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Abstract

Advanced Persistent Threat (APT) attacks are001
sophisticated cyberattacks characterized by002
stealth, persistence, and long-term engagement003
with targeted systems. Traditional detection004
methods using machine learning (ML) and005
deep learning (DL) often rely on internal mod-006
els or post hoc explainability techniques, which007
typically lack human-readable context and re-008
quire manual interpretation. In this paper,009
we investigate the use of large language mod-010
els (LLMs) for APT detection through code011
analysis. Specifically, we evaluate the ability012
of LLMs to (i) detect APT-related behavior013
in code snippet sequences, (ii) identify mali-014
cious components, and (iii) recognize relevant015
MITRE ATT&CK Tactics, Techniques, and016
Procedures (TTPs). Our results indicate that017
while LLMs show moderate effectiveness in018
detecting APTs and identifying malicious code,019
they perform well in recognizing ATT&CK020
techniques, when supplemented with domain-021
specific knowledge from the ATT&CK frame-022
work.023

1 Introduction024

Advanced Persistent Threat (APT) attacks repre-025

sent a sophisticated class of cyber attacks character-026

ized by stealth, persistence, and long-term engage-027

ment with targeted systems (Zhang et al., 2024b).028

These attacks typically unfold in multiple stages:029

Initial Compromise, where the attacker gains ac-030

cess; Persistence, established through backdoors or031

remote access tools; Lateral Movement, enabling032

the attacker to navigate within the network; and Ex-033

filtration, where sensitive data is extracted (Wang034

et al., 2024). Unlike conventional attacks, APTs are035

designed for long-term exploitation, making timely036

and effective detection critical to minimizing their037

impact and preventing extended damage.038

Conventional approaches for APT detection039

leveraging machine learning (ML) (e.g., (Han040

et al., 2020; Dong et al., 2023)) and deep learning041

(DL) models (e.g., (Du et al., 2017; Jia et al., 2024;042

Li et al., 2023a)), typically rely on large amounts of 043

labeled or unlabeled training data. Their decision- 044

making processes are explained either through in- 045

ternal mechanisms (Čík et al., 2021) or post hoc 046

explainability techniques (Scott et al., 2017). These 047

explanations often lack human-readable context, re- 048

quiring manual interpretation to extract meaningful 049

insights from highlighted features. 050

Large Language Models (LLMs) have shown 051

potential in security tasks such as vulnerability as- 052

sessment and patching (Liu et al., 2024; Nong et al., 053

2024), malware detection (Li et al., 2023b; Qian 054

et al., 2025), and code de-obfuscation (Patsakis 055

et al., 2024). However, the use of LLMs for APT 056

detection is limited. Recent approaches such as 057

SHIELD (Gandhi et al., 2025) and APT-LLM (Ben- 058

abderrahmane et al., 2025) integrate LLMs with tra- 059

ditional methods for system log analysis to detect 060

APT attacks. However, abstracting low-level execu- 061

tion details and transforming them into provenance 062

graph representations in these log-based methods 063

can lead to information loss. Although LLMs were 064

utilized to generate natural language explanations 065

in log-based detection, these explanations primar- 066

ily reflect system-event interactions (e.g. a process 067

writing to a file), which may not fully capture the 068

attacker’s intent. 069

To provide security analysts with deeper and 070

more actionable insights into APT attacks and 071

techniques, we investigate the use of LLMs for 072

APT detection from a code analysis perspective. 073

Code-level analysis preserves fine-grained execu- 074

tion details (e.g., parameters, flags, and execu- 075

tion contexts) that are often lost in high-level sys- 076

tem logs. Traditional code-level analysis relies 077

on static analysis, dynamic analysis, and machine 078

learning applied to suspicious source code, bina- 079

ries, or scripts (Salim et al., 2023; Chakkaravarthy 080

et al., 2018; Fang et al., 2021). However, these 081

approaches typically analyze individual samples 082

without considering the temporal and contextual re- 083

lationships present in multi-stage APT campaigns. 084
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Other research on code-level analysis has focused085

