LLM-Assisted Advanced Persistent Threat Detection and Technique
Explanation (LADE)

Anonymous ACL submission

Abstract

Advanced Persistent Threat (APT) attacks are
sophisticated cyberattacks characterized by
stealth, persistence, and long-term engagement
with targeted systems. Traditional detection
methods using machine learning (ML) and
deep learning (DL) often rely on internal mod-
els or post hoc explainability techniques, which
typically lack human-readable context and re-
quire manual interpretation. In this paper,
we investigate the use of large language mod-
els (LLMs) for APT detection through code
analysis. Specifically, we evaluate the ability
of LLMs to (i) detect APT-related behavior
in code snippet sequences, (ii) identify mali-
cious components, and (iii) recognize relevant
MITRE ATT&CK Tactics, Techniques, and
Procedures (TTPs). Our results indicate that
while LLMs show moderate effectiveness in
detecting APTs and identifying malicious code,
they perform well in recognizing ATT&CK
techniques, when supplemented with domain-
specific knowledge from the ATT&CK frame-
work.

1 Introduction

Advanced Persistent Threat (APT) attacks repre-
sent a sophisticated class of cyber attacks character-
ized by stealth, persistence, and long-term engage-
ment with targeted systems (Zhang et al., 2024b).
These attacks typically unfold in multiple stages:
Initial Compromise, where the attacker gains ac-
cess; Persistence, established through backdoors or
remote access tools; Lateral Movement, enabling
the attacker to navigate within the network; and Ex-
filtration, where sensitive data is extracted (Wang
et al., 2024). Unlike conventional attacks, APTs are
designed for long-term exploitation, making timely
and effective detection critical to minimizing their
impact and preventing extended damage.
Conventional approaches for APT detection
leveraging machine learning (ML) (e.g., (Han
et al., 2020; Dong et al., 2023)) and deep learning
(DL) models (e.g., (Duetal.,2017; Jia et al., 2024;

Lietal., 2023a)), typically rely on large amounts of
labeled or unlabeled training data. Their decision-
making processes are explained either through in-
ternal mechanisms (Cﬂ(et al., 2021) or post hoc
explainability techniques (Scott et al., 2017). These
explanations often lack human-readable context, re-
quiring manual interpretation to extract meaningful
insights from highlighted features.

Large Language Models (LLMs) have shown
potential in security tasks such as vulnerability as-
sessment and patching (Liu et al., 2024; Nong et al.,
2024), malware detection (Li et al., 2023b; Qian
et al., 2025), and code de-obfuscation (Patsakis
et al., 2024). However, the use of LLMs for APT
detection is limited. Recent approaches such as
SHIELD (Gandhi et al., 2025) and APT-LLM (Ben-
abderrahmane et al., 2025) integrate LLMs with tra-
ditional methods for system log analysis to detect
APT attacks. However, abstracting low-level execu-
tion details and transforming them into provenance
graph representations in these log-based methods
can lead to information loss. Although LLMs were
utilized to generate natural language explanations
in log-based detection, these explanations primar-
ily reflect system-event interactions (e.g. a process
writing to a file), which may not fully capture the
attacker’s intent.

To provide security analysts with deeper and
more actionable insights into APT attacks and
techniques, we investigate the use of LLMs for
APT detection from a code analysis perspective.
Code-level analysis preserves fine-grained execu-
tion details (e.g., parameters, flags, and execu-
tion contexts) that are often lost in high-level sys-
tem logs. Traditional code-level analysis relies
on static analysis, dynamic analysis, and machine
learning applied to suspicious source code, bina-
ries, or scripts (Salim et al., 2023; Chakkaravarthy
et al., 2018; Fang et al., 2021). However, these
approaches typically analyze individual samples
without considering the temporal and contextual re-
lationships present in multi-stage APT campaigns.

Other research on code-level analysis has focused
on detecting malicious activities using rule-based
approaches (Splunk, 2023, 2024) or by mapping
these activities to MITRE ATT&CK techniques
through similarity measures (Okuma et al., 2023).
However, none of them explored the use of LLMs
for detecting and explaining APT attacks.

Our work aims to address the following research
questions: RQ1: Given a sequence of code snip-
pets containing both benign and APT-related mali-
cious content, can an LLM identify the presence of
APT attack activities within the sequence? RQ2:
If an APT attack is detected in a sequence, can the
LLM accurately pinpoint the specific code snippets
responsible for the attack? Accurate identification
of malicious snippets can help reduce the workload
for security analysts by narrowing their focus to
critical code. RQ3: For each identified malicious
snippet, can the LLM accurately map it to the corre-
sponding MITRE ATT&CK technique (referred to
as “TTP mapping”)? RQ4: How does the incorpo-
ration of ATT&CK technique descriptions as exter-
nal domain knowledge, along with various prompt
engineering strategies, affect the performance of
the LLM? To this end, we propose LLM-assisted
APT Detection and Explanation (LADE), a novel
framework for detecting APT attacks through code
analysis. LADE employs a layered analysis ap-
proach that decomposes the code analysis task into
three subtasks: detecting APT activities, localiz-
ing relevant code snippets, and mapping them to
ATT&CK techniques. Each subtask is handled
by a dedicated LLM, utilizing prompting strate-
gies such as zero-shot, rubric-based, and chain-
of-thought prompting. The responses are guided
by APT-specific prompts, evaluation rubrics, and
domain-specific knowledge that includes descrip-
tions of ATT&CK techniques.

Due to the absence of standard APT benchmark
datasets, we created our own datasets for evalua-
tion. Our APT dataset contains PowerShell code
snippets simulating APT attacks collected from
Caldera (Corporation, a), an open-source frame-
work developed by MITRE based on the ATT&CK
framework (Corporation, b). Benign PowerShell
code snippets were obtained from several public
repositories (May, 2023; Fleschutz, 2023; Hub,
2024). The datasets used in this paper is avail-
able at !. With this dataset, we have assessed the
impact of domain knowledge and prompt engineer-
ing strategies on LLM performance and evaluated
LLM-generated explanations for TTP mappings us-

"https://anonymous.4open.science/r/LADE-dataset

ing both standard metrics (ROUGE, BERTScore)
and the “LLM-as-a-Judge” framework. Our eval-
uation results show that while LLMs demonstrate
moderate performance in APT detection and ma-
licious code identification, they perform well in
TTP mapping, when supplemented with domain-
specific knowledge.

Our contributions are summarized as follows:

* To the best of our knowledge, this is the first
study to explore the use of LLMs for both
APT detection and TTP mapping from a code
analysis perspective.

* We construct datasets for APT detection us-
ing open-source resources, including MITRE
Caldera and public PowerShell repositories.

e Our evaluation results show that LLMs show
moderate effectiveness in APT detection and
malicious code identification, but achieve
strong performance in TTP mapping when
supplemented with domain knowledge.

2 Background

This section provides an overview of MITRE
ATT&CK framework and Rubric-based prompting.

MITRE ATT&CK: MITRE ATT&CK (Corpo-
ration, b) is an open-source knowledge base of
adversarial behavior based on real-world threats
and threat actors. It organizes behavior into a hi-
erarchy of Tactics, Techniques, and Procedures
(TTPs): Tactics represent adversary goals, Tech-
niques describe how those goals are achieved, and
Procedures are specific implementations. Figure 1
shows examples of MITRE ATT&CK technique
description. Sub-technique “T1136.001 (Local Ac-
count)” (Corporation, d) is a variant of technique
“T1136 (Create Account)” (Corporation, c), describ-
ing how an adversary creates a local account to gain
persistence access. Throughout this paper, we use
the term “technique” to refer to both techniques
and sub-techniques unless otherwise noted.

APT code executed on the host machine can be
chronologically logged using system monitoring
tools (e.g., Sysmon or CrowdStrike Falcon (Mi-
crosoft, 2025; Elastic, 2025)) and host-based log-
ging (e.g., PowerShell script block logging (Mi-
crosoft, 2024)).

Rubric Based Prompt Engineering: Providing
rubrics to LLMs is a prompt engineering strategy
predominantly used in the education field for tasks
such as automated grading (Yancey et al., 2023;
Tian et al., 2024). A rubric is generally defined as
a set of criteria for assessment, accompanied by
scoring guidelines, with scores either numeric or

"T1136 : Create Account": Adversaries may create an account to
maintain access to victim systems. With a sufficient level of access,
creating such accounts may be used to establish secondary
credentialed access that does not require persistent remote access
tools to be deployed on the system.

"T1136.001 : Create Account: Local Account": Adversaries may
create a local account to maintain access to victim systems. Local
accounts are those configured by an organization for use by users,
remote support, services, or for administration on a single system
or service.

For example, with a sufficient level of access, the Windows net user
command can be used to create a local account. On macOS systems
the dscl -create command can be used to create a local account.
Local accounts may also be added to network devices, often via
common commands such as username, or to Kubernetes clusters
using the “kubectl” utility.

