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ABSTRACT

We propose an expressive and efficient approach that combines the strengths of two prominent
extensions of Graph Neural Networks (GNNs): Subgraph GNNs and Structural Encodings (SEs).
Our approach leverages walk-based centrality measures, both as a powerful form of SE and also
as a subgraph selection strategy for Subgraph GNNs. By drawing a connection to perturbation
analysis, we highlight the effectiveness of centrality-based sampling, and show it significantly
reduces the computational burden associated with Subgraph GNNs. Further, we combine our
efficient Subgraph GNN with SEs derived from the calculated centrality and demonstrate this
hybrid approach, dubbed HyMN, gains in discriminative power. HyMN effectively addresses
the expressiveness limitations of Message Passing Neural Networks (MPNNs) while mitigating
the computational costs of Subgraph GNNs. Through a series of experiments on synthetic and
real-world tasks, we show it outperforms other subgraph sampling approaches while being
competitive with full-bag Subgraph GNNs and other state-of-the-art approaches with a notably
reduced runtime.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2009; Gori et al., 2005; Micheli, 2009) have
achieved great success in learning tasks with graph-structured data. Typically, GNNs are based on
the message passing paradigm (Gilmer et al., 2017), in which node features are aggregated over
their local neighborhood recursively, resulting in architectures known as Message Passing Neural
Networks (MPNNs). MPNNs have been shown to suffer from limited expressive power: they are
bounded by 1-WL (Xu et al., 2018; Geerts & Reutter, 2023; Weisfeiler & Leman, 1968; Morris et al.,
2019; 2023) cannot count certain substructures (Chen et al., 2020; Bouritsas et al., 2022; Tahmasebi
et al., 2020) or solve graph bi-connectivity tasks (Zhang et al., 2023b).

In order to improve expressive power, some works augment the node features with Structural
Encodings (SE) or Positional Encodings (PE) (Bouritsas et al., 2022; Dwivedi et al., 2021; Fesser
& Weber, 2024). These predefined features provide additional information on the graph topology,
leading to an improvement on benchmarks compared to using the raw features (Rampášek et al., 2022).
Recently, Subgraph GNNs (Bevilacqua et al., 2021; Frasca et al., 2022; Zhang & Li, 2021; Cotta
et al., 2021) have been proposed to overcome some of the expressivity limitations of MPNNs. This
approach preserves equivariance while relying less on feature engineering. First, a Subgraph GNN
transforms a graph into a “bag of subgraphs” based on a specific selection policy. These subgraphs are
then processed by an equivariant architecture and aggregated to make graph- or node-level predictions.
One common approach to generate subgraphs, known as node-marking, is to mark a single node in
the graph (Papp & Wattenhofer, 2022). In this case, each subgraph is then “tied” to a specific node in
the original graph, and a shared MPNN generates a representation for each subgraph.

In general, Subgraph GNNs show good empirical performance but come with a high computational
cost. For a graph of N nodes and a maximum degree dmax, then Subgraph GNNs with node-marking
based policies have a computational complexity O(N2 · dmax). To reduce computational complexity,
it was suggested sampling subgraphs randomly (Bevilacqua et al., 2021; Zhao et al., 2022) or, more
recently, learning sampling policies (Qian et al., 2022; Bevilacqua et al., 2024; Kong et al., 2024).
However, while random approaches have been shown to be suboptimal (Bevilacqua et al., 2024;
Bar-Shalom et al., 2024b), learnable policies are difficult to train in practice and become impractical
when sampling a larger number of subgraphs, due to the use of discrete sampling and RL-based
objectives.
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In this work, we present an approach that drastically reduces the complexity of Subgraph GNNs while
maintaining their competitive performance. We achieve this by identifying easy-to-compute struc-
tural features that unlock a parsimonious yet effective subgraph selection strategy, while providing
complementary information enhancing the model’s expressiveness.

We first identify a family of node centrality measures (Estrada & Rodriguez-Velazquez, 2005; Benzi
& Klymko, 2013; 2014) as easy-to-compute scores that: (i) recapitulate well the extent to which a
subgraph alters the graph representation; (ii) correlate with relevant substructure counts. In light of
this, we propose to leverage these measures to efficiently and effectively reduce the size of bags of
subgraphs without requiring learning of additional components. Specifically, we prioritize selecting
marked subgraphs associated with the top-ranking nodes according to these centrality measures and,
in particular, to the Subgraph Centrality by Estrada & Rodriguez-Velazquez (2005).

Then, we propose to additionally interpret Centrality scores as Structural Encodings (CSEs), and to
utilize them to augment the node features of the selected subgraphs. This combination of approaches
is justified from an expressiveness perspective, as we show neither of the two subsume the other.
We demonstrate node marking of (selected) subgraphs separates graphs that are not separable by
CSE-based feature augmentations and, vice-versa, that CSEs allow to separate pairs indistinguishable
to our subsampled Subgraph GNNs.

The resulting method, dubbed HyMN (Hybrid Marking Network), is an approach whereby Subgraph
GNNs and Structural Encodings work in tandem to effectively overcome the expressiveness limitations
of MPNNs and unlock the application of Subgraph GNNs to larger graphs previously out of reach.
Our approach is provably expressive, does not require feature engineering or learnable sampling
components and, importantly, maintains a low computational cost. The practical value of our approach
is confirmed by the positive results achieved over a series of experimental analyses conducted
over synthetic and real-world benchmarks. We show HyMN outperforms other subgraph selection
strategies, and performs on par or better than full-bag Subgraph GNNs by only sampling one or two
subgraphs. Additionally, HyMN is competitive to (and sometimes better than) Graph Transformers
and other state-of-the-art GNNs, while, as we show through extensive wall-clock timing analyses,
featuring a more contained computational run-time.

Our contributions are summarized as follows:

1. We show that walk-based node centrality measures and, in particular, the Subgraph Centrality
of Estrada & Rodriguez-Velazquez (2005), represent a simple and effective indicator of subgraph
importance for subsampling bags in Subgraph GNNs.

2. We demonstrate that centrality-based structural features can be employed as Structural Encodings
to enhance the discriminative power of Subgraph GNNs with subsampled bags of subgraphs.

3. We provide strong experimental evidence showcasing the effectiveness of our sampling strategy
and the efficacy of additionally incorporating centrality-based SEs.

Overall, our results validate our method as a simple, expressive and efficient approach that competes
with state-of-the-art GNNs with reduced empirirical run-times.

2 PRELIMINARIES AND RELATED WORK

Expressive power of MPNNs. The expressive power of MPNNs has become a central research topic
since they were shown to be bounded by the 1-WL isomorphism test (Morris et al., 2019; Xu et al.,
2018; Morris et al., 2023). This has led to approaches which aim to obtain different representations
for non-isomorphic but 1-WL equivalent graphs. These include using random features (Sato et al.,
2021; Abboud et al., 2020), higher-order message passing schemes (Bodnar et al., 2021b;a; Morris
et al., 2019; 2020b) and equivariant models (Maron et al., 2018; Vignac et al., 2020). One of the most
common approaches is to inject positional and structural encodings into the input layer (Bouritsas
et al., 2022; Fesser & Weber, 2024; Dwivedi et al., 2021; Kreuzer et al., 2021) using Laplacian
PEs (Dwivedi & Bresson, 2020; Kreuzer et al., 2021; Wang et al., 2022; Lim et al., 2023; 2024) or
distance information (Ying et al., 2021; Li et al., 2020). A random-walk based encoding (RWSE)
was proposed in (Dwivedi et al., 2021) and was shown to be able to distinguish regular graphs such
as the 1-WL-equivalent CSL graphs (Murphy et al., 2019).
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Subgraph GNNs. A recent line of work has proposed representing a graph as a collection of
subgraphs obtained by a specific selection policy (Zhang & Li, 2021; Cotta et al., 2021; Papp &
Wattenhofer, 2022; Bevilacqua et al., 2021; Zhao et al., 2022; Papp et al., 2021; Frasca et al., 2022;
Qian et al., 2022; Huang et al., 2023; Zhang et al., 2023a). These approaches, jointly referred to
as Subgraph GNNs, allow to overcome the expressivity limitations of MPNNs without introducing
predefined encodings. A powerful, common selection policy termed node marking involves generating
a subgraph per node by marking that node in the original graph, with no connectivity alterations.
Although it can increase expressive power beyond 1-WL (Frasca et al., 2022; You et al., 2021),
this approach has a high computational complexity as we need to consider and process N different
subgraphs, where N is the number of nodes in the original graph.

Several recent papers have focused on scaling these methods to larger graphs. Beyond random
sampling (Bevilacqua et al., 2021; Zhao et al., 2022), Qian et al. (2022) first proposed gradient-based
techniques to learn how to subsample the bag of subgraphs. Bevilacqua et al. (2024) introduced
Policy-Learn (PL), which iteratively predicts a distribution over nodes in the graph and samples
subgraphs from the full-bag accordingly. A similar approach, called MAG-GNN has also proposed to
sample subgraphs using Reinforcement Learning (RL) (Kong et al., 2024). Both of these approaches
involve discrete sampling which can complicate the training process, often requiring 1, 000− 4, 000
training epochs. Another recent approach leverages the connection between Subgraph GNNs and
graph products (Bar-Shalom et al., 2024a) to run message passing on the product of the original
graph and a coarsened version thereof (Bar-Shalom et al., 2024b). The control over the computational
complexity generally comes from the existence of cluster-like structures in the graph which, however,
may not be aligned with the preset number of subgraphs. Additionally, the locality bias afforded by
the coarsening may not generally be effective across tasks. In such cases, coarsening approaches that
are not learnable and based, e.g., on spectral clustering could lead to suboptimal results.

Node Centrality. One common way to characterize nodes in a graph is by using the concept of node
centrality. A node centrality measure defines a real-valued function on the nodes, c : V → R, which
can be used to rank nodes within a network by their “importance”. Different concepts of importance
have led to a myriad of measures in the Network Science community. They range from the simple
Degree Centrality (central nodes have the highest degrees) to path-based methods (Freeman, 1977)
like the Betweenness Centrality (central nodes fall on the shortest paths between many node-pairs).
An important family of centrality measures quantifies the importance of nodes based on walk counts.
As noted in (Benzi & Klymko, 2014), most of these measures take the form of a power series,
where numbers of walks for any lengths are aggregated with an appropriate discounting scheme.
Prominent examples include the Katz Index (Katz, 1953) (KI) and the Subgraph Centrality (Estrada
& Rodriguez-Velazquez, 2005) (SC):

cKI
i =

∞∑
k=0

αk
∑
j

(Ak)ij cSC
i =

∞∑
k=0

βk

k!
(Ak)ii (1)

and variants of the above, for appropriate choices of 0 < α < 1
λ1
, β > 01 (Benzi & Klymko, 2013;

2014). By scoring nodes based on the cumulative number of walks that start from them, these
centrality measures extend the Degree Centrality beyond purely local interactions, in a way that
depends on the discounting scheme (αk and βk

k! for KI and SC, respectively).

