
parameters of the Sequential Propensity Network QΦ, QΦ models the sequential propensity score
as QΦ(hi, si−1, `i−1) = qi = Pr(`i = 1|x1:i, `1:i−1).

4.5 CLASSIFICATION NETWORK

The shared hidden representation hi is also passed as input into the DeepSPU classifier subnetwork,
which models the positive class probability given the features of the input data. Our classifier model
gΘ(xi) = P (yi|x1:i,Θ) with parameters Θ is given by: gΘ(x) = Fg(BΩ(xi); Θ), where Fg is a
fully connected network with parameters Θ. The predicted class value for an instance xi is given by
round(g(xi)), where round(z) = 1 if z > 0.5 and is 0 otherwise. We chose 0.5 as the cutoff as
gΘ(xi) represents the probability that yi = 1.

5 EXPERIMENTS

5.1 DATA AND EXPERIMENTAL DETAILS

Datasets. We evaluate our models and a relevant set of baselines on several real-world sequential
human activity recognition datasets: UCI HAR1 (Anguita et al., 2013), Older Healthy (OH)
HAR2 (Torres et al., 2013), and ExtraSensory (ES)3 (Vaizman et al., 2017). ExtraSensory
was subsampled at one reading for every 10 minutes of collected data due to the size of the dataset.
Due to extreme class imbalance, we combine the multiple classes into one for some of the datasets.

1 https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
2 https://archive.ics.uci.edu/ml/datasets/Activity+recognition+with+healthy+older+people+using+a+batteryless+wearable+sensor
3 http://extrasensory.ucsd.edu/
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Figure 1: An overview of the DeepSPU learning process. The Representation Network learns a
hidden representation of the input sequence that is fed to both the Classification Network and the
Sequential Propensity Network. Networks are alternately trained iteratively, with one being frozen
while the other is updated.

We combine UCI HAR into 3 classes: one representing Walking-related activities, one that com-
bines Going Up and Down Stairs, and one that combines stationary activities. We likewise combine
stationary activities in OH HAR. We also evaluate on RealityCommons (RC Flu)4 (Madan
et al., 2011), an in-the-wild health dataset, where the task is to classify whether the individual is
experiencing flu symptoms on a given day using mobile sensor data.

Compared methods. We compare DeepSPU to the following state-of-the-art methods:

• Positive-Negative (PN) Classifier (Cho et al., 2014): As a baseline, we adopt a standard binary
positive-negative classifier that treats all unlabeled instances as negatives. The model otherwise
has the same structure as the DeepSPU classification network.

• uPU (Du Plessis et al., 2015): uPU is a recent highly-influential approach to training deep net-
works on PU data. uPU’s convex approach minimizes the empirical PU risk. However, this
approach assumes the propensity score is constant.

• nnPU (Kiryo et al., 2017): Similarly to uPU, nnPU also assumes that the propensity score is
constant to minimize the empirical PU risk. Additionally, nnPU clips the risk of the unlabeled
instances at 0 to avoid infinitely negative risks and is thus liable to overfit during training.

• SAR-EM (Bekker & Davis, 2018a): SAR-EM is the leading PU method for learning under
feature-level biased labeling. SAR-EM jointly trains a classifier and propensity network using an
Expectation-Maximization algorithm, such that the propensity network can handle feature-level
but not sequential bias.

We do not compare against any general semi-supervised methods. This is not an oversight. As
per our problem definition, we assume we have no labeled negative examples. This means general
semi-supervised methods are inapplicable. (Van Engelen & Hoos, 2020).

Evaluation metric. To measure the performance of our compared methods, we use balanced accu-
racy (BA) (Brodersen et al., 2010), which is defined as 1

2 ∗
(

TP
TP+FN + TN

TN+FP

)
. BA is similar to

the standard accuracy metric, but accounts for class imbalance: a BA of 0.5 is achieved by a naive
classifier, regardless of class imbalance. An optimal classifier will achieve a BA of 1.0.

Implementation details. We use an 70%/10%/20% train/validation/test split for each dataset. The
base classifier for all methods is a GRU with a 10-dimensional hidden layer. A 1-layer feed-forward
neural network uses the GRU’s latent representation as input for each instance and serves as the
classifier. DeepSPU has an additional 1-layer GRU for the propensity network. Each method is
trained until convergence (200 epochs). All methods are implemented in PyTorch and are publicly
available 5.