Figure 1: ATT&CK Technique Description Examples

categorical. Providing rubrics to LLMs is suited for
tasks where a correct answer (ground-truth) exists
and can be assessed according to a hierarchy of
correctness or relevance. Scoring guidelines can
range from general measures, such as evaluating
the semantic relevance between an input and its
ground truth, to more domain-specific analyses,
such as assessing how well an input aligns with cri-
teria based on domain-specific knowledge. Rubric-
based prompting is commonly used in “LLM-as-a-
Judge” approaches (Li et al., 2024).

3 Overview of LADE

In APT attacks, once a target host is compromised,
attackers issue malicious commands and scripts
(APT code) from a Command and Control (C2)
server. This code is often transmitted using eva-
sion techniques, such as encryption or fragmen-
tation, to avoid detection by network monitoring
systems. Upon reaching the target, it is decrypted,
reassembled, and executed through command-line
interfaces like PowerShell (Sidhardhan et al., 2023).
The executed code can be captured by host-based
logging tools, such as PowerShell Script Block
Logging (Microsoft, 2024). In this work, we as-
sume that these logging mechanisms are neither
tampered with nor disabled by attackers.

LADE leverages LLMs to perform APT detec-
tion, TTP mapping, and explanation by analyzing
executed code snippets recorded on the host ma-
chine. Figure 2 illustrates the evaluation pipeline
of LADE. LADE uses a layered analysis approach
that decomposes the task into a sequence of man-
ageable subtasks to enable structured interaction
with the LLM. Given a sequence of code snippets,
the LLM is first prompted to assess whether the
input exhibits behavior indicating an APT attack.
Upon detection of an attack, the model is tasked
with localizing the specific code snippets respon-

sible for the attack. Each identified snippet is sub-
sequently mapped to the top 10 relevant MITRE
ATT&CK techniques (referred to as “tagging”),
along with a tagging summary that explains each
assigned technique. We then evaluate the tagging
summaries using both quantitative metrics (e.g.,
ROUGE) and the LL.M-as-a-Judge approach.

4 Evaluation Methodology

This section describes our evaluation framework.

4.1 APT Attack Detection

APT attacks typically follow a step-by-step pro-
gression toward a malicious goal, with both direct
dependencies (e.g., data collection followed by ex-
filtration) and implicit relationships (e.g., separate
reconnaissance actions). While some steps individ-
ually indicate malicious intent, others may appear
benign in isolation but collectively reveal malicious
intent (e.g., repeated discovery commands used to
map the target environment). To address this, we
prompt LLM to analyze sequences of code snippet
for both independent and interdependent behaviors
indicating adversary operations. We use a zero-
shot prompt-engineering approach to provide in-
structions without examples. Zero-shot was chosen
due to its simplicity and the difficulty of curating
high-quality, labeled code sequences for few-shot
prompting. In addition, LLM is prompted to gen-
erate natural language explanations to justify its
classifications based on observed behaviors. The
full prompt is given in Figure 3. An example expla-
nation provided by GPT-4o is given in Figure 6 in
the Appendix.

4.2 Pinpoint Malicious Snippets

If the LLM identifies a sequence of code snippets
as containing APT activity, we prompt it to pin-
point the specific code snippets involved. We use a
rubric-based prompting strategy to guide the LLM
to evaluate each snippet’s role in the malicious
sequence. The rubric, shown in Figure 7 in the
Appendix, defines four levels of malicious intent
based on APT domain expertise. The highest level
(4) indicates clear malicious intent or direct ties
to coordinated malicious activity, while levels 3
to 1 represent decreasing suspicion, from likely
indirect involvement (Level 3), to possibly context-
dependent connections (Level 2), to benign (Level
1). Code snippets classified as levels 4, 3, and 2 are
included in the malicious chain.

4.3 TTP Mapping

As a single snippet may exhibit behaviors associ-
ated with multiple MITRE ATT&CK techniques,

<>V et et e
) e P

Sequence of Code Snippets APT Attack Detection | Detected [Pinpoint Malicious Snippets
(Binary Classification) Attack (Localization)

Malicious Snippets

with Tagging Summaries

Top-10 ATT&CK Technique Tags (Map Malicious Snippet to Top-10 Relevant ATT&CK Technique Tags)

TTPs of
MITRE ATT&CK Malicious Snippet

TTP Mapping /
¢r>

v
Evaluation of Tagging Summary
= LLM-as-a-Judge ;I Quant. Metrics (ROUGE, BERTScore)

Figure 2: Architecture of LADE.

Analyze the code sample, which consists of a sequence
of code snippets. Your primary objective is to determine
whether the code sample contains any adversary operation.

* If the code sample contains snippets that individually
or in tandem execute an adversarial objective, then
classify it as containing an adversary operation.

* If the code sample consists of benign code snippets
without any signs of adversarial behavior, then clas-
sify it as not containing an adversary operation.

Provide an explanation for your classification, referencing
specific behaviors or patterns observed in the code sample.

Code Sample: {code-sample}

Figure 3: Prompt for APT attack detection.

we prompt the LLM to map each identified snip-
pet to the top 10 relevant techniques (refered to as
“TTP mapping”). While LLMs demonstrate its pos-
session of some internal knowledge of ATT&CK
techniques, it is prone to hallucinations and may
rely on outdated information (Welz and Lanquillon,
2024; Corporation, e). To mitigate this, we supply
the LLM with the up-to-date ATT&CK technique
descriptions as external domain knowledge.

We also leverage LLM’s code summarization
capability to generate natural language behavior
descriptions that align with ATT&CK technique
descriptions. This process consists three steps: (1)
code analysis, (2) behavior description generation,
and (3) refinement to match official descriptions.
We adopt a Chain-of-Thought (CoT) prompting
strategy (Wei et al., 2022) to decompose the task
into intermediate steps that mirror the analytical
process of a security expert, as shown in Figure 4.
Figure 8 in the Appendix shows a behavior descrip-
tion generated from a code snippet using LLM.

To tag ATT&CK techniques, we use a struc-
tured prompt-template shown in Figure 5, which
applies to both behavior descriptions and code snip-
pets. To ensure a systematic evaluation of semantic
alignment, we apply a five-level rubric. The high-
est level (5) denotes excellent semantic alignment
between the technique and behavior description,
while lower scores indicate decreasing alignment.
Techniques are ranked in descending order based
on their alignment scores to identify the top 10

rPrompt 1: Given the code snippet and its referenced\
code (if available) below, your task is to generate a
behavior description following the 5 steps provided in the
subsequent prompts.

Code Snippet: {code-snippet}

Referenced Code: {referenced-code}

Prompt 2: Identify the core commands of the code snippet
and the referenced code (if provided).

Prompt 3: Examine the inputs and outputs of the core
commands.

Prompt 4: Analyze the actions of the core commands.

Prompt 5: Describe the behavior of the core commands in
natural language.

Prompt 6: Refine the description to highlight key actions,
impacts, and high-level objectives, similar to a MITRE
ATT&CK technique description.

-

J

Figure 4: Prompts for behavior description generation.

relevant techniques. If multiple techniques in the
top 10 receive the same score, LLM evaluates their
relative semantic alignment to finalize the ranking.
In addition, for each of the top 10 techniques, a
structured tagging summary is generated, which
includes an explanation of the tag’s relevance. An
example of a generated tagging summary is illus-
trated in Figure 9 in the Appendix.

4.4 Evaluation of Tagging Summary

We evaluate the tagging summary using the follow-
ing three sequentially dependent evaluation criteria.

* Criterion 1: “Relevant Excerpt” accurately
reflects the content in the “Cited Source.”

* Criterion 2: “Relevant Excerpt” is indeed
relevant to the “Behavior Description.”

* Criterion 3: “Tagging Explanation” reflects
both “Behavior Description” and “Relevant
Excerpt” in justifying the tag.

Criterion 1 assesses the factual alignment be-
tween the excerpt and the corresponding MITRE
ATT&CK domain knowledge from the cited source.
Criteria 2 and 3 evaluate the semantic relevance of
the excerpt to the behavior description and the co-
herence of the tagging explanation.

Tagging summaries are scored on a 1 (low) to

5 (high) scale according to the criteria described

(R
TASK INSTRUCTION: Tag the given {code snippet | behavioral description} with the top 10 relevant
ATT&CK techniques. Rank them in descending order of confidence level based on the following rubric. If multiple

techniques share the same confidence level, assess their relative confidence to determine the order.

Rubric:

* Level 1 (Minimal): Minimal semantic alignment between {code snippet and technique | behavioral
description and technique description}, with only general traits and weak supporting evidence.

¢ Level 2 (Limited): Limited semantic alignment between {code snippet and technique | behavioral
description and technique description}, with some shared elements, but ambiguities weaken the
match.

Level 3 (Adequate): Adequate semantic alignment between {code snippet and technique | behavioral
description and technique description}, with sufficient evidence, though some discrepancies remain.

Level 4 (Strong): Strong semantic alignment between {code snippet and technique | behavioral
description and technique description}, with significant evidence and only minor uncertainties.