3 SUBSAMPLING SUBGRAPH NEURAL NETWORKS

3.1 PROBLEM SETTING

We focus on Subgraph GNNs with a node-marking selection policy (Papp & Wattenhofer, 2022; You
et al., 2021). Given an N -node graph G = (A,X), a node-marking Subgraph GNN processes a bag of
subgraphs obtained from G, viz. BG = {{S1, S2, . . . , SN}}. Here, Si = (A,Xi) and Xi = X ⊕ xvi ,
where ⊕ denotes channel-wise concatenation and xvi is a one-hot indicator vector for node vi.

Goal. In order to reduce the computational complexity of a Subgraph GNN, we aim to reduce the
size of the bag by efficiently and effectively sampling k < N subgraphs.

1λ1 refers to the first eigenvalue of A, β is typically set to 1.
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The sampling procedure must be efficient in that it should avoid computationally complex operations
or the use of learnable components requiring more involved training protocols (Qian et al., 2022;
Bevilacqua et al., 2024; Kong et al., 2024). Ideally, it should consist of a simple and lightweight
preprocessing step prior to running a chosen Subgraph GNN. The sampling procedure must addition-
ally be effective, which means it should closely approach the performance of a full-bag Subgraph
GNN with as few subgraphs as possible. Put differently, it should prioritize marking those nodes
that most quickly lead to performance improvements. As an example, to ground the discussion:
randomly selecting subgraphs (Bevilacqua et al., 2021; Papp et al., 2021) is an efficient but not
effective strategy; learning which subgraph to mark via RL (Kong et al., 2024) is a more effective
approach, but it may not be efficient enough.

We start by presenting considerations on effectiveness which will naturally lead us to focus on walk-
based centrality measures for our purposes. Upon them, we show we can build an effective strategy
that is also efficiently executed as a simple preprocessing step.

3.2 EFFECTIVE NODE MARKING

What makes a node a good marking candidate? We propose approaching this question by considering
node marking as a graph perturbation. Marking a node changes the initial node features: this
alteration in the input will ultimately be reflected in the output graph representation, and understanding
how node marking impacts the output graph representation is instrumental in designing effective
sampling strategies. Beyond binary graph separation, we claim that an effective marking should be
able to (i) alter graph representations sufficiently; (ii) induce perturbations that correlate with graph
targets. Ideally, when marking nodes jointly optimizes (i) and (ii), a Subgraph GNN with a small
bag can then improve on a standard MPNN by sufficiently separating more graphs and in a way that
assists the training objective.

Node Marking, perturbations, and centrality measures. To understand how marking a node alters
graphs representations, we analyze the simplest case: marking a single node. In particular, we ask
how much the representation of a generic graph G can be changed by a single-node marking. As the
MPNN, we consider an L-layer GIN (Xu et al., 2018; Chuang & Jegelka, 2022):

h(l)
v = ϕ(l)

(
h(l−1)
v + ϵ

∑
u∈N(v)

h(l−1)
u

)
yG = ϕ(L+1)

(∑
v∈G

h(L)
v

)
(2)

where ϕ(l)’s are update functions and ϕ(L+1) is a prediction layer (all are parameterized as MLPs).
By applying results from GNN stability studies in (Chuang & Jegelka, 2022) we put forward the
following observation (see details in Appendix C):

Observation 1. The distance between the MPNN representations of a graph G and a graph Sv

generated by marking node v in G, can be upper-bounded as:

|yG − ySv | ≤
L+1∏
l=1

K
(l)
ϕ ·

L+1∑
l=1

λl ·
∑
j

(Al−1)v,j︸ ︷︷ ︸
(A)

(3)

where Kl
ϕ is the Lipschitz constant of MLP ϕ(l), l = 1 . . . L+ 1, A is the adjacency matrix of graph

G and λl ∈ R+ is a layer-wise weighting scheme (dependent on ϵ).

Effectively, the cumulative number (A) of walks starting from node v contributes to upper-bound
the perturbation that marking v induces on the original graph representation. Hence, marking
nodes involved in a lower number of walks will have a more limited influence on altering a message
passing-based graph representation.

We note that the above observation uncovers an intriguing alignment with walk-based centrality
measures: the “most important” nodes associate with the largest (discounted) cumulative numbers of
walks (compare Equations 1 with term (A) in Equation (3)). This leads us to direct our focus to walk-
based centrality measures as promising candidates for selecting which node to mark. Considering
we would like to sufficiently alter the graph representation beyond the one from a standard MPNN,
Observation 1 indicates that, among all possible nodes, those associated with small cumulative
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numbers of walks will be poor marking candidates. We propose to summarise this form of information
via walk-based centrality measures. Our strategy will be to rank nodes based on their centrality
values, and mark the top-scoring ones. In the following, we empirically verify the validity of this
approach, while deferring readers to Appendix C for extensions and additional considerations on the
above analysis.

High-centrality marking induces the largest perturbations. As a first experiment, we examine
the extent to which node centralities recapitulate the amount of perturbation induced by marking
their corresponding nodes. We consider the same setting discussed above: marking one node to
transition from G to Sv , where Sv is obtained from G by marking node v. For a centrality measure c,
we consider three cases: v attains the minimum of c (i), the maximum of c (ii), is randomly picked
(iii). In each of these cases, we measured the distance ∥f(Sv) − f(G)∥ on 100 graphs from two
different real-world datasets from the popular TU suite: MUTAG and NCI1 (Morris et al., 2020a).
Here, f is an untrained 3-layer GIN (Xu et al., 2018). Figure 1 shows results for the walk-based
Subgraph Centrality (Estrada & Rodriguez-Velazquez, 2005), where horizontal lines indicate the
average representation distance, and (i), (ii), (iii) are color-coded, resp., in green, blue, red.

From the plots, it is clearly visible how marking nodes with the lowest centrality leads to the smallest
change in graph representation. This result gives direct empirical validation to the upper-bound
analysis and the consequential observation discussed above. In accordance with our claim, subgraphs
associated with low centrality nodes can be interpreted as “redundant” w.r.t. the original input graph,
or simply as poor marking candidates. Second, we note that marking nodes with the highest centrality
induces the highest average perturbations, above random marking. This result is particularly relevant
as it complements the above theoretical analysis: the walk-based upper-bound (Equation (3)) only
suggests, but does not necessarily entail, that high-centrality marking associates with the largest
perturbations. Figure 1 shows that this occurs in practice on these datasets, further motivating our
proposed sampling strategy. Results for other centrality measures are found in Appendix D; they
indicate that high-centrality marking leads, in all cases, to larger perturbations than random marking,
with the highest values attained by walk-based centrality measures (see Section 2).

High-centrality marking aligns with substructure counting. We have shown how marking nodes
with higher centrality can lead to larger graph perturbations. However, this may not be sufficient. As
an example, consider, two (non-isomorphic but) 1-WL-equivalent graphs. Node marking can alter
their message-passing-based representations, but not necessarily in a way to induce separation: ideally,
if the two graphs are associated with different targets we aim to induce dissimilar perturbations so to
assist the training goal. In effect, we want our sampling strategy to alter the graph representations in
a way that is consistent with the target space. Motivated by the observation that the presence and
number of structural “motifs” are often related to graph-level tasks (Kanatsoulis & Ribeiro, 2024),
we empirically study how marking-induced perturbations correlate with counting small substructures,
as a general, yet relevant, predictor for graph-level targets.

We randomly generate 100 Erdös-Renyi (ER) graphs, each with N = 20 nodes and wiring probability
p = 0.3. Similarly as above, we experiment with various centrality measures, by marking a single
node v which attains either the maximum or minimum centrality value, or is randomly picked. Again,
we record the perturbation ∥f(Sv)− f(G)∥ given by the same architecture described above. On the
same graphs, we count the number of various substructures, and evaluate the Pearson correlation
between this value and the recorded perturbations. Results are reported in Table 1.

The top section of the table compares the correlations obtained by marking randomly or based on the
Subgraph Centrality. The perturbations induced by high-centrality marking correlate significantly
more with the considered substructures than those induced by low-centrality-based or random marking.
The bottom section of the table presents results for other centralities not based on walks. We note how
they all deliver better correlations w.r.t. random marking, but not as high as those attained by the SC.

Discussion. Overall our experiments indicate the following. First, high-centrality sampling appears
to be a better approach than random sampling, especially when walk-based centrality measures are
employed: on average, it selects marking candidates inducing the largest amount of perturbations
over the original graph representations, and in a way that correlates with counts of relevant graph
substructures. Second, the walk-based Subgraph Centrality stands out as a particularly promising
candidate: it is efficient to precalculate this measure and sample subgraphs based on that, while, on
average, it performed as the best one in the experiments discussed above.
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(a) MUTAG perturbation distances (b) NCI1 perturbation distances

Figure 1: Plots showing the amount the graph representation using GIN is altered by adding an
additional node-marked subgraph with (i) the highest centrality, (ii) the lowest centrality and (iii) a
random marking. This is shown for both the MUTAG dataset (a) and for the NCI1 dataset (b).

Table 1: Pearson correlation between various substructure counts and amount of perturbation caused
by different node-marking policies.

Method Tri (↑) 4-Cyc (↑) Tailed Tri (↑) Star (↑)

Maximum Subgraph Centrality 0.947 0.956 0.958 0.972
Minimum Subgraph Centrality 0.644 0.643 0.634 0.698
Random 0.712 0.708 0.723 0.723

Maximum Degree Centrality 0.937 0.947 0.948 0.962
Maximum Closeness Centrality 0.935 0.937 0.946 0.957
Maximum Betweenness Centrality 0.803 0.816 0.821 0.845

In the following, we will focus on this measure in particular. Our strategy will consist of marking only
the top-ranking k nodes according to SC, for a small, fixed k. As we will show, this simple approach
already delivers strong empirical performance. Note that more sophisticated sampling schemes could
be designed based on extensions of the above perturbation analysis. These could consider more
complex Subgraph GNN architectures (Frasca et al., 2022; Zhang et al., 2023a) or study the effect of
multiple node markings, for which a deeper inquiry could take into account pair-wise scores beyond
node-wise centrality measures2. We defer these efforts to future work.

4 COMBINING SUBGRAPH GNNS WITH STRUCTURAL ENCODINGS

4.1 OUR APPROACH

Subgraph Centrality as a SE. In Section 3, we introduced the use of walk-based centrality measures,
particularly Subgraph Centrality, as an efficient and effective method for subgraph sampling. These
centrality measures can be expressed as power series expansions of the adjacency matrix (Benzi
& Klymko, 2014) (see Equation (1)). We notice that addenda terms in the series already provide
precious discriminative structural information, which could be desirable to employ for feature
augmentations (Rampášek et al., 2022; Bouritsas et al., 2022; Dwivedi et al., 2021). Precisely,
in the case of our chosen Subgraph Centrality, for the default β = 1, the k-th term (Ak)vv

k! is
(the discounted number of) k-length closed-walks originating from v. As notable examples, these
values are proportional to the degree of v and the number of incident triangles for k = 2, 3. These
considerations suggest retaining the intermediate values that contribute to the SC of each node, and
employ them à la Structural Encodings beyond sampling purposes.

