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Abstract
Weight matrix compression has been demon-
strated to effectively reduce overfitting and im-
prove the generalization performance of deep neu-
ral networks. Compression is primarily achieved
by filtering out noisy eigenvalues of the weight
matrix. In this work, a novel Population Double
Bulk (PDB) model is proposed to characterize the
eigenvalue behavior of the weight matrix, which
is more general than the existing Population Unit
Bulk (PUB) model. Based on PDB model and
Random Matrix Theory (RMT), we have discov-
ered a new PDBLS algorithm for determining
the boundary between noisy eigenvalues and in-
formation. A PDB Noise-Filtering algorithm is
further introduced to reduce the rank of the weight
matrix for compression. Experiments show that
our PDB model fits the empirical distribution of
eigenvalues of the weight matrix better than the
PUB model, and our compressed weight matrices
have lower rank at the same level of test accu-
racy. In some cases, our compression method can
even improve generalization performance when
labels contain noise. The code is avaliable at
https://github.com/xlwu571/PDBLS.

1. Introduction
Deep Neural Networks (DNN) have achieved outstanding
performance in many fields such as computer vision (Leek
et al., 2022), speech recognition (Mohanty et al., 2022) and
recommendation systems (Da’u & Salim, 2020). Deeper
and wider DNN frameworks have demonstrated superior
learning performance (Yang et al., 2019), but many of these
networks are extremely over-parameterized and prone to
overfitting. Recently, some low-rank compression tech-
niques have been applied to avoid overfitting by removing
small singular values of the weight matrix. (Xu et al., 2019)
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propose a training scheme to promote the filters’ low rank
by using nuclear regularization and achieves the low-rank
approximation of the original filters. (Idelbayev & Carreira-
Perpinán, 2020) emphasize determining the ideal rank for
each layer and weight approximation via adding a penalty
term of the rank. (Liebenwein et al., 2021) further propose
a compression architecture using SVD for local layer com-
pression and minimizing the maximum relative error across
different layers for global compression. However, these
methods rely on hyperparameters and are generally difficult
to optimize.

Recently, to understand the training mechanism and gen-
eralization performance of neural networks, RMT has suc-
ceeded in providing a theoretical explanation and improv-
ing generalization ability by analyzing spectral properties
of the weight matrices of neural networks, see (Berlyand
et al., 2023; Martin & Mahoney, 2020). For weight matrix
Wn×p , RMT is mainly employed to study the eigenval-
ues {λ1 ≥ · · · ≥ λp} of WTW, in particular the limit
of FWTW

n (x) = 1
p

∑p
j=1 1{λj≤x} called Limiting Spec-

tral Distribution (LSD). According to (Martin & Mahoney,
2021), the training process of weight matrices mainly goes
through three phases: initial phase, bulk+spikes phase and
heavy-tailed phase (Fig.1). The randomly initialized weight
matrix W0 satisfies EWT

0 W0 = σ2
0Ip, where σ2

0 depends
on the initial distribution of the entries of W0. At this stage,
the LSD of WT

0 W0 matches Marčenko-Pastur (MP) law.
During the training process, the information learned by the
weight matrix is mainly reflected in a few spiked eigenval-
ues exceeding the MP edge λ+, and the initial variance also
changes from σ2

0 to σ2. In this phase, the PUB model which
assumes EWTW = diag(α1, . . . , αK︸ ︷︷ ︸

K spikes

, σ2, . . . , σ2︸ ︷︷ ︸
bulk

) :=

ΣPUB , is often used to analyze the trained weight matrices.
Correspondingly, WTW exhibits several comparatively
large sample spiked eigenvalues, alongside clustered bulk
eigenvalues. In the final training phase, the eigenvalues of
WTW gradually follow a heavy-tailed distribution, but this
phase is not very common. Thus, we mainly focus on the
bulk+spikes phase.

Furthermore, (Staats et al., 2023) has verified that in the
bulk+spikes phase, large spiked eigenvalues learn rules from
data while small bulk eigenvalues do not contribute to model
learning. They propose to compress network by removing
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(a) Initial (b) Bulk+Spikes (c) Heavy-tailed

Figure 1. The three phases of histogram (ESD) of eigenvalues of WTW during network training.

small bulk eigenvalues and recovering spiked eigenvalues of
ΣPUB from WTW, thereby improving the generalization
performance. A following question is how to determine
the boundary between informative spikes and noisy bulk
eigenvalues. (Staats et al., 2023) determine the boundary
by cross-validation, which is purely data-driven without
theoretical support and is quite computationally expensive.
(Ke et al., 2023) propose the Bulk Eigenvalue Matching
Analysis (BEMA) algorithm based on the PUB model. Us-
ing BEMA, a weight matrix pruning algorithm is further
developed by (Shmalo et al., 2023). However, the existing
compression algorithm either rely on the PUB model or
empirical adjustments without any theoretical support.

Regrettably, the assumption of the PUB model is too re-
strictive, as it requires WTW to have a homogeneous
population variance σ2. It also fails to accurately cap-
ture the eigenvalues distribution of WTW in many em-
pirical studies. Therefore, we consider a more general PDB
model to accommodate heterogeneous population variances.
Specifically, we propose that during the training process,
the initial EWT

0 W0 = σ2
0Ip will evolve into EWTW

= diag(α1, . . . , αK︸ ︷︷ ︸
K spikes

, σ2
1 , ..., σ

2
1︸ ︷︷ ︸

bulk1

, σ2
2 , ..., σ

2
2︸ ︷︷ ︸

bulk2

). Note that when

σ2
1 = σ2

2 , our PDB model will degenerate to the PUB model.
We didn’t adopt more general M -Bulks (M ≥ 3) models
because we observe that the proportion of additional bulks
is negligible and the PDB model has shown sufficiently
superior performance than PUB model in Fig. 2.

