
Published as a conference paper at ICLR 2025

DEEPRTL: BRIDGING VERILOG UNDERSTANDING
AND GENERATION WITH A UNIFIED REPRESENTATION
MODEL

Yi Liu1,2, Changran Xu1,2, Yunhao Zhou1,2, Zeju Li1,2, Qiang Xu1,2

1The Chinese University of Hong Kong 2National Technology Innovation Center for EDA
{yliu22,zjli24,qxu}@cse.cuhk.edu.hk
{xxuchangran,yunhaoz.cs}@gmail.com

ABSTRACT

Recent advancements in large language models (LLMs) have shown significant
potential for automating hardware description language (HDL) code generation
from high-level natural language instructions. While fine-tuning has improved
LLMs’ performance in hardware design tasks, prior efforts have largely focused
on Verilog generation, overlooking the equally critical task of Verilog understand-
ing. Furthermore, existing models suffer from weak alignment between natural
language descriptions and Verilog code, hindering the generation of high-quality,
synthesizable designs. To address these issues, we present DeepRTL, a unified
representation model that excels in both Verilog understanding and generation.
Based on CodeT5+, DeepRTL is fine-tuned on a comprehensive dataset that aligns
Verilog code with rich, multi-level natural language descriptions. We also in-
troduce the first benchmark for Verilog understanding and take the initiative to
apply embedding similarity and GPT Score to evaluate the models’ understand-
ing capabilities. These metrics capture semantic similarity more accurately than
traditional methods like BLEU and ROUGE, which are limited to surface-level
n-gram overlaps. By adapting curriculum learning to train DeepRTL, we enable it
to significantly outperform GPT-4 in Verilog understanding tasks, while achieving
performance on par with OpenAI’s o1-preview model in Verilog generation tasks.
Our code and datasets are available at https://github.com/PeterLau61/DeepRTL.

1 INTRODUCTION

The development of powerful large language models (LLMs), such as OpenAI’s GPT-4 (Achiam
et al., 2023), has brought transformative benefits to diverse fields (Wei et al., 2024; Jin et al., 2023),
including electronic design automation (EDA). These models help streamline the hardware design
process by generating hardware description language (HDL) code, like Verilog, from user-defined
specifications (Pearce et al., 2020; Chang et al., 2023). The use of LLMs in EDA has opened new
avenues for agile chip design, wherein hardware designers can specify requirements through natural
language prompts, potentially boosting both creativity and efficiency in chip design processes.

Despite the adaptability of commercial LLMs like GPT-4 in the EDA domain, the proprietary na-
ture of many designs necessitates the development of a tailored model, which requires fine-tuning
a specialized model to ensure data security and customization for specific needs. Recent studies
have attempted fine-tuning open-source LLMs for Verilog generation, demonstrating great poten-
tial for automated generation of Verilog code from high-level prompts (Thakur et al., 2024; Chang
et al., 2024b; Zhang et al., 2024). However, these efforts often focus solely on Verilog generation,
neglecting the equally critical task of Verilog understanding, i.e., summarizing high-level function-
ality from Verilog code snippets using natural language. This capability is essential for effective
communication among hardware designers, as it helps decipher complex code written by others,
facilitating collaboration and comprehension. Moreover, even for Verilog generation, these works
fail to establish a strong alignment between natural language and Verilog code, which potentially
harms the models’ performance. For example, Thakur et al. (2024) do not incorporate paired data
of natural language and Verilog code in their dataset. Chang et al. (2024b) propose mapping the

1

https://github.com/PeterLau61/DeepRTL

Published as a conference paper at ICLR 2025

Verilog Abstract Syntax Tree (AST) directly to natural language, but this approach is limited to line-
level translation and produces descriptions that lack high-level semantics. To further bridge this gap,
Zhang et al. (2024) introduce the MG-Verilog dataset with multi-level descriptions alongside corre-
sponding code samples, but its small size and reliance on LLaMA2-70B-Chat for annotations raise
quality concerns. Such poor alignment between natural language and Verilog code can degrade the
generation performance, leading to generation of non-synthesizable or non-functional Verilog code.

To address these challenges, we introduce DeepRTL, a unified representation model that bridges Ver-
ilog understanding and generation. Achieving this requires an extensive collection of high-quality,
hardware-specific datasets, which are scarce in the open-source community. To this end, we have
meticulously curated a comprehensive Verilog dataset that ensures strong alignment between Verilog
code and natural language across multiple levels. This dataset includes both open-source and propri-
etary Verilog design data. For the open-source data, we adopt the chain-of-thought (CoT) approach
and use GPT-4, the most advanced model available, to generate precise natural language descriptions
of the Verilog code. Human evaluations have verified that these annotations are approximately 90%
accurate, underscoring the dataset’s high quality and reliability for training. For the proprietary data,
we engage a team of professional hardware designers to provide detailed annotations, which capture
intricate design features and further boost the dataset’s quality. This comprehensive dataset enables
us to develop DeepRTL capable of both understanding and generating Verilog code. By integrating
high-quality annotations, the model enhances efficiency and accuracy in various design tasks.

We are the first to integrate the task of Verilog understanding into our model, addressing a signifi-
cant gap left by previous works that focus exclusively on Verilog generation. These earlier efforts
lack benchmarks to evaluate LLMs’ understanding capabilities of Verilog code, prompting us to
introduce the first benchmark for Verilog understanding. Our benchmark comprises one hundred di-
verse, high-quality Verilog designs and we have collaborated with professional engineers to develop
precise high-level functional descriptions, which have been meticulously cross-checked by multiple
designers to ensure their accuracy. In the software domain, traditional metrics like BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) scores have been commonly used to assess the similarity be-
tween generated code summaries and ground truth annotations (Wang et al., 2023a). However, these
metrics focus primarily on lexical overlap and often fail to capture the true semantic meaning of
the descriptions. To tackle this issue, we take the initiative to apply embedding similarity and GPT
score for evaluation, both of which assess semantic similarity more effectively. Embedding similar-
ity utilizes vector representations for semantic alignment, while GPT score uses advanced LLMs to
assess the semantic coherence between descriptions. These metrics provide a more accurate means
of evaluating generated descriptions against the ground truth annotations.