¢ Level 5 (Excellent): Excellent semantic alignment between {code snippet and technique | behavioral
description and technique description}, supported by comprehensive and compelling evidence.

Required Output Structure:
» Tagging Explanation: Explanation of the tag’s relevance to {code snippet | behavioral description}.

¢ Confidence Level: Specify the confidence level for the tag.

-

« Cited Source: Provide a precise reference to the source supporting the match.

* Relevant Excerpt: Include an excerpt from the cited source that justifies the tag’s relevance.

{Code Snippet with Referenced Code (if available) | Behavioral Description}: [Insert]

Figure 5: Prompt template for MITRE ATT&CK technique tagging.

above. Detailed rubrics for each criterion are pro-
vided in Figures 12, 13, and 14, respectively. Each
criterion is evaluated with standard quantitative
metrics such as ROUGE and BERTScore, and
with an “LLM-as-a-Judge” approach, in which one
LLM evaluates outputs generated by another and
is often paired with rubrics for automated grading
in educational settings (Yancey et al., 2023; Tian
et al., 2024).

S Experimental Results

This section presents our dataset and experimental
results. Our experiments focus on GPT-40 (Achiam
etal., 2023), which has demonstrated proficiency in
cybersecurity tasks (Zhang et al., 2024a; Yu et al.,
2024) and knowledge (Ferrag et al., 2024).

5.1 Dataset

Many existing approaches for detecting APT ac-
tivities rely on proprietary enterprise datasets (Liu
and Buford, 2023; Vinay and Mangal, 2024). Pub-
licly available datasets (Greenberg, 1988; Lane and
Brodley, 1997; Schonlau et al., 2001; Lin et al.,
2018) primarily consist Unix shell commands in-
tended for masquerade detection. These datasets
are largely outdated and often contain truncated
commands that omit command flag information
and subshells due to privacy restrictions.

To overcome these limitations, we construct
our own dataset for APT detection, which include
benign and APT-labeled code snippet sequences.
APT-labeled sequences are generated by converting

Caldera’s adversary profiles and emulation plans
into APT snippets, which are then blended with be-
nign snippets. Our dataset contains 33 APT-labeled
sequences. Of these, 20 were derived from adver-
sary profiles that model specific attack behaviors,
with an average of 4 APT and 8 benign snippets. 13
were created from emulation plans. Among these
13 sequences, 8 represent larger, multi-stage APT
attack scenarios with an average of 25 APT and
50 benign snippets, while the remaining 5 capture
smaller-scale lateral movement behaviors with an
average of 6 APT and 12 benign snippets. To eval-
uate LL.M’s detection performance across differ-
ent attack stages, including early, middle, and late
phases, we further divide the 8 larger sequences
into 20% intervals, resulting in 40 segments for
more fine-grained analysis. Preprocessing steps
involved removing comments and print commands
to avoid inadvertently revealing malicious intent.
Code snippets intended for execution on the at-
tacker’s machine were excluded, and each sequence
was curated to include only snippets meant for exe-
cution on the same machine.

Benign snippets in APT-labeled sequences were
randomly sampled from a pool of 744 code snippets
aggregated from the three publicly available reposi-
tories containing commonly used commands (May,
2023), general-purpose scripts (Fleschutz, 2023),
and explicitly labeled benign commands (Hub,
2024). APT snippets were inserted at random po-
sitions among benign snippets, while preserving

their sequential dependency. This setup mimics
a realistic scenario on a victim machine, where
malicious activities are interleaved with normal
user behaviors. We maintain a 2:1 ratio of benign
to APT snippets, reflecting moderate user activity.
Considering that logging tools such as PowerShell
Script Block Logging can capture resolved (i.e.,
expanded) code including external scripts, we rep-
resent each entry as a pair of “code snippet” and its
corresponding “resolved code.” Figures 10 and 11
in the Appendix give examples of resolved code
and a self-contained code snippet, respectively.
Our dataset also includes 33 benign-labeled se-
quences, constructed by randomly sampling from
the same pool of benign code snippets. Their count
and size distribution (i.e., number of snippets per
sequence) are matched to those of the APT-labeled
sequences to ensure dataset balance. These are
used to evaluate whether the LLM can distinguish
between APT-labeled sequences from benign ones.

5.2 APT Attack Detection

We evaluated GPT-40’s ability to distinguish APT-
labeled sequences from benign ones. GPT-40 cor-
rectly classified 57 out of 66 sequences, includ-
ing 29 of 33 APT-labeled and 28 of 33 benign se-
quences, achieving an accuracy of 86.36% and an
F1 score of 86.57%. For the 8 larger APT-labeled
sequences that were divided into 40 segments, GPT-
40 correctly classified 34 of them (85% accuracy).
In particular, GPT-40 detected attacks within the
first 20% of the sequence in 6 out of the 8 cases,
demonstrating its ability to recognize early-stage
attack patterns to minimize damages.

5.3 Pinpointing Malicious Snippets

For each correctly classified APT-labeled sequence,
we prompt GPT-4o to identify malicious code snip-
pets and evaluate its performance using standard
metrics: precision (proportion of identified snip-
pets that are malicious) and recall (proportion of
actual malicious snippets correctly identified). We
evaluated the performance of GPT-40 using the
33 full attack sequences and 40 segments obtained
by dividing 8 multi-stage attacks into 20% inter-
vals. GPT-40 achieves an average precision of 0.73
and recall of 0.74 on full attack sequences, which
means that it accurately identifies 74% of malicious
snippets with 27% false positives. On the 40 seg-
ments, precision drops to 0.63 while recall rises to
0.81. The improved recall suggests better detection
with smaller input sizes, likely due to reduced in-
formation load. The decline in precision indicates
more false positives, likely due to disrupted context
from segmentation, making it harder to distinguish

malicious from benign snippets.

5.4 TTP Mapping

This section evaluates GPT-40’s TTP mapping per-
formance. All 87 distinct APT snippets in the
dataset are used, with each mapped to the top
10 relevant ATT&CK techniques. Performance
is assessed using multiple ranking metrics for a
balanced evaluation, with higher scores indicating
more accurate mappings.

* Mean Reciprocal Rank (MRR): Mean ﬁ
of ground-truth technique across snippets (0

if not in top 10). Favors higher ranks.

* Normalized Discounted Cumulative Gain
(NDCG): Mean m of ground-truth
technique across snippets (0 if not in top 10),
normalized. Softer penalty for lower ranks.

» Hit Rate (HR): Fraction of snippets where
ground-truth technique appears in top 10.

We evaluate the benefit of incorporating MITRE
ATT&CK technique descriptions as an external
knowledge base by comparing performance across
three settings: (1) no domain knowledge, (2)
coarse-grained domain knowledge containing de-
scriptions of only the 203 techniques, and (3) full
domain knowledge containing descriptions of all
203 techniques and 453 sub-techniques. These
technique descriptions were provided to GPT-4o0
using ChatGPT’s file-upload feature. We also com-
pare two tagging approaches: (1) Behavior De-
scription Tagging, which generates a natural lan-
guage behavior description before tagging (i.e.,
code—behavior description—TTP), and (2) Direct
Code Tagging, which tags code snippets directly
(i.e., code—TTP). Table 1 presents results across
these three settings. The results show that GPT-40
performs best with full domain knowledge across
all metrics. An MRR above 0.7 suggests that the
ground-truth technique ranks highly, on average
within the top two positions. The NDCG metric,
which penalizes lower-ranked correct techniques
less severely than MRR, also indicates strong per-
formance (approximately 0.75). A high Hit Rate
(around 0.85 to 0.9) further confirms that GPT-40
ranks the correct technique within the top 10 posi-
tions in about 85%-90% of cases.

Our results show that domain knowledge im-
proves the performance of both tagging methods.
For Behavior Description Tagging, coarse-grained
knowledge significantly increases tagging accu-
racy, and full domain knowledge yields further
improvements. In contrast, Direct Code Tagging
does not benefit from coarse-grained knowledge,
likely due to the lack of implementation details,

Table 1: TTP mapping performance: behavior description vs.
code across three domain-knowledge levels

MRR HR NDCG

Behavior Description Tagging

No Domain Knowledge 0492 0.666 0.535
Coarse-grained Knowledge 0.696 0.816 0.726
Full Knowledge 0.715 0908 0.764
Direct Code Tagging

No Domain Knowledge 0.635 0.816 0.680
Coarse-grained Knowledge 0.629 0.851 0.684
Full Knowledge 0.721 0.873 0.758

but improves with full domain knowledge. With-
out domain knowledge, Behavior Description Tag-
ging performs worse than Direct Code Tagging,
suggesting that the generated descriptions, though
prompted to align with MITRE techniques, may not
match GPT-40’s internal knowledge. With coarse-
grained knowledge, Behavior Description Tagging
achieves higher MRR and NDCG scores (indicat-
ing better ranking) but a lower hit rate (fewer top
10 matches) than code snippet tagging. With full
domain knowledge, Behavior Description Tagging
achieves a higher hit rate but slightly lower MRR
and NDCG. These results suggest that, when do-
main knowledge is provided, neither tagging ap-
proach clearly outperforms the other.