on detecting malicious activities using rule-based086

approaches (Splunk, 2023, 2024) or by mapping087

these activities to MITRE ATT&CK techniques088

through similarity measures (Okuma et al., 2023).089

However, none of them explored the use of LLMs090

for detecting and explaining APT attacks.091

Our work aims to address the following research092

questions: RQ1: Given a sequence of code snip-093

pets containing both benign and APT-related mali-094

cious content, can an LLM identify the presence of095

APT attack activities within the sequence? RQ2:096

If an APT attack is detected in a sequence, can the097

LLM accurately pinpoint the specific code snippets098

responsible for the attack? Accurate identification099

of malicious snippets can help reduce the workload100

for security analysts by narrowing their focus to101

critical code. RQ3: For each identified malicious102

snippet, can the LLM accurately map it to the corre-103

sponding MITRE ATT&CK technique (referred to104

as “TTP mapping”)? RQ4: How does the incorpo-105

ration of ATT&CK technique descriptions as exter-106

nal domain knowledge, along with various prompt107

engineering strategies, affect the performance of108

the LLM? To this end, we propose LLM-assisted109

APT Detection and Explanation (LADE), a novel110

framework for detecting APT attacks through code111

analysis. LADE employs a layered analysis ap-112

proach that decomposes the code analysis task into113

three subtasks: detecting APT activities, localiz-114

ing relevant code snippets, and mapping them to115

ATT&CK techniques. Each subtask is handled116

by a dedicated LLM, utilizing prompting strate-117

gies such as zero-shot, rubric-based, and chain-118

of-thought prompting. The responses are guided119

by APT-specific prompts, evaluation rubrics, and120

domain-specific knowledge that includes descrip-121

tions of ATT&CK techniques.122

Due to the absence of standard APT benchmark123

datasets, we created our own datasets for evalua-124

tion. Our APT dataset contains PowerShell code125

snippets simulating APT attacks collected from126

Caldera (Corporation, a), an open-source frame-127

work developed by MITRE based on the ATT&CK128

framework (Corporation, b). Benign PowerShell129

code snippets were obtained from several public130

repositories (May, 2023; Fleschutz, 2023; Hub,131

2024). The datasets used in this paper is avail-132

able at 1. With this dataset, we have assessed the133

impact of domain knowledge and prompt engineer-134

ing strategies on LLM performance and evaluated135

LLM-generated explanations for TTP mappings us-136

1https://anonymous.4open.science/r/LADE-dataset

ing both standard metrics (ROUGE, BERTScore) 137

and the “LLM-as-a-Judge” framework. Our eval- 138

uation results show that while LLMs demonstrate 139

moderate performance in APT detection and ma- 140

licious code identification, they perform well in 141

TTP mapping, when supplemented with domain- 142

specific knowledge. 143

Our contributions are summarized as follows: 144

• To the best of our knowledge, this is the first 145

study to explore the use of LLMs for both 146

APT detection and TTP mapping from a code 147

analysis perspective. 148

• We construct datasets for APT detection us- 149

ing open-source resources, including MITRE 150

Caldera and public PowerShell repositories. 151

• Our evaluation results show that LLMs show 152

moderate effectiveness in APT detection and 153

malicious code identification, but achieve 154

strong performance in TTP mapping when 155

supplemented with domain knowledge. 156

2 Background 157

This section provides an overview of MITRE 158

ATT&CK framework and Rubric-based prompting. 159

160MITRE ATT&CK: MITRE ATT&CK (Corpo- 161

ration, b) is an open-source knowledge base of 162

adversarial behavior based on real-world threats 163

and threat actors. It organizes behavior into a hi- 164

erarchy of Tactics, Techniques, and Procedures 165

(TTPs): Tactics represent adversary goals, Tech- 166

niques describe how those goals are achieved, and 167

Procedures are specific implementations. Figure 1 168

shows examples of MITRE ATT&CK technique 169

description. Sub-technique “T1136.001 (Local Ac- 170

count)” (Corporation, d) is a variant of technique 171

“T1136 (Create Account)” (Corporation, c), describ- 172

ing how an adversary creates a local account to gain 173

persistence access. Throughout this paper, we use 174

the term “technique” to refer to both techniques 175

and sub-techniques unless otherwise noted. 176

APT code executed on the host machine can be 177

chronologically logged using system monitoring 178

tools (e.g., Sysmon or CrowdStrike Falcon (Mi- 179

crosoft, 2025; Elastic, 2025)) and host-based log- 180

ging (e.g., PowerShell script block logging (Mi- 181

crosoft, 2024)). 182

Rubric Based Prompt Engineering: Providing 183

rubrics to LLMs is a prompt engineering strategy 184

predominantly used in the education field for tasks 185

such as automated grading (Yancey et al., 2023; 186

Tian et al., 2024). A rubric is generally defined as 187

a set of criteria for assessment, accompanied by 188

scoring guidelines, with scores either numeric or 189
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Figure 1: ATT&CK Technique Description Examples

categorical. Providing rubrics to LLMs is suited for190

tasks where a correct answer (ground-truth) exists191

and can be assessed according to a hierarchy of192

correctness or relevance. Scoring guidelines can193

range from general measures, such as evaluating194

the semantic relevance between an input and its195

ground truth, to more domain-specific analyses,196

such as assessing how well an input aligns with cri-197

teria based on domain-specific knowledge. Rubric-198

based prompting is commonly used in “LLM-as-a-199

Judge” approaches (Li et al., 2024).200

3 Overview of LADE201

In APT attacks, once a target host is compromised,202

attackers issue malicious commands and scripts203

(APT code) from a Command and Control (C2)204

server. This code is often transmitted using eva-205

sion techniques, such as encryption or fragmen-206

tation, to avoid detection by network monitoring207

systems. Upon reaching the target, it is decrypted,208

reassembled, and executed through command-line209

interfaces like PowerShell (Sidhardhan et al., 2023).210

The executed code can be captured by host-based211

logging tools, such as PowerShell Script Block212

Logging (Microsoft, 2024). In this work, we as-213

sume that these logging mechanisms are neither214

tampered with nor disabled by attackers.215

LADE leverages LLMs to perform APT detec-216

tion, TTP mapping, and explanation by analyzing217

executed code snippets recorded on the host ma-218

chine. Figure 2 illustrates the evaluation pipeline219

of LADE. LADE uses a layered analysis approach220

that decomposes the task into a sequence of man-221

ageable subtasks to enable structured interaction222

with the LLM. Given a sequence of code snippets,223

the LLM is first prompted to assess whether the224

input exhibits behavior indicating an APT attack.225

Upon detection of an attack, the model is tasked226

with localizing the specific code snippets respon-227

sible for the attack. Each identified snippet is sub- 228

sequently mapped to the top 10 relevant MITRE 229

ATT&CK techniques (referred to as “tagging”), 230

along with a tagging summary that explains each 231

assigned technique. We then evaluate the tagging 232

summaries using both quantitative metrics (e.g., 233

ROUGE) and the LLM-as-a-Judge approach. 234

4 Evaluation Methodology 235

This section describes our evaluation framework. 236

4.1 APT Attack Detection 237

APT attacks typically follow a step-by-step pro- 238

gression toward a malicious goal, with both direct 239

dependencies (e.g., data collection followed by ex- 240

filtration) and implicit relationships (e.g., separate 241

reconnaissance actions). While some steps individ- 242

ually indicate malicious intent, others may appear 243

benign in isolation but collectively reveal malicious 244

intent (e.g., repeated discovery commands used to 245

map the target environment). To address this, we 246

prompt LLM to analyze sequences of code snippet 247

for both independent and interdependent behaviors 248

indicating adversary operations. We use a zero- 249

shot prompt-engineering approach to provide in- 250

structions without examples. Zero-shot was chosen 251

due to its simplicity and the difficulty of curating 252

high-quality, labeled code sequences for few-shot 253

prompting. In addition, LLM is prompted to gen- 254

erate natural language explanations to justify its 255

classifications based on observed behaviors. The 256

full prompt is given in Figure 3. An example expla- 257

nation provided by GPT-4o is given in Figure 6 in 258

the Appendix. 259

4.2 Pinpoint Malicious Snippets 260

If the LLM identifies a sequence of code snippets 261

as containing APT activity, we prompt it to pin- 262

point the specific code snippets involved. We use a 263

rubric-based prompting strategy to guide the LLM 264

to evaluate each snippet’s role in the malicious 265

sequence. The rubric, shown in Figure 7 in the 266

Appendix, defines four levels of malicious intent 267

based on APT domain expertise. The highest level 268

(4) indicates clear malicious intent or direct ties 269

to coordinated malicious activity, while levels 3 270

to 1 represent decreasing suspicion, from likely 271

indirect involvement (Level 3), to possibly context- 272

dependent connections (Level 2), to benign (Level 273

1). Code snippets classified as levels 4, 3, and 2 are 274

included in the malicious chain. 275

4.3 TTP Mapping 276

As a single snippet may exhibit behaviors associ- 277

ated with multiple MITRE ATT&CK techniques, 278
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Figure 2: Architecture of LADE.