4 http://realitycommons.media.mit.edu/socialevolution4.html
5https://anonymous.4open.science/r/250569bb-b723-4e3c-8b37-ed982087c2db/
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Datasets: ES Lying ES Sitting ES Walking ES Sleeping RealityCommons

PN: 0.68 0.60 0.62 0.66 0.50
uPU: 0.70 0.62 0.65 0.70 0.60
nnPU: 0.70 0.62 0.66 0.72 0.62
SAR EM: 0.66 0.63 0.58 0.69 0.54
DeepSPU: 0.77 0.66 0.68 0.78 0.66

Table 1: Performance of DeepSPU vs compared methods on naturally weakly labeled real-world
datasets experiencing sequential bias. DeepSPU outperforms the others. Results reported as Bal-
anced Accuracy. Higher is better.

Method: PN uPU nnPU SAR-EM DeepSPU
% Labeled: 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15

OH Stationary 0.50 0.50 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 053 0.53 0.55
OH Ambulating 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.52 0.50 0.50 0.50 0.50 0.52 0.54
UCI Walking 0.50 0.50 0.50 0.50 0.51 0.53 0.50 0.51 0.52 0.51 0.52 0.54 0.58 0.62 0.72
UCI Stairs 0.50 0.50 0.50 0.59 0.62 0.72 0.64 0.65 0.67 0.52 0.53 0.58 0.79 0.80 0.86
UCI Stationary 0.50 0.51 0.53 0.91 0.91 0.93 0.91 0.91 0.94 0.79 0.79 0.85 0.96 0.96 0.97
ES Walking 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.52 0.54
ES Sitting 0.50 0.50 0.50 0.50 0.50 0.52 0.50 0.50 0.52 0.53 0.53 0.54 0.55 0.58 0.60
ES Sleeping 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.50 0.50 0.50 0.58 0.65 0.66
ES Lying 0.50 0.50 0.51 0.50 0.50 0.51 0.50 0.51 0.53 0.50 0.50 0.50 0.62 0.69 0.72

Table 2: Classification performance for various levels of labeling on the Older Healthy, UCI HAR,
and ExtraSensory HAR datasets. Results reported as Balanced Accuracy (higher is better).

5.2 EXPERIMENTAL STUDY ON CLASSIFYING NATURALLY-UNLABELED DATA

First, we demonstrate DeepSPU’s ability to classify data that naturally exhibits sequential bias. This
can be clearly shown for the ExtraSensory and RealityCommons datasets, because both were
collected “in the wild” with study participants labeling their own data sequentially. Thus they are
thus naturally weakly labeled. Further, due to the study design it is unclear if an instance that is not
labeled positive is in fact negative or an unlabeled positive (Chang et al., 2017; Madan et al., 2011),
thus fitting the positive unlabeled problem description. For this experiment, we estimate the class
prior for nnPU and DeepSPU using TIcE (Bekker & Davis, 2018b). As shown in Table 1, Deep-
SPU significantly outperforms the state-of-the-art methods for both datasets. This demonstrates that
tackling sequential bias inherent in these real-world datasets is impactful. Additionally, the base-
line underperforms the PU methods in almost all cases, highlighting the importance of leveraging
PU classifiers for these weakly-labeled real-world problems. Overall, these results confirm that the
pervasive problem of sequential bias in labeling can be mitigated by DeepSPU.

5.3 EXPERIMENTAL STUDY ON LEARNING FROM VARIOUS LEVELS OF LIMITED LABELS

In practice, the percentage of labeled positives available during training will vary from dataset to
dataset. Thus, we perform this next experiment to study the impact of the proportion of labeling
on each method’s performance. In line with much of the recent PU work (Bekker & Davis, 2020;
2018a; Kiryo et al., 2017), we achieve this by removing subsets of labels from each dataset prior
to training. We range label availability from 5% to 15% of all positive instances, and remove the
labels from all negative instances. To encourage sequential bias, unlabeling is done sequentially:
A binary Markov Chain decides whether or not to remove the label for each instance in turn. The
likelihood the Markov Chain switches from “labeling” to “unlabeling” states is varied according to
the desired level of unlabeling. Details of this unlabeling process are in Appendix A.7. As shown
in Table 2, DeepSPU significantly outperforms all other methods for every level of unlabeling. This
demonstrates that even with very few labels, modeling sequential bias leads to significant improve-
ments in performance. As expected, the Positive Negative performs the worst, as it does not account
for unlabeled positives. Surprisingly, SAR-EM is outperformed by nnPU, despite nnPU assuming
that no bias arises in the labeling process. This may be explained by nnPU’s natural aversion to
overfitting (Kiryo et al., 2017), while SAR-EM may learn spurious relationships in the labels while
mistakenly modeling sequential bias as feature-level bias.
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(a) Ablation study (b) Parameter study

Figure 2: a) The ablation study of DeepSPU indicates that each of its major components significantly
improves its performance. b) Performance of DeepSPU varying values for the class prior π estimate,
with the true prior being about 0.36.