2For example, when selecting multiple nodes to mark, one could also account for the distance between them.
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Figure 2: An overview of the pipeline for HyMN. We first calculate the centrality encoding for
each node in the graph. We sum each row of this structural encoding to approximate the Subgraph
Centrality of each node. We then sample T node-marked subgraphs with the highest Subgraph
Centrality on the marked node and concatenate the centrality encoding with the initial node features.

We naturally define the Centrality-based Structural Encodings (CSE) of order K for node v as3:

CCSE
v =

[
1,

(A)1vv
1!

,
(A)2vv
2!

,
(A)3vv
3!

, . . . ,
(A)Kvv
K!

]
∈ RK+1. (4)

As K →∞, the sum of these terms clearly coincides with the SC of the node for the default β = 1.
We refer readers to Appendix D.2, for considerations on how CSEs compare with RWSEs.

Hybrid Marking Networks. Our overall method consists in jointly (1) augmenting node features
with K-order CSEs; (2) subsampling the T node-marked subgraphs for the nodes attaining the highest
centrality values; (3) processing the obtained bag of subgraphs with a Subgraph GNN of choice.

Algorithm 1 Hybrid Marking Network

Require: Graph G = (A,X), Subgraph GNN f ,
Max walk-length K, Number of marks T

1: CCSE
v,k ← 0 ∀v ∈ G, k ∈ [K] ▷ SE init.

2: Mv,t ← 0 ∀v ∈ G, t ∈ [T ] ▷ Mark init.
3: B ← I
4: for k ∈ [K] do
5: for v ∈ G do
6: CCSE

v,k ← Bvv/k! ▷ Compute SEs
7: end for
8: B ← B ·A
9: end for

10: C̃SC ←
∑

k C
CSE
:,k ▷ Estimate SC

11: M← select-top(C̃SC , T ) ▷ Select nodes
12: for t ∈ [T ] do
13: MM[t],t ← 1 ▷ Mark nodes
14: end for
15: yG ← f(A,X ⊕ CCSE,M) ▷ Forward-pass
16: return yG

In view of (1) and (2), we dub our approach
HyMN, as in Hybrid Marking Network. These
steps are depicted in Figure 2 and described
in Algorithm 1. We note the following. First, for
a large enough K, centrality values can be ap-
proximated by directly summing over the com-
puted K-order CSEs. Second, node marking
does not require any alteration of the original
graph topology, making it unnecessary to store
the subgraph connectivity. We thus opt not
to materialize the bag of subgraphs: we only
record marking information in the feature ten-
sor and implement a custom message-function
that processes it in an equivariant way. From an
engineering standpoint, this allows for further
memory-complexity enhancement w.r.t. generic
Subgraph GNN approaches.

4.2 EXPRESSIVITY OF SUBGRAPH
GNNS WITH CENTRALITY ENCODINGS

HyMN effectively marries two distinct Graph
Learning approaches: the use of node-marked subgraphs and of SEs. At this point, it is natural to ask
whether this combination of techniques is justified from an expressiveness perspective. Put differently,
we ask whether enhancing message passing with CSEs already subsumes our high-centrality marking
strategy or, vice-versa, whether our marking approach could recover CSEs.

We answer these questions with graph separation arguments (Xu et al., 2018; Morris et al., 2019)
and highlight how, in fact, the two approaches are not generally comparable. We demonstrate that
subsampling Subgraph GNNs with high-centrality marking does not subsume CSE-enhanced MPNNs,
while, at the same time, the discriminative power of the former approach is not fully captured by the

3We defined CSEs directly as the addenda in the power-series in Equation (1), but we note that the first two
terms are not discriminative and could be dropped.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

latter. Since neither technique alone fully subsumes the other, our analysis emphasizes the advantages
of combining them in HyMN for improved expressiveness. Proofs and additional details are reported
in Appendix B.

MPNNs with centrality encoding do not subsume subsampled Subgraph GNNs. Below, we show
that node-marked subgraphs can separate graphs indistinguishable by CSE-enhanced MPNNs, i.e.,
MPNNs running on graphs whose features are augmented with our centrality-based encodings.

Theorem 1. There exists a pair of graphs G and G′ such that for any CSE-enhanced MPNN model
MCSE we have MCSE(G) = MCSE(G

′), but there exists a DS-Subgraph GNN model (without CSEs)
Msub. which uses a top-1 Subgraph Centrality policy such that Msub.(G) ̸= Msub.(G

′).

This result is proved, in particular, by considering two 1-WL equivalent graphs which have identical
values for CSEs. This makes them indistinguishable by a CSE-enhanced MPNN, contrary to (sampled)
DS-Subgraph GNNs (Bevilacqua et al., 2021), the simplest Subgraph GNN variants which process
subgraphs independently. This underscores the advantage of incorporating a node-marking Subgraph
GNN alongside structural encoding techniques.

Subsampled Subgraph GNNs do not subsume MPNNs with centrality encoding. Processing only
a fixed number of subgraphs selected by our high-centrality strategy may limit discriminative power.
In particular, the following shows that this approach does not subsume CSE-enhanced MPNNs:

Theorem 2. There exists a pair of graphs G and G′ such that for any Subgraph GNN model Msub.
which uses a top-1 Subgraph Centrality policy we have Msub.(G) = Msub.(G

′), but there exists an
MPNN + centrality encoding model MCSE such that MCSE(G) ̸= MCSE(G

′).

This result exposes a limitation of subsampled Subgraph GNNs in distinguishing between two
non-isomorphic graphs with differing closed walks, features which are, instead, captured by CSEs.
Notably, as discussed in Proposition 2 (Appendix B), a full-bag approach is capable of capturing
CSEs. This observation suggests that while CSEs do not universally enhance the expressiveness of
any Subgraph GNN, they can be beneficial when subsampling a limited number of subgraphs.

Taken together, Theorems 1 and 2 indicate that leveraging SC both as a structural encoding and as
a means for subgraph sampling is advantageous from an expressiveness perspective, justifying the
integration of the two techniques in HyMN.

5 EXPERIMENTS

Our experiments aim to validate arguments in the previous sections and to empirically answer the
following questions:

(Q1) Can Subgraph Centrality be used to effectively subsample subgraphs for Subgraph GNNs?
(Q2) Can HyMN efficiently scale to graphs out of reach for Subgraph GNNs?
(Q3) How does HyMN perform on real-world datasets w.r.t. strong GNN baselines?
(Q4) What is the impact of incorporating CSEs?

Synthetic experiment for counting substructures. The ability of a model to count local substruc-
tures is an acknowledged way of evaluating its expressive power (Bouritsas et al., 2022; Arvind et al.,
2020; Tahmasebi et al., 2020). In order to answer (Q1) and test the efficacy of subgraph sampling with
node centrality, we explored the ability of a Subgraph GNN to count different small substructures as
we increase the number of subgraphs in our bag. We closely followed the experimental procedure of
(Chen et al., 2020), but modified the data generation process to render the task more challenging and
informative4. We compared the performance of sampling subgraphs based on different approaches:
random sampling and sampling based on the highest values of different centrality measures. No
CSEs are employed in this setting. Section 5 reports results for triangle and 4-cycle counting. These
results demonstrate the significant improvement afforded by high-centrality sampling over random
sampling with fewer subgraphs (Q1). Additionally, we show that SC-based sampling generally outper-
formed other centrality measures, demonstrating the benefits of focusing on walk-based centralities,
in alignment with our analysis in Section 3. Appendix D reports results for additional substructures,

4In particular, we considered larger graphs with a similar number of nodes to correct an undesired correlation
between the graph size and the task targets observed in the original data (see Appendix E.2).
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Figure 3: Comparing Random and Centrality-based sampling on counting different substructures in
the graph. For reference, the average graph size is 59.33, corresponding to the average bag-size of a
full-bag Subgraph GNN.

Table 2: Results on OGB datasets. The first and second best results for each task are color-coded.

Method MOLHIV (ROC-AUC ↑) MOLBACE (ROC-AUC ↑) MOLTOX21 (ROC-AUC ↑)

GCN Kipf & Welling (2017) 76.06 ±0.97 79.15 ±1.44 75.29 ±0.69
GIN Xu et al. (2018) 75.58 ±1.40 72.97 ±4.00 74.91 ±0.51

FULL Bevilacqua et al. (2024) 76.54 ±1.37 78.41 ±1.94 76.25 ±1.12
OSAN Qian et al. (2022) - 76.30 ±3.00 -
MAG-GNN Kong et al. (2024) 77.12 ±1.13 - -

RANDOM (T = 2) Bevilacqua et al. (2024) 77.55 ±1.24 75.36 ±4.28 76.65 ±0.89
POLICY-LEARN (T = 2) Bevilacqua et al. (2024) 79.13 ±0.60 78.40 ±2.85 77.47 ±0.82
HyMN (GIN, T=2) w/out CSE 79.77 ±0.70 78.22 ±4.02 77.68 ±0.71
HyMN (GIN, T=2) 81.01 ±1.17 81.16 ±1.21 77.30 ±0.35

RANDOM (T=5) Bevilacqua et al. (2024) 77.30 ±2.56 78.14 ±2.36 76.62 ±0.89
POLICY-LEARN (T=5) Bevilacqua et al. (2024) 78.49 ±1.01 78.39 ±2.28 77.36 ±0.60
HyMN (GIN, T=5) w/out CSE 79.62 ±1.14 78.57 ±1.31 77.82 ±0.59
HyMN (GIN, T=5) 80.17 ±1.40 79.94 ±0.48 76.99 ±0.45

real-world experiments, and other centrality measures where the effectiveness of SC-based sampling
is further demonstrated.

OGB. We tested HyMN on several datasets from the OGB benchmark (Hu et al., 2020b). To further
examine (Q1), Table 2 shows the performance of our approach in relation to MPNNs, a full-bag
Subgraph GNN and other subgraph sampling policies with the same number of subgraphs . Notably,
even without using the centrality-based encoding (HyMN w/out CSE), our method matches the perfor-
mance of a learnable sampling policy (POLICY-LEARN (Bevilacqua et al., 2024)) and consistently
outperforms MPNNs and random sampling policies. Additionally, we observe that augmenting node
features with CSEs can significantly increase performance on MOLHIV and MOLBACE, outper-
forming a full-bag Subgraph GNN (Q4). These results suggest that centrality sampling is effective
and that additionally incorporating centrality information can lead to performance improvements
on real-world datasets, aligning with our findings in Section 3. Additional results for MOLHIV are
reported in Table 4, where we show HyMN can outperform strong GNN baselines (Q3).