Based on PDB model, we posit that both the spikes and
the bulk1 contain valuable information, whereas the bulk2
predominantly represents noise. We further propose a Pop-
ulation Double Bulk Least Squares (PDBLS) algorithm
to estimate the structure of EWTW, from which we can
determine the boundary between noisy eigenvalues and in-
formation. Moreover, as shown in Fig. 5, we develop a new
PDB Noise-Filtering algorithm to compress the weight ma-
trix by only removing the smaller bulk2 eigenvalues while

keeping the bulk1. The spiked information of EWTW
is also recovered. Experiments demonstrate that our pro-
posed PDB model outperforms the PUB model in fitting the
eigenvalues of WTW, and our compressed weight matrices
exhibit lower rank while preserving test accuracy or even
improving it when label contains noise. In summary, our
contributions include:

1. We propose a generalized PDB model to characterize
the eigenvalue behavior of WTW in the bulk+spikes
phase. This model accurately captures the empirical
distribution of eigenvalues, thus confirming its validity.

2. We propose an efficient hyperparameter-free algorithm
PDBLS to estimate EWTW, which establishes the
relationship between the eigenvalues of WTW and
EWTW. This enables us to establish a boundary
between noise and information and determine how
much information of WTW needs to be retained.

3. We introduce a novel PDB Noise-Filtering algorithm to
compress the weight matrix by removing noisy eigen-
values and retrieving information from EWTW. Our
algorithm also recommends the best compression ratio
of weight matrix where further compression will lead
to significantly loss of generalization ability. Experi-
ments show that our approach can significantly reduce
the rank of weight matrix W while preserving network
generalization performance, and even enhancing it in
the presence of noise.

2. Motivation: from PUB to PDB model
In this section, we introduce the motivation that why we
choose the PDB model.
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(a) Initial matrix (b) PUB model (c) PDB model

Figure 2. The histogram (ESD) and LSD of eigenvalues of WTW, where (a) shows a initial matrix, (b) and (c) show trained matrix with
PUB and PDB model. The vertical dashed lines represent the noise-information boundaries under the two models.

2.1. PUB model

Recently, for weight matrix W ∈ Rn×p, (Martin & Ma-
honey, 2021; Staats et al., 2023) use RMT to study the
eigenvalue behavior of WTW before and after training. In
the initialization phase, the entries of W0 are i.i.d. gener-
ated satisfying Σ0 = EWT

0 W0 = σ2
0Ip and the LSD of

WT
0 W0 has density function (MP law):

f(x; c, σ2
0) =

√
(λ+ − x)(x− λ−)

2πσ2
0cx

1{λ−≤x≤λ+}.

Here the boundary points λ±(σ
2
0) = σ2

0(1±
√
c)2, c = p

n .

(Martin & Mahoney, 2021) point out that after training, the
eigenvalues of WTW can be divided into two categories:
the bulk eigenvalues and the spiked eigenvalues. As shown
in Fig. 2, the bulk eigenvalues are tightly clustered with
their histogram conforming to the LSD. On the contrary,
the spiked eigenvalues are far from bulk eigenvalues and
lie outside the boundaries of LSD. In response to this phe-
nomenon, (Shmalo et al., 2023; Staats et al., 2023) explore
a PUB model to characterize the eigenvalues of WTW in
the bulk+spikes phase. They assume, after training,

ΣPUB = EWTW = diag(α1, . . . , αK︸ ︷︷ ︸
K

, σ2, . . . , σ2︸ ︷︷ ︸
p−K

).

(1)

Here {α1, . . . , αK} are K population spiked eigenvalues
and {σ2, . . . , σ2} are p − K bulk eigenvalues of ΣPUB .
During training process, the initial variance σ2

0 changes to
σ2 and extra K spikes appear. Correspondingly, the LSD
of sample bulk eigenvalues of WTW follows the MP law
with parameter σ2. While the K sample spiked eigenvalues
lie outside the boundary of the LSD, i.e., σ2(1 +

√
c)2. The

relationship between the sample eigenvalues of WTW and
population eigenvalues of ΣPUB is given below.

Eig(ΣPUB) = {α1, . . . , αK︸ ︷︷ ︸
K

, σ2, . . . , σ2︸ ︷︷ ︸
p−K

}

⇕ spikes ⇕ bulk

Eig(WTW) = {λ1, . . . , λK︸ ︷︷ ︸
K

, λ+ ≥ λj ≥ λ−︸ ︷︷ ︸
p−K

}.

2.2. PDB model

However, the assumption of the PUB model is quite restric-
tive, as it requires WTW to have a homogeneous popula-
tion variance σ2. Additionally, the eigenvalue distribution
of WTW does not perfectly align with the MP law with σ2

under PUB model, as shown in Fig. 2(b). To address these
limitations, we consider a more general model which can
accommodate heterogeneous population variances. Specif-
ically, we extend σ2 to M different positive constants
{σ2

i , 1 ≤ i ≤ M} with proportions {ti, 1 ≤ i ≤ M}:

ΣPUB = EWTW = diag(α1, . . . , αK , σ2, . . . , σ2 )

⇓

EWTW = diag(α1, . . . , αK︸ ︷︷ ︸
K

, σ2
1 , ..., σ

2
1︸ ︷︷ ︸

(p−K)t1

, ..., σ2
M , ..., σ2

M︸ ︷︷ ︸
(p−K)tM

).

In empirical studies, we observe that M = 2 is sufficient,
because the proportion of additional σi terms is negligible.
For example, Table 1 presents the estimated proportions for
M = 4, where t̂3, t̂4 are very small. Therefore, in this study,

Table 1. The estimated proportion of each bulk when M = 4.

σ2
1 σ2

2 σ2
3 σ2

4

t̂i 0.6803 0.2719 0.0474 0.0004
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we propose a generalized Population Double Bluk (PDB)
model for trained weight matrix W, satisfying

ΣPDB := EWTW

= diag(α1, . . . , αK︸ ︷︷ ︸
K

, σ2
1 , . . . , σ

2
1︸ ︷︷ ︸

(p−K)t

, σ2
2 , . . . , σ

2
2︸ ︷︷ ︸

(p−K)(1−t)

). (2)

where {α1, . . . , αK} are K population spikes of ΣPDB

and t is the proportion of σ2
1 among all bulk eigenvalues.