5.4 ABLATION STUDY

DeepSPU minimizes PU risk using three components: The iterative training algorithm, the
observation-matching cost (OMC), and the prior-matching cost (PMC). In this experiment, we
demonstrate the necessity of each component in an ablation study on the ExtraSensory
Sitting dataset. Removing any of the three components results in significantly lower classifi-
cation accuracy. Specifically, removing the iterative training strategy impacts the performance most
significantly. This is expected, as without the iterative training strategy the cost function is likely
to be biased. We also see that the PMC divergence, which encourages the percentage of predicted
positives to match the class prior, is the more important of the two novel cost terms.

5.5 EXPERIMENTAL STUDY EVALUATING PARAMETERS FOR ESTIMATED PRIOR

PU methods rely on prior estimates of class label likelihoods π = Pr(y = 1). In particular,
DeepSPU uses this prior for the PMC term. With this value being estimated (Jain et al., 2016),
the selected prior could be inaccurate in a practical setting. Therefore, we now study the impact
of poorly-estimated priors on DeepSPU by varying this estimation. We train DeepSPU on the ES
Sitting dataset, where the true class prior is about 0.36. As shown in Figure 2b, DeepSPU
achieves the strongest performance when the estimated prior is closest to the true prior. However,
even when the prior is overestimated, the performance is not significantly impacted until the esti-
mated prior becomes severely over or underestimated. This indicates that in practice DeepSPU is
generally robust even to incorrectly estimated priors.

6 CONCLUSION

We propose DeepSPU, the first PU solution learning from weakly labeled data with sequential bias
in the labeling. We formulate a novel iterative learning strategy to jointly train a classification model
and labeling likelihood (propensity) model, along with designing two theoretically-justified PU cost
terms to account for this bias. Through a series of extensive experimental results we demonstrate
that the previously-overlooked sequential labeling bias naturally arises in real-world datasets. Also,
the state-of-the-art PU methods have poor performance when this type of bias is present, while
DeepSPU achieves robust classification performance under sequential labeling bias for a rich variety
of real-world data sets.
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A APPENDIX

A.1 STRATEGIES FOR CALCULATING THE CLASS PRIOR

Our DeepSPU method and the state-of-the-art nnPU method both take in the class prior π = p(y =
1) as a parameter. While this can be approximated from PU data (Jain et al., 2016), we calculated
this from the true class labels for all experiments. This was done as follows:

π̂ =

∑N
n=1

∑T
t=1 y

(j)
i

NT
,

where N is the number of time series in the training set and T is the length of each series.

A.2 DEEPSPU TRAINING

Algorithm 1: DeepSPU Training Process
input : Initialized propensity network Q

Initialized classification network G
Initialized shared representation B
Dataset of sequences D with features X and labels L of split into batches
Prior estimate π̂

output: Trained classifier
Trained propensity function

c = num labeled instances
π̂

define frozen propensity(x) = c
train classifier = True
for i← 1 to max epochs do

for batch in num batches do
if train classifier then

Ŷbatch = G(B(Xbatch))

Q̂batch = frozen propensity(frozen B(Xbatch))
else

Ŷbatch = frozen classifier(frozen B(Xbatch))

Q̂batch = Q(B(Xbatch))
end
loss(Q̂batch, Ŷbatch) = R̂pu +BCE +KLdiv

end
Update weights of B with Adam optimizer using loss

if train classifier then
Update weights of G with Adam optimizer using loss

else
Update weights of Q with Adam optimizer using loss

end
train classifier = not train classifier
frozen propensity = copy(Q)
frozen classifier = copy(G)
frozen B = copy(B)

end

For the sake of reproducibility we provide the pseudocode for training DeepSPU.
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A.3 FINDING LABELING LIKELIHOOD c GIVEN THE CLASS PRIOR

As described in the Methodology section, DeepSPU initially considers the propensity score to be
constant for the first few epochs of training. This constant propensity score is found given knowledge
of the class prior π as follows:

c = Pr(` = 1|y = 1)

=
Pr(` = 1, y = 1)

Pr(y = 1)

=
Pr(` = 1)

Pr(y = 1)

=
Pr(` = 1)

π

Thus, we need only to estimate Pr(` = 1) by finding the fraction of labeled instances in the dataset,
and dividing this value by the class prior π.