5.4.1 Evaluation of Tagging Summary

We evaluate the tagging summaries (Figure 9) us-
ing both LLM-as-a-Judge and quantitative met-
rics: ROUGE (Lin, 2004) and BERTScore (Zhang*
et al., 2020). In “LLM-as-a-Judge,” we used GPT-
40 and Llama-3.1-405B (Grattafiori et al., 2024)
as judges. GPT-40’s predecessor, GPT-4, has been
reported to exhibit high agreement with human
judgments under task-specific criteria (Muruga-
doss et al., 2025). However, using the same LL.M
for both generation and judgment is prone to self-
preference bias (Panickssery et al., 2024). As a
result, we also use Llama-3.1-405B, the largest
model in the Llama 3 family in task-specific judg-
ments (Murugadoss et al., 2025).

We use ROUGE-1 and BERTScore to evaluate
similarity between candidate and reference texts.
ROUGE-1 measures unigram overlap, providing a
simple word-level metric, while BERTScore uses
contextual embeddings to assess semantic similar-
ity, making it more robust to phrasing differences.
Below, we define candidate and reference text as
follows for each evaluation criterion:

¢ Criterion-1: The excerpt is the candidate and
the cited source is the reference, assessing
whether the excerpt appears in the source.

¢ Criterion-2: The excerpt is the candidate and

the behavior description is the reference, as-
sessing whether the excerpt captures an de-
scribed behavior.

* Criterion-3: The tagging explanation is the
candidate and the behavior description com-
bined with the excerpt is the reference, eval-
uating whether the tagging explanation effec-
tively summarizes them.

For both metrics, we use their precision scores in-
stead of recall or F1 measures, as our criteria focus
on how well the candidate captures or summarizes
the reference content.

Table 2 reports average scores for the tagging
summaries. For LLM-judged evaluations, we re-
port median rubric scores, as the 1-5 scale is or-
dinal and better summarized by the median than
the mean, which assumes equal intervals between
points, a statistically contentious assumption that
may lead to misleading conclusions (Jamieson,
2004). For ROUGE and BERTScore, which are
continuous metrics on a 0—1 scale, we report mean
values. In all cases, higher scores reflect greater
relevance or validity.

Our results show strong agreement between GPT-
40 and Llama-3.1-405B assessments. For Criterion
1, both LLMs assign a rubric score of Strong (4),
indicating close alignment between excerpts and
source content. Criterion 2 receives a median score
of Sufficient (3), suggesting the excerpts reason-
ably capture the described behaviors. Criterion 3
achieves the highest score, Excellent (5), reflect-
ing that tagging explanations effectively summa-
rize both excerpts and behavior descriptions. The
rubrics for Criteria 1, 2, and 3 are presented in Fig-
ures 12, 13, and 14 in the Appendix, respectively.

For Criterion 1, a ROUGE score of 0.81 indi-
cates frequent unigram matches between excerpts
and source content. The BERTScore of 0.74, the
highest among all criteria, also suggests strong se-
mantic alignment. These results are consistent
with the “Strong (4)” rubric ratings from LLM-
as-a-Judge. In contrast, Criterion 2 receives the
lowest average scores across all metrics, indicating
weaker relevance between excerpts and behavior
descriptions. This is expected: Criterion 1 often
involves direct excerpts from the source, while Cri-
terion 2 relies on explanations that conceptually
bridge behavior descriptions (derived from code)
and domain knowledge excerpts, which may not
align as closely.

For Criterion 3, LLM-as-a-Judge assigns the
highest rating, but ROUGE (0.67) and BERTScore
(0.68) do not fall within their highest ranges.

Table 2: Tagging summary evaluation.

Evaluation Criteria

ROUGE BERT Sc.

LLM-as-a-Judge

GPT-40 Llama-405B
Criterion 1: Excerpt Validity 0.81 0.74 4 4
Criterion 2: Excerpt-Behavior Relevance 0.54 0.65 3 3
Criterion 3: Explanation Relevance 0.67 0.68 5 5

ROUGE, which relies on n-gram matching, does
not account for paraphrasing. As a result, tagging
explanations that paraphrase behavior descriptions
and excerpts tend to receive lower ROUGE scores.
BERTScore, in contrast, rewards tagging expla-
nations that are semantically similar to behavior
descriptions and excerpts, indicating closer align-
ment in the embedding space through token-level
contextual similarity (Zhang* et al., 2020). When
explanations convey ideas using more abstract or
generalized language (e.g., summarizing concepts),
LLM-as-a-Judge may assign high scores based on
rubric alignment, whereas BERTScore may assign
lower scores due to reduced token-level similarity
in embedding space.

6 Related Work

Conventional Approaches for APT Detection:
Traditional APT detection methods rely on
signature-based or rule-based techniques using pre-
defined patterns (Giura and Wang, 2012; Yu et al.,
2019) or statistical anomaly detection (Mees, 2012;
Ioannou et al., 2013). These approaches are ap-
plied across diverse data sources, including net-
work traffic (Villeneuve and Bennett, 2012; Lu
et al., 2019), system provenance graphs (Hossain
et al., 2017; Milajerdi et al., 2019), and code arti-
facts (Bhatt et al., 2014; Su et al., 2015), but often
struggle with stealthy or unseen attacks, leading to
high false-positive or false-negative rates (Krish-
napriya and Singh, 2024). Recent advancements
leverage machine learning (ML) to model com-
plex patterns for improved detection, including
classical models (e.g., SVMs (Chu et al., 2019),
Random Forests (Do Xuan, 2021), clustering (Han
et al., 2020)) and deep learning techniques (e.g.,
LSTMs (Du et al., 2017), CNNs (Do Xuan and
Duong, 2022), GNNs (Ren et al., 2023), and
Bayesian neural networks (Anjum et al., 2022)).
Although ML-based methods generally outperform
traditional techniques (AL-Aamri et al., 2023), they
often require extensive training data and compu-
tational resources. In addition, while many ML
models support explainability through tools such
as SHAP and LIME (Hasan et al., 2023; Mutalib
et al., 2024), or counterfactual explanations (Welter
et al., 2023), the resulting explanations, such as fea-

ture attribution scores, still demand considerable
human effort to accurately infer attacker intent.

LLM for Cybersecurity: LLMs have been used
for various cybersecurity tasks (Zhang et al.), in-
cluding software vulnerability detection (Liu et al.,
2024), program repair (Nong et al., 2024), anomaly
detection (Karlsen et al., 2024), secure code gener-
ation (Wang et al., 2023), threat intelligence (Hu
et al., 2024) and malware detection assisted by stat-
ic/code analysis (Fang et al., 2024; Patsakis et al.,
2024). A few recent works use LLMs for APT de-
tection. APT-LLM (Benabderrahmane et al., 2025)
encodes process behavior descriptions from sys-
tem logs using encoder-only LLMs for anomaly
detection. APTSniffer (Xu et al., 2025) leverages
retrieval-augmented generation by extracting rele-
vant sequences from encrypted traffic to craft few-
shot prompts for APT detection. SHIELD (Gandhi
et al., 2025) analyzes suspicious nodes in prove-
nance graphs derived from system logs and uses
chain-of-thought to detect malicious processes and
generate attack summaries. However, its explana-
tions mainly reflect low-level events (e.g., a pro-
cess writing to a file), which may not capture the
attacker’s intent. LL.Ms have also been used for
TTP mapping, but prior work has predominantly
focused on their application to natural language
texts such as threat reports (Rani et al., 2023; Ali
and Peng, 2024). CmdCaliper (Huang et al., 2024)
uses LLMs to synthesize a command-line similar-
ity dataset for training an embedding model, which
is evaluated on a limited set of TTPs. To the best
of our knowledge, we are the first to use LLMs for
APT detection and TTP mapping.

7 Conclusion

In this paper, we explored the use of large language
models (LLMs) for APT detection, TTP mapping,
and explanation generation based on executed code
snippets collected from host machines. We de-
veloped evaluation datasets using open-source re-
sources, including MITRE Caldera and publicly
available PowerShell snippets. Our experiments
show that while LLMs exhibit moderate effective-
ness in detecting APT activity and identifying ma-
licious code, they perform well in TTP mapping
when supplemented with domain knowledge.

8 Limitations

Our dataset simulates a moderately active user envi-
ronment, with a 2 : 1 ratio of benign user code snip-
pets to APT snippets (Section 5.1). In the future,
we plan to explore high-activity scenarios, where
benign snippets greatly outnumber APT snippets.
In such cases, APT activity may be sparser and
fall outside the LLM’s context window, posing a
key challenge for detection. In addition, all exper-
iments in this work are conducted using GPT-4o,
with the exception of the “LLM-as-a-Judge” evalu-
ation (Section 5.4.1), which includes both GPT-40
and LLaMA-405B. While this study focuses on
GPT-40, future research could extend our method-
ology to other LLMs to assess its generalizability.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Abdullah Said AL-Aamri, Rawad Abdulghafor, Sherzod
Turaev, Imad Al-Shaikhli, Akram Zeki, and Shuhaili
Talib. 2023. Machine learning for apt detection. Sus-
tainability, 15(18):13820.