Peptides. In order to evaluate the ability of HyMN to scale to larger graphs (Q2), we experimented on
the Peptides datasets from the LRGB benchmark (Dwivedi et al., 2022). The average number of nodes
in these graphs is 150.94, so it is difficult for a full-bag Subgraph GNN to process. Additionally,
using the centrality encoding to sample just one or two additional node-marked subgraphs can
improve performance on both datasets. We also outperform GPS (Rampášek et al., 2022) (a Graph
Transformer) and match the performance of Graph-MLP-Mixer (He et al., 2023) (Q3). Our timing
experiments on Peptides-Func demonstrate that we are significantly more efficient than both of these
approaches, only increasing the training time per epoch over a GCN by 42% and the inference time
by 25% using ‘HyMN (GCN, T=1)’ (Q2).

Zinc. We experimented with the ZINC-12K molecular dataset (Sterling & Irwin, 2015; Gómez-
Bombarelli et al., 2018), where we maintain a 500k parameter budget, in line with previous works.
We compared the test MAE using HyMN to other sampling approaches (Qian et al., 2022; Bevilacqua
et al., 2024), a full-bag Subgraph GNN, a Graph Transformer (GPS) (Rampášek et al., 2022) and two
expressive GNN baselines (GSN, CIN) (Bouritsas et al., 2022; Bodnar et al., 2021a). As can be seen
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Table 3: Results on Peptides datasets with timing comparisons on Peptides-Func using a NVIDIA
GeForce RTX 3080 10GB. Test AP is quoted for Peptides-Func and Test MAE for Peptides-Struct.

Method Precompute (s) Train (s/epoch) Test (s) Peptides-Func (↑) Peptides-Struct (↓)

GIN 0.00 ±0.00 2.65 ±0.01 0.238 ±0.004 0.6555 ±0.0088 0.2497 ±0.0012
GIN + CSE 20.12 ±0.39 2.78 ±0.01 0.253 ±0.004 0.6619 ±0.0077 0.2479 ±0.0011
HyMN (GIN, T=1) 23.71 ±0.34 4.93 ±0.03 0.420 ±0.002 0.6857 ±0.0055 0.2464 ±0.0013
HyMN (GIN, T=2) 23.75 ±0.32 6.60 ±0.03 0.561 ±0.001 0.6863 ±0.0050 0.2457 ±0.0012

GCN 0.00 ±0.00 2.07 ±0.04 0.234 ±0.006 0.6739 ±0.0024 0.2505 ±0.0023
GCN + CSE 20.19 ±0.36 2.16 ±0.04 0.254 ±0.005 0.6812 ±0.0037 0.2499 ±0.0010
HyMN (GCN, T=1) 23.88 ±0.30 2.94 ±0.01 0.292 ±0.002 0.6912 ±0.0170 0.2481 ±0.0013
HyMN (GCN, T=2) 23.97 ±0.30 3.83 ±0.01 0.368 ±0.002 0.6948 ±0.0052 0.2477 ±0.0010

GPS (Rampášek et al. (2022)) 20.87 ±0.43 8.39 ±0.05 0.611 ±0.005 0.6535 ±0.0041 0.2500 ±0.0005
Graph-ViT (He et al. (2023)) 29.12 ±0.61 6.78 ±0.01 0.709 ±0.009 0.6942 ±0.0075 0.2449 ±0.0016
G-MLP-Mixer (He et al. (2023)) 29.52 ±0.69 6.87 ±0.03 0.684 ±0.003 0.6921 ±0.0054 0.2475 ±0.0015

from Table 4, our hybrid method can outperform a full-bag Subgraph GNN as well as previously
proposed subsampling based approaches. Additionally, we perform competitively with CIN, which
takes into account higher-order interactions and explicitly models ring-like structures. We highlight
that additionally using subgraphs can outperform purely using the centrality-based encodings (Q4).

Summary. In reference to the questions enlisted above, we conclude the following. (A1) The results
from substructure counting and on the OGB benchmarks suggest a positive answer to Q1: SC-based
sampling significantly outperformed random sampling on both, and matched the performance of the
learnable POLICY-LEARN. (A2) HyMN was easily applied to the larger Peptides datasets, with
strong empirical performance and favorable inference and training run-times. This indicates our
approach broadens the applicability of Subgraph GNNs to larger graphs. (A3) Beyond Peptides,
HyMN also attained remarkable performance on OGB benchmarks, and performed competitively on
ZINC. This suggests a generally positive answer to Q3. (A4) We observe that CSEs can enhance the
performance of standard MPNNs (see Table 3) and subsampled Subgraph GNNs (see, e.g., MOLHIV
and MOLBACE in Table 2). We note, however, they were not beneficial on MOLTOX21 (Table 2).

Table 4: Test results on the ZINC (Sterling & Irwin,
2015) and MOLHIV (Hu et al., 2020b) datasets.
The first and second best results for each task are
color-coded.

Method ZINC (↓) MOLHIV (↑)

GCN 0.321 ±0.009 76.06 ±0.97
GIN 0.163 ±0.004 75.58 ±1.40

GSN 0.101 ±0.010 80.39 ±0.90
CIN 0.079 ±0.006 80.94 ±0.57
GPS 0.070 ±0.004 78.80 ±1.01
GINE-MLP-Mixer 0.073 ±0.001 79.97 ±1.02
GINE-ViT 0.085 ±0.004 77.92 ±1.42

FULL 0.087 ±0.003 76.54 ±1.37

OSAN 0.177 ±0.016 -
POLICY-LEARN (T = 2) 0.120 ±0.003 79.13 ±0.60
RANDOM (T = 2) 0.136 ±0.005 77.55 ±1.24

GIN+CSE 0.092 ±0.002 77.44 ±1.87
HyMN (GIN, T=1) 0.080 ±0.003 80.36 ±1.23
HyMN (GIN, T=2) 0.083 ±0.002 81.01 ±1.17

6 CONCLUSION

We introduced a novel framework, termed
HyMN, which combines a subgraph sampling
strategy and structural encodings both derived
from walk-based centrality measures and, in
particular, the Subgraph Centrality by (Estrada
& Rodriguez-Velazquez, 2005). We showed
that this centrality is a good measure of sub-
graph importance: for a very limited number of
subgraphs it enables competitive performance
and outperforms random and learnable selec-
tion strategies, approaching full-bag methods.
The additional inclusion of centrality-based SEs
is also proved to be beneficial both theoreti-
cally and in practice, allowing to enhance down-
stream generalization performance on several
real-world benchmarks. Importantly, the strong
performance of our method is achieved with a thin computational overhead, making it applicable to a
wider spectrum of downstream tasks.

Limitations and Future Work. Our sampling procedure does not take into account already sampled
subgraphs unlike methods such as the ones in (Zhao et al., 2022; Bevilacqua et al., 2024). Future
work could focus on more general perturbation analyses to give an indication on multi-node marking
for higher-order selection policies (Qian et al., 2022) or to quantify the impact of adding subgraphs to
a partially populated bag. More sophisticated selection strategies could combine different walk-based
centrality measures or consider pairwise structural features.
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A OUTLINE OF THE APPENDIX

We first report proofs pertaining to Section 4 in Appendix B. We then detail the perturbation analysis
of Section 3 in Appendix C. Furthermore, we conduct further experiments comparing Subgraph
Centrality with different centrality measures and to RWSE in Appendix D. We then comprehensively
describe our experiments, model and parameters in Appendix E.

B CLAIMS AND PROOFS

Proposition 1. Let G = (A,X) be a connected graph (with n nodes) with initial node features
Xi = pCSE

i . There exists an L = k + 1 layered Message Passing Neural Network (MPNN) that
processes the graph G and can compute the following structural encodings capturing closed-walk
probabilities for walks of size up to k for any node i, defined as:

ci =

[
1,

(A)1ii∑n
j=1(A)1ij

,
(A)2ii∑n
j=1(A)2ij

, . . . ,
(A)kii∑n
j=1(A)kij

]
,

up to arbitrary precision.

Proof. We define a Message Passing Neural Network (MPNN) as a composition of layers of the
form:

X̃(l) = AX(l−1)W(l)1 +X(l−1)W(l)0 , (5)

X(l) = f (l)(X̃(l)) (6)

where W(l)1 and W(l)0 are learned weight matrices, and f (l) is an MLP for the l-th layer. We refer
to the layers in Eqs. (5) and (6) as the MPNN layer and MLP layer, respectively, where the MLP
layer is assumed to be a single hidden layer with interleaved ReLU activations.

We recall that the initial node feature matrix, X(0) ∈ Rn×(k+1), is given as follows:

X(0) =


− pT

1 −
− pT

2 −
...

− pT
n −


where,

pi =

[
1,

(A)1ii
1!

,
(A)2ii
2!

,
(A)3ii
3!

, . . . ,
(A)kii
k!

]
∈ Rk+1.
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Step 1: Recovering the unnormalized CSE. To uncover the unnormalized CSE, we set W(1)1 = 0
and W(1)0 ∈ R(k+1)×((k+1)+k) as follows:

W(1)0 =


1 0 0 · · · 0 0 · · · 0
0 1! 0 · · · 0 0 · · · 0
0 0 2! · · · 0 0 · · · 0
...

...
...

. . .
...

...
...

0 0 0 · · · k! 0 · · · 0


Thus, the MPNN layer gives:

X̃(1) ≜ MPNN(1)(A,X) =


− punormalizedT

1 −
− punormalizedT

2 −
...

− punormalizedT
n −


where,

punormalizedT
i =

[
1, (A)1ii, (A)2ii, (A)3ii, . . . , (A)kii, 0, . . . , 0

]
∈ R(k+1)+k.

For the MLP f0, we use an identity weight matrix and a bias vector, which is all zeros except for the
last k values, which are ones:

b(0) = [0, 0, . . . , 0, 1, 1, . . . , 1] ∈ R(k+1)+k.

Thus, we obtain X(1), such that:

X
(1)
i =

[
1, (A)1ii, (A)2ii, (A)3ii, . . . , (A)kii, 1, . . . , 1

]
∈ R(k+1)+k.

Step 2: Compute the matrix of closed-walk probabilities. We compute the matrix of closed-walk
probabilities in sequential steps. For each j-th step, we use the following weight matrices:

W(j+1)0 =

Ik+1 0 0
0 Ij−1 0
0 0 0k−(j−1)


W(j+1)1 =

0k+1 0 0
0 0j−1 0
0 0 Ik−(j−1)


Where In is an n× n identity matrix, and 0n is an n× n zero matrix (if n = 0 the corresponding
block is omitted). This means:

XW(j+1)0

keeps only the first k + j columns of X , and,

AXW(j+1)1

multiplies by A only the last k − (j − 1) columns of X .

By doing this iteratively for j = 1 to j = k, and setting the interleaved MLPs to identity weight
matrices, we obtain the node matrix X̃(k+1), such that:

X̃
(k+1)
i =

1, (A)1ii, (A)2ii, (A)3ii, . . . , (A)kii,

n∑
j=1

(A)1ij ,

n∑
j=1

(A)2ij , . . . ,

n∑
j=1

(A)kij

 ∈ R(k+1)+k.

Let F : R2k+1 → Rk+1 be the following continuous function:

F (x)i =

{
1, if i = 0,
xi

xk+i
, if i ̸= 0.