Similar as PUB model, PDB model also has one-to-one
corresponding relationship between the sample eigenvalues
of WTW and population eigenvalues of ΣPDB :

Eig(ΣPDB) = {α1, . . . , αK︸ ︷︷ ︸
K

, σ2
1 , ..., σ

2
1︸ ︷︷ ︸

(p−K)t

, σ2
2 , ..., σ

2
2︸ ︷︷ ︸

(p−K)(1−t)

}

⇕ spikes ⇕ bulk1 ⇕ bulk2

Eig(WTW) = {λ1, . . . , λK︸ ︷︷ ︸
K

, λ+ ≥ λj ≥ β︸ ︷︷ ︸
(p−K)t

, β > λj ≥ λp︸ ︷︷ ︸
(p−K)(1−t)

}

where β = λK+(p−K)t is the boundary point between
sample bulk1 and bulk2 of WTW. Note that the PUB
model (1) is a special case of our PDB model when t = 0.

More importantly, the proposed PDB model demon-
strates significantly better empirical performance than
the PUB model. Firstly, the density curve of LSD under the
PDB model aligns more close to the histogram of WTW,
see Fig. 3. The PDB model parameters for Fig. 3 are listed
in Table 2.

Table 2. The results of Θbulk = {σ2
1 , σ

2
2 , t} for the DNN.

Estimator t̂ σ̂2
1 σ̂2

2

FCNN: MNIST 0.17 3.37 1.36
VGG16: CIFAR10 0.25 1.61 0.75

ResNet18:ImageNet 0.35 7.54 0.96
ResNet18: CIFAR10 0.25 5.06 0.95

Secondly, our PDB model achieves superior alignment with
the spectral moments of WTW compared to the PUB
model. Specifically, we employ different methods to es-
timate model parameters and compare the first three the-
oretical moments with the empirical values, including the
BEMA method (Ke et al., 2023) and the Kernel approach
(Staats et al., 2023) for the PUB model, and the PDBLS
algorithm for the PDB model (see Section 3.2). Detailed
results are presented in Tables 3–5, where Table 3-4 corre-
spond to the FCNN and convolution networks, and Table 5
presents the large language models. The theoretical spectral
moment formulas can be found in the Appendix. It’s clear
that our PDB model matches the empirical moments much
better than PUB model, especially higher order moments.

(a) FCNN on MNIST (b) Vgg16 on CIFAR10

(c) ResNet18 on ImageNet (d) ResNet18 on CIFAR10

Figure 3. Histograms of the eigenvalues of WTW and density
curves of LSDs based on different models. The solid blue line
represents PDB model, and the dashed red and green curves are
for PUB model.

Table 3. Comparison of theoretical and empirical spectral mo-
ments for FCNN and VGG16, γ̂j = 1

p
tr
(
WTW

)j
, j = 1, 2, 3.

FCNN:MNIST VGG16:CIFAR10

Model Method γ1 γ2 γ3 γ1 γ2 γ3
PUB BEMA 2.27 7.74 32.23 0.92 1.26 2.12
PUB Kernel 1.37 2.81 7.04 0.90 1.22 2.03
PDB PDBLS 1.71 4.94 18.79 0.96 1.53 3.11
empirical γ̂j 1.74 5.50 24.17 0.97 1.59 3.51

Table 4. Comparison of theoretical and empirical spectral mo-
ments for FCNN and ResNet18.

ResNet18:ImageNet ResNet18:CIFAR10

Model Method γ1 γ2 γ3 γ1 γ2 γ3
PUB BEMA 2.94 17.26 126.79 1.80 4.82 15.84
PUB Kernel 1.11 2.45 6.77 1.83 5.02 16.84
PDB PDBLS 3.23 30.62 377.50 2.27 9.14 49.08
empirical γ̂j 3.32 31.48 402.79 2.28 9.38 52.65

3. PDB estimation
In this section, we provide a detailed characterization of the
asymptotic properties of the sample eigenvalues of WTW,
including the bulk eigenvalues, bulk boundaries, and spiked
eigenvalues. Building on these properties, we propose the
PDBLS algorithm to estimate the model parameters of
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Table 5. Comparison of theoretical and empirical spectral mo-
ments for T5-base and BERT.

T5-base: RTE BERT: SCITAIL

Model Method γ1 γ2 γ3 γ1 γ2 γ3
PUB BEMA 0.67 0.90 1.51 0.59 0.69 1.02
PUB Kernel 0.53 0.56 0.74 0.56 0.63 0.88
PDB PDBLS 0.77 1.55 4.17 0.67 1.18 2.78
empirical γ̂j 0.72 1.83 5.35 0.71 1.38 3.95

ΣPDB , which allows us to determine the boundary between
noise and information.

3.1. Sample eigenvalue behavior of PDB model

The following three theorems illustrate the relationship be-
tween sample eigenvalues of WTW and population param-
eters {K,α1, . . . , αK , σ2

1 , σ
2
2 , t} of ΣPDB .

Theorem 3.1. (sample bulk eigenvalues) Under PDB model
(2), as n → ∞, p/n → c, the empirical spectral dis-
tribution of WTW, FWTW

n (x) = 1
p

∑p
j=1 1{λj≤x} a.s.

converges to the LSD with the density function:

ρ(x) = lim
η→0

Imm(z)

πc
, z = x+ iη, η > 0, (3)

where Imm(z) represents the imaginary part of m(z) and
m(z) satisfies the following equation:

z = − 1

m(z)
+

ctσ2
1

1 + σ2
1m(z)

+
c(1− t)σ2

2

1 + σ2
2m(z)

. (4)

An example of ρ(x) is shown in Fig. 2(c) where {σ2
1 =

4.63, σ2
2 = 1.67, t = 0.20}.

Theorem 3.2. (sample boundaries) The boundary between
sample spikes and bulk1 of WTW is

λ+ = g(y), y = argmax
x∈R

{g′(x) = 0}, (5)

g(x) = x+ cx
tσ2

1

x− σ2
1

+ cx
(1− t)σ2

2

x− σ2
2

. (6)

The boundary between sample bulk1 and bulk2 of WTW is

β = λK+pt−Kt.