Asad Ali and Min-Chun Peng. 2024. Ttpmapper: Accu-
rate mapping of ttps from unstructured cti reports. In
2024 IEEFE International Conference on Future Ma-
chine Learning and Data Science (FMLDS), pages
558-563. IEEE.

Md Monowar Anjum, Shahrear Igbal, and Benoit
Hamelin. 2022. Anubis: a provenance graph-based
framework for advanced persistent threat detection.
In Proceedings of the 37th ACM/SIGAPP Symposium
on Applied Computing, pages 1684—1693.

Sidahmed Benabderrahmane, Petko Valtchev, James Ch-
eney, and Talal Rahwan. 2025. Apt-llm: Embedding-
based anomaly detection of cyber advanced persistent
threats using large language models. arXiv preprint
arXiv:2502.09385.

Parth Bhatt, Edgar Toshiro Yano, and Per Gustavsson.
2014. Towards a framework to detect multi-stage
advanced persistent threats attacks. In 2014 IEEE 8th
international symposium on service oriented system
engineering, pages 390-395. IEEE.

S Sibi Chakkaravarthy, V Vaidehi, and P Rajesh. 2018.
Hybrid analysis technique to detect advanced per-
sistent threats. International Journal of Intelligent
Information Technologies (IJIIT), 14(2):59-76.

ChooseALicense Contributors. 2024. MIT
License (Markdown Format). https:
//huggingface.co/datasets/choosealicense/

licenses/blob/main/markdown/mit.md. Li-
cense: MIT. Accessed 2024-05-19.

Wen-Lin Chu, Chih-Jer Lin, and Ke-Neng Chang. 2019.
Detection and classification of advanced persistent
threats and attacks using the support vector machine.
Applied Sciences, 9(21):4579.

Ivan Cﬂ(, Andrindrasana David Rasamoelina, Marian
Mach, and Peter Sincdk. 2021. Explaining deep neu-
ral network using layer-wise relevance propagation
and integrated gradients. In 2021 IEEE 19th world
symposium on applied machine intelligence and in-
Sformatics (SAMI), pages 000381-000386. IEEE.

The MITRE Corporation. a. Caldera.
The MITRE Corporation. b. Mitre att&ck.

The MITRE Corporation. c. Mitre att&ck: T1136 -
create account.

The MITRE Corporation. d. Mitre att&ck: T1136.001 -
create account: Local account.

The MITRE Corporation. e. Mitre att&ck version his-
tory.

Cho Do Xuan. 2021. Detecting apt attacks based on
network traffic using machine learning. Journal of
Web Engineering, 20(1):171-190.

Cho Do Xuan and Duc Duong. 2022. Optimization
of apt attack detection based on a model combining
attention and deep learning. Journal of Intelligent &
Fuzzy Systems, 42(4):4135-4151.

Feng Dong, Liu Wang, Xu Nie, Fei Shao, Haoyu
Wang, Ding Li, Xiapu Luo, and Xusheng Xiao. 2023.
{DISTDET}: A {Cost-Effective} distributed cyber
threat detection system. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 6575-6592.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
2017. Deeplog: Anomaly detection and diagnosis
from system logs through deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pages 1285—
1298.

Elastic. 2025. Crowdstrike exported fields. Accessed:
2025-05-01.

Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin
Liu, Ruoyu Zhang, Ruijie Fang, Asmita, Ryan Tsang,
Najmeh Nazari, Han Wang, and Houman Homayoun.
2024. Large language models for code analysis: Do
LLMs really do their job? In 33rd USENIX Security
Symposium (USENIX Security 24), pages 829-846,
Philadelphia, PA. USENIX Association.

Yong Fang, Xiangyu Zhou, and Cheng Huang. 2021.
Effective method for detecting malicious powershell
scripts based on hybrid features. Neurocomputing,
448:30-39.

https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md
https://github.com/mitre/caldera
https://attack.mitre.org/
https://attack.mitre.org/techniques/T1136/
https://attack.mitre.org/techniques/T1136/
https://attack.mitre.org/techniques/T1136/
https://attack.mitre.org/techniques/T1136/001/
https://attack.mitre.org/techniques/T1136/001/
https://attack.mitre.org/techniques/T1136/001/
https://attack.mitre.org/resources/versions/
https://attack.mitre.org/resources/versions/
https://attack.mitre.org/resources/versions/
https://www.elastic.co/docs/reference/beats/filebeat/exported-fields-crowdstrike
https://www.usenix.org/conference/usenixsecurity24/presentation/fang
https://www.usenix.org/conference/usenixsecurity24/presentation/fang
https://www.usenix.org/conference/usenixsecurity24/presentation/fang

Mohamed Amine Ferrag, Fatima Alwahedi, Ammar
Battah, Bilel Cherif, Abdechakour Mechri, and Nor-
bert Tihanyi. 2024. Generative ai and large language
models for cyber security: All insights you need.
Available at SSRN 4853709.

Fleschutz. 2023. Mega collection of powershell scripts.
GitHub Repository. Accessed: March 12, 2025.

Christoph Fleschutz. 2024. MegaPower-
ShellCollection. https://github.com/
fleschutz/PowerShell. License: CCO 1.0.

https://github.com/fleschutz/PowerShell?
tab=CCO-1.0-1-ov-file#readme. Accessed
2024-05-19.

Parth Atulbhai Gandhi, Prasanna N Wudali, Yonatan
Amaru, Yuval Elovici, and Asaf Shabtai. 2025.
Shield: Apt detection and intelligent explanation us-
ing llm. arXiv preprint arXiv:2502.02342.

Paul Giura and Wei Wang. 2012. A context-based de-
tection framework for advanced persistent threats. In
2012 International Conference on Cyber Security,
pages 69-74. IEEE.

Google Research. 2020. Google Research
Apache 2.0 License. https://github.com/
google-research/google-research/blob/
master/LICENSE. Accessed: 2025-05-19.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Saul Greenberg. 1988. Using unix: Collected traces of
168 users.

Xueyuan Han, Thomas Pasquier, Adam Bates, James
Mickens, and Margo Seltzer. 2020. Unicorn: Run-
time provenance-based detector for advanced persis-
tent threats. arXiv preprint arXiv:2001.01525.

Md Mahadi Hasan, Muhammad Usama Islam, and
Jasim Uddin. 2023. Advanced persistent threat iden-
tification with boosting and explainable ai. SN Com-
puter Science, 4(3):271.

Md Nahid Hossain, Sadegh M Milajerdi, Junao
Wang, Birhanu Eshete, Rigel Gjomemo, R Sekar,
Scott Stoller, and VN Venkatakrishnan. 2017.
{SLEUTH}: Real-time attack scenario reconstruc-
tion from {COTS} audit data. In 26th USENIX Se-
curity Symposium (USENIX Security 17), pages 487—
504.

Yuelin Hu, Futai Zou, Jiajia Han, Xin Sun, and Yilei
Wang. 2024. Llm-tikg: Threat intelligence knowl-
edge graph construction utilizing large language
model. Computers & Security, 145:103999.

Sian-Yao Huang, Cheng-Lin Yang, Che-Yu Lin, and
Chun-Ying Huang. 2024. CmdCaliper: A semantic-
aware command-line embedding model and dataset

10

for security research. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 20188-20206.

Infinite Dataset Hub. 2024. Real powershell scripts
dataset. Hugging Face Datasets. Accessed: March
12, 2025.

Georgios Ioannou, Panos Louvieris, Natalie Clewley,
and Gavin Powell. 2013. A markov multi-phase
transferable belief model: An application for predict-
ing data exfiltration apts. Proceedings of the 16th In-
ternational Conference on Information Fusion, pages
842-849.

Susan Jamieson. 2004. Likert scales: How to (ab) use
them? Medical education, 38(12):1217-1218.

Zian Jia, Yun Xiong, Yuhong Nan, Yao Zhang, Jinjing
Zhao, and Mi Wen. 2024. {MAGIC}: Detecting ad-
vanced persistent threats via masked graph represen-
tation learning. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 5197-5214.

Egil Karlsen, Xiao Luo, Nur Zincir-Heywood, and Mal-
colm Heywood. 2024. Benchmarking large language
models for log analysis, security, and interpretation.
J. Netw. Syst. Manag., 32(3).

Singamaneni Krishnapriya and Sukhvinder Singh. 2024.
A comprehensive survey on advanced persistent
threat (apt) detection techniques. Computers, Ma-
terials & Continua, 80(2).

Terran Lane and Carla E Brodley. 1997. An application
of machine learning to anomaly detection. In Pro-
ceedings of the 20th national information systems
security conference, volume 377, pages 366—380.
Baltimore, USA.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad
Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhat-
tacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu,
et al. 2024. From generation to judgment: Opportuni-
ties and challenges of llm-as-a-judge. arXiv preprint
arXiv:2411.16594.