Since the graph is connected, the denominator is always non-zero, making the function continuous.
Additionally, since we are considering a finite graph with n nodes, the input to the function F lies
within a compact set.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Using the universal approximation theorem Hornik (1991); Cybenko (1989), F can be approximated
to an arbitrary precision using an MLP. Thus, we use the MLP of layer k + 1 to realize F , obtaining
the following node matrix,

X
(k+1)
i =

[
1,

(A)1ii∑n
j=1(A)1ij

,
(A)2ii∑n
j=1(A)2ij

, . . . ,
(A)kii∑n
j=1(A)kij

]
∈ Rk+1.

This completes the proof.

Theorem 3 (Theorem 1 in Section 4). There exists a pair of graphs G and G′ such that for any CSE-
enhanced MPNN model MCSE we have MCSE(G) = MCSE(G

′), but there exists a DS-Subgraph GNN
model (without CSEs) Msub. which uses a top-k Subgraph Centrality policy such that Msub.(G) ̸=
Msub.(G

′).

Proof. Using the notation of Read & Wilson (1998), let G,G′ be the quartic vertex transitive graphs
Qt15 and Qt19 respectively (Here vetrex transitive means that for each pair of nodes there exists
a graph automorphism that maps one node to the other, and quartic refers to 4-regular). As these
graphs are 4-regular and of the same size, they are 1-WL indistinguishable. In addition, as they are
vertex transitive, for each pair of indices i, j we have:

Ak
i,i = Ak

j,j =
trace(Ak)

12
. (7)

A′k
i,i = A′k

j,j =
trace(A′k)

12
. (8)

Here the last equalities hold because both graphs have 12 vertices. Thus, to show that G and G′ are
indistinguishable by MPNN + centrality encoding it is enough to show that trace(Ak) = trace(A′k).
As G and G′ were shown in Brouwer & Spence (2009) to be co-spectral (i.e. their laplacian has the
same eigenvalues) and 4-regular, matrices A and A′ have the same eigenvalues. Thus we have:

trace(A)k =

1∑
i=1

2λk
i = trace(A′)k. (9)

Here λi is the i-th eigenvalue of both A and A′. Thus the central encoding of all nodes in either
graph is equal, and they are indistinguishable by any any MPNN + CE model. On the other hand, we
observe that the degree histogram in the 1-hop neighborhood of any node differs between the two
graphs, Qt15 and Qt19. Since an MPNN over a graph with a marked node can compute the degree
distribution of the node’s 1-hop neighborhood, Msubgraph can distinguish between the two graphs.
This concludes the proof.

Theorem 4 (Theorem 2 in Section 4). There exists a pair of graphs G and G′ such that for any
Subgraph GNN model Msub. which uses a top-k Subgraph Centrality policy we have Msub.(G) =
Msub.(G

′), but there exists an MPNN + centrality encoding model MCSE such that MCSE(G) ̸=
MCSE(G

′).

Proof. We begin by examining the scenario where k = 1, meaning that our policy randomly selects
subgraphs corresponding to the node with the highest centrality measure. Consider the graph G ,
which is formed by attaching a global node to every vertex of a cyclic graph of length 6 . Next, define
G′ as the graph obtained by attaching a global node to each vertex of two disconnected cyclic graphs,
each of length 3 (The global node is also attached to itself through a self loop). These graphs are
displayed in Fig. 5. It can be easily seen that G and G′ are WL indistinguishable (e.g. by induction).
We first prove that both in G and G′ the global node has the highest centrality measure. This implies
that for both graphs, the resulting bag of subgraphs is of size one and is thus equivalent to standard
message passing on the graphs (here we can ignore marking as the global nodes have a unique degree
and so they can be uniquely identified by standard message passing). This implies that the two graphs
are indistinguishable by any Subgraph GNN model Msubgraph which uses a top-1 node centrality
policy. We then show that the multiset of values of the centrality encoding of each graph is different,
showing that it can be distinguished by an MPNN + centrality encoding model. To show that in both
graphs the global node has the higher centrality, we first prove the following lemma:
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Lemma 1. Let A denote the adjacency graph of one of the above graphs, v denote the global node
and u1, u2 denote a pair of nodes of the graph such that u1 ̸= v . For each k ∈ N we have:

Ak
v,u2
≥ Ak

u1,u2

Ak
v,u2

> 0

Ak
v,v > Ak

u1,u1
.

(10)

Proof of lemma. We use induction on k. As v is connected to all nodes including itself , for k = 1,
Av,u1

= 1 . Since, disregarding the global nodes, G,G′ are simple graphs , we have Au1,u1
=

0, Au2,u1
≤ 1, thus the base case holds. Assuming the induction hypothesis holds for some k, we

first notice that
Ak+1

u2,v = Ak
u2,: ·A:,v ≥ Ak

u2,: ·A:,u1 = Ak+1
u2,u1

. (11)

Here, Ak
u,:, A

k
:,u represents the column/row vectors induced by node u respectively and · denotes

inner product. The inequality above follows from our induction hypothesis and the fact that all entries
of the matrix Ak are non-negative. Next, we notice that

Ak+1
u2,v = Au2,: ·Ak

:,v ≥ Au2,v ·Ak
v,v > 0. (12)

In addition, we notice that Ak
v,u1
· Au1,v > 0 = Ak

u1,u1
· Au1,u1

, where the last equallity holds
because Au1,u1

= 0. Thus, we get:

Ak+1
v,v = Ak

v,u1
·Au1,v +

∑
u ̸=u1

Ak
v,u ·Au,v > Ak

u1,u1
·Au1,u1 +

∑
u̸=u1

Ak
u1,u ·Au,u1 = Ak+1

u1,u1
.

(13)
This completes the induction step.

As explained before, the last lemma shows that top-1 centrality node marking policy always produces
a bag with a single graph where the global node is marked. As the global node can be uniquely
distinguished by its degree, this shows that a Subgraph GNN with this policy is equivalent to standard
message passing and is thus unable to distinguish G and G′. Finally, computing the centrality
encoding of order 3 we see the multiset of features of the two graphs are different and so message
passing + CE is able to seperate G and G′.

We now address the general case of a top-k centrality node-marking policy. Let Gk, G
′
k denote the

graphs consisting of k disjoint copies of G and G′, respectively. In each disjoint copy, the global
node is replicated independently and maintains a higher centrality than all other nodes within that
copy. Thus, in both graphs, the k nodes with the highest centrality are the k copies of the global node.

The bag of graphs generated from Gk and G′
k using the top-k centrality node-marking policy are

then composed of k copies of Gk and G′
k respectively, where a single copy of the global node is

marked. Notice that in each one of these bags, all graphs are isomorphic to each other, thus it is
enough to show that Gk with a single marked global node copy is 1-WL indistinguishable from G′

k
with a single marked global node copy. To see this holds, notice that as we have seen above, the
connected component of Gk containing the marked node is 1-WL indistinguishable from the copy
of the connected component of G′

k containing the marked node, and the k − 1 unmarked connected
components of Gk are 1-WL indistinguishable from the unmarked connected components of G′

k.
Thus any subgraph GNN which uses a top-k centrality node marking policy is unable to distinguish
Gk and G′

k. Finally, the centrality encoding values of each node ucopy in Gk is equal to the centrality
encoding value of the node u in G which corresponds to ucopy. As we have seen before the set of
centrality encoding values of G and G′ are different, the set of centrality encoding values of Gk and
G′

k are also different, and so message passing + CE is able to separate Gk and G′
k.

Proposition 2. Let G = (A,X) be a finite graph, and let BG be the bag generated from original
graph G. Let DSS-GNN be the subgraph-based GNN that processes the bag BG. There exists a set
of weights for DSS-GNN, such that DSS-GNN(BG) = MPNN(G) for any MPNN processing G with
centrality-based structural encodings as initial node features.
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Figure 4: Two quartic vertex transitive graphs which cannot be distinguished with MPNN + CSE but
can be distinguished with a Subgraph GNN with a top-1 Subgraph Centrality policy.

Figure 5: Two graphs which cannot be distinguished by a Subgraph GNN with a top-1 Subgraph
Centrality policy without CSE but can be distinguished by an MPNN + CSE. One graph is a hexagon
with a global node connected to all other nodes, and another graph which depicts two triangles
connected to a global node.
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Proof. Let {Xi, Ai}ni=1 represent the node feature matrix Xi and adjacency matrix Ai, respectively,
for the i-th subgraph in the collection of subgraphs. We adopt the binary node-marking technique from
(Bevilacqua et al., 2021), where Xi includes a one-hot encoded vector for the root node identification,
with a 1 in the i-th position,5

Xi =



0
...
0
1
0
...
0


with 1 at the i-th position, (14)

we note that in this case, the adjacencies of all subgraphs, denoted as {Ai}ni=1, are identical to the
adjacency of the original graph, A.

We recall that the DSS-GNN architecture applies an MPNN over each subgraph independently,
followed by an MLP. Subsequently, an MPNN followed by an MLP operates on a shared component,
enabling information sharing across subgraphs.

To be more explicit, the architecture is defined as follows:

X̃ l;i = MPNNl;1(Ai, X l−1;i), (15)

Y l−1;i = f l;1(X̃ l−1;i), (16)

X̃ l−1 = MPNNl;2

 n∑
j=1

Aj ,

n∑
j=1

X l−1;j

 , (17)

Y l−1 = f l;2(X̃ l−1), (18)

X l+1;i = Y l−1;i + Y l−1, (19)

where the MPNN is defined as:

MPNN(X) = AXW1 +XW0. (20)

The proof proceeds in three steps. First, we compute the centrality encoding at the root nodes, recall
Equation (4), specifically at Xi

i . Second, we use the shared information component to propagate
this root node information across all subgraphs. Finally, we simulate an MPNN over each subgraph.
Since the subgraphs are identical and equipped with the centrality encoding, the proof is complete.

Step 1. We begin by applying the K MPNN layers to each subgraph independently, and setting to 0
the weight matrices of the shared component, effectively enforcing no sharing between the subgraphs.

More specifically, at the k-th layer, the following weight matrices are used:

W0 =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


k×(k+1)

, W1 =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1


k×(k+1)

where:

• W0 is a k × (k + 1) matrix consisting of a k × k identity matrix Ik followed by an extra column
of zeros:

W0 = (Ik 0k×1)

5Although this proof does not consider additional node features, it can be easily adapted to incorporate them.
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Specifically, when W0 is multiplied by a matrix B ∈ Rn×k, i.e., BW0, it appends a column of
zeros to the right of B, leaving the structure of B unchanged but with an additional column of
zeros.

• W1 is a k × (k + 1) matrix consisting of a k × k zero matrix 0k×k followed by a column of all
zeros except for a 1 in the last row:

W1 = (0k×k ek)

Specifically, when W1 is multiplied by a matrix B ∈ Rn×k, i.e., BW1, the resulting matrix is
composed of the zero matrix and the last column of B. In other words, this operation extracts the
last column of B and appends it to a matrix of zeros of size k × k.

In this setup, for each i, the term AXiW1 at the k-th layer propagates the node marking to neigh-
boring nodes and places it in the last column. Meanwhile, the term XW0 copies the propagated
marking from the previous k layers.