Theorem 3.3. (sample spiked eigenvalues) Under PDB
model (2), as n → ∞, p/n → c, the sample spiked eigen-
values {λ1, . . . , λK} of WTW converges to functions of
population spiked eigenvalues {α1, . . . , αK} of ΣPDB:

λj
a.s.−−→ g(αj), j ∈ {1, . . . ,K}. (7)

Figure 4. The histogram (ESD) of eigenvalues and LSD of PDB
model. The estimation procedure (PDBLS Algorithm) for
Θbulk = {t, σ2

1 , σ
2
2}, Θspike = {K,α1, . . . , αK} and Θbound =

{λ+, β} are also illustrated in this figure.

3.2. PDBLS algorithm: Estimation of PDB model

Based on Theorems 3.1-3.3, we introduce an algorithm
called Population Double Bulk Least Squares (PDBLS)
to estimate ΣPDB = EWTW and two sample boundary
points: one is the boundary between the sample spikes
and the bulk1, λ+, and the other is the boundary be-
tween bulk1 and bulk2, β. Our goal is to estimate the
bulk parameters Θbulk = {σ2

1 , σ
2
2 , t}, the spike parame-

ters Θspike = {K,α1, . . . , αK}, and the boundary param-
eters Θbound = {λ+, β}. We denote these estimators as
{σ̂2

1 , σ̂
2
2 , t̂}, {K̂, α̂1, . . . , α̂K̂} and {λ̂+, β̂}. We start with

the estimation of Θbulk and Θbound. Although spiked eigen-
values don’t affect LSD, some exceptionally large spikes
can result in an overestimation of bulk parameters in the
finite sample case. As depicted in the Fig. 4, there are sev-
eral extremely large eigenvalues highlighted in the blue box,
indicating the necessity for us to give an initial estimation
of the number of spikes K0. By mitigating the influence of
the top K0 spikes, we provide estimates for Θbulk first, fol-
lowed by Θbound, and further refine the number and values
of spikes in Θspike. In detail, there are four main steps to
obtain these estimators.

Step 1 Initially estimate the number of spikes K0.

Inspired by (Liu et al., 2023), the location that corresponds
to the smallest distance between the consecutive eigenvalues
can be used to determine the number of spikes. The initial
number of spikes based on this criteria in (Liu et al., 2023)
can be calculated by:

K̂0 = argmin
1

n
[−n(λ1−λk+1)+n(p−k−1) log θ̃p,k+2pk],

(8)
where θ̃p,k = 1

p−k−1

∑p−1
i=k+1 exp{2(λi − λi+1)} and ω =

⌊6n0.1⌋, ⌊·⌋ represents the floor function. Then we remove
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Algorithm 1 PDBLS algorithm (For estimation)
Input: Eigenvalues λj of matrix WTW.
Output: Θ̂bulk = {σ̂2

1 , σ̂
2
2 , t̂}, Θ̂spike =

{K̂, α̂1, . . . , α̂K̂}, Θ̂bound = {λ̂+, β̂}.
// Initially estimate K0

1: Roughly estimate the number of spikes K̂0 by Eq. (8);
2: Remove the top K̂0 spikes;

// Estimate Θbulk

3: Calculate ûi(Θbulk) by Eq. (10);
4: Minimize Eq. (9) to solve (σ2

1 , σ
2
2 , t);

// Estimate Θbound and Refine K
5: Calculate boundary point λ̂+ by Eq. (5);
6: Estimate the number of spikes K̂ by Eq. (11);
7: Estimate boundary point β̂ via Eq. (12).

// Estimate Θspike

8: Recover population spikes {αj}K̂j=1 from sample
spikes by Eq. (6) and Eq. (7);

the top K̂0 spikes which may affect the estimation of Θbulk.

Step 2 Estimate Θbulk = {σ2
1 , σ

2
2 , t}.

The bulk parameters can be estimated by solving the follow-
ing least squares optimization problem (Li et al., 2013):

arg min
Θbulk

q∑
i=1

(ûi(Θbulk)− ui)
2, (9)

where {u1, ..., uq} take equally spaced j-points in each in-
terval of U . Here

U =

{
(−10, 0) ∪ (0, 0.5λmin) ∪ (5λmax, 10λmax), p ̸= n.

(−10, 0) ∪ (5λmax, 10λmax), p = n.

We set j = 20 in all experiments of Section 5.

According to (Yao et al., 2015) and Eq. (4) in Section 2, for
each ui, we can calculate ûi(Θbulk) as:

ûi(Θbulk) = − 1

mn(ui)
+

p− K̂0

n

tσ2
1

1 + σ2
1mn(ui)

+
p− K̂0

n

(1− t)σ2
2

1 + σ2
2mn(ui)

,

(10)

where mn(ui) = − 1−(p−K̂0)/n
ui

+ 1
n

∑p−K̂0

l=1
1

λl−ui
.

By solving (9), we obtain the bulk estimators Θ̂bulk =
(σ̂2

1 , σ̂
2
2 , t̂). Subsequently, the density curve of LSD of

WTW naturally follows from Eq. (3)-(4).

Step 3 Estimate Θbound = {λ+, β} and refine the num-
ber of spikes K.

From Fig. 2(c), we can see that the number of spikes is
equal to

K = #{λj |λj ∈ (λ+, λmax]}, (11)

where #{·} represents the cardinality of the set. With the
estimated Θ̂bulk in Step 2, we can obtain the estimator of
boundary point λ̂+ via Eq.(5). Then we can further refine
the estimation of the number of spikes K̂ via Eq. (11).
Subsequently according to Theorem 3.2, we estimate β by

β̂ = λK̂+pt̂−K̂t̂. (12)

Step 4 Estimate Θspike = {α1, ...αK̂}.

The relationship between spikes of WTW and ΣPDB

is established in Theorem 3.3. Thus we can obtain{
α̂1, . . . , α̂K̂

}
by Eq. (6) and (7).

In summary, the estimation algorithm is thoroughly de-
tailed in Algorithm 1. Based on Theorems 3.1-3.3, we can
show that PDBLS is a consistent estimator of ΣPDB .