Analyze the code sample, which consists of a sequence
of code snippets. Your primary objective is to determine
whether the code sample contains any adversary operation.

• If the code sample contains snippets that individually
or in tandem execute an adversarial objective, then
classify it as containing an adversary operation.

• If the code sample consists of benign code snippets
without any signs of adversarial behavior, then clas-
sify it as not containing an adversary operation.

Provide an explanation for your classification, referencing
specific behaviors or patterns observed in the code sample.
Code Sample: {code-sample}

Figure 3: Prompt for APT attack detection.

we prompt the LLM to map each identified snip-279

pet to the top 10 relevant techniques (refered to as280

“TTP mapping”). While LLMs demonstrate its pos-281

session of some internal knowledge of ATT&CK282

techniques, it is prone to hallucinations and may283

rely on outdated information (Welz and Lanquillon,284

2024; Corporation, e). To mitigate this, we supply285

the LLM with the up-to-date ATT&CK technique286

descriptions as external domain knowledge.287

We also leverage LLM’s code summarization288

capability to generate natural language behavior289

descriptions that align with ATT&CK technique290

descriptions. This process consists three steps: (1)291

code analysis, (2) behavior description generation,292

and (3) refinement to match official descriptions.293

We adopt a Chain-of-Thought (CoT) prompting294

strategy (Wei et al., 2022) to decompose the task295

into intermediate steps that mirror the analytical296

process of a security expert, as shown in Figure 4.297

Figure 8 in the Appendix shows a behavior descrip-298

tion generated from a code snippet using LLM.299

To tag ATT&CK techniques, we use a struc-300

tured prompt-template shown in Figure 5, which301

applies to both behavior descriptions and code snip-302

pets. To ensure a systematic evaluation of semantic303

alignment, we apply a five-level rubric. The high-304

est level (5) denotes excellent semantic alignment305

between the technique and behavior description,306

while lower scores indicate decreasing alignment.307

Techniques are ranked in descending order based308

on their alignment scores to identify the top 10309

Prompt 1: Given the code snippet and its referenced
code (if available) below, your task is to generate a
behavior description following the 5 steps provided in the
subsequent prompts.
Code Snippet: {code-snippet}
Referenced Code: {referenced-code}
Prompt 2: Identify the core commands of the code snippet
and the referenced code (if provided).
Prompt 3: Examine the inputs and outputs of the core
commands.
Prompt 4: Analyze the actions of the core commands.
Prompt 5: Describe the behavior of the core commands in
natural language.
Prompt 6: Refine the description to highlight key actions,
impacts, and high-level objectives, similar to a MITRE
ATT&CK technique description.

Figure 4: Prompts for behavior description generation.

relevant techniques. If multiple techniques in the 310

top 10 receive the same score, LLM evaluates their 311

relative semantic alignment to finalize the ranking. 312

In addition, for each of the top 10 techniques, a 313

structured tagging summary is generated, which 314

includes an explanation of the tag’s relevance. An 315

example of a generated tagging summary is illus- 316

trated in Figure 9 in the Appendix. 317

4.4 Evaluation of Tagging Summary 318

We evaluate the tagging summary using the follow- 319

ing three sequentially dependent evaluation criteria. 320

321• Criterion 1: “Relevant Excerpt” accurately 322

reflects the content in the “Cited Source.” 323

• Criterion 2: “Relevant Excerpt” is indeed 324

relevant to the “Behavior Description.” 325

• Criterion 3: “Tagging Explanation” reflects 326

both “Behavior Description” and “Relevant 327

Excerpt” in justifying the tag. 328

Criterion 1 assesses the factual alignment be- 329

tween the excerpt and the corresponding MITRE 330

ATT&CK domain knowledge from the cited source. 331

Criteria 2 and 3 evaluate the semantic relevance of 332

the excerpt to the behavior description and the co- 333

herence of the tagging explanation. 334

Tagging summaries are scored on a 1 (low) to 335

5 (high) scale according to the criteria described 336
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TASK INSTRUCTION: Tag the given {code snippet | behavioral description} with the top 10 relevant
ATT&CK techniques. Rank them in descending order of confidence level based on the following rubric. If multiple
techniques share the same confidence level, assess their relative confidence to determine the order.

Rubric:
• Level 1 (Minimal): Minimal semantic alignment between {code snippet and technique | behavioral
description and technique description}, with only general traits and weak supporting evidence.

• Level 2 (Limited): Limited semantic alignment between {code snippet and technique | behavioral
description and technique description}, with some shared elements, but ambiguities weaken the
match.

• Level 3 (Adequate): Adequate semantic alignment between {code snippet and technique | behavioral
description and technique description}, with sufficient evidence, though some discrepancies remain.

• Level 4 (Strong): Strong semantic alignment between {code snippet and technique | behavioral
description and technique description}, with significant evidence and only minor uncertainties.

• Level 5 (Excellent): Excellent semantic alignment between {code snippet and technique | behavioral
description and technique description}, supported by comprehensive and compelling evidence.

Required Output Structure:
• Tagging Explanation: Explanation of the tag’s relevance to {code snippet | behavioral description}.

• Confidence Level: Specify the confidence level for the tag.

• Cited Source: Provide a precise reference to the source supporting the match.

• Relevant Excerpt: Include an excerpt from the cited source that justifies the tag’s relevance.