Thus, by summing the two terms, after K layers, the node features Xi
j are given by:

Xi
j =

{[
1, A1

ii, A
2
ii, . . . , A

K
ii

]
, for j = i,

[0,vj ] , for j ̸= i,
(21)

where vj holds at its k-th slot the number of marks propagated to node j in subgraph i at the step k.

Since each entry in the vectors Xi
j for any i ∈ [n] and j ∈ [n] represents the propagation of a mark

over k ∈ [K] steps — specifically, the number of walks from the root node of subgraph i to node
j (within subgraph i) — the number of possible values for these vectors is constrained. Moreover,
because the original graph is finite, the total number of possible values for these vectors must also be
finite.

By Theorem 3.1 in (Yun et al., 2019)6, there exists an MLP at the K-th layer that can implement the
following mappings:

fk([1, a1, a2, . . . , aK ]) =
[
1,

a1
1!
,
a2
2!
, . . . ,

aK
K!

]
, (22)

fk([z, b1, b2, . . . , bK ]) = 0K+1, (23)

for any z ̸= 1 and ai, bi ∈ R. At this step, the root nodes i hold the centrality value, recall
Equation (4), while all other nodes hold the feature vector 0K+1.

Step 2. Next, we utilize the shared information component by setting the weights of its MPNN
as follows, W1 = 0 and W0 = I , which effectively broadcasts the root node information to the
corresponding nodes in all other subgraphs. To prevent the root nodes from receiving double the
value, we initialize the MPNN that operates on each subgraph individually with zero weights.

Step 3. At this point, we have n copies of the original graph, each equipped with its corresponding
centrality values. Therefore, the MPNN over each subgraph can effectively simulate the MPNN over
the original graph, now with centrality values assigned to the nodes. Assuming a mean readout is
used at the conclusion of both the DSS-GNN(BG and the MPNN(G), their outputs will be identical.

This concludes the proof.

We note that this result is also valid for Subgraph GNN architectures that subsume DSS-GNN, e.g.,
GNN-SSWL+ (Zhang et al., 2023a).

6This theorem assumes the output is bounded between −1 and 1. However, we can relax this assumption as
long as the outputs are bounded (and they are since the original graph is finite). To handle this, we can use the
theorem to calculate the normalize values (dividing each value by the upper bound), and then use an additional
MLP to scale the results back to the original values.
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C ON MARKING-INDUCED PERTURBATIONS AND THE NUMBER OF WALKS

In this section, we report more details and comments on our Observation 1 introduced in Section 3.2.

We start by commenting on Equation (3). We recall that we are interested in upper-bounding the
amount of output perturbation induced by marking node v. Effectively, this corresponds to the
distance |yG − ySv

|, namely, the absolute difference between the predictions a backbone MPNN
computes for the original graph (G) and the subgraph obtained by marking node v (Sv).

For an L-layer MPNN in the form of Equation (2), we obtain Equation (3) by an almost immediate
application of the results in (Chuang & Jegelka, 2022). Indeed, let us rewrite:

|yG − ySv | = |ϕ(L+1)
( ∑
u∈G

hG,(L)
u

)
− ϕ(L+1)

( ∑
u∈Sv

hSv,(L)
u

)
| (24)

where hG,(L)
v , h

Sv,(L)
v indicate, respectively, the representations of node u in graph G and its perturbed

counterpart Sv . Now, by Chuang & Jegelka (2022, Theorem 8) we have:

|yG − ySv | ≤
L+1∏
l=1

K
(l)
ϕ · TMDL+1

w (G,Sv)︸ ︷︷ ︸
(A)

(25)

where (A) is the L+ 1-depth Tree Mover’s Distance (TMD) (Chuang & Jegelka, 2022) with layer-
weighting w calculated between the original graph and its marked counterpart.

In the same work, the authors provide an upper-bound on the TMD between a graph and a perturbed
version obtained by a change in the initial features of a node (Chuang & Jegelka, 2022, Proposition
11). We restate this result.
Proposition 3. (Chuang & Jegelka, 2022, Proposition 11) Let H be a graph and H ′ be the perturbed
version of H obtained by changing the features of node v from xv to x′

v . Then:

TMDL
w(H,H ′) ≤

L∑
l=1

λl ·Widthl(TL
v ) · ∥xv − x′

v∥ (26)

where λl ∈ R+ is a layer-wise weighting scheme dependent of w and Widthl(TL
v ) is the width at the

l-th level of the L-deep computational tree rooted in v.

We can readily apply Proposition 3 and leverage the fact that marking only induces a unit-norm
feature perturbation to get:

|yG − ySv
| ≤

L+1∏
l=1

K
(l)
ϕ · TMDL+1

w (G,Sv) (27)

≤
L+1∏
l=1

K
(l)
ϕ ·

L+1∑
l=1

λl ·Widthl(T
L+1
v ) (28)

Finally, we note that Widthl(T
L+1
v ) corresponds to the number of walks of length l− 1 starting from

v. This can be easily seen by noting that the leaves of the computational tree can be put in a bijection
with all and only those walks of length l − 1 starting from v7. This value is notoriously computed
from row-summing powers of the adjacency matrix A, so that: Widthl(T

L+1
v ) =

∑
j(A

l−1)v,j . We
ultimately have:

|yG − ySv
| ≤

L+1∏
l=1

K
(l)
ϕ ·

L+1∑
l=1

λl ·Widthl(T
L+1
v ) (29)

=

L+1∏
l=1

K
(l)
ϕ ·

L+1∑
l=1

λl ·
∑
j

(Al−1)v,j (30)

7This can be constructed, e.g., by associating leaf nodes to the walks (uniquely) obtained by “climbing up”
the computational tree up to the root.
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The above bound is easily extended to consider a closely related analysis: the impact of adding a
single node-marked subgraph S to a bag formed by the original graph only. This analysis would
enlighten us on the impact a single subgraph addition in the case of “augmented policies”, which we
use throughout our experiments in Section 5, see Appendix E.1.

In other words, we would like to bound |yB={G}
G − y

B={S,G}
G |, where these outputs are given

by Equation (39), with a base MPNN backbone as per Equation (2). We have:

|yB={G}
G − y

B={S,G}
G | = |ϕ(L+1)

(∑
v∈G

(h
(L)
G,v + h

(L)
S,v)

)
− ϕ(L+1)

(∑
v∈G

h
(L)
G,v)

)
| (31)

≤ KL+1
ϕ · ∥

∑
v∈G

(h
(L)
G,v + h

(L)
S,v)−

∑
v∈G

h
(L)
G,v∥ (32)

where KL+1
ϕ is the Lipschitz constant of the prediction layer ϕ(L+1). We can rewrite the above as

follows by appropriately rearranging terms and by the triangular inequality:

|yB={G}
G − y

B={S,G}
G | ≤KL+1

ϕ · ∥
∑
v∈G

(h
(L)
G,v + h

(L)
S,v)−

∑
v∈G

h
(L)
G,v∥ (33)

≤ K
(L+1)
ϕ ·

(
∥
∑
v∈G

h
(L)
G,v∥+ ∥

∑
v∈G

h
(L)
S,v −

∑
v∈G

h
(L)
G,v∥︸ ︷︷ ︸

(A)

)
(34)

where, we note, (A) is the distance between the embeddings of the marked and unmarked graphs,
before a final predictor is applied. This term can be bounded similar to our initial analysis for
Observation 1:

(1) = ∥
∑
v∈G

h
(L)
S,v −

∑
v∈G

h
(L)
G,v∥ (35)

≤
L∏

l=1

K
(l)
ϕ · TMDL+1

w (S,G)︸ ︷︷ ︸
(B)

(36)

where (B) can be upper-bounded, again, by Proposition 38. Putting things together:

|yB={G}
G − y

B={S,G}
G | ≤ K

(L+1)
ϕ ·

(
∥
∑
v∈G

h
(L)
G,v∥+

L∏
l=1

K
(l)
ϕ ·

L+1∑
l=1

λl ·
∑
j

(Al−1)S,j

)
(37)

Differently from the above analysis, we observe a contribution given by ∥
∑

v∈G h
(L)
G,v∥. This could be

upper-bounded, e.g., by the sum of the “tree-norms” Chuang & Jegelka (2022) of the computational
trees over the original graph. We note that (the presence of) this term is, however, independent on the
selection of the specific node to mark.

In future developments of this work we envision to more deeply enquire into the relation between
Equation (37) and Equation (1), and into the principled choice of a specific centrality measure among
different possibilities.

D ADDITIONAL EXPERIMENTS

D.1 COMPARISON TO OTHER CENTRALITY MEASURES

We compared the impact of using different node centrality measures as a node marking scheme on
how much they altered the graph representation. For each of these centrality measures, we measured
the distance ∥f(Sv)− f(G)∥ on 100 graphs from two different real-world datasets from the popular

8We have allowed a little abuse of notation here by using S to refer to the “subgraph” obtained by marking
node S in G.
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TU suite: MUTAG and NCI1 (Morris et al., 2020a). Here, f is an untrained 3-layer GIN (Xu et al.,
2018). We can see from Table 5 that marking the node with using the maximum values of the three
walk-based centrality measures (Subgraph, Communicability, Katz) leads to the highest average
perturbation and marking the node with the minimum of these centrality measures leads to the lowest.
This implies that this family of centrality measures is most aligned with the perturbation distance.

Table 5: Amount of perturbation from the original graph representation on MUTAG and NCI1 using
3-layer untrained GIN with 32 hidden dimension by incorporating a node-marked subgraph with
different marking policies.

Marking Policy MUTAG Perturbation NCI1 Perturbation

Random 0.0648 0.0126

Minimum Degree Centrality 0.0202 0.0075
Maximum Degree Centrality 0.0968 0.0075

Minimum Closeness Centrality 0.0241 0.0073
Maximum Closeness Centrality 0.1038 0.0184

Minimum Betweenness Centrality 0.0202 0.0076
Maximum Betweenness Centrality 0.0957 0.0183

Minimum Katz Centrality 0.0177 0.0063
Maximum Katz Centrality 0.1051 0.0200

Minimum Communicability Centrality 0.0177 0.0063
Maximum Communicability Centrality 0.1056 0.0200

Minimum Subgraph Centrality 0.0177 0.0063
Maximum Subgraph Centrality 0.1055 0.0201

To further assess the benefits of our specific centrality encoding for sampling subgraphs, we compared
against using other centrality measures to sample subgraphs in the counting substructure task. We used
Closeness centrality, Betweeness centrality, Pagerank centrality and Degree centrality as baselines
using the Networkx library (Hagberg et al., 2008). From Fig. 6, we can see that using any of the
different centrality methods performs better than random sampling across all substructures and
number of samples. We also find that the Subgraph Centrality which we use, outperforms all other
approaches in counting 3 and 4-cycles for any number of samples and in counting 3 and 4-paths when
number of samples ≥ 5. For 4-cycles and other substructures, we find that Subgraph centrality is
best, followed by Degree and Pagerank centrality and then Closeness and Betweenness centralities
perform the worst of these centrality measures. This ranking of performance is aligned with how
correlated these substructures are with the Subgaph Centrality on these synthetic graphs (as shown in
Table 6).