Theorem 3.4. Under PDB model (2), as n → ∞, p/n → c,

{Θ̂bulk, Θ̂spike, Θ̂bound}
a.s.−−→ {Θbulk, Θspike, Θbound}.

4. Matrix compression of PDB model
In this section, we determine the boundary between noise
and information and introduce a novel PDB Noise-Filtering
algorithm to compress weight matrices .

Now with the estimation of our PDB model, we have a clear
picture about two boundaries of W, one is the boundary
between the sample spikes and the bulk1, λ+, and the other
is the boundary between bulk1 and bulk2, β. This sheds
new light on determining the noise-information boundary,
which facilitates the compression of the weight matrix.

In the current literature, existing method to determine the
boundary between noise and information are either purely
data-driven or based on the PUB model. As for the PUB
model, (Shmalo et al., 2023) and (Staats et al., 2023) treat
the MP edge λ+ of LSD, the vertical dashed line in Fig.
2(b), as the noise-information boundary. They assume that
all the information is contained in the spikes of WTW
while bulk eigenvalues only represent noise. Accordingly,
in their compression algorithm, they remove all the bulk
singular values and recover the population spiked singular
values from sample spikes of weight matrices. However, the
boundary inferred from the PUB model is quite stringent.
Consequently, the corresponding compression algorithm
would lead to a substantial loss of useful information. As a
result, the compressed network would struggle to maintain
the original generalization performance.

Therefore, to strike a balance between the amount of in-
formation retained and the degree of weight matrix rank
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Algorithm 2 PDB Noise-Filtering algorithm (For matrix
compression)

1: Perform the singular value composition of the weight
matrix W = UD

1
2V, where D = diag(λ1, . . . , λp).

2: Apply the PDBLS algorithm to estimate PDB model in-
cluding Θ̂bulk =

{
σ̂2
1 , σ̂

2
2 , t̂

}
, Θ̂spike = {K̂, α̂1, ...α̂K̂}

and Θ̂bound = {λ̂+, β̂}.
3: Replace sample spikes {λj ∈ (λ̂+, λmax]} with pop-
ulation spikes {α̂1, . . . , α̂K̂}, retain the bulk1 {λj ∈
[β̂, λ̂+]} in D, and replace the bulk2 {λj ∈ [λmin, β̂)}
with zero. The new diagonal matrix is formulated as

Dnew = diag
{{

α̂1, . . . , α̂K̂

}
, {λj ∈ [β̂, λ̂+]},0

}
.

4: Obtain a new weight matrix Wnew = UD
1
2
newV,

whose rank is K̂ + (p− K̂)t̂.

Figure 5. The process of matrix compression

reduction, we extend the PUB model to the PDB model,
where only one bulk represents noise, while all the trained
information is retained in all the spikes and the other bulk.
In other words, our proposed noise-information boundary
is the boundary between sample bulk1 and bulk2, β, the
vertical dashed line in Fig. 2(c). In this way, we retain more
important eigenvalues of WTW and find a more suitable
way to recover the important information in ΣPDB . The
detailed process of matrix compression is given in Fig. 5.
Specifically, with the estimated ΣPDB , we remove all the
smaller eigenvalues in the bulk2 of WTW while keeping
the bulk1 as a significant source of information. Simulta-
neously, we incorporate the recovered population spikes
Θ̂spike as another valuable source of information learned
from W during the training process. The detailed com-
pression algorithm is outlined in Algorithm 2.

5. Experiments
In this section, we conduct numerical experiments to demon-
strate the superiority of our PDB model and the effectiveness
of the weight matrix compression algorithm.

5.1. Experimental setups

We evaluate generalization performance using test accu-
racy and employ three basic neural network architectures,
the three-layer Fully Connected Neural Network (FCNN),
Residual Network-18 (ResNet18) (He et al., 2015), and Vi-
sual Geometry Group-16 (VGG16) (Simonyan & Zisserman,
2015) . The FCNN is trained on MNIST, while ResNet18
and VGG16 are evaluated on CIFAR10 (Krizhevsky et al.,
2009) and ImageNet (Deng et al., 2009). The three architec-
tures configurations including the following:

1. FCNN trained on MNIST.
The FCNN for MNIST is fc784 → fc512 → fc512 →
fc350 → fc10, where fc denotes fully connected layer.

2. ResNet18 trained on CIFAR10 and ImageNet.
We add a linear layer of size 512 × 256 before the
linear layer in the original ResNet18 when training
CIFAR10.

3. VGG16 trained on CIFAR10 and ImageNet.
The size of last two linear layers is changed from 4096
to 256 when training CIFAR10.

Additionally, we assess the generalization of three represen-
tative pre-trained architectures: BERT (Devlin et al., 2019)
and T5-base (Raffel et al., 2020) for natural language pro-
cessing, and ViT-L (Dosovitskiy, 2020) for computer vision.
ViT-L is a variant of the CLIP vision encoder (Radford et al.,
2021). In the CLIP model, the text encoder remains frozen,
and text embeddings are generated by processing the class
labels through it. For the language models, experiments are
conducted on the RTE (Wang et al., 2018) and SciTail (Khot
et al., 2018) datasets, while the vision model is tested on
DTD (Cimpoi et al., 2014) and SUN397 (Xiao et al., 2016).

Each image is normalized to the range of [0,1], and the
weight matrices of the networks are initialized by the Glorot
uniform distribution (Glorot & Bengio, 2010). For basic
architectures, we employ SGD with an exponential decay
learning rate during the training phase. The activation func-
tions used are Relu(·) for hidden layers and Softmax(·) for
output layer. For large-scale model, we utilize the AdamW
(Loshchilov & Hutter, 2017) optimizer in conjunction with
a cosine learning rate scheduler. Regarding convolutional
layers, we follow the scheme in (Idelbayev & Carreira-
Perpinán, 2020) for reshaping the convolution kernel into
a 2D matrix. In particular, since a convolution layer has n
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groups of convolutional kernels with c channels, each of size
d×d, we can reshape them into a 2D matrix of size nd× cd
for compression. After compression, we can reshape them
back to their original 4D convolutional kernel form.

We compare two classes of matrix compression methods:
the PUB-based methods and SVD-based methods.