Shaofei Li, Feng Dong, Xusheng Xiao, Haoyu Wang,
Fei Shao, Jiedong Chen, Yao Guo, Xiangqun Chen,
and Ding Li. 2023a. Nodlink: An online system for
fine-grained apt attack detection and investigation.
arXiv preprint arXiv:2311.02331.

Xiang Li, Tingting Zhu, and Wenbo Zhang. 2023b. Ef-
ficient ransomware detection via portable executable
file image analysis by llama-7b.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D Ernst. 2018. Nl2bash: A cor-
pus and semantic parser for natural language inter-
face to the linux operating system. arXiv preprint
arXiv:1802.08979.

https://github.com/fleschutz/PowerShell
https://github.com/fleschutz/PowerShell
https://github.com/fleschutz/PowerShell
https://github.com/fleschutz/PowerShell
https://github.com/fleschutz/PowerShell?tab=CC0-1.0-1-ov-file#readme
https://github.com/fleschutz/PowerShell?tab=CC0-1.0-1-ov-file#readme
https://github.com/fleschutz/PowerShell?tab=CC0-1.0-1-ov-file#readme
https://github.com/google-research/google-research/blob/master/LICENSE
https://github.com/google-research/google-research/blob/master/LICENSE
https://github.com/google-research/google-research/blob/master/LICENSE
https://github.com/google-research/google-research/blob/master/LICENSE
https://github.com/google-research/google-research/blob/master/LICENSE
https://huggingface.co/datasets/infinite-dataset-hub/RealPowShellScripts
https://huggingface.co/datasets/infinite-dataset-hub/RealPowShellScripts
https://huggingface.co/datasets/infinite-dataset-hub/RealPowShellScripts
https://api.semanticscholar.org/CorpusID:12702003
https://api.semanticscholar.org/CorpusID:12702003
https://api.semanticscholar.org/CorpusID:12702003
https://api.semanticscholar.org/CorpusID:12702003
https://api.semanticscholar.org/CorpusID:12702003

Peiyu Liu, Junming Liu, Lirong Fu, Kangjie Lu, Yifan
Xia, Xuhong Zhang, Wenzhi Chen, Haiqin Weng,
Shouling Ji, and Wenhai Wang. 2024. Explor-
ing {ChatGPT’s} capabilities on vulnerability man-
agement. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 811-828.

Zefang Liu and John Buford. 2023. Anomaly detection
of command shell sessions based on distilbert: Unsu-

pervised and supervised approaches. arXiv preprint
arXiv:2310.13247.

Jiazhong Lu, Kai Chen, Zhongliu Zhuo, and XiaoSong
Zhang. 2019. A temporal correlation and traffic anal-
ysis approach for apt attacks detection. Cluster com-
puting, 22:7347-7358.

Johnathan May. 2023. Common powershell commands.
GitHub Gist. Accessed: March 12, 2025.

Wim Mees. 2012. Multi-agent anomaly-based apt de-
tection. In Proceedings of Information Systems Tech-
nology Panel Symposium, volume 16.

Meta Platforms, Inc. 2024. LLaMA 3.1 405B Li-
cense. https://huggingface.co/meta-1lama/
Llama-3.1-405B/blob/main/LICENSE. Accessed:
2025-05-19.

Microsoft. 2021. DeBERTa XLarge fine-tuned on
MNLI. https://huggingface.co/microsoft/
deberta-xlarge-mnli. License: MIT. Accessed:
2025-05-19.

Microsoft. 2024. About logging in windows - power-
shell. Microsoft Learn. Accessed: March 12, 2025.

Microsoft. 2025. Overview of sysmon capabilities. Ac-
cessed: 2025-05-01.

Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Es-
hete, Ramachandran Sekar, and VN Venkatakrish-
nan. 2019. Holmes: real-time apt detection through
correlation of suspicious information flows. In 2019
IEEE symposium on security and privacy (SP), pages
1137-1152. IEEE.

MITRE Corporation. 2024. Caldera. https://
github.com/mitre/caldera. License: Apache
2.0. https://github.com/mitre/caldera/blob/
master/LICENSE. Accessed 2024-05-19.

Bhuvanashree Murugadoss, Christian Poelitz, Ian
Drosos, Vu Le, Nick McKenna, Carina Suzana Ne-
greanu, Chris Parnin, and Advait Sarkar. 2025. Eval-
uating the evaluator: Measuring llms’ adherence
to task evaluation instructions. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 39, pages 19589-19597.

Noor Hazlina Abdul Mutalib, Aznul Qalid Md Sabri,
Ainuddin Wahid Abdul Wahab, Erma Rahayu
Mohd Faizal Abdullah, and Nouar AlDahoul. 2024.
Explainable deep learning approach for advanced
persistent threats (apts) detection in cybersecurity: a
review. Artificial Intelligence Review, 57(11):297.

11

Yu Nong, Haoran Yang, Long Cheng, Hongxin Hu, and
Haipeng Cai. 2024. Automated software vulnera-
bility patching using large language models. arXiv
preprint arXiv:2408.13597.

Momoka Okuma, Koki Watarai, Satoshi Okada, and
Takuho Mitsunaga. 2023. Automated mapping
method for sysmon logs to att&ck techniques by
leveraging atomic red team. In 2023 6th Interna-
tional Conference on Signal Processing and Informa-

tion Security (ICSPIS), pages 104-109. IEEE.

OpenAl. 2024. Terms of Use. https://openai.com/
policies/row-terms-of-use/. Accessed: 2025-
05-19.

Arjun Panickssery, Samuel Bowman, and Shi Feng.
2024. Llm evaluators recognize and favor their own
generations. Advances in Neural Information Pro-
cessing Systems, 37:68772-68802.

Constantinos Patsakis, Fran Casino, and Nikolaos Lyk-
ousas. 2024. Assessing llms in malicious code deob-
fuscation of real-world malware campaigns. Expert
Systems with Applications, 256:124912.

Xingzhi Qian, Xinran Zheng, Yiling He, Shuo Yang,
and Lorenzo Cavallaro. 2025. Lamd: Context-driven
android malware detection and classification with
Ilms. arXiv preprint arXiv:2502.13055.

Nanda Rani, Bikash Saha, Vikas Maurya, and
Sandeep Kumar Shukla. 2023. Ttphunter: Auto-
mated extraction of actionable intelligence as ttps
from narrative threat reports. In Proceedings of the

2023 Australasian Computer Science Week, pages
126-134.

Weiwu Ren, Xintong Song, Yu Hong, Ying Lei, Jinyu
Yao, Yazhou Du, and Wenjuan Li. 2023. Apt at-
tack detection based on graph convolutional neural
networks. International Journal of Computational
Intelligence Systems, 16(1):184.

Google Research. 2020. Rouge scoring implementation.
GitHub repository.

Duraid Thamer Salim, Manmeet Mahinderjit Singh, and
Pantea Keikhosrokiani. 2023. A systematic literature
review for apt detection and effective cyber situa-
tional awareness (ecsa) conceptual model. Heliyon,
9(7).

Matthias Schonlau, William DuMouchel, Wen-Hua Ju,
Alan F Karr, Martin Theus, and Yehuda Vardi. 2001.
Computer intrusion: Detecting masquerades. Statis-
tical science, pages 58-74.

M Scott, Lee Su-In, et al. 2017. A unified approach to
interpreting model predictions. Advances in neural
information processing systems, 30:4765-4774.

Abhishek Sidhardhan, S Keerthana, and Jinesh M Kan-
nimoola. 2023. Weaponizing real-world applications
as ¢2 (command and control). In 2023 International
Conference on Innovative Data Communication Tech-
nologies and Application (ICIDCA), pages 458—463.
IEEE.

https://gist.github.com/johnathanmay/c83e3fc26d70ed6b7b6b99396740a80e
https://huggingface.co/meta-llama/Llama-3.1-405B/blob/main/LICENSE
https://huggingface.co/meta-llama/Llama-3.1-405B/blob/main/LICENSE
https://huggingface.co/meta-llama/Llama-3.1-405B/blob/main/LICENSE
https://huggingface.co/microsoft/deberta-xlarge-mnli
https://huggingface.co/microsoft/deberta-xlarge-mnli
https://huggingface.co/microsoft/deberta-xlarge-mnli
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows?view=powershell-7.5#enabling-script-block-logging
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows?view=powershell-7.5#enabling-script-block-logging
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows?view=powershell-7.5#enabling-script-block-logging
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon#overview-of-sysmon-capabilities
https://github.com/mitre/caldera
https://github.com/mitre/caldera
https://github.com/mitre/caldera
https://github.com/mitre/caldera/blob/master/LICENSE
https://github.com/mitre/caldera/blob/master/LICENSE
https://github.com/mitre/caldera/blob/master/LICENSE
https://openai.com/policies/row-terms-of-use/
https://openai.com/policies/row-terms-of-use/
https://openai.com/policies/row-terms-of-use/
https://github.com/google-research/google-research/blob/master/rouge/

Splunk. 2023. Hunting for malicious powershell using
script block logging. Accessed: 2025-02-19.