In our work, we employ CodeT5+ (Wang et al., 2023a), a family of encoder-decoder code foundation
LLMs pre-trained on extensive software code, as the foundation to fine-tune on our dataset. Since
the dataset includes hierarchical code summaries across multiple levels—line, block, and module,
providing both detailed and high-level functional descriptions—we adapt curriculum learning for
training. This begins with fine-tuning on line-level and block-level data, subsequently advancing to
more complex module-level content. Such a structured approach enables the model to incremen-
tally build foundational knowledge, which significantly enhances its performance in both Verilog
understanding and generation tasks. In Verilog understanding, DeepRTL significantly outperforms
GPT-4 across all metrics on the newly established understanding benchmark. In Verilog generation,
it achieves comparable performance to OpenAI’s o1-preview, the latest model designed for complex
reasoning tasks including programming on the latest generation benchmark by Chang et al. (2024a).

2 RELATED WORKS

Register Transfer Level in EDA. Register Transfer Level (RTL) is a critical abstraction in EDA
that describes the flow of data between registers and the logical operations on that data. This level is
typically expressed using HDLs, with Verilog being the most widely used HDL in the industry. Con-
sequently, the terms HDL and Verilog are used interchangeably in this work. In modern hardware
design, engineers begin with specifications in natural language, which are then manually translated
into HDLs before synthesizing circuit elements (Blocklove et al., 2023). This manual translation
process is prone to human errors, leading to potential design flaws and inefficiencies. Automating
this translation can significantly reduce errors and streamline the design process. Recent develop-

2

Published as a conference paper at ICLR 2025

ments in artificial intelligence (AI) have enabled machine-based end-to-end translations, making this
automation possible. And the ability to understand and generate Verilog code is crucial for advanc-
ing this automation in hardware design. For an introduction of Verilog, please refer to Appendix A.

LLMs for EDA. Recent advancements in LLMs have significantly impacted EDA, marking a trans-
formative shift in hardware design (Chen et al., 2024). Researchers have examined the utilization
of LLMs for Verilog code generation, with benchmarking results presented in Thakur et al. (2023);
Liu et al. (2023b); Lu et al. (2024) showing the potential of these models to mitigate the design chal-
lenges faced by hardware developers. Furthermore, significant achievements have been achieved
in fine-tuning for Verilog code generation (Chang et al., 2024b; Thakur et al., 2024), general RTL
generation (Blocklove et al., 2023), and EDA tool script generation (Liu et al., 2023a; Wu et al.,
2024). By reducing the need for extensive expertise in specific hardware, LLMs enable hardware
developers to quickly design intricate hardware systems (Fu et al., 2023).

Fine-tuning LLMs for Verilog Generation. Despite the great potential of state-of-the-art (SOTA)
LLMs, e.g., OpenAI’s GPT-4 (Achiam et al., 2023), in generating Verilog code, relying solely on
them is insufficient due to the proprietary nature of hardware design. Besides, they are still limited
in their ability to generate practical hardware designs (Fu et al., 2023). To address these limitations,
recent studies have fine-tuned open-source LLMs on curated hardware design datasets (Liu et al.,
2023b; Chang et al., 2024b; Thakur et al., 2024; Zhang et al., 2024), which has been shown to im-
prove LLMs’ performance in generating Verilog code. However, effective use of LLMs in hardware
design requires high-quality, domain-specific data. Unfortunately, existing publicly available hard-
ware datasets are often limited in size, complexity, or detail, hindering the effectiveness of LLMs
in hardware design tasks. For example, datasets used in Thakur et al. (2023); Lu et al. (2024) con-
tain fewer than 200 data points, making them suitable only for benchmarking rather than effectively
fine-tuning. Meanwhile, other datasets, such as those employed in Liu et al. (2023b); Thakur et al.
(2024), are overly simplistic, which hinder effective fine-tuning of LLMs. To improve alignment be-
tween natural language and Verilog code, Chang et al. (2024b) translate Verilog files to an AST and
then map nodes to natural language with a predefined template. However, this method is limited to
line-level Verilog code and the template-based descriptions lack semantic information. Furthermore,
the MG-Verilog dataset (Zhang et al., 2024), despite featuring multi-level descriptions alongside
code samples, is limited in size and its reliance on LLaMA2-70B-Chat for annotations raises quality
concerns about the dataset. These alignment issues may hinder the fine-tuned LLMs’ performance,
leading to the generation of non-synthesizable or non-functional hardware source code. To address
the limitations of previous studies, we introduce a novel high-quality dataset that aligns natural lan-
guage with Verilog code at multiple levels: line, block, and module. It includes both detailed and
high-level descriptions, integrating open-source and proprietary code to enhance its diversity and
applicability. Unlike prior efforts focused solely on Verilog generation, we are the first to consider
the crucial task of Verilog understanding. This comprehensive dataset enables the development of a
unified representation model, DeepRTL, which excels in both Verilog understanding and generation,
paving the way for significant advancements in hardware design automation.

Curriculum Learning. Curriculum learning is a training strategy inspired by human learning,
where models are exposed to simpler tasks before advancing to more complex ones. This approach
has been shown to accelerate convergence and improve model performance, particularly for tasks
with hierarchical difficulty levels. Initially introduced in Bengio et al. (2009), curriculum learning
has been applied to various domains, including natural language processing (Xu et al., 2020), com-
puter vision (Wang et al., 2023b), and reinforcement learning (Narvekar et al., 2020). Recent work
has demonstrated its efficacy in fine-tuning LLMs, where progressively increasing task complexity
helps the models better capture intricate patterns (Campos, 2021). Notably, Na et al. (2024) apply
curriculum learning to code language models, achieving significant improvements in the accuracy
of code execution tasks. In this work, we adapt curriculum learning to train DeepRTL, utilizing our
structured dataset with descriptions at varying levels of detail. This approach significantly enhances
the model’s capabilities in both Verilog understanding and generation.

3 DATASET AND UNDERSTANDING BENCHMARK

In this section, we introduce our dataset designed to enhance Verilog understanding and generation,
which aligns natural language with Verilog code across line, block, and module levels with detailed

3

Published as a conference paper at ICLR 2025

Refined
Code

Split

Original
Code

Original comments
and junk modules

Qualified
Code

BlockBlockBlockBlocks

≥ 2048 tokens

< 2048 tokens≥ 2048 tokens

Commented
Code

Step 1
Add
Comment

Summarize

Step 2

The `cordic_sincos_generator`
module implements the CORDIC
algorithm to calculate sine
and cosine values for a given
angle specified by the
Frequency Control Word (Fcw).