{Code Snippet with Referenced Code (if available) | Behavioral Description}: [Insert]

Figure 5: Prompt template for MITRE ATT&CK technique tagging.

above. Detailed rubrics for each criterion are pro-337

vided in Figures 12, 13, and 14, respectively. Each338

criterion is evaluated with standard quantitative339

metrics such as ROUGE and BERTScore, and340

with an “LLM-as-a-Judge” approach, in which one341

LLM evaluates outputs generated by another and342

is often paired with rubrics for automated grading343

in educational settings (Yancey et al., 2023; Tian344

et al., 2024).345

5 Experimental Results346

This section presents our dataset and experimental347

results. Our experiments focus on GPT-4o (Achiam348

et al., 2023), which has demonstrated proficiency in349

cybersecurity tasks (Zhang et al., 2024a; Yu et al.,350

2024) and knowledge (Ferrag et al., 2024).351

5.1 Dataset352

Many existing approaches for detecting APT ac-353

tivities rely on proprietary enterprise datasets (Liu354

and Buford, 2023; Vinay and Mangal, 2024). Pub-355

licly available datasets (Greenberg, 1988; Lane and356

Brodley, 1997; Schonlau et al., 2001; Lin et al.,357

2018) primarily consist Unix shell commands in-358

tended for masquerade detection. These datasets359

are largely outdated and often contain truncated360

commands that omit command flag information361

and subshells due to privacy restrictions.362

To overcome these limitations, we construct363

our own dataset for APT detection, which include364

benign and APT-labeled code snippet sequences.365

APT-labeled sequences are generated by converting366

Caldera’s adversary profiles and emulation plans 367

into APT snippets, which are then blended with be- 368

nign snippets. Our dataset contains 33 APT-labeled 369

sequences. Of these, 20 were derived from adver- 370

sary profiles that model specific attack behaviors, 371

with an average of 4 APT and 8 benign snippets. 13 372

were created from emulation plans. Among these 373

13 sequences, 8 represent larger, multi-stage APT 374

attack scenarios with an average of 25 APT and 375

50 benign snippets, while the remaining 5 capture 376

smaller-scale lateral movement behaviors with an 377

average of 6 APT and 12 benign snippets. To eval- 378

uate LLM’s detection performance across differ- 379

ent attack stages, including early, middle, and late 380

phases, we further divide the 8 larger sequences 381

into 20% intervals, resulting in 40 segments for 382

more fine-grained analysis. Preprocessing steps 383

involved removing comments and print commands 384

to avoid inadvertently revealing malicious intent. 385

Code snippets intended for execution on the at- 386

tacker’s machine were excluded, and each sequence 387

was curated to include only snippets meant for exe- 388

cution on the same machine. 389

Benign snippets in APT-labeled sequences were 390

randomly sampled from a pool of 744 code snippets 391

aggregated from the three publicly available reposi- 392

tories containing commonly used commands (May, 393

2023), general-purpose scripts (Fleschutz, 2023), 394

and explicitly labeled benign commands (Hub, 395

2024). APT snippets were inserted at random po- 396

sitions among benign snippets, while preserving 397

5



their sequential dependency. This setup mimics398

a realistic scenario on a victim machine, where399

malicious activities are interleaved with normal400

user behaviors. We maintain a 2:1 ratio of benign401

to APT snippets, reflecting moderate user activity.402

Considering that logging tools such as PowerShell403

Script Block Logging can capture resolved (i.e.,404

expanded) code including external scripts, we rep-405

resent each entry as a pair of “code snippet” and its406

corresponding “resolved code.” Figures 10 and 11407

in the Appendix give examples of resolved code408

and a self-contained code snippet, respectively.409

Our dataset also includes 33 benign-labeled se-410

quences, constructed by randomly sampling from411

the same pool of benign code snippets. Their count412

and size distribution (i.e., number of snippets per413

sequence) are matched to those of the APT-labeled414

sequences to ensure dataset balance. These are415

used to evaluate whether the LLM can distinguish416

between APT-labeled sequences from benign ones.417

5.2 APT Attack Detection418

We evaluated GPT-4o’s ability to distinguish APT-419

labeled sequences from benign ones. GPT-4o cor-420

rectly classified 57 out of 66 sequences, includ-421

ing 29 of 33 APT-labeled and 28 of 33 benign se-422

quences, achieving an accuracy of 86.36% and an423

F1 score of 86.57%. For the 8 larger APT-labeled424

sequences that were divided into 40 segments, GPT-425

4o correctly classified 34 of them (85% accuracy).426

In particular, GPT-4o detected attacks within the427

first 20% of the sequence in 6 out of the 8 cases,428

demonstrating its ability to recognize early-stage429

attack patterns to minimize damages.430

5.3 Pinpointing Malicious Snippets431

For each correctly classified APT-labeled sequence,432

we prompt GPT-4o to identify malicious code snip-433

pets and evaluate its performance using standard434

metrics: precision (proportion of identified snip-435

pets that are malicious) and recall (proportion of436

actual malicious snippets correctly identified). We437

evaluated the performance of GPT-4o using the438

33 full attack sequences and 40 segments obtained439

by dividing 8 multi-stage attacks into 20% inter-440

vals. GPT-4o achieves an average precision of 0.73441

and recall of 0.74 on full attack sequences, which442

means that it accurately identifies 74% of malicious443

snippets with 27% false positives. On the 40 seg-444

ments, precision drops to 0.63 while recall rises to445

0.81. The improved recall suggests better detection446

with smaller input sizes, likely due to reduced in-447

formation load. The decline in precision indicates448

more false positives, likely due to disrupted context449

from segmentation, making it harder to distinguish450

malicious from benign snippets. 451

5.4 TTP Mapping 452

This section evaluates GPT-4o’s TTP mapping per- 453

formance. All 87 distinct APT snippets in the 454

dataset are used, with each mapped to the top 455

10 relevant ATT&CK techniques. Performance 456

is assessed using multiple ranking metrics for a 457

balanced evaluation, with higher scores indicating 458

more accurate mappings. 459

• Mean Reciprocal Rank (MRR): Mean 1
rank 460

of ground-truth technique across snippets (0 461

if not in top 10). Favors higher ranks. 462

• Normalized Discounted Cumulative Gain 463

(NDCG): Mean 1
log2(rank+1) of ground-truth 464

technique across snippets (0 if not in top 10), 465

normalized. Softer penalty for lower ranks. 466

• Hit Rate (HR): Fraction of snippets where 467

ground-truth technique appears in top 10. 468

We evaluate the benefit of incorporating MITRE 469

ATT&CK technique descriptions as an external 470

knowledge base by comparing performance across 471

three settings: (1) no domain knowledge, (2) 472

coarse-grained domain knowledge containing de- 473

scriptions of only the 203 techniques, and (3) full 474

domain knowledge containing descriptions of all 475

203 techniques and 453 sub-techniques. These 476

technique descriptions were provided to GPT-4o 477

using ChatGPT’s file-upload feature. We also com- 478

pare two tagging approaches: (1) Behavior De- 479

scription Tagging, which generates a natural lan- 480

guage behavior description before tagging (i.e., 481

code→behavior description→TTP), and (2) Direct 482

Code Tagging, which tags code snippets directly 483

(i.e., code→TTP). Table 1 presents results across 484

these three settings. The results show that GPT-4o 485

performs best with full domain knowledge across 486

all metrics. An MRR above 0.7 suggests that the 487

ground-truth technique ranks highly, on average 488

within the top two positions. The NDCG metric, 489

which penalizes lower-ranked correct techniques 490

less severely than MRR, also indicates strong per- 491

formance (approximately 0.75). A high Hit Rate 492

(around 0.85 to 0.9) further confirms that GPT-4o 493

ranks the correct technique within the top 10 posi- 494

tions in about 85%-90% of cases. 495

Our results show that domain knowledge im- 496

proves the performance of both tagging methods. 497

For Behavior Description Tagging, coarse-grained 498

knowledge significantly increases tagging accu- 499

racy, and full domain knowledge yields further 500

improvements. In contrast, Direct Code Tagging 501

does not benefit from coarse-grained knowledge, 502

likely due to the lack of implementation details, 503
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Table 1: TTP mapping performance: behavior description vs.
code across three domain-knowledge levels

MRR HR NDCG
Behavior Description Tagging

No Domain Knowledge 0.492 0.666 0.535
Coarse-grained Knowledge 0.696 0.816 0.726
Full Knowledge 0.715 0.908 0.764
Direct Code Tagging

No Domain Knowledge 0.635 0.816 0.680
Coarse-grained Knowledge 0.629 0.851 0.684
Full Knowledge 0.721 0.873 0.758