PUB-based methods include:

1. Bulk Eigenvalue Matching Analysis (BEMA) (Ke et al.,
2023): find the boundary of density curves by quantile
fitting.

2. Kernel Estimation (Kernel) (Staats et al., 2023): use
Gaussian broadening to fit MP distribution and find the
boundary.

SVD-based methods include:

1. Sparse low rank (SLR) (Swaminathan et al., 2020) :
obtain low-rank matrices by imposing rank-sparsity
constraints.

2. Naive SVD (Shmalo et al., 2023): set 45% small sin-
gular values to zero.

5.2. Generalization and compression performance

In this section, we train the network on data sets with and
without noisy labels, shuffling 60% of the labels to intro-
duce noise. Then, we compress networks according to
Algorithm 2 and Fig. 5. The test accuracy before and after
compression for different methods is compared to evaluate
the generalization performance of compressed networks.
We denote the test accuracy before compression as the Base.
All codes in the experiment are conducted on the server
equipped with NVIDIA L40 GPUs and Ubuntu 22.04.

Our algorithm will recommend the best compression ratio
of weight matrix where further compression will lead to
significantly loss of generalization ability. Table 6 lists the
rank of the weight matrix before and after compression
for various neural networks under four algorithms across
different datasets. Fig. 6 reports the test accuracy of various
compression algorithms for the dataset with and without
label noise. From these results, we obtain the following
conclusions:

1. Compared with the original neural network, our com-
pressed model significantly reduces the rank of weight
matrices while maintaining its test accuracy. In case
of contaminated labels, our compression methods can
even improve the test accuracy.

2. Compared with other compression algorithms, our al-
gorithm can achieve better test accuracy at the same

compression level. The boundary point obtained by
the PDB model retains more important information.

3. The empirical compression ratio 0.55 proposed in
(Shmalo et al., 2023) does not fully compress the
weight matrix. On the contrary, the noise-information
boundary identified by our method accurately captures
the point at which test accuracy starts to decrease dur-
ing compression.

Table 7 presents the test accuracy of various neural networks
when compressed using different algorithms. Our method
achieves the best accuracy, with a maximum improve-
ment of 5% ( 0.75360.7174 − 1) for T5-base: RTE. More compa-
rable outcomes are listed in the Appendix. These results
demonstrate the effectiveness of our proposed method.

Table 8 compares the computational efficiency of four meth-
ods, with the time measured in seconds for the total execu-
tion and inference phases following data processing. Among
them, the computational overhead of our PDB model is
slightly higher than that of PUB. However, this additional
cost is relatively modest and is outweighed by the improve-
ments in compression performance and model accuracy.

Table 8. The computation time of different networks across various
comparable algorithms.

Network PDB PUB Naive SVD SLR
ResNet 19 15 18 23
VGG16 42 41 47 53
BERT 20 15 18 29

T5-base 47 44 45 42
VIT-L 236 231 243 256

Average 72.8 69.2 74.2 80.6

6. Conclusions
In this work, we propose a novel Population Double Bulk
(PDB) model which can more accurately characterize the
singular value behavior of weight matrix than the exist-
ing PUB model. An effective PDBLS algorithm is further
developed for model estimation and determination of the
noise-information boundary. Subsequently, we propose a
PDB noise-filtering algorithm to compress weight matrices.
Our algorithms will also recommend the best compression
ratio of weight matrix where further compression will lead
to significantly loss of generalization ability. Experiments
demonstrate superiority of our PDB model and effectiveness
of our compression method.
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(a) FCNN on MNIST (b) ResNet18 on CIFAR10 (c) Vgg16 on CIFAR10 (d) Vgg16 on imagenet

(e) FCNN on MNIST with noise (f) ResNet18 on CIFAR10 with
noise

(g) Vgg16 on CIFAR10 with
noise

(h) Resnet on imagenet

Figure 6. The vertical axis represents test accuracy and the horizontal axis represents the proportion of removed singular values of W
in ascending order. The horizontal dashed black line reports test accuracy before compression. The vertical dashed lines represent the
compression ratios recommended by different models, where red λ+for the PUB model and blue β for our PDB model.

Table 6. Comparison of compression ratios across different compression algorithms, where the ratio equals the quotient of rank of matrix
after and before compression.

Model FCNN ResNet18 VGG16
Datasets (0% noise) MNIST CIFAR10 ImageNet CIFAR10 ImageNet

PDB(β) 55/350 (15.72%) 165/768 (21.48%) 68/192 (35.42%) 208/1536 (13.54%) 200/768 (26.04%)
PUB(λ+) 30/350 (8.57%) 80/768 (10.42%) 25/192 (13.02%) 84/1536 (5.47%) 123/768 (16.02%)

SLR 80/350 (22.86%) 200/768 (26.04% ) 100/192 (52.08%) 200/1536 (13.02%) 260/768 (33.85%)
Naive SVD 192/350 (55%) 422/768 (55%) 106/192 (55%) 845/1536 (55%) 422/768 (55%)

Table 7. The test accuracy obtained by training different network models of different data sets (0% noise) under the four compression
methods. Base denotes the test accuracy before compression. SLR performs poorly on VIT-L (accuracy 0.1), thus omitted.

Network Datasets Base PDB PUB SLR naive SVD
FCNN MNIST 0.9799 0.9804 0.9791 0.9799 0.9799

ResNet18 CIFAR10 0.8349 0.8384 0.8338 0.8357 0.8354
VGG16 CIFAR10 0.8418 0.8422 0.8405 0.8415 0.8419

BERT RTE 0.7029 0.7319 0.7174 0.7246 0.7029
SciTail 0.9055 0.9155 0.9130 0.9008 0.9055

T5-base RTE 0.7174 0.7536 0.7319 0.7174 0.7174
SciTail 0.9025 0.9243 0.9167 0.9182 0.9196

VIT-L DTD 0.7452 0.7533 0.7482 - 0.7405
SUN397 0.7680 0.7771 0.7720 - 0.7716

Average 0.7783 0.7891 0.7827 0.7858 0.7789
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A. Experimental results
Table 9 summarizes the test accuracy achieved by training various network models on various data sets using the four
compression techniques. We can further show that our compression algorithm is validated by the outcomes.