The process involves several
steps, each handled by
specific submodules:\n\n1.
Phase Accumulation: The
`adder` submodule adds the
Fcw to the current phase
accumulator value,
accumulating the phase for
the CORDIC algorithm.\n2.

Specification

......

What

How

Line Comment

...

line: O = I1;
comment: Assign the value
of I1 to the output O when
S is high

line: timer <= timer-1'd1;
comment: Decrement timer

Filter

Distill

Step 3

involving phase
accumulation,
quadrant mirroring,
ROM lookup,
butterfly
operations, and
output generation.

The module
`cordic_improving`
implements the
CORDIC algorithm to
calculate sine and
cosine values for a
given angle,

Functional Description

What

How

< 2048 tokens

Extract

Figure 1: The overview of the data annotation process. We employ the CoT approach and the SOTA
LLM, GPT-4, for annotation. Annotations span three levels—line, block, and module—providing
both detailed specifications and high-level functional descriptions.

and high-level descriptions. By integrating both open-source and proprietary code, the dataset offers
a diverse and robust collection that spans a broad spectrum of hardware design complexities. We
employ GPT-4 along with the CoT approach for annotation, achieving about 90% accuracy in human
evaluations, confirming the dataset’s high quality. We also introduce the first benchmark for Verilog
understanding, setting a new standard for evaluating LLMs’ capabilities in interpreting Verilog code.

3.1 DATASET SOURCE

Our dataset comprises both open-source and proprietary Verilog code. For the open-source part, we
gather .v files from GitHub repositories using the keyword Verilog. These files are segmented
into individual modules, each representing a distinct functional unit within the Verilog design. This
segmentation is crucial given the limited context length of current LLMs, improving the efficiency
and accuracy of the subsequent annotation and fine-tuning processes. We employ MinHash and Jac-
card similarity metrics (Yan et al., 2017) to deduplicate these modules and exclude those predom-
inantly made up of comments or lacking complete module and endmodule structures. Finally,
this process results in a total of 61,755 distinct Verilog modules. For the proprietary portion, we
incorporate a set of purchased intellectual properties (IPs) that enhance the variety and functional
diversity of our dataset. This component includes a total of 213 high-quality, industry-standard
Verilog modules. These IPs not only offer a range of advanced functions but also provide unique
insights that complement the open-source data. Integrating these elements ensures a comprehensive
dataset that captures a wide spectrum of hardware design practices.

3.2 DATASET ANNOTATION

We employ different annotation strategies for open-source and proprietary code. For open-source
code, we utilize the CoT approach with the SOTA LLM, GPT-4, to provide annotations at multiple
levels. As illustrated in Figure 1, we initially remove all comments from the original Verilog code

4

Published as a conference paper at ICLR 2025

(resulting in refined code) to avoid training complications from incorrect or misleading comments.
If the token count of a complete module exceeds 2048, the maximum context length for CodeT5+,
we utilize GPT-4 to segment the module into smaller, manageable blocks such as always blocks.
If the resulting blocks still exceed 2048 tokens, we will discard them. For modules and blocks with
a token count below 2048 (qualified code), we then use GPT-4 to add informative comments, result-
ing in commented code (Step 1). From this commented code, we can extract line-level descriptions
(pairings of single lines of code with natural language descriptions). To guarantee the accuracy
and relevance of the inline comments, we use GPT-4o-mini to rigorously check each comment,
ensuring that all line-level descriptions are strictly confined to the context of their respective lines
without incorporating any extraneous or irrelevant information. For example, consider the line "O
= I1;" annotated with "Assign the value of I1 to the output O when S is
high.". Since we cannot deduce from this single line that O is the output and S is related, such de-
scriptions are deemed inaccurate and are consequently excluded from the dataset to maintain training
effectiveness. In Step 2, we use GPT-4 to generate a detailed specification for the commented code
from Step1. This specification includes two main components: a summary of the code’s function-
ality (what it does) and a comprehensive explanation of the implementation process (how it works).
Finally, in Step 3, we combine the qualified code from Step 1 with the detailed specification gener-
ated in Step 2 to create high-level functional descriptions. To ensure precision, we instruct GPT-4
to focus on the qualified code, using the detailed specification only as reference. The resulting high-
level descriptions succinctly summarize the code’s functionality (what it does) and provide a concise
overview of the implementation process (how it works). This annotation phase is the most critical
and challenging as it demands that the model captures the code’s high-level semantics, requiring
a profound understanding of Verilog. In current benchmarks and practical applications, users typ-
ically prompt the model with high-level functional descriptions rather than detailed specifications.
Otherwise, they would need to invest significant effort in writing exhaustive implementation details,
making the process time-consuming and requiring extensive expertise. For detailed prompts used in
this annotation process, please refer to Appendix B. And a detailed explanation of why we discard
Verilog modules or blocks exceeding 2048 tokens can be found in Appendix C.

Given the industrial-grade quality of the proprietary code, we engage professional hardware engi-
neers to maintain high annotation standards. Adhering to rigorous industry-level standards, these
experts ensure precise and accurate annotations, capturing intricate details and significantly enhanc-
ing the dataset’s value for advanced applications. Unlike GPT-generated annotations, these human-
annotated ones incorporate an additional layer of granularity with medium-detail block descriptions.
For detailed annotation standards and processes, please refer to Appendix D.