but improves with full domain knowledge. With-504

out domain knowledge, Behavior Description Tag-505

ging performs worse than Direct Code Tagging,506

suggesting that the generated descriptions, though507

prompted to align with MITRE techniques, may not508

match GPT-4o’s internal knowledge. With coarse-509

grained knowledge, Behavior Description Tagging510

achieves higher MRR and NDCG scores (indicat-511

ing better ranking) but a lower hit rate (fewer top512

10 matches) than code snippet tagging. With full513

domain knowledge, Behavior Description Tagging514

achieves a higher hit rate but slightly lower MRR515

and NDCG. These results suggest that, when do-516

main knowledge is provided, neither tagging ap-517

proach clearly outperforms the other.518

5.4.1 Evaluation of Tagging Summary519

We evaluate the tagging summaries (Figure 9) us-520

ing both LLM-as-a-Judge and quantitative met-521

rics: ROUGE (Lin, 2004) and BERTScore (Zhang*522

et al., 2020). In “LLM-as-a-Judge,” we used GPT-523

4o and Llama-3.1-405B (Grattafiori et al., 2024)524

as judges. GPT-4o’s predecessor, GPT-4, has been525

reported to exhibit high agreement with human526

judgments under task-specific criteria (Muruga-527

doss et al., 2025). However, using the same LLM528

for both generation and judgment is prone to self-529

preference bias (Panickssery et al., 2024). As a530

result, we also use Llama-3.1-405B, the largest531

model in the Llama 3 family in task-specific judg-532

ments (Murugadoss et al., 2025).533

We use ROUGE-1 and BERTScore to evaluate534

similarity between candidate and reference texts.535

ROUGE-1 measures unigram overlap, providing a536

simple word-level metric, while BERTScore uses537

contextual embeddings to assess semantic similar-538

ity, making it more robust to phrasing differences.539

Below, we define candidate and reference text as540

follows for each evaluation criterion:541

• Criterion-1: The excerpt is the candidate and542

the cited source is the reference, assessing543

whether the excerpt appears in the source.544

• Criterion-2: The excerpt is the candidate and545

the behavior description is the reference, as- 546

sessing whether the excerpt captures an de- 547

scribed behavior. 548

• Criterion-3: The tagging explanation is the 549

candidate and the behavior description com- 550

bined with the excerpt is the reference, eval- 551

uating whether the tagging explanation effec- 552

tively summarizes them. 553

For both metrics, we use their precision scores in- 554

stead of recall or F1 measures, as our criteria focus 555

on how well the candidate captures or summarizes 556

the reference content. 557

Table 2 reports average scores for the tagging 558

summaries. For LLM-judged evaluations, we re- 559

port median rubric scores, as the 1–5 scale is or- 560

dinal and better summarized by the median than 561

the mean, which assumes equal intervals between 562

points, a statistically contentious assumption that 563

may lead to misleading conclusions (Jamieson, 564

2004). For ROUGE and BERTScore, which are 565

continuous metrics on a 0–1 scale, we report mean 566

values. In all cases, higher scores reflect greater 567

relevance or validity. 568

Our results show strong agreement between GPT- 569

4o and Llama-3.1-405B assessments. For Criterion 570

1, both LLMs assign a rubric score of Strong (4), 571

indicating close alignment between excerpts and 572

source content. Criterion 2 receives a median score 573

of Sufficient (3), suggesting the excerpts reason- 574

ably capture the described behaviors. Criterion 3 575

achieves the highest score, Excellent (5), reflect- 576

ing that tagging explanations effectively summa- 577

rize both excerpts and behavior descriptions. The 578

rubrics for Criteria 1, 2, and 3 are presented in Fig- 579

ures 12, 13, and 14 in the Appendix, respectively. 580

For Criterion 1, a ROUGE score of 0.81 indi- 581

cates frequent unigram matches between excerpts 582

and source content. The BERTScore of 0.74, the 583

highest among all criteria, also suggests strong se- 584

mantic alignment. These results are consistent 585

with the “Strong (4)” rubric ratings from LLM- 586

as-a-Judge. In contrast, Criterion 2 receives the 587

lowest average scores across all metrics, indicating 588

weaker relevance between excerpts and behavior 589

descriptions. This is expected: Criterion 1 often 590

involves direct excerpts from the source, while Cri- 591

terion 2 relies on explanations that conceptually 592

bridge behavior descriptions (derived from code) 593

and domain knowledge excerpts, which may not 594

align as closely. 595

For Criterion 3, LLM-as-a-Judge assigns the 596

highest rating, but ROUGE (0.67) and BERTScore 597

(0.68) do not fall within their highest ranges. 598

7



Table 2: Tagging summary evaluation.

Evaluation Criteria ROUGE BERT Sc. LLM-as-a-Judge
GPT-4o Llama-405B

Criterion 1: Excerpt Validity 0.81 0.74 4 4