A.4 PROOF OF THEOREM 1

Proof.

E[RPU (g, q|X,L)] =
1

m

m∑
i=1

yiqi

( 1

qi
L+(g(xi)) + (1− 1

qi
)L−(g(xi))

)
+ (1− yiqi)L−(g(xi))

=
1

m

m∑
i=1

yiL
+(g(xi)) + (1− yi)L−(g(xi))

= R(g|Y )

A.5 PROOF OF THEOREM 2

Proof.

Pr(`i = 1|x1:i, `1:i−1) = Pr(`i = 1|xi, `1:i−1, yi = 1)Pr(yi = 1|xi, `1:i−1)

+ Pr(`i = 1|xi, `i−1, yi = 0)Pr(yi = 0|xi, `1:i−1)

= Pr(`i = 1|xi, `i−1, yi = 1)Pr(yi = 1|xi, `1:i−1)

= Pr(`i = 1|xi, `i−1, yi = 1)Pr(yi = 1|xi)
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A.6 TABLE OF NOTATION

Notation Description
N Number of sequences in the dataset

T Length of sequence

xi Features of ith instance

yi

Binary class indicator variable
for ith instance
yi = 1 if yi is of the positive class,
yi = 0 otherwise.

`i

Binary label indicator variable
for ith instance.
`i = 1 if the timestep was labeled,
`i = 0 otherwise.

qi
Sequential propensity score of the ith instance.
qi = Pr(`i = 1|x1:i; `1:i−1, yi = 1)

π Class prior. π = Pr(y = 1)

c Label frequency. c = Pr(` = 1|y = 1)

Capital letter Sequence of corresponding variable.
i.e., X = (x1, · · · , xT )

where i = 1, · · · , N and t = 1, · · · , T

Table 3: Reference for symbols used in this work
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Figure 3: An example of unlabeling with Markov chain.

A.7 INTRODUCING SEQUENTIAL BIAS

For each sub-sequence of consecutive positive instances within each sequence, a binary Markov
chain was run to decide which instances were to be unlabeled. We initiated the Markov chain at
state ‘1’, where state ‘1’ indicates that the corresponding positive instance remains labeled. The
Markov chain could transition to state ‘0’ with probability λ. We varied the value of λ to evaluate
DeepSPU’s performance for various levels of mislabeling. For instances where the Markov chain
is in state ‘0’ the corresponding positive instance was set to be unlabeled. The chain has a 1%
probability of transitioning back to ‘1’ from state 0. An example of this is shown in figure 3. This
process introduces sequential bias, as the likelihood that a given instance is mislabeled depends on
whether the previous instance is mislabeled (a given instance has a 100 X (1 - λ) % chance of being
labeled if the preceding instance is labeled).
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Figure 4: Histogram of lengths of consecutive labels (in minutes).

A.8 QUANTITATIVE ANALYSIS ON EXTRASENSORY LABELING PATTERNS

Figure 4 shows the frequency of lengths of labeled subsequences in the ExtraSensory dataset.
Clearly, the participants do enter phases of labeling as there are many long subsequences of con-
secutive labels.
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Figure 5: DeepSPU’s estimated propensity score vs the true propensity scores. The estimated scores
match the true scores almost perfectly.

A.9 EVALUATING PERFORMANCE OF PROPENSITY MODEL

We perform an additional experiment in order to demonstrate DeepSPU’s propensity network’s abil-
ity to learn the true propensity score. In this experiment, we created subsequences of positive in-
stances and subsequences of negative instances. The feature values for the positive instances where
drawn from a normal distribution with mean 0 and unit variance, while the features for the nega-
tive instanced were drawn from a normal distribution with mean 10 and unit variance. The positive
subsequences were labeled using a gamma distribution to decide which positive instances received
labels. We used Scipy’s (Virtanen et al., 2020) gamma distribution with shape, location, and scale
parameters all set to 1. We then train DeepSPU on this data and extracted its learned propensity
scores. As Figure 5 shows, the estimated propensity scores match the true propensity scores in-
curred by the gamma distribution almost perfectly.
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