Table 1: The overall statistics of the annotation results for our dataset.
Comment Level Granularity Count

Line Level N/A 434697

Block Level
High-level Description 892

Medium-Detail Description 1306
Detailed Description 894

Module Level High-level Functional Description 59448
Detailed Specification 59503

We present the overall statistics of the annotation results in Table 1. Additionally, Figure 2 illustrates
an example of our comprehensive annotation for a complete Verilog module. Notably, the overall
dataset encompassing descriptions of various details across multiple levels is used for training. A
similar work to ours is the MG-Verilog dataset introduced by Zhang et al. (2024), including 11,000
Verilog code samples and corresponding natural language descriptions at various levels of details.
However, it has several limitations compared to ours. Firstly, MG-Verilog is relatively small in size
and lacks proprietary Verilog code, which diminishes its diversity and applicability. Secondly, it
employs direct annotation rather than the CoT approach, which we have found to enhance annotation
accuracy as demonstrated in Section 3.3. Besides, our annotation is more comprehensive than that
of MG-Verilog, which lacks granularity. We cover line, block, and module levels with both detailed
and high-level descriptions, ensuring a strong alignment between natural language and Verilog code.
Lastly, MG-Verilog relies on the open-source LLM LLaMA2-70B-Chat for annotation, whereas we
use the SOTA LLM GPT-4. In Section 4.4, we demonstrate that LLaMA2-70B-Chat has a poor
understanding of Verilog code, leading to inferior annotation quality in MG-Verilog.

5

Published as a conference paper at ICLR 2025

module D_apb_ssi_bcm57 (
 clk, // Clock signal
 rst_n, // Active low reset signal
 init_n, // Initialization signal (active low)
 wr_n, // Write enable signal (active low)
 data_in, // Data input
 wr_addr, // Write address
 rd_addr, // Read address
 data_out // Data output
);

...

 // Memory logic begins
 always @ (mem or write_en_n or write_addr or write_data) begin : PROC_mk_next_mem
 reg [15:0] i, j; // Loop variables for iteration
 reg [24:0] k; // Memory index variable
 next_mem = mem; // Initialize next_mem to current memory contents

 if (write_en_n == 1'b0) begin // If write is enabled (active low)
 k = 0; // Initialize index k
 // Iterate through memory depth
 for (i = 0; i < DEPTH; i = i + 1) begin
 if (write_addr == i) begin // If write address matches current index
 // Iterate through data width and assign write data to memory
 for (j = 0; j < DATA_WIDTH; j = j + 1) begin
 next_mem[k + j] = write_data[j]; // Assign write_data to next_mem
 end
 end
 k = k + DATA_WIDTH; // Update k to point to next set of data
 end
 end
 end

...

endmodule

Commented Code

Block Level

High-level Description:
This code block implements conditional write
operations, allowing for dynamic modification of
memory contents when the write enable signal is
activated.
Medium-detail Description:
This always block is responsible for updating the
next_mem register based on the current values of
mem, write_en_n, write_addr, and write_data.
Next_mem register is used to generate mem signal.
Detailed Description:
This is a memory writing block in Verilog RTL.
When the write enable signal 'write_en_n' is active
low, it iterates through the memory 'mem' and writes
'write_data' at the matched 'write_addr' address
while ensuring that the data bits align properly as
per 'DATA_WIDTH'. The rest of the memory
contents are preserved as is.

Module Level

Functional Description:
This Verilog module implements a FIFO RAM block with configurable data width, depth, and memory mode.

Specification:
This Verilog module implements a FIFO RAM block with configurable data width, depth, and memory mode. It supports write and read operations, with
the ability to pipeline the write and read addresses and data.The memory can be reset asynchronously or synchronously.

...

Line Level

Code: init_n, Comment: Initialization
 signal (active low)

Code: next_mem = mem; Comment: Initialize
 next_mem to current

 memory contents

...

Disgard

Accept

Figure 2: An example of our comprehensive annotation for a complete Verilog module.

3.3 DATASET EVALUATION

To ensure the quality of our dataset, we assess annotations generated from the CoT process. We
randomly sample 200 Verilog modules and engage four professional Verilog designers to evalu-
ate the accuracy of annotations at various levels. This human evaluation indicates that annotations
describing high-level functions achieve an accuracy of 91%, while those providing detailed speci-
fications attain an accuracy of 88%. For line-level annotations, the accuracy is 98%. Additionally,
we compare the CoT method with the direct annotation approach, where annotations are generated
straightforwardly from the original code. This direct annotation method yields only a 67% accuracy,
highlighting the significant advantage of integrating the CoT process.

Recent studies in natural language processing (NLP) have demonstrated that LLMs fine-tuned with
synthetic instruction data can better understand natural language instructions and show improved
alignment with corresponding tasks (Wang et al., 2022; Ouyang et al., 2022; Taori et al., 2023). It is
important to note that in our work, we also utilize data generated by language models for fine-tuning,
including annotations at various levels. While not all annotations are perfectly accurate, we achieve
a commendable accuracy of approximately 90%. Motivated by Wang et al. (2022), we treat those
inaccuracies as data noise, and the fine-tuned model on this dataset still derives significant benefits.

3.4 UNDERSTANDING BENCHMARK

As the first work to consider the task of Verilog understanding, we introduce a pioneering bench-
mark to evaluate LLMs’ capabilities in interpreting Verilog code. This benchmark consists of 100
high-quality Verilog modules, selected to ensure comprehensive coverage of diverse hardware func-
tionalities, providing a broad assessment scope across different types of hardware designs. We have
engaged four experienced hardware engineers to provide precise annotations on each module’s func-
tionalities and the specific operations involved in their implementations. These initial annotations
are then rigorously cross-verified by three additional engineers to guarantee accuracy and establish
a high standard for future model evaluations. This benchmark fills a critical gap by providing a stan-
dardized means to assess LLMs on interpreting Verilog code and will be released later. For detailed
examples included in the benchmark, please refer to Appendix E.

6

Published as a conference paper at ICLR 2025

Generation

Understanding

High-Level

Medium-detail

Detailed

Module Level

Block Level

Line Level

Instruction Construction

Description

Instruction:
Generate a high-level summary for
the given Verilog module.
Input:
<Refined Verilog module>
Output:
<High-level module summary by GPT>

Instruction:
Based on the detailed block summary,
generate the corresponding Verilog
code for the described block.
Input:
<Detailed block summary by human>
Output:
<Refined Verilog block>

Example

Curriculum Learning

From
Single Line

GPT-annotated

Detailed

Complete Module

High-level

To

Human-annotated

Human-annotated

GPT-annotated

Task Granularity Comment Level

Figure 3: The overview of the instruction construction process and the curriculum learning strategy.
For instruction construction, we integrate various settings, e.g., task type, granularity, and comment
level, to create tailored instructions for specific scenarios. The curriculum learning strategy involves
three hierarchical stages: training progresses from line-level to module-level code (1st stage), tran-
sitioning from detailed to high-level descriptions at each level (2nd stage), and advancing from
GPT-annotated to human-annotated descriptions for each granularity (3rd stage).