Criterion 2: Excerpt-Behavior Relevance 0.54 0.65 3 3
Criterion 3: Explanation Relevance 0.67 0.68 5 5

ROUGE, which relies on n-gram matching, does599

not account for paraphrasing. As a result, tagging600

explanations that paraphrase behavior descriptions601

and excerpts tend to receive lower ROUGE scores.602

BERTScore, in contrast, rewards tagging expla-603

nations that are semantically similar to behavior604

descriptions and excerpts, indicating closer align-605

ment in the embedding space through token-level606

contextual similarity (Zhang* et al., 2020). When607

explanations convey ideas using more abstract or608

generalized language (e.g., summarizing concepts),609

LLM-as-a-Judge may assign high scores based on610

rubric alignment, whereas BERTScore may assign611

lower scores due to reduced token-level similarity612

in embedding space.613

6 Related Work614

Conventional Approaches for APT Detection:615

Traditional APT detection methods rely on616

signature-based or rule-based techniques using pre-617

defined patterns (Giura and Wang, 2012; Yu et al.,618

2019) or statistical anomaly detection (Mees, 2012;619

Ioannou et al., 2013). These approaches are ap-620

plied across diverse data sources, including net-621

work traffic (Villeneuve and Bennett, 2012; Lu622

et al., 2019), system provenance graphs (Hossain623

et al., 2017; Milajerdi et al., 2019), and code arti-624

facts (Bhatt et al., 2014; Su et al., 2015), but often625

struggle with stealthy or unseen attacks, leading to626

high false-positive or false-negative rates (Krish-627

napriya and Singh, 2024). Recent advancements628

leverage machine learning (ML) to model com-629

plex patterns for improved detection, including630

classical models (e.g., SVMs (Chu et al., 2019),631

Random Forests (Do Xuan, 2021), clustering (Han632

et al., 2020)) and deep learning techniques (e.g.,633

LSTMs (Du et al., 2017), CNNs (Do Xuan and634

Duong, 2022), GNNs (Ren et al., 2023), and635

Bayesian neural networks (Anjum et al., 2022)).636

Although ML-based methods generally outperform637

traditional techniques (AL-Aamri et al., 2023), they638

often require extensive training data and compu-639

tational resources. In addition, while many ML640

models support explainability through tools such641

as SHAP and LIME (Hasan et al., 2023; Mutalib642

et al., 2024), or counterfactual explanations (Welter643

et al., 2023), the resulting explanations, such as fea-644

ture attribution scores, still demand considerable 645

human effort to accurately infer attacker intent. 646

LLM for Cybersecurity: LLMs have been used 647

for various cybersecurity tasks (Zhang et al.), in- 648

cluding software vulnerability detection (Liu et al., 649

2024), program repair (Nong et al., 2024), anomaly 650

detection (Karlsen et al., 2024), secure code gener- 651

ation (Wang et al., 2023), threat intelligence (Hu 652

et al., 2024) and malware detection assisted by stat- 653

ic/code analysis (Fang et al., 2024; Patsakis et al., 654

2024). A few recent works use LLMs for APT de- 655

tection. APT-LLM (Benabderrahmane et al., 2025) 656

encodes process behavior descriptions from sys- 657

tem logs using encoder-only LLMs for anomaly 658

detection. APTSniffer (Xu et al., 2025) leverages 659

retrieval-augmented generation by extracting rele- 660

vant sequences from encrypted traffic to craft few- 661

shot prompts for APT detection. SHIELD (Gandhi 662

et al., 2025) analyzes suspicious nodes in prove- 663

nance graphs derived from system logs and uses 664

chain-of-thought to detect malicious processes and 665

generate attack summaries. However, its explana- 666

tions mainly reflect low-level events (e.g., a pro- 667

cess writing to a file), which may not capture the 668

attacker’s intent. LLMs have also been used for 669

TTP mapping, but prior work has predominantly 670

focused on their application to natural language 671

texts such as threat reports (Rani et al., 2023; Ali 672

and Peng, 2024). CmdCaliper (Huang et al., 2024) 673

uses LLMs to synthesize a command-line similar- 674

ity dataset for training an embedding model, which 675

is evaluated on a limited set of TTPs. To the best 676

of our knowledge, we are the first to use LLMs for 677

APT detection and TTP mapping. 678

7 Conclusion 679

In this paper, we explored the use of large language 680

models (LLMs) for APT detection, TTP mapping, 681

and explanation generation based on executed code 682

snippets collected from host machines. We de- 683

veloped evaluation datasets using open-source re- 684

sources, including MITRE Caldera and publicly 685

available PowerShell snippets. Our experiments 686

show that while LLMs exhibit moderate effective- 687

ness in detecting APT activity and identifying ma- 688

licious code, they perform well in TTP mapping 689

when supplemented with domain knowledge. 690
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8 Limitations691