Splunk. 2024. Endpoint detection - powershell script
block logging. Splunk Research. Accessed: March
12, 2025.

Yunfei Su, Mengjun Li, ChaoJing Tang, and Rongjun
Shen. 2015. A framework of apt detection based on
dynamic analysis. In 2015 4th National Conference
on Electrical, Electronics and Computer Engineer-
ing, pages 1047-1053. Atlantis Press.

Xiaoyi Tian, Amogh Mannekote, Carly E Solomon,
Yukyeong Song, Christine Fry Wise, Tom Mcklin,
Joanne Barrett, Kristy Elizabeth Boyer, and Maya
Israel. 2024. Examining llm prompting strategies
for automatic evaluation of learner-created compu-
tational artifacts. In Proceedings of the 17th Inter-
national Conference on Educational Data Mining,
pages 698-706.

Tianyi Zhang. 2020. BERTScore MIT License.
https://github.com/Tiiiger/bert_score/
blob/master/LICENSE. Accessed: 2025-05-19.

Unknown. 2024. CommonPowerShellCommands.
<INSERT-REPO-URL>. No license explicitly speci-
fied. Accessed 2024-05-19.

Nart Villeneuve and James Bennett. 2012. Detecting apt
activity with network traffic analysis. Trend Micro
Incorporated Research Paper, pages 1-13.

Vaishali Vinay and Anjali Mangal. 2024. Scade: Scal-
able command-line anomaly detection engine. arXiv
preprint arXiv:2412.04259.

Jiexin Wang, Liuwen Cao, Xitong Luo, Zhiping Zhou,
Jiayuan Xie, Adam Jatowt, and Yi Cai. 2023. Enhanc-
ing large language models for secure code generation:
A dataset-driven study on vulnerability mitigation.
arXiv preprint arXiv:2310.16263.

Yuntao Wang, Han Liu, Zhendong Li, Zhou Su, and
Jiliang Li. 2024. Combating advanced persistent
threats: Challenges and solutions. IEEE Network.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Felix Welter, Florian Wilkens, and Mathias Fischer.
2023. Tell me more: Black box explainability for apt
detection on system provenance graphs. In ICC 2023-

IEEE International Conference on Communications,
pages 3817-3823. IEEE.

Laslo Welz and Carsten Lanquillon. 2024. Enhanc-
ing large language models through external domain
knowledge. In International Conference on Human-
Computer Interaction, pages 135—-146. Springer.

12

Hongbo Xu, Chengxiang Si, Chenxu Wang, Peishuai
Sun, Qingyun Liu, et al. 2025. Aptsniffer: Detect-
ing apt attack traffic using retrieval-augmented large
language models. In ICASSP 2025-2025 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1-5. IEEE.

Kevin P Yancey, Geoffrey Laflair, Anthony Verardi, and
Jill Burstein. 2023. Rating short 12 essays on the
cefr scale with gpt-4. In Proceedings of the 18th
workshop on innovative use of NLP for building edu-
cational applications (BEA 2023), pages 576-584.

Han Yu, Aiping Li, and Rong Jiang. 2019. Needle in
a haystack: attack detection from large-scale system
audit. In 2019 IEEE 19th International Conference
on Communication Technology (ICCT), pages 1418—
1426. IEEE.

Zhengmin Yu, Jiutian Zeng, Siyi Chen, Wenhan Xu,
Dandan Xu, Xiangyu Liu, Zonghao Ying, Nan Wang,
Yuan Zhang, and Min Yang. 2024. Cs-eval: A com-
prehensive large language model benchmark for cy-
bersecurity. arXiv preprint arXiv:2411.16239.

Andy K Zhang, Neil Perry, Riya Dulepet, Joey Ji, Ce-
leste Menders, Justin W Lin, Eliot Jones, Gashon
Hussein, Samantha Liu, Donovan Jasper, et al. 2024a.
Cybench: A framework for evaluating cybersecurity
capabilities and risks of language models. arXiv
preprint arXiv:2408.08926.

Bo Zhang, Yansong Gao, Boyu Kuang, Changlong Yu,
Anmin Fu, and Willy Susilo. 2024b. A survey on
advanced persistent threat detection: A unified frame-
work, challenges, and countermeasures. ACM Com-
put. Surv.

Jie Zhang, Haoyu Bu, Hui Wen, Y Liu, H Fei, R Xi,
L Li, Y Yang, H Zhu, and D Meng. When llms meet
cybersecurity: a systematic literature review (2024).
arXiv preprint arXiv:2405.03644.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019. BERTScore:
Evaluating Text Generation with BERT. GitHub
repository.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Appendix

.1 Implementation and Dataset Details

This section provides additional details on the im-
plementation and dataset used in the experiments
described in Section 5.

.1.1 Implementation Details

For the experiments in Sections 5.2, 5.3, and 5.4,
we used the pre-trained GPT-40 model solely for

https://www.splunk.com/en_us/blog/security/hunting-for-malicious-powershell-using-script-block-logging.html
https://www.splunk.com/en_us/blog/security/hunting-for-malicious-powershell-using-script-block-logging.html
https://www.splunk.com/en_us/blog/security/hunting-for-malicious-powershell-using-script-block-logging.html
https://research.splunk.com/endpoint/bc1dc6b8-c954-11eb-bade-acde48001122/
https://research.splunk.com/endpoint/bc1dc6b8-c954-11eb-bade-acde48001122/
https://research.splunk.com/endpoint/bc1dc6b8-c954-11eb-bade-acde48001122/
https://github.com/Tiiiger/bert_score/blob/master/LICENSE
https://github.com/Tiiiger/bert_score/blob/master/LICENSE
https://github.com/Tiiiger/bert_score/blob/master/LICENSE
<INSERT-REPO-URL>
https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

inference without fine-tuning. The model’s archi-
tecture details, including the number of parame-
ters and hyperparameter configurations, are propri-
etary to OpenAl. In Section 5.4.1, we used GPT-
40, LLaMA-3.1-405B, ROUGE, and BERT Score
together for evaluation. Both LLMs were used
exclusively for inference. LLaMA-3.1-405B, de-
veloped by Meta Al, is open-source and contains
approximately 405 billion parameters, supporting
transparency and reproducibility. ROUGE was
computed using Google’s rouge-score library (Re-
search, 2020) with the ROUGE-1 metric and
default settings. As a symbolic n-gram over-
lap metric, it does not involve learned parame-
ters. BERTScore was calculated using the bert-
score library (Zhang et al., 2019) with the rec-
ommended “microsoft/deberta-xlarge-mnli”” model
(approximately 750 million parameters (Microsoft,
2021)), which the authors specify as having the best
correlation with human evaluation (Zhang et al.,
2019). All other settings were kept at their defaults.
ROUGE and BERTScore were run locally on a ma-
chine with a 2.8 to 3.35 GHz AMD EPYC 7402P
CPU and an NVIDIA Tesla T4 GPU with 15 GB of
memory. CUDA was enabled. No hyperparameter
search was conducted. All tools were used with
their default configurations in an inference-only
setup. All software and models were used in accor-
dance with their respective licenses and intended
purposes. This includes OpenAI’s Terms of Use
for GPT-40 (OpenAl, 2024), Meta’s open-source li-
cense for LLaMA-3.1-405B (Meta Platforms, Inc.,
2024), and the Apache 2.0 (Google Research, 2020)
and MIT (Tianyi Zhang, 2020) licenses for ROUGE
and BERTScore, respectively, which permit use for
scientific and research purposes. All reported re-
sults are based on single runs.

.1.2 Dataset Details

As specified in Section 5.1, our dataset is con-
structed using publicly available, open-source re-
sources and repositories. In particular, we extracted
code snippets from the MITRE Caldera frame-
work, which is distributed under the permissive
Apache 2.0 License (MITRE Corporation, 2024)
and is explicitly intended for research and academic
purposes. Additionally, benign PowerShell code
snippets were collected from open-source reposi-
tories released under permissive licenses, includ-
ing CCO 1.0 (Fleschutz, 2024) and the MIT Li-
cense (ChooseALicense Contributors, 2024). One
such repository does not explicitly specify a li-
cense (Unknown, 2024) but is publicly accessible
and was used in accordance with standard academic

13

practices. While the dataset includes code snippets
that could potentially be used for malicious pur-
poses, they are sourced directly from the Caldera
repository (Corporation, a) and do not introduce
any new or unpublished malicious content. These
examples are sanitized using metadata placehold-
ers (e.g., {IP-address?}) and contain no personally
identifiable information. For evaluation purposes,
the placeholders are replaced with arbitrary but real-
istic values generated using GPT-40, ensuring both
semantic and contextual coherence. Our dataset has
been carefully curated for academic and research
use. Upon publication of this work, we intend to
release it under the MIT License.