4 MODEL AND EVALUATION

In this section, we introduce DeepRTL and elaborate on the preparation of our instruction tuning
dataset and how we adapt curriculum learning for training. Additionally, we detail the benchmarks
and metrics used to evaluate our model’s performance in both Verilog understanding and generation
tasks. To accurately assess the semantic precision of the generated descriptions, we take the initiative
to apply embedding similarity and GPT score for evaluation, which are designed to quantitatively
measure the semantic similarity between the model’s outputs and the ground truth.

4.1 MODEL

In our work, we have chosen to fine-tune CodeT5+ (Wang et al., 2023a), a family of encoder-decoder
code foundation LLMs for a wide range of code understanding and generation tasks. CodeT5+ em-
ploys a “shallow encoder and deep decoder” architecture (Li et al., 2022), where both encoder and
decoder are initialized from pre-trained checkpoints and connected by cross-attention layers. We
choose to fine-tune CodeT5+ for its extensive pre-training on a vast corpus of software code, with
the intent to transfer its acquired knowledge to hardware code tasks. Also, the model’s flexible archi-
tecture allows for the customization of various training tasks, making it highly adaptable for specific
downstream applications. Furthermore, CodeT5+ adopts an efficient fine-tuning strategy where the
deep decoder is frozen and only the shallow encoder and cross-attention layers are allowed to train,
significantly reducing the number of trainable parameters. Specifically, we have fine-tuned two ver-
sions of CodeT5+, codet5p-220m-bimodal1 (CodeT5+-220m) and instructcodet5p-16b2 (CodeT5+-
16b), on our dataset, resulting in DeepRTL-220m and DeepRTL-16b, respectively. For more infor-
mation on the model selection, please refer to Appendix F.

4.2 INSTRUCTION TUNING DATASET

During the fine-tuning process, we adopt the instruction tuning strategy to enhance the adaptability
of LLMs, which is particularly effective when handling diverse types of data and tasks. Given that

1https://huggingface.co/Salesforce/codet5p-220m-bimodal
2https://huggingface.co/Salesforce/instructcodet5p-16b

7

https://huggingface.co/Salesforce/codet5p-220m-bimodal
https://huggingface.co/Salesforce/instructcodet5p-16b

Published as a conference paper at ICLR 2025

our dataset features descriptions at multiple levels and our model is fine-tuned for both Verilog un-
derstanding and generation tasks, there is diversity in both the data types and tasks. To accommodate
this diversity, we carefully design specific instructions for each scenario, ensuring the model can ad-
just its output to align with the intended instructions. Figure 3 illustrates how we combine various
settings, e.g., task type, granularity, and comment level, to construct tailored instructions for each
specific scenario, fostering a structured approach to instruction-based tuning that optimizes the fine-
tuning efficacy. For details on the instructions for different scenarios, please refer to Appendix G.

4.3 CURRICULUM LEARNING FOR DEEPRTL

We adapt curriculum learning for the fine-tuning process, leveraging our structured dataset that fea-
tures descriptions of various details across multiple levels. Initially, the model is fine-tuned on line-
level and block-level data, subsequently progressing to module-level data. At each level, we start by
aligning the detailed specifications with the code before moving to the high-level functional descrip-
tions. And fine-tuning typically starts with GPT-annotated data, followed by human-annotated data
for each annotation granularity. Figure 3 provides an illustration of this process. We adopt such strat-
egy because a particular focus is placed on aligning Verilog modules with their high-level functional
descriptions, which poses the greatest challenge and offers substantial practical applications. This
curriculum learning strategy enables the model to incrementally build knowledge from simpler to
more complex scenarios. As a result, the models demonstrate impressive performance across both
Verilog understanding and generation benchmarks. Note that we exclude the cases in the bench-
marks from our training dataset. We primarily follow the instruction tuning script of CodeT5+3 in
the fine-tuning process, with a modification to expand the input context length to the maximum of
2048 tokens. We utilize the distributed framework, DeepSpeed, to efficiently fine-tune the model
across a cluster equipped with eight NVIDIA A800 GPUs, each with 80GB of memory. During
inference, we adjust the temperature to 0.8 for understanding tasks and to 0.5 for generation tasks,
while other hyperparameters remain at their default settings to ensure optimal performance. Further
details on the adopted curriculum learning strategy are provided in Appendix H.

4.4 UNDERSTANDING EVALUATION

For evaluating LLMs’ capabilities in Verilog understanding, we utilize the benchmark introduced
in Section 3.4. The evaluation measures the similarity between the generated descriptions and the
ground truth summaries. Previous works usually use BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) scores for this purpose (Wang et al., 2023a). BLEU assesses how many n-grams, i.e., se-
quences of n words, in the machine-generated text appear in the reference text (focusing on preci-
sion). In contrast, ROUGE counts how many n-grams from the reference appear in the generated text
(focusing on recall). However, both metrics primarily capture lexical rather than semantic similarity,
which may not fully reflect the accuracy of the generated descriptions. To address this limitation,
we take the initiative to apply embedding similarity and GPT score for evaluation. Embedding sim-
ilarity calculates the cosine similarity between vector representations of generated and ground truth
descriptions, using embeddings derived from OpenAI’s text-embedding-3-large model. Meanwhile,
GPT score uses GPT-4 to quantify the semantic coherence between descriptions by assigning a sim-
ilarity score from 0 to 1, where 1 indicates perfect semantic alignment. These metrics provide a
more nuanced evaluation by capturing the semantic essence of the descriptions, thus offering a more
accurate assessment than previous methods. For details on the prompt used to calculate the GPT
score, please refer to Appendix I.

4.5 GENERATION EVALUATION

To evaluate LLMs’ capabilities in Verilog generation, we adopt the latest benchmark introduced
by Chang et al. (2024a), which is an expansion based on the previous well-established RTLLM
benchmark (Lu et al., 2024). The benchmark by Chang et al. (2024a) encompasses a broad spectrum
of complexities across three categories: arithmetic, digital circuit logic, and advanced hardware
designs. This benchmark extends beyond previous efforts by incorporating a wider range of more
challenging and practical Verilog designs, thus providing a more thorough assessment of the models’
capabilities in generating Verilog code.