Our dataset simulates a moderately active user envi-692

ronment, with a 2 : 1 ratio of benign user code snip-693

pets to APT snippets (Section 5.1). In the future,694

we plan to explore high-activity scenarios, where695

benign snippets greatly outnumber APT snippets.696

In such cases, APT activity may be sparser and697

fall outside the LLM’s context window, posing a698

key challenge for detection. In addition, all exper-699

iments in this work are conducted using GPT-4o,700

with the exception of the “LLM-as-a-Judge” evalu-701

ation (Section 5.4.1), which includes both GPT-4o702

and LLaMA-405B. While this study focuses on703

GPT-4o, future research could extend our method-704

ology to other LLMs to assess its generalizability.705
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Appendix 1108

.1 Implementation and Dataset Details 1109

This section provides additional details on the im- 1110

plementation and dataset used in the experiments 1111

described in Section 5. 1112

.1.1 Implementation Details 1113

For the experiments in Sections 5.2, 5.3, and 5.4, 1114

we used the pre-trained GPT-4o model solely for 1115
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inference without fine-tuning. The model’s archi-1116

tecture details, including the number of parame-1117

ters and hyperparameter configurations, are propri-1118

etary to OpenAI. In Section 5.4.1, we used GPT-1119

4o, LLaMA-3.1-405B, ROUGE, and BERTScore1120

together for evaluation. Both LLMs were used1121

exclusively for inference. LLaMA-3.1-405B, de-1122

veloped by Meta AI, is open-source and contains1123

approximately 405 billion parameters, supporting1124

transparency and reproducibility. ROUGE was1125

computed using Google’s rouge-score library (Re-1126

search, 2020) with the ROUGE-1 metric and1127

default settings. As a symbolic n-gram over-1128

lap metric, it does not involve learned parame-1129

ters. BERTScore was calculated using the bert-1130

score library (Zhang et al., 2019) with the rec-1131

ommended “microsoft/deberta-xlarge-mnli” model1132

(approximately 750 million parameters (Microsoft,1133

2021)), which the authors specify as having the best1134

correlation with human evaluation (Zhang et al.,1135

2019). All other settings were kept at their defaults.1136

ROUGE and BERTScore were run locally on a ma-1137

chine with a 2.8 to 3.35 GHz AMD EPYC 7402P1138

CPU and an NVIDIA Tesla T4 GPU with 15 GB of1139

memory. CUDA was enabled. No hyperparameter1140

search was conducted. All tools were used with1141

their default configurations in an inference-only1142

setup. All software and models were used in accor-1143

dance with their respective licenses and intended1144

purposes. This includes OpenAI’s Terms of Use1145

for GPT-4o (OpenAI, 2024), Meta’s open-source li-1146

cense for LLaMA-3.1-405B (Meta Platforms, Inc.,1147

2024), and the Apache 2.0 (Google Research, 2020)1148

and MIT (Tianyi Zhang, 2020) licenses for ROUGE1149

and BERTScore, respectively, which permit use for1150

scientific and research purposes. All reported re-1151

sults are based on single runs.1152

.1.2 Dataset Details1153

As specified in Section 5.1, our dataset is con-1154

structed using publicly available, open-source re-1155

sources and repositories. In particular, we extracted1156

code snippets from the MITRE Caldera frame-1157

work, which is distributed under the permissive1158

Apache 2.0 License (MITRE Corporation, 2024)1159

and is explicitly intended for research and academic1160

purposes. Additionally, benign PowerShell code1161

snippets were collected from open-source reposi-1162

tories released under permissive licenses, includ-1163

ing CC0 1.0 (Fleschutz, 2024) and the MIT Li-1164

cense (ChooseALicense Contributors, 2024). One1165

such repository does not explicitly specify a li-1166

cense (Unknown, 2024) but is publicly accessible1167

and was used in accordance with standard academic1168

practices. While the dataset includes code snippets 1169

that could potentially be used for malicious pur- 1170

poses, they are sourced directly from the Caldera 1171

repository (Corporation, a) and do not introduce 1172

any new or unpublished malicious content. These 1173

examples are sanitized using metadata placehold- 1174

ers (e.g., {IP-address}) and contain no personally 1175

identifiable information. For evaluation purposes, 1176

the placeholders are replaced with arbitrary but real- 1177

istic values generated using GPT-4o, ensuring both 1178

semantic and contextual coherence. Our dataset has 1179

been carefully curated for academic and research 1180

use. Upon publication of this work, we intend to 1181

release it under the MIT License. 1182

.2 AI Assistance 1183

We used ChatGPT to lightly polish the writing in 1184

some sections of the paper. This included minor 1185

edits for clarity, grammar, and phrasing, without 1186

affecting the technical content or analysis. 1187

“The code snippets exhibit several concerning
behaviors that suggest the execution of an ad-
versarial operation. The use of cmd.exe with
paexec.exe indicates an attempt to execute a
command on a remote machine, which is a com-
mon tactic in lateral movement during cyber
intrusions.
The inclusion of credentials (-u hospitality
kmitnick -p c3aa78cd0827b8e8) further so-
lidifies this as a potential malicious operation,
as it implies unauthorized access attempts. Ad-
ditionally, the robocopy command is used to
replace a system file (srrstr.dll), which is
indicative of attempts to compromise system
integrity.
The overall sequence of copying files from sen-
sitive directories and executing commands re-
motely aligns with known malicious methods,
suggesting a coordinated effort to exfiltrate
data or establish persistence.”

Figure 6: GPT-generated explanation of detected APT
activity
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Level Description

4 (Clearly) The code snippet clearly exhibit
malicious intent or is part of coor-
dinated malicious activity through
direct associations. For example,
a snippet utilizing credential dump-
ing tools commonly associated with
cyberattacks, or a snippet that com-
presses sensitive files into an archive
followed by another snippet that ex-
filtrates the archive to an external lo-
cation is in this category.

3 (Likely) The code snippet is likely part of
the malicious chain. While not ex-
plicitly malicious on its own, its
involvement in the attack can be
inferred through indirect links to
other suspicious snippets. For ex-
ample, a snippet that modifies fire-
wall rules to permit remote connec-
tions may not appear directly ma-
licious, but if a subsequent snippet
establishes an unauthorized remote
connection, it indirectly contributes
to the attack.