.2 Al Assistance

We used ChatGPT to lightly polish the writing in
some sections of the paper. This included minor
edits for clarity, grammar, and phrasing, without
affecting the technical content or analysis.

e N

“The code snippets exhibit several concerning
behaviors that suggest the execution of an ad-
versarial operation. The use of cmd.exe with
paexec.exe indicates an attempt to execute a
command on a remote machine, which is a com-
mon tactic in lateral movement during cyber
intrusions.

The inclusion of credentials (-u hospitality
kmitnick -p c3aa78cd@827b8e8) further so-
lidifies this as a potential malicious operation,
as it implies unauthorized access attempts. Ad-
ditionally, the robocopy command is used to
replace a system file (srrstr.dll), which is
indicative of attempts to compromise system
integrity.

The overall sequence of copying files from sen-
sitive directories and executing commands re-
motely aligns with known malicious methods,
suggesting a coordinated effort to exfiltrate
data or establish persistence.”

. J

Figure 6: GPT-generated explanation of detected APT
activity

Level

Description

4 (Clearly)

The code snippet clearly exhibit
malicious intent or is part of coor-
dinated malicious activity through
direct associations. For example,
a snippet utilizing credential dump-
ing tools commonly associated with
cyberattacks, or a snippet that com-
presses sensitive files into an archive
followed by another snippet that ex-
filtrates the archive to an external lo-
cation is in this category.

3 (Likely)

The code snippet is likely part of
the malicious chain. While not ex-
plicitly malicious on its own, its
involvement in the attack can be
inferred through indirect links to
other suspicious snippets. For ex-
ample, a snippet that modifies fire-
wall rules to permit remote connec-
tions may not appear directly ma-
licious, but if a subsequent snippet
establishes an unauthorized remote
connection, it indirectly contributes
to the attack.

2 (Possibly)

The code snippet performs ac-
tions common in legitimate con-
texts, but could have a plausi-
ble connection to the malicious
chain. This level captures support-
ing actions in APT attacks that,
while appearing benign on their
own, contribute to a broader ma-
licious objective. For example, a
commonly used discovery command
(e.g., nmap) that maps an environ-
ment could potentially contribute to
the malicious chain.

1 (Unlikely)

The code snippet is benign, with no
dual-use potential and no plausible
connection to the malicious chain.
Its benign nature is further supported
by the lack of any association with
suspicious snippets.

Code Snippet

$env:APPDATA;
$files = ChildItem -Path $env:USERPROFILE \
-Include "*.doc"”, "*.docx", "x.xls", "x.
xlsx”, "%.ppt”, "%.pptx”, "%.pps”, "*.
wps”, "x.wpd”, "x.odt”, "x.lwp", "*.
jtd", "x.pdf”. "x.zip", "x.rar”. "x.

docx”, "x.url", "x.x1lsx", "x.pptx", "*.
ppc”, "*.pst", "x.ost", "x.psw", "%
pass*", "xloginx", "xadminx", "xsifx",
"xsiferx", "x.vpn", "x.jpg", "*.txt",
"x.1nk" \

-Recurse \

-ErrorAction SilentlyContinue |

Select -ExpandProperty FullName;
Compress-Archive -LiteralPath $files \

-CompressionlLevel Optimal \

-DestinationPath $env:APPDATA\Draft.Zip \

-Force

~

Behavior Description

This PowerShell script systematically searches a user’s
home directory and its subdirectories for a variety
of files, including documents, archives, email data,
images, and text files, while also specifically targeting
filenames associated with credentials, administrative
access, and VPN configurations. Once identified, the
files are collected and compressed into a single ZIP
archive, Draft.Zip, which is stored in the AppData
directory, a hidden system folder often overlooked by
users. By suppressing errors and recursively scanning
directories, the script ensures it gathers as many files as
possible without interruption, even if certain locations
are restricted.

The script does not initiate exfiltration but effec-
tively stages sensitive data in a single compressed
archive, making it easy to transfer through subsequent
actions. Storing the archive in the AppData folder
minimizes visibility and reduces the likelihood of
immediate detection. The capability to systematically
locate, collect, and consolidate files into an archive
suggests an intent to facilitate data theft, unauthorized
access, or operational persistence. While the script does
not explicitly exhibit destructive behavior, its ability to
aggregate potentially sensitive information—especially
files containing credentials or login details—poses a
significant risk to confidentiality and security.

- /

Figure 8: GPT-generated behavior description of a code
snippet.

Figure 7: Pinpoint Malicious Snippets - APT Domain-
Expertise Informed Rubric

14

1. T1119 - Automated Collection

o Tagging Explanation: The script automates the search and
collection of sensitive files based on extensions and keywords,
which matches the characteristics of automated collection as
described by the technique.

o Confidence Level: 4 (High)

o Cited Source: MITRE ATT&CK Technique T1119

or name”

o Relevant Excerpt: “Methods for performing this technique could
include use of a Command and Scripting Interpreter to search for
and copy information fitting set criteria such as file type, location,

Figure 9: Tagging Summary

Code-Snippet:

./post.ps1; email;

Resolved Code:

function email { Send-Mail ... };

Figure 10: Example where dependencies from external

scripts or functions are resolved at execution time.

Code-Snippet:

schtasks /create /sc "DAILY" /tn "daily
task” /tr "C:" /ru "john doe”
Resolved Code:

N/A

Figure 11: Example where the executed code is self-

contained (no external dependencies).

15

Rating

Description

5 (Excellent) The ‘Relevant Excerpt” is quoted

verbatim and appears exactly in the
“Cited Source,” without any alter-
ations or discrepancies.

4 (Strong)

The ‘Relevant Excerpt” is para-
phrased but accurately reflects sub-
set(s) of the “Cited Source,” without
adding or omitting information that
would alter the meaning or intent.

3 (Satisfactory) The ‘Relevant Excerpt” is para-

phrased and largely reflects subset(s)
of the “Cited Source,” but with some
minor differences or omissions that
slightly alter the meaning or intent.

2 (Weak)

The ‘Relevant Excerpt” is para-
phrased and partially reflects sub-
set(s) of the “Cited Source,” but
with significant differences, omis-
sions, or misrepresentations that no-
ticeably alter the meaning or intent.

1 (None)

The “Relevant Excerpt” fails to
reflect any subset of the “Cited
Source,” being fabricated, missing,
or entirely misaligned.

Figure 12: Criterion 1 (Excerpt Validity)

Rating

Description

5 (Excellent)

The “Relevant Excerpt” directly and
accurately addresses the core behav-
ior outlined in the “behavior descrip-
tion” with no ambiguity or gaps.

4 (Strong)

The “Relevant Excerpt” effectively
addresses the core behavior outlined
in the “behavior description,” ac-
commodating minor variations that
do not significantly affect relevance
or clarity.

Rating

Description

5 (Excellent)

The “Tagging Explanation” is di-
rectly relevant and effectively ad-
dresses both the “Behavior Descrip-
tion” and the “Relevant Excerpt,” of-
fering a complete and well-justified
rationale for the tag.

4 (Strong)

The “Tagging Explanation” is sub-
stantially relevant and meaningfully
addresses both the “Behavior De-
scription” and the ‘“Relevant Ex-
cerpt,” though it may have minor
omissions or slightly less depth than
a comprehensive justification.

3 (Satisfactory)

The “Relevant Excerpt” adequately
addresses the core behavior out-
lined in the “behavior description,”
though some aspects are unclear,
missing, or loosely connected.

2 (Weak)

The “Relevant Excerpt” only par-
tially addresses the core behavior
outlined in the “behavior descrip-
tion,” offering minimal relevance or
clarity.

1 (None)

The “Relevant Excerpt” fails to ad-
dress or relate to the core behavior
outlined in the “behavior descrip-
tion” in any meaningful way.

Figure 13: Criterion 2 (Excerpt-Behavior Alignment)

16

3 (Satisfactory)

The “Tagging Explanation” is gen-
erally relevant and adequately ad-
dresses both the “Behavior Descrip-
tion” and the “Relevant Excerpt,”
but it may not explore key aspects
in depth or rely on less specific evi-
dence.

2 (Weak)

The “Tagging Explanation” is
loosely relevant and only weakly
addresses either the “Behavior
Description” or the “Relevant
Excerpt,” providing an unclear or
insufficient rationale.

1 (None)

The “Tagging Explanation” is irrele-
vant and does not address either the
“Behavior Description” or the “Rel-
evant Excerpt.”

Figure 14: Criterion 3 (Explanation Relevance)

	Introduction
	Background
	Overview of LADE
	Evaluation Methodology
	APT Attack Detection
	Pinpoint Malicious Snippets
	TTP Mapping
	Evaluation of Tagging Summary

	Experimental Results
	Dataset
	APT Attack Detection
	Pinpointing Malicious Snippets
	TTP Mapping
	Evaluation of Tagging Summary

	Related Work
	Conclusion
	Limitations
	Implementation and Dataset Details
	Implementation Details
	Dataset Details

	AI Assistance