3https://github.com/salesforce/CodeT5

8

https://github.com/salesforce/CodeT5

Published as a conference paper at ICLR 2025

Table 2: Evaluation results on Verilog understanding using the benchmark proposed in Section 3.4.
BLEU-4 denotes the smoothed BLEU-4 score, and Emb. Sim. represents the embedding similarity
metric. Best results are highlighted in bold.

Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L Emb. Sim. GPT Score

GPT-3.5 4.75 35.46 12.64 32.07 0.802 0.641
GPT-4 5.36 34.31 11.31 30.66 0.824 0.683
o1-preview 6.06 34.27 12.25 31.01 0.806 0.643

CodeT5+-220m 0.28 7.10 0.34 6.18 0.313 0.032
CodeT5+-16b 0.10 1.37 0.00 1.37 0.228 0.014
LLaMA2-70B-Chat 2.86 28.15 10.09 26.12 0.633 0.500
DeepRTL-220m-direct 11.99 40.05 20.56 37.09 0.793 0.572
DeepRTL-16b-direct 11.06 38.12 18.15 34.85 0.778 0.533

DeepRTL-220m 18.66 47.69 29.49 44.02 0.837 0.705
DeepRTL-16b 18.94 47.27 29.46 44.13 0.830 0.694

The evaluation focuses on two critical aspects: syntax correctness and functional accuracy. We use
the open-source simulator iverilog (Williams & Baxter, 2002) to assess both syntactic and functional
correctness of Verilog code generated by LLMs. For the evaluation metric, we adopt the prevalent
Pass@k metric, which considers a problem solved if any of the k generated code samples pass
the compilation or functional tests (Pei et al., 2024). For this study, we set k values of 1 and 5,
where a higher Pass@k score indicates better model performance. To further delineate the models’
capabilities, we track the proportion of cases that pass out of 5 generated samples and compute the
average as the success rate. For syntax correctness, this success rate measures the proportion of code
samples that successfully compile and, for functional accuracy, the fraction that passes unit tests.

5 EXPERIMENTAL RESULTS

5.1 BASELINE MODELS

For the baseline models, we select OpenAI’s GPT-4-turbo (GPT-4) and GPT-3.5-turbo (GPT-3.5),
as well as the o1-preview model, OpenAI’s latest reasoning model designed to address complex
problems across diverse domains, including programming. These models are chosen for their status
as the most advanced general-purpose LLMs currently available, with demonstrated excellence in
Verilog generation (Chang et al., 2024b; Thakur et al., 2024; Liu et al., 2024). For a comparison
with models specifically fine-tuned on Verilog, please refer to Appendix J.

5.2 VERILOG UNDERSTANDING

As shown in Table 2, DeepRTL consistently outperforms GPT-4 across all evaluation metrics. Tradi-
tional metrics like BLEU and ROUGE offer inconsistent assessments due to their inability to capture
semantic similarity accurately: while DeepRTL-16b excels in BLEU-4 and ROUGE-L, DeepRTL-
220m leads in ROUGE-1 and ROUGE-2. In contrast, embedding similarity and GPT score provide
a more accurate assessment of the models’ capabilities in understanding Verilog code. Compared to
CodeT5+, the performance of DeepRTL-direct, which is trained directly without curriculum learn-
ing, highlights the effectiveness of our dataset. And the subsequent improvements when employ-
ing the curriculum learning strategy underscore its benefits. Additionally, the poor performance of
LLaMA2-70B-Chat underscores the unreliability of the MG-Verilog annotations Zhang et al. (2024).
To further validate our model’s performance, we have conducted human evaluations, which show
that DeepRTL-220m, GPT-4, and o1-preview achieve accuracies of 78%, 72%, and 67%, respec-
tively. These results align closely with the embedding similarity and GPT score metrics, further
affirming the effectiveness of these evaluation methods. We find that DeepRTL-220m outperforms
DeepRTL-16b, likely due to the CodeT5+-220m’s pre-training on a large corpus of paired soft-
ware code and natural language data, which fosters better alignment between code and language.
In contrast, CodeT5+-16b is primarily pre-trained on software code data and then fine-tuned on
synthetic instruction data, lacking robust code-language alignment. Moreover, despite its smaller
size, DeepRTL-220m surpasses many billion-parameter models, underscoring the high quality of
our dataset and the effectiveness of the curriculum learning strategy.

9

Published as a conference paper at ICLR 2025

Table 3: Evaluation results on Verilog generation. Each cell displays the percentage of code samples,
out of five trials, that successfully pass compilation (syntax column) or functional unit tests (function
column). Best results are highlighted in bold.

Benchmark GPT-3.5 GPT-4 o1-preview DeepRTL-220m DeepRTL-16b
syntax function syntax function syntax function syntax function syntax function

Logic

Johnson Counter 40% 0% 100% 0% 100% 0% 100% 0% 100% 0%
alu 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
edge detect 60% 20% 100% 100% 100% 0% 100% 0% 100% 0%
freq div 100% 0% 100% 0% 100% 0% 100% 0% 100% 0%
mux 100% 100% 100% 40% 100% 100% 100% 100% 100% 100%
parallel2serial 80% 0% 100% 0% 100% 0% 100% 0% 100% 0%
pulse detect 60% 40% 100% 20% 100% 40% 100% 100% 100% 100%
right shifter 60% 60% 100% 100% 100% 100% 100% 100% 100% 100%
serial2parallel 60% 0% 100% 0% 100% 20% 100% 0% 100% 0%
width 8to16 100% 0% 20% 0% 100% 0% 100% 0% 100% 0%