To further compare different centrality measures, we ran additional experiments on the Peptides and
MolHIV datasets. We experimented in particular, with the Betweenness Centrality (BC), the Katz
Index (KI) and the Subgraph Centrality (SC). We see from Table 7 that the performances achieved
by different centrality measures are not dramatically different from each other, with those by the
KI and SC being closer. In fact, centrality measures often exhibit a degree of correlation with each
other, especially if from the same family, as it is the case of the walk-based KI and SC (see Estrada
& Rodriguez-Velazquez (2005) and Table 6). It is also worth noting that Subgraph Centrality can
be more efficient to calculate than these other centrality measures using the Networkx library (see
Table 8).

Overall, we believe that specific centrality measures could work better than others depending on
the task at hand, but, at the same time, our current ensemble of observations indicate that walk-
based centrality measures – and, in particular, the Subgraph Centrality – offer the most competitive
results for the lightest precomputation run-time. Given the additional support provided by the bound
discussed in Section 3, we think they constitute particularly strong candidates across use-cases.

D.2 COMPARISON BETWEEN CENTRALITY-BASED STRUCTURAL ENCODINGS AND RWSE

Here we aim to outline some of the similarities and differences between our Centrality structural
Encoding (CSE) defined in Eq. (4) and the Random-Walk Structural Encoding (RWSE) introduced in
(Dwivedi et al., 2021). The RWSE uses the diagonal of the k-step random-walk matrix defined in
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(a) Counting 3-Cycles. (b) Counting 4-Cycles.

(c) Counting 3-Paths. (d) Counting 4-paths.

Figure 6: Comparing different centrality measures for counting different substructures on synthetic
random graphs.

Table 6: Correlation between the different centralities and Subgraph Centrality on the random regular
graphs in the substructure counting experiments.

Centrality Correlation with Subgraph Centrality

Pagerank Centrality 0.923 ±0.025
Degree Centrality 0.970 ±0.012
Betweenness Centrality 0.801 ±0.074
Closeness Centrality 0.786 ±0.067

Eq. (38) defined as:

pRWSE
i = [(AD−1)ii, (AD−1)2ii, . . . , (AD−1)kii] ∈ Rk, (38)

These terms show similarity to our CSE as it also stores powers of the diagonal of the adjacency
matrix, but it has a different normalization term that depends on the degree. In Proposition 1, we
show that using an MPNN with CSE can compute the the probability, for all possible walks departing
from a node, that a walk will lead back to the start. RWSE structural encodings are subtly different in
that they compute the landing probability of a random walk from a node to itself. In this case, rather
than weighting all possible walks equally, the walks are weighted by the degrees of the nodes along
the walk; a walk where there are fewer alternative routes (other nodes) for the RW is more likely to
occur.

Here we aim to empirically examine this difference to see (i) which one is a more effective Structural
Encoding and (ii) which one is more effective for subgraph sampling. To show the effect of both
CSE and RWSE as SEs, we compared both on the Peptides datasets (Dwivedi et al., 2022) with two
different base MPNNs (GCN and GIN). From Table 9, it can be seen that our centrality encoding
performs similarly to the RWSE encoding; matching almost exactly except with a GCN on Peptides-
Func.

To answer (ii) and highlight the benefit of sampling based on CSE over using RWSE, we compared
using the sum of these different encodings to sample the subgraphs in the counting substructures
experiment. From Fig. 7, we see that our sampling method is better for counting all substructures and
for all the number of samples in comparison to RWSE sampling.

In conclusion, Appendix E.2 shows that our CSE is better for sampling subgraphs and Table 9 shows
that CSE is competitive when purely used as a Structural Encoding. Therefore, it is well motivated to
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Table 7: Comparison of different centrality measures on real-world molecular datasets.

Centrality for Sampling MolHIV Peptides-Func Peptides-Struct

Betweenness Centrality 78.86 ±0.98 0.6749 ±0.0066 0.2478 ±0.0006
Katz Index 79.58 ±0.98 0.6756 ±0.0056 0.2469 ±0.0008
Subgraph Centrality 79.77 ±0.70 0.6758 ±0.0050 0.2466 ±0.0010

Table 8: Timing of different centrality measures on an Erdös-Renyi graph with 1000 nodes and p=0.5
using the Networkx library.

Centrality Time (s)

Betweenness Centrality 83.12
Katz Index 1.31
Subgraph Centrality 0.54

use the CSE for our hybrid method where we need an SE and to use it as a sampling method. Future
work could consider further understanding the expressivity differences between these SEs and the
role of the normalization factor.

D.3 FURTHER EXAMINING THE EFFECT OF CSES

In Table 2, we explore the effect of HyMN with and without CSEs. In order to complement these
results, we additionally evaluated the effect of CSEs on HyMN and GIN with the Peptides and ZINC
datasets. The results are reported in Table 10. These results further show that adding even one
subgraph with our approach can be beneficial and that additionally using the centrality measure as a
structural encoding can also improve performance.

E EXPERIMENTAL DETAILS

In this section we provide details on the experimental validation described and discussed in Section 5.

E.1 ARCHITECTURAL FORM

We always employ a reference Subgraph GNN architecture f whose output, for an input graph
G = (A,X,E)9 associated with node-marked bag B, is given by:

yBG = f(B(G)) = ϕ(L+1)
(∑
v∈G

(h
(L)
G,v +

∑
S∈B

h
(L)
S,v)

)
(39)

h
(l)
S,v = µ(l)

(
A,H

(l−1)
S , ηe(E),M:,S

)
v

(40)

h
(0)
S,v = [ηx(X)v,:, C

CSE
v,: ] (41)

where ϕ(L+1) is a final prediction module and h
(L)
G,v, h

(L)
S,v refer to the representations of generic

node v on the original graph G and subgraph S. As it is evident from Equation (39), we em-
ploy an “augmented policy” which always includes a copy of the original graph in the bag of

9E is a tensor storing edge features.

Table 9: Results on the Peptides datasets comparing CSE with RWSE.

Method Peptides-Func (↑) Peptides-Struct (↓)

GIN 0.6555 ±0.0088 0.2497 ±0.0012
GIN + RWSE 0.6621 ±0.0067 0.2478 ±0.0017
GIN + CSE 0.6619 ±0.0077 0.2479 ±0.0011

GCN 0.6739 ±0.0024 0.2505 ±0.0023
GCN + RWSE 0.6860 ±0.0050 0.2498 ±0.0015
GCN + CSE 0.6812 ±0.0037 0.2499 ±0.0010
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(a) Counting Triangles. (b) Counting 4-Cycles.

(c) Counting 3-Paths. (d) Counting 4-paths.

Figure 7: Comparing our centrality sampling with RWSE sampling for counting different substruc-
tures on synthetic random graphs.

Table 10: Results on ZINC and Peptides datasets showing the effect of CSEs on both GIN and HyMN.

Method ZINC (MAE ↓) Peptides-Func (AP ↑) Peptides-Struct (MAE ↓)

GIN Xu et al. (2018) 0.163 ±0.004 0.6558 ±0.0068 0.2497 ±0.0012

GIN+CSE 0.092 ±0.002 0.6619 ±0.0077 0.2479 ±0.0011
HyMN (GIN, T=1) w/out CSE 0.125 ±0.004 0.6758 ±0.0050 0.2466 ±0.0010
HyMN (GIN, T=1) 0.080 ±0.003 0.6857 ±0.0055 0.2464 ±0.0013

subgraphs (Bevilacqua et al., 2021). As we only consider node marking policies, this copy only
differs from (sub)graphs in B by the fact that no nodes are marked. Representations h(L)

G,v, h
(L)
S,v are

obtained à la DS-GNN (Bevilacqua et al., 2021), that is, by running independent message-passing
µ on each (sub)graph independently (see Equation (40)). Note that µ explicitly processes available
edge features (E) and marking information (M , see Algorithm 1). As it will be specified later
on, we always consider either GIN (Xu et al., 2018) or GCN (Kipf & Welling, 2017) as MPNN
backbones. Equation (41) specifies initial node features for node v in subgraph S. Finally, ηx,
ηe are dataset-dependent node- and edge-feature encoders, and that CCSE is computed according
to Algorithm 1.

Note that, across all molecular benchmarks, the GIN layer we use resembles the GINE architec-
ture (Hu et al., 2020c), but concatenates the marking information as follows:

h
(l)
S,v = ϕ(l)

(
(1 + ϵ(l))[h

(l−1)
S,v ,Mv,S ] +

∑
u∈N(v)

[
σ
(
h
(l−1)
S,u + ηe(E)vu

)
,Mu,S

])
(42)
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Figure 8: Evaluating the dependency between the graph size and the number of 4-cycles in the dataset
generated from Chen et al. (Chen et al., 2020).

where Mv,S is the mark for node v in subgraph S, ηe(E)vu refers to the encoded edge features for
node-pair v, u, and σ is a ReLU non-linearity. As for our GCN (Kipf & Welling, 2017) backbones, the
marking information is simply provided in the input of the network, and edge features are discarded.

E.2 SYNTHETIC EXPERIMENTAL DETAILS

E.2.1 DATASET GENERATION

For the synthetic counting substructures experiment, we generated a dataset of random unattributed
graphs in a similar manner to (Chen et al., 2020). In their experiments, they generate 5000 random
regular graphs denoted as RG(m, d), where m is the number of nodes in each graph and d is the
node degree. Random regular graphs with m nodes and degree d are sampled and then m edges are
randomly deleted. In their work, Chen et al. (Chen et al., 2020), uniformly sampled (m, d) from
(10, 6), (15, 6), (20, 5), (30, 5). However, we want to test the effectiveness of our sampling approach
for larger sizes of graphs. Additionally, we found that the number of substructures present in the
graph was related to the graphs size (see Fig. 8). Therefore, we wanted to create a more challenging
benchmark with larger graph sizes. Therefore, we set (m, d) to be (60, 5) for all graphs.

E.2.2 SYNTHETIC MODEL PARAMETERS

For our synthetic experiments, we set the base GIN to have a batch size of 128, 6 layers of message-
passing, embedding dimension 32, and Adam optimizer with initial learning rate of 0.001 as prescribed
by (Bevilacqua et al., 2024). We trained for 250 epoch and took the test Mean Absolute Error (MAE)
at the best validation epoch.