Table 9. The test accuracy obtained by training different network models of different data sets under the four compression methods. Base
denotes the test accuracy before compression.

network dataset noise Base PDB PUB SLR naive SVD

fc784 → fc512 → fc512
→ fc350 → fc10

MNIST

0% 0.9799 0.9804 0.9791 0.9799 0.9799
10% 0.9414 0.9454 0.9418 0.9439 0.9428
20% 0.8921 0.8968 0.8901 0.8918 0.8906
30% 0.8013 0.8078 0.7934 0.7893 0.8033
40% 0.7247 0.7319 0.7119 0.7304 0.7278
50% 0.6520 0.6551 0.6381 0.6531 0.6387
60% 0.5455 0.5544 0.5331 0.5536 0.5401

Resnet18 CIFAR10

0% 0.8349 0.8384 0.8338 0.8357 0.8354
10% 0.7360 0.7446 0.7439 0.7391 0.7382
20% 0.6701 0.6845 0.6831 0.6747 0.6709
30% 0.6417 0.6576 0.6399 0.6187 0.6466
40% 0.4995 0.5051 0.5019 0.5027 0.5033
50% 0.4533 0.4607 0.4597 0.4496 0.4523
60% 0.2960 0.2982 0.2942 0.2975 0.2960

VGG16 CIFAR10

0% 0.8418 0.8422 0.8405 0.8415 0.8419
10% 0.7882 0.7937 0.7931 0.7935 0.7901
20% 0.7474 0.7496 0.7452 0.7449 0.7478
30% 0.6992 0.7048 0.6862 0.7011 0.6998
40% 0.6276 0.6341 0.6255 0.6303 0.6298
50% 0.5986 0.6122 0.6025 0.6048 0.6024
60% 0.5570 0.5686 0.5498 0.5591 0.5576

Resnet18 Imagenet 0% 0.5473 0.5469 0.5440 0.5467 0.5452
VGG16 Imagenet 0% 0.6160 0.6164 0.6126 0.6078 0.6076

BERT
RTE 0% 0.7029 0.7319 0.7174 0.7246 0.7029

SciTail 0% 0.9055 0.9155 0.9130 0.9008 0.9055

T5-base
RTE 0% 0.7174 0.7536 0.7319 0.7174 0.7174

SciTail 0% 0.9025 0.9243 0.9167 0.9182 0.9196

VIT-L
DTD 0% 0.7452 0.7533 0.7482 - 0.7405

SUN397 0% 0.7680 0.7771 0.7720 - 0.7716

B. Spectral moment of PDB model
The spectral moment of a matrix is an important statistic related to its eigenvalues, often used to describe the spectral
distribution of the matrix. Denote the empirical spectral moment of WTW,

γ̂j =
1

p
tr
(
WTW

)j
, j = 1, 2, 3.
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Under our PDB model, we have the following theoretical spectral moment,

γ1 = µ1, γ2 = µ2 + cµ2
1, γ3 = µ3 + 3cµ1µ2 + c2µ2

1

where
µj = t̂σ̂2j

1 + (1− t̂)σ̂2j
2 , j = 1, 2, 3,

and (t̂, σ̂1, σ̂2) come from PDBLS algorithm.
Theorem B.1. Under PDB model (2) with p/n = c, as n → ∞, we have

γ̂j − γj
a.s.−−→ 0 j = 1, 2, 3. (13)

C. The difference between PUB and PDB model
In this section, we compare theoretical properties between our PDB model and the PUB model. Recall the theory on PDB
model has been established in Theorems 3.1-3.3 and B.1. Next we list the corresponding results about PUB model(1).

The LSD of WTW under PUB model has density function (Martin & Mahoney, 2021; Staats et al., 2023) :

f(x; c, σ2) =

√
(λ+ − x)(x− λ−)

2πσ2cx
1{λ−≤x≤λ+}. (14)

Here the boundary points λ±(σ
2) = σ2

0(1±
√
c)2, c = p

n . And the sample spikes of WTW have the following relationship
with population spikes αj of EWTW (Bai & Yao, 2012):

λj = αj + cαj
σ2

αj − σ2
, j ∈ {1, . . . ,K}. (15)

Moreover, the relationship between the moments of WTW and ΣPUB , mainly determined by the bulk eigenvalues, is
established in (Yao et al., 2015):

1

p
tr
(
WTW

)j − γj
a.s.−−→ 0, j = 1, 2, 3.

where
γ1 = µ1, γ2 = µ2 + cµ2

1, γ3 = µ3 + 3cµ1µ2 + c2µ2
1, µj = σ̂2j , j = 1, 2, 3. (16)

Here σ̂2j can be obtained by BEMA (Ke et al., 2023) or Kernel (Staats et al., 2023) method.

The difference between the PUB and PDB model is summarized in Table 10.

Table 10. The difference between the PUB and PDB model.
PUB model PDB model

LSD (14) (3)-(4)
spiked eigenvalues (15) (6)-(7)
spectral moment (16) (13)

D. Proof of Theorem 3.1
Firstly, we give some preliminary knowledge about Stieltjes transform, which plays a key role in our proofs. For any
distribution function G(x), its Stieltjes transform mG(z) is defined as

mG(z) =

∫
1

x− z
dG(x), z ∈ C+,

where C+ = {z ∈ C : Im(z) > 0} denotes the upper complex plane and Im(z) represents the imaginary part of z.
Moreover G(x) and mG(z) have a one-to-one relationship. The density function G′(x) of G(x) is given by Theorem 2.1 in
(Silverstein & Choi, 1995):

G′(x) = lim
η→0

Im(mG(z))

π
, z = x+ iη. (17)
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According to the main results in (Bai & Silverstein, 2010), the Stieltjes transform of LSD of WTW is m(z), which satisfies
the following equations:

z = − 1

m(z)
+ c

∫
v

1 + vm(z)
dH(v), (18)

m(z) = −1− c

z
+ cm(z), (19)

where H(v) be the LSD of ΣPDB . By the relation m(z) = −(1− c)/z + cm(z), along with Eq. (17), the density function
of LSD of WTW is

ρ(x) = lim
η→0

Imm(z)

π
= lim

η→0

Imm(z)

πc
, z = x+ iη, η > 0,

from which we get Eq. (3).