Arithmetic

accu 100% 0% 40% 0% 100% 0% 100% 0% 100% 0%
adder 16bit 40% 0% 20% 20% 40% 40% 100% 0% 60% 0%
adder 16bit csa 80% 80% 0% 0% 100% 100% 100% 100% 100% 100%
adder 32bit 100% 0% 40% 0% 100% 0% 80% 0% 100% 0%
adder 64bit 100% 0% 100% 0% 100% 0% 100% 0% 100% 0%
adder 8bit 100% 100% 40% 40% 100% 100% 80% 20% 100% 80%
div 16bit 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
multi 16bit 80% 0% 100% 20% 100% 100% 100% 0% 100% 0%
multi booth 100% 0% 60% 0% 80% 40% 60% 0% 100% 0%
multi pipe 4bit 60% 20% 100% 100% 100% 100% 100% 100% 100% 100%
multi pipe 8bit 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Advanced

1x2nocpe 40% 40% 80% 80% 100% 100% 100% 80% 100% 100%
1x4systolic 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
2x2systolic 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4x4spatialacc 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
fsm 60% 0% 100% 0% 100% 20% 100% 100% 100% 100%
macpe 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
5state fsm 100% 0% 100% 60% 100% 100% 100% 100% 100% 100%
3state fsm 20% 0% 80% 20% 100% 100% 100% 100% 100% 100%
4state fsm 60% 40% 100% 80% 100% 20% 100% 100% 100% 100%
2state fsm 80% 20% 100% 80% 100% 0% 100% 20% 0% 0%

Success Rate 60.65% 20.00% 63.87% 27.74% 78.06% 38.06% 78.06% 36.13% 76.13% 38.06%
Pass@1 32.26% 19.35% 51.61% 29.03% 74.19% 35.48% 70.97% 32.26% 74.19% 35.48%
Pass@5 80.65% 35.48% 77.42% 45.16% 80.65% 51.61% 80.65% 41.94% 77.42% 38.71%

5.3 VERILOG GENERATION

Given the inferior performance of models like CodeT5+ and DeepRTL-direct in the Verilog under-
standing task, our comparison focuses on the GPT series models. As shown in Table 3, OpenAI’s
o1-preview, the latest model designed to tackle complex tasks including programming, achieves the
highest performance across all metrics. Nevertheless, our DeepRTL model exhibits comparable per-
formance to o1-preview on several metrics and significantly surpasses GPT-4 in syntax correctness,
Pass@1 functional accuracy, and overall functional success rate. Notably, DeepRTL consistently
generates highly accurate code in successful cases, often achieving a 100% pass rate among the five
generated samples, which underscores its reliability for practical applications. Furthermore, con-
sidering that OpenAI’s models benefit from vast parameter sizes and extensive pre-training across
diverse datasets, the performance of our more compact DeepRTL model is particularly impressive.

6 CONCLUSION

In this work, we introduce DeepRTL, a novel unified representation model that bridges Verilog un-
derstanding and generation. It is fine-tuned on a meticulously curated dataset featuring multi-level
natural language descriptions of Verilog code, encompassing line, block, and module levels with
both detailed and high-level functional descriptions. DeepRTL not only addresses the gaps in previ-
ous methods focused solely on Verilog code generation but also ensures strong alignment between
Verilog code and natural language. Moreover, we establish the first benchmark for evaluating LLMs’
capabilities in Verilog understanding. To overcome the limitations of traditional metrics like BLEU
and ROUGE, which primarily assess lexical similarity, we apply embedding similarity and GPT
score for evaluating the model’s understanding capabilities. These metrics are designed to evaluate
the semantic similarity of descriptions more accurately, thus better reflecting the precision of gener-
ated descriptions. By implementing a curriculum learning strategy, DeepRTL demonstrates superior
performance in both Verilog understanding and generation tasks. Specifically, it surpasses the SOTA
LLM, GPT-4, across all understanding metrics and achieves performance comparable to OpenAI’s
o1-preview in terms of syntax correctness and functional accuracy for Verilog generation.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was supported in part by the General Research Fund of the Hong Kong Research Grants
Council (RGC) under Grant No. 14212422 and 14202824, and in part by National Technology
Innovation Center for EDA.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Chip-chat: Challenges and
opportunities in conversational hardware design. In 2023 ACM/IEEE 5th Workshop on Machine
Learning for CAD (MLCAD), pp. 1–6. IEEE, 2023.

Daniel Campos. Curriculum learning for language modeling. arXiv preprint arXiv:2108.02170,
2021.

Kaiyan Chang, Ying Wang, Haimeng Ren, Mengdi Wang, Shengwen Liang, Yinhe Han, Huawei Li,
and Xiaowei Li. Chipgpt: How far are we from natural language hardware design. arXiv preprint
arXiv:2305.14019, 2023.

Kaiyan Chang, Zhirong Chen, Yunhao Zhou, Wenlong Zhu, Haobo Xu, Cangyuan Li, Mengdi Wang,
Shengwen Liang, Huawei Li, Yinhe Han, et al. Natural language is not enough: Benchmarking
multi-modal generative ai for verilog generation. arXiv preprint arXiv:2407.08473, 2024a.

Kaiyan Chang, Kun Wang, Nan Yang, Ying Wang, Dantong Jin, Wenlong Zhu, Zhirong Chen,
Cangyuan Li, Hao Yan, Yunhao Zhou, et al. Data is all you need: Finetuning llms for chip design
via an automated design-data augmentation framework. arXiv preprint arXiv:2403.11202, 2024b.

Lei Chen, Yiqi Chen, Zhufei Chu, Wenji Fang, Tsung-Yi Ho, Yu Huang, Sadaf Khan, Min Li,
Xingquan Li, Yun Liang, et al. The dawn of ai-native eda: Promises and challenges of large
circuit models. arXiv preprint arXiv:2403.07257, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yonggan Fu, Yongan Zhang, Zhongzhi Yu, Sixu Li, Zhifan Ye, Chaojian Li, Cheng Wan, and
Yingyan Celine Lin. Gpt4aigchip: Towards next-generation ai accelerator design automation
via large language models. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 1–9. IEEE, 2023.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Bu Jin, Xinyu Liu, Yupeng Zheng, Pengfei Li, Hao Zhao, Tong Zhang, Yuhang Zheng, Guyue Zhou,
and Jingjing Liu. Adapt: Action-aware driving caption transformer. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 7554–7561. IEEE, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

11

Published as a conference paper at ICLR 2025

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang,
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, et al. Chipnemo:
Domain-adapted llms for chip design. arXiv preprint arXiv:2311.00176, 2023a.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–8. IEEE, 2023b.

Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder:
Fully open-source and efficient llm-assisted rtl code generation technique. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design rtl
generation with large language model. In 2024 29th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 722–727. IEEE, 2024.

Marwa Na, Kamel Yamani, Lynda Lhadj, Riyadh Baghdadi, et al. Curriculum learning for small
code language models. In Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 4: Student Research Workshop), pp. 531–542, 2024.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1–50, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Hammond Pearce, Benjamin Tan, and Ramesh Karri. Dave: Deriving automatically verilog from
english. In Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD, pp.
27–32, 2020.

Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. Betterv: Controlled verilog
generation with discriminative guidance. arXiv preprint arXiv:2402.03375, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large language models for automated
verilog rtl code generation. In 2023 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), pp. 1–6. IEEE, 2023.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. ACM
Transactions on Design Automation of Electronic Systems, 29(3):1–31, 2024.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv
preprint arXiv:2305.07922, 2023a.

12

Published as a conference paper at ICLR 2025

Yulin Wang, Yang Yue, Rui Lu, Tianjiao Liu, Zhao Zhong, Shiji Song, and Gao Huang. Efficient-
train: Exploring generalized curriculum learning for training visual backbones. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 5852–5864, 2023b.

Yuxi Wei, Zi Wang, Yifan Lu, Chenxin Xu, Changxing Liu, Hao Zhao, Siheng Chen, and Yanfeng
Wang. Editable scene simulation for autonomous driving via collaborative llm-agents. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15077–
15087, 2024.

Stephen Williams and Michael Baxter. Icarus verilog: open-source verilog more than a year later.
Linux Journal, 2002(99):3, 2002.

Haoyuan Wu, Zhuolun He, Xinyun Zhang, Xufeng Yao, Su Zheng, Haisheng Zheng, and Bei Yu.
Chateda: A large language model powered autonomous agent for eda. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024.

Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan Wang, Hongtao Xie, and Yongdong Zhang. Cur-
riculum learning for natural language understanding. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 6095–6104, 2020.

Ziqi Yan, Jiqiang Liu, Gang Li, Zhen Han, and Shuo Qiu. Privmin: Differentially private minhash
for jaccard similarity computation. arXiv preprint arXiv:1705.07258, 2017.

Yongan Zhang, Zhongzhi Yu, Yonggan Fu, Cheng Wan, et al. Mg-verilog: Multi-grained dataset
towards enhanced llm-assisted verilog generation. arXiv preprint arXiv:2407.01910, 2024.

13

Published as a conference paper at ICLR 2025

A INTRODUCTION OF VERILOG

Verilog is the most widely used hardware description language (HDL) for modeling digital inte-
grated circuits. It enables designers to specify both the behavioral and structural aspects of hardware
systems, such as processors, controllers, and digital logic circuits. Verilog operates at a relatively
low level, focusing on gates, registers, and signal assignments—each representing physical hardware
components. While Verilog supports behavioral constructs (e.g., if-else, case) that are some-
what similar to software programming languages, their use is constrained by synthesizable coding
styles required for hardware implementation. Verilog differs from software programming languages
like Python and C++ in several key ways:

1. Parallelism: Verilog inherently models hardware’s concurrnet nature, with multiple state-
ments executing simultaneously. In contrast, software languages like Python typically fol-
low a sequential execution model.

2. Timing: Timing is a fundamental concept in Verilog that directly influences how digital
circuits are designed and simulated. Verilog relies on clocks to synchronize sequential logic
behaviors, enabling the precise modeling of synthronous circuits. In contrast, software
programming languages generally do not have an inherent need for explicit timing.

3. Syntax and Constructs: Verilog’s syntax is tailored to describe the behavior and structure
of digital circuits, reflecting the parallel nature of hardware. Key constructs of Verilog
include:

• Modules: The basic unit of Verilog, used to define a hardware block or component.
Each module in Verilog encapsulates inputs, outputs, and internal logic, and modules
can be instantiated within other modules, enabling hierarchical designs that mirror
the complexity of real-world systems. And each module instantiation results in the
generation of a corresponding circuit block.

• Always block: In an always block, circuit designers can model circuits using high-
level behavioral descriptions. However, this does not imply that a broad range of pro-
gramming language syntax is available. In practice, Verilog supports only a limited
subset of programming-like constructs, primarily if-else and case statements.
Statements in multiple always blocks are executed in parallel and the resulting cir-
cuit continuously performs its operations.

• Sensitivity list: In an always block, the sensitivity list specifies the signals that
trigger the block’s execution when they change.

• Assign statements: assign statements are used to describe continuous assignments
of signal values in parallel, reflecting the inherent concurrency of hardware.

• Registers (reg) and Wires (wire): reg is used for variables that retain their values
(e.g., flip-flops or memory), and wire is used for connections that propagate values
through the circuit.

In contrast, software programming languages like C, Python, or Java employ a more con-
ventional syntax for defining algorithms, control flow, and data manipulation. These lan-
guages use constructs like loops (for, while), conditionals (if, else), and functions
or methods for structuring code, with data types such as integers, strings, and floats for
variable storage.

B PROMPT DETAILS FOR COT ANNOTATION

As shown in Figure 4, we present the detailed prompts used in our annotation process. For each
task, we supplement the primary prompt with several human-reviewed input-output pair examples,
serving as in-context learning examples to enhance GPT’s understanding of task requirements and
expectations. These examples will serve as guidance for the model to correctly interpret and execute
tasks in accordance with the prompt, ensuring more accurate and contextually relevant outputs.

14

Published as a conference paper at ICLR 2025

System Prompt

You are an expert in hardware design with a deep understanding of Verilog RTL codes. Now I want to train a large language model for code comment
generation tasks specifically focused on Verilog RTL codes. And I want you to help me process the raw data, transforming it into suitable formats that can
serve as inputs and outputs for the model.

Qualified Code to Commented Code Prompt

Add detailed comments to the following Verilog code, explaining each statement's purpose and functionality.

Commented Code to Specification Prompt

As an experienced digital IC design engineer, you've been tasked with creating a comprehensive design specification document for the RTL module provided
above. Please analyze the RTL content and generate a detailed document with the following structure:
 1. Module Name: Clearly