2 (Possibly) The code snippet performs ac-
tions common in legitimate con-
texts, but could have a plausi-
ble connection to the malicious
chain. This level captures support-
ing actions in APT attacks that,
while appearing benign on their
own, contribute to a broader ma-
licious objective. For example, a
commonly used discovery command
(e.g., nmap) that maps an environ-
ment could potentially contribute to
the malicious chain.

1 (Unlikely) The code snippet is benign, with no
dual-use potential and no plausible
connection to the malicious chain.
Its benign nature is further supported
by the lack of any association with
suspicious snippets.

Figure 7: Pinpoint Malicious Snippets - APT Domain-
Expertise Informed Rubric

Code Snippet

$env:APPDATA;
$files = ChildItem -Path $env:USERPROFILE \

-Include "*.doc", "*.docx", "*.xls", "*.
xlsx", "*.ppt", "*.pptx", "*.pps", "*.
wps", "*.wpd", "*.odt", "*.lwp", "*.
jtd", "*.pdf", "*.zip", "*.rar", "*.
docx", "*.url", "*.xlsx", "*.pptx", "*.
ppc", "*.pst", "*.ost", "*.psw", "*
pass*", "*login*", "*admin*", "*sif*",
"*sifer*", "*.vpn", "*.jpg", "*.txt",
"*.lnk" \

-Recurse \
-ErrorAction SilentlyContinue |
Select -ExpandProperty FullName;

Compress-Archive -LiteralPath $files \
-CompressionLevel Optimal \
-DestinationPath $env:APPDATA\Draft.Zip \
-Force

Behavior Description

This PowerShell script systematically searches a user’s
home directory and its subdirectories for a variety
of files, including documents, archives, email data,
images, and text files, while also specifically targeting
filenames associated with credentials, administrative
access, and VPN configurations. Once identified, the
files are collected and compressed into a single ZIP
archive, Draft.Zip, which is stored in the AppData
directory, a hidden system folder often overlooked by
users. By suppressing errors and recursively scanning
directories, the script ensures it gathers as many files as
possible without interruption, even if certain locations
are restricted.

The script does not initiate exfiltration but effec-
tively stages sensitive data in a single compressed
archive, making it easy to transfer through subsequent
actions. Storing the archive in the AppData folder
minimizes visibility and reduces the likelihood of
immediate detection. The capability to systematically
locate, collect, and consolidate files into an archive
suggests an intent to facilitate data theft, unauthorized
access, or operational persistence. While the script does
not explicitly exhibit destructive behavior, its ability to
aggregate potentially sensitive information—especially
files containing credentials or login details—poses a
significant risk to confidentiality and security.

Figure 8: GPT-generated behavior description of a code
snippet.

14



Figure 9: Tagging Summary

Code-Snippet:
./post.ps1; email;

Resolved Code:
function email { Send-Mail ... };

Figure 10: Example where dependencies from external
scripts or functions are resolved at execution time.

Code-Snippet:
schtasks /create /sc "DAILY" /tn "daily

task" /tr "C:" /ru "john doe"

Resolved Code:
N/A

Figure 11: Example where the executed code is self-
contained (no external dependencies).

Rating Description

5 (Excellent) The ‘Relevant Excerpt” is quoted
verbatim and appears exactly in the
“Cited Source,” without any alter-
ations or discrepancies.

4 (Strong) The ‘Relevant Excerpt” is para-
phrased but accurately reflects sub-
set(s) of the “Cited Source,” without
adding or omitting information that
would alter the meaning or intent.

3 (Satisfactory) The ‘Relevant Excerpt” is para-
phrased and largely reflects subset(s)
of the “Cited Source,” but with some
minor differences or omissions that
slightly alter the meaning or intent.

2 (Weak) The ‘Relevant Excerpt” is para-
phrased and partially reflects sub-
set(s) of the “Cited Source,” but
with significant differences, omis-
sions, or misrepresentations that no-
ticeably alter the meaning or intent.

1 (None) The “Relevant Excerpt” fails to
reflect any subset of the “Cited
Source,” being fabricated, missing,
or entirely misaligned.

Figure 12: Criterion 1 (Excerpt Validity)
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Rating Description

5 (Excellent) The “Relevant Excerpt” directly and
accurately addresses the core behav-
ior outlined in the “behavior descrip-
tion” with no ambiguity or gaps.

4 (Strong) The “Relevant Excerpt” effectively
addresses the core behavior outlined
in the “behavior description,” ac-
commodating minor variations that
do not significantly affect relevance
or clarity.

3 (Satisfactory) The “Relevant Excerpt” adequately
addresses the core behavior out-
lined in the “behavior description,”
though some aspects are unclear,
missing, or loosely connected.

2 (Weak) The “Relevant Excerpt” only par-
tially addresses the core behavior
outlined in the “behavior descrip-
tion,” offering minimal relevance or
clarity.

1 (None) The “Relevant Excerpt” fails to ad-
dress or relate to the core behavior
outlined in the “behavior descrip-
tion” in any meaningful way.

Figure 13: Criterion 2 (Excerpt-Behavior Alignment)

Rating Description

5 (Excellent) The “Tagging Explanation” is di-
rectly relevant and effectively ad-
dresses both the “Behavior Descrip-
tion” and the “Relevant Excerpt,” of-
fering a complete and well-justified
rationale for the tag.

4 (Strong) The “Tagging Explanation” is sub-
stantially relevant and meaningfully
addresses both the “Behavior De-
scription” and the “Relevant Ex-
cerpt,” though it may have minor
omissions or slightly less depth than
a comprehensive justification.

3 (Satisfactory) The “Tagging Explanation” is gen-
erally relevant and adequately ad-
dresses both the “Behavior Descrip-
tion” and the “Relevant Excerpt,”
but it may not explore key aspects
in depth or rely on less specific evi-
dence.

2 (Weak) The “Tagging Explanation” is
loosely relevant and only weakly
addresses either the “Behavior
Description” or the “Relevant
Excerpt,” providing an unclear or
insufficient rationale.

1 (None) The “Tagging Explanation” is irrele-
vant and does not address either the
“Behavior Description” or the “Rel-
evant Excerpt.”

Figure 14: Criterion 3 (Explanation Relevance)
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