E.3 REAL-WORLD EXPERIMENTAL DETAILS

In this section, we provide further details about our experiments. We implemented our method using
Pytorch (Paszke et al., 2019) and Pytorch Geometric (Fey & Lenssen, 2019). For the GIN model
(Xu et al., 2018), we use Batch Normalization and the MLP is composed of two linear layers with
ReLU non-linearities. Additionally, we use residual connections in each layer. The test performance
at the epoch with the best validation performance is reported and is averaged over multiple runs with
different random seeds. All the benchmarking results, including the extra ablations, are based on 5

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

executed runs, except for Peptides-func and Peptides-struct which are based on the output of four runs.
In all our experiments we used AdamW (Loshchilov & Hutter, 2019), together with linear warm-up
increase of the learning rate followed by its cosine decay. Experimental tracking and hyper-parameter
optimisation were done via the Weights and Biases platform (wandb) (Biewald et al., 2020). In
Table 2, the number of subgraphs used (T ) was selected to match the choices made in other baselines,
such as PL, making the comparisons as informative as possible. In Table 3 and Table 4, we chose T
to be the smallest possible value, i.e., T = 1. This is justified by our focus on efficiency. Specific
hyper-parameter information for each dataset can be found in the corresponding subsection.

E.3.1 HARDWARE

All experiments were run on a single NVIDIA GeForce RTX 3080 with 10GB RAM.

E.3.2 DATASET SPECIFIC DETAILS

Below, we provide descriptions of the datasets on which we conduct experiments.

OGB datasets (MIT License) (Hu et al., 2020b). These are molecular property prediction datasets
which use a common node and edge featurization that represents chemophysical properties. MOL-
HIV, MOLBACE and MOLTOX21 all represent molecule classification tasks. We considered the
challenging scaffold splits proposed in (Hu et al., 2020a). We set the batch size to 128 for MOLHIV
and 32 for the other benchmarks to avoid out-of-memory errors. We set the hidden dimension to be
300 for all datasets as done in Hu et al. (2020a) and Bevilacqua et al. (2024). We tuned the number
of layers in 2, 4, 6, 8, 10, the number of layers post message-passing in 1, 2, 3, dropout after each
layer in 0.0, 0.3, 0.5, whether to perform mean or sum pooling over the subgraphs, and whether to
apply Batch Normalization after message-passing on each dataset. Additionally, for the method with
structural encoding, we tune the number of steps k in the encoding in 16, 20 and the dimension after
the linear encoding in 16, 28 as done in (Rampášek et al., 2022). The tuning was done on a single run
for each set of hyper-parameters and the results were outlined for the best performing parameters on
the validation set over 5 random seeds. These parameters are shown in Table 11.

The maximum number of epochs is set to 100 for all models and the test metric is computed at the
best validation epoch.

Table 11: Best performing hyperparameters in Table 2.

Hyperparameter MOLHIV MOLBACE MOLTOX21

#Layers 2 8 10
#Layers readout 1 3 3
Hidden dim 300 300 300
Dropout 0.0 0.5 0.3
Subgraph pooling mean mean sum

Positional Encoding Steps 16 20 20
PE dim 16 16 28

#Parameters 419,403 1,691,329 2,061,322

Peptides-func and Peptides-struct (CC-BY-NC 4.0) (Dwivedi et al., 2022). These datasets are
composed of atomic peptides. Peptides-func is a multi-label graph classification task where there
are 10 nonexclusive peptide functional classes. Peptides-struct is a regression task involving 11 3D
structural properties of the peptides. For both of these datasets, we used the tuned hyper-parameters
of the GINE model from Tönshoff et al. (Tönshoff et al., 2023) which has a parameter budget under
500k and where they use 250 epochs. For both of these datasets we set the number of steps of our
centrality encoding to be 20, aligned with the number of steps used for the random-walk structural
encoding. The additional parameter tuning which we performed was whether to do mean or sum
pooling over the subgraphs. We show the best performing hyperparameters from Table 3 in Table 12.

ZINC (MIT License) (Dwivedi et al., 2023). This dataset consists of 12k molecular graphs repre-
senting commercially available chemical compounds. The task involves predicting the constrained
solubility of the molecule. We considered the predefined dataset splits and used the Mean Absolute
Error (MAE) both as a loss and evaluaton metric. We chose to have 10 layers of massage-passing, 3
layers in the readout function, a batch size of 32, 1000 epochs and a dropout of 0 to replicate what
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Table 12: Best performing hyperparameters in Table 3.

Hyperparameter Peptides-Func Peptides-Struct

#Layers 8 10
#Layers readout 3 3
Hidden dim 160 145
Dropout 0.1 0.2
Subgraph pooling sum sum

Positional Encoding Steps 20 20
PE dim 18 18

#Parameters 498,904 496,107

was done in (Rampášek et al., 2022). We altered the hidden dimension to be 148 in order to be
closer to the 500k parameter budget. No further parameter tuning was done and our best performing
parameters are shown in Table 13. The test metric is computed at the best validation epoch.

Table 13: Best performing hyperparameters in Table 4.

Hyperparameter ZINC

#Layers 10
#Layers readout 3
Hidden dim 148
Dropout 0.0
Subgraph pooling mean

Positional Encoding Steps 20
PE dim 18

#Parameters 497,353

F MORE ON SUBGRAPH GNNS AND THEIR COMPLEXITY

F.1 THE ARCHITECTURAL FAMILY OF SUBGRAPH GNNS

The term “Subgraph GNN” refers to a broad family of recent Graph Neural Networks sharing a
common architectural pattern: that of modeling graphs as sets (bags) of subgraphs. Subgraphs are pro-
cessed by a backbone GNN, possibly flanked by additional information sharing modules (Bevilacqua
et al., 2021). Bags of subgraphs are formed by selection policies, which typically extract subgraphs
by applying topological perturbations such as node- (Cotta et al., 2021; Papp et al., 2021) or edge-
deletions (Bevilacqua et al., 2021), or by marking nodes (You et al., 2021; Papp & Wattenhofer,
2022).

In formulae, a Subgraph GNN f can be described as (Frasca et al., 2022):

f : G 7→
(
µ ◦ ρ ◦ S ◦ π

)
(G), (43)

where π is the selection policy; S applies the backbone GNN – with, potentially, information sharing
components; ρ, µ are pooling and prediction modules.

Various choices for the above terms give rise to different Subgraph GNN variants (Frasca et al.,
2022). For non-trivial selection policies and sufficiently expressive backbones, these exceed 1-WL
discriminative power (Bevilacqua et al., 2021), thus surpassing standard message-passing networks.

The most popular selection policies are node-based: selected subgraphs are in a bijection with nodes
in the original input graph. Prominent policies in this class include node-deletion, ego-networks
and node-marking. From an expressiveness perspective, node-marking subsumes the first two
policies (Papp & Wattenhofer, 2022; Zhang et al., 2023a). This policy constructs bags of subgraphs
as:

πNM : G = (A,X) 7→ {(A,X ⊕ e1), . . . , (A,X ⊕ en)}, (44)
where ei ∈ {0, 1}n×1 is i-th element of the canonical basis 10 and ⊕ denotes concatenation across
the channel dimension.

10Elements in vector ei are 0 except for the one in position i, which equals 1.
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Node-based Subgraph GNNs encompass several architectures, including ID-GNNs (You et al., 2021),
(n−1)-Reconstruction GNNs (Cotta et al., 2021), Nested GNNs (Zhang & Li, 2021), GNN-AK (Zhao
et al., 2022), SUN (Frasca et al., 2022) and the maximally expressive GNN-SSWL (Zhang et al.,
2023a). For 1-WL-expressive backbones, Subgraph GNNs with node-based policies are bounded in
their expressive power by 3-WL (Frasca et al., 2022). Detailed, structured charting of their design
space, along with fine-grained expressiveness results, are found in (Frasca et al., 2022; Zhang et al.,
2023a).

F.2 COMPUTATIONAL COMPLEXITY ASPECTS

Consider a Subgraph GNN f in the form of Equation (43), where S stacks neural message-passing
layers. For an input graph G with n nodes and a degree bounded by dmax, f exhibits an asymptotic
forward-pass complexity:

T (n, dmax,m) = O(m ·
msg-pass complexity︷ ︸︸ ︷

n · dmax ), (45)

with m being the number of subgraphs generated by policy π executed on graph G.

Node-based policies are such that the number of subgraphs equals the number of nodes in the original
input graph, i.e., m = n. Hence, the complexity of node-based Subgraph GNNs scales as:

T (n, dmax) = O(n2 · dmax). (46)

Higher-order policies (Qian et al., 2022) may allow larger expressive power, but for heftier complexi-
ties. As an example, node-pair marking would induce a complexity of O(n3 · dmax).

The quadratic dependency on the number of nodes in Equation (46) hinders the application of
Subgraph GNNs to even mildly-sized graphs. At the time of writing, experimenting on the Peptides
datasets (Dwivedi et al., 2022) is already very challenging on common hardware, despite these graphs
having on average ≈ 151 nodes and a similar number of edges.

F.3 SUBSAMPLING BAGS OF SUBGRAPHS

To mitigate the aforementioned issue, one possibility is to reduce the number of subgraphs to process,
i.e., to lower the impact of m in Equation (45). A convenient approach is to sample a small set k
of subgraphs from the bag generated by a predefined policy π (Bevilacqua et al., 2021; Zhao et al.,
2022; Bevilacqua et al., 2024; Kong et al., 2024; Sun et al., 2021). Essentially, this requires updating
Equation (43) as:

f : G 7→
(
µ ◦ ρ ◦ S ◦

sampling︷︸︸︷
σ ◦π

)
(G). (47)

Above, σ applies a subgraph sampling strategy to reduce the bag cardinality from m to k:

σ : B = {G1, . . . , Gm} 7→ B̃ s.t. B̃ ⊆ B, |B̃| = k. (48)

The new cardinality k should scale sub-linearly in n, or be chosen as an appropriate small constant.
The optimal design of strategy σ is a non-trivial task at the core of several recent works (Qian et al.,
2022; Kong et al., 2024; Bevilacqua et al., 2024; Bar-Shalom et al., 2024b). In the present manuscript,
we discuss a simple, effective construction based on walk-based centrality measures. Our design
is justified by the theoretical considerations and empirical observations in Section 3.2, which are
validated by the complementary experimental results reported in Section 5.

G ADDITIONAL TIME COMPARISONS

As well as Table 3 where we compared the runtime of different methods on Peptides datasets, we
extend this analyses to both ZINC and MOLHIV. To this end, we provide some results in Table 14
and Table 15. We find that our method significantly improves over the baseline GIN on both of these
tasks whilst having a substantially reduced runtime compared to the GPS which uses a Transformer
layer. Again, this highlights both the efficiency and practical utility of our method.
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Table 14: Results on the ZINC dataset with timing comparisons using a GeForce RTX 2080 8 GB.

Method Precompute (s) Train (s/epoch) Test (s) Test MAE (↓)

GIN 0.00 12.65 0.33 0.163
HyMN (GIN, T=1) 21.41 17.95 0.42 0.080

GPS (Rampášek et al. (2022)) 19.13 33.02 0.87 0.070

Table 15: Results on the MOLHIV dataset with timing comparisons using a GeForce RTX 2080 8
GB.

Method Precompute (s) Train (s/epoch) Test (s) ROC-AUC (↑)

GIN 0.00 7.50 0.33 75.58
HyMN (GIN, T=1) 67.43 9.09 0.37 80.36

GPS (Rampášek et al. (2022)) 40.92 124.08 4.14 78.80
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