And since the number of spiked eigenvalues K is fixed, we have

H(v) = lim
p→∞

1

p
[

K∑
j=1

I(αj ≤ v) + (p−K)tI(σ2
1 ≤ v) + (p−K)(1− t)I(σ2

2 ≤ v)]

=tI(σ2
1 ≤ v) + (1− t)I(σ2

2 ≤ v), (20)

which implies

z = − 1

m(z)
+ c

∫
v

1 + vm(z)
dH(v)

= − 1

m(z)
+ ct

σ2
1

1 + σ2
1m(z)

+ c(1− t)
σ2
2

1 + σ2
2m(z)

.

Thus we obtain Eq. (4). The proof of Theorem 3.1 is complete.

E. Proof of Theorem 3.2
By Eq. (4), this inverse function of z 7→ −1/m(z) is

g(x) = x+ cx
tσ2

1

x− σ2
1

+ cx
(1− t)σ2

2

x− σ2
2

.

Here g(x) = z and x = −1/m(z) in Eq. (4). Then according to Proposition 2.17 in (Yao et al., 2015) we obtain Theorem
3.2.

F. Proof of Theorem 3.3
By Theorem 4.1 in (Bai & Yao, 2012) , the relationship between sample spikes λj and population spikes αj is established by

λj
a.s.−−→ αj + cαj

∫
v

αj − v
dH(v), j ∈ {1, . . . ,K}.

Moreover, according to Eq. (20), we have∫
v

αj − v
dH(v) =

tσ2
1

αj − σ2
1

+
(1− t)σ2

2

αj − σ2
2

,

from which for j ∈ {1, . . . ,K}, we obtain

λj
a.s.−−→ αj + cαj

tσ2
1

αj − σ2
1

+ cαj
(1− t)σ2

2

αj − σ2
2

= g(αj)

Thus we complete the proof Theorem 3.3.
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G. Proof of Theorem 3.4
Recall the estimators

Θ̂bulk =
{
σ̂2
1 , σ̂

2
2 , t̂

}
, Θ̂bound =

{
λ̂+, β̂

}
, Θ̂spike =

{
K̂, α̂1, . . . , α̂K̂

}
,

along with their corresponding population parameters

Θbulk =
{
σ2
1 , σ

2
2 , t

}
, Θbound = {λ+, β} , Θspike = {K,α1, . . . , αK} .

We now proceed to establish the consistency of these estimators.

For Θ̂bulk , its consistency relies on the convergence of the empirical spectral distribution (ESD)

FWTW
n (x) =

1

p

p∑
j=1

1{λj≤x}

to the limiting spectral distribution (LSD) characterized in Theorem 3.1. Based on the ESD, we obtain Θ̂bulk via the
procedures defined in Eq. (9)-(10). Moreover, Eq. (4) ensures a one-to-one correspondence between the population
parameter Θbulk =

{
σ2
1 , σ

2
2 , t

}
and LSD. Therefore, by Theorem 3.1, the ESD converges almost surely to the LSD, and

applying Theorem 3.1 in (Li et al., 2013), we conclude that

Θ̂bulk
a.s.−−→ Θbulk. (21)

For Θ̂bound, the consistency of λ̂+ relies on the the convergence of Θ̂bulk and the results in Theorem 3.2, while the
consistency of β̂ depends on the convergence of K̂. Based on Θ̂bulk, we compute λ̂+ through Eq. (5)-(6), i.e.,

λ̂+ = ĝ(ŷ), ŷ = argmax
x∈R

{ĝ′(x) = 0} , ĝ(x) = x+ cnx
t̂σ̂2

1

x− σ̂2
1

+ cnx
(1− t̂)σ̂2

2

x− σ̂2
2

, cn = p/n.

Moreover, Theorem 3.2 establishes a one-to-one correspondence between λ+ and Θbulk. Therefore, by Eq. (21) and the
condition cn → c, we have λ̂+

a.s.−−→ λ+. Then by Eq. (11)-(12), we have K̂ = #
{
λj | λj ∈

(
λ̂+, λmax

]}
a.s.−−→ K and

hence β̂ = λK̂+pt̂−K̂t̂

a.s.−−→ β. Thus we conclude that

Θ̂bound
a.s.−−→ Θbound. (22)

For Θ̂spike, its consistency relies on the convergence of Θ̂bulk, Θ̂bound and the results in Theorem 3.3. By the convergence
λ̂+

a.s.−−→ λ+ in Θ̂bound , we have K̂
a.s.−−→ K. Given Θ̂bulk, according to Eq. (7), we compute α̂i by solving the equation

ĝ(α̂j) = λj , s.t. ĝ′(α̂j) > 0, j ∈ {1, . . . , K̂}.

Moreover, from Theorem 4.1 in (Bai & Yao, 2012) and Theorem 3.3, we have λj
a.s.−−→ g (αj) , g

′ (αj) > 0, j ∈ {1, . . . ,K}.
Therefore by Eq. (21), K̂ a.s.−−→ K and cn → c, we obtain

Θ̂spike
a.s.−−→ Θspike. (23)

Finally, by Eq. (21), (22), (23), we complete the proof of Theorem 3.4.

H. Proof of Theorem B.1
According to Lemma 2.16 in (Yao et al., 2015), we have the following relationship:

γ1 = µ1, γ2 = µ2 + cµ2
1, γ3 = µ3 + 3cµ1µ2 + c2µ2

1,
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where
γj = lim

p→∞

1

p
tr
(
WTW

)j
, µj =

∫
vjdH(v), j = 1, 2, 3.

Moreover, together with Eq. (20), we have

µj = tσ2j
1 + (1− t)σ2j

2 , j = 1, 2, 3.

And by the definition of ΣPDB ,

lim
p→∞

1

p
tr(ΣPDB)

j = tσ2j
1 + (1− t)σ2j

2 , j = 1, 2, 3,

we obtain (13). Thus we complete the proof Theorem B.1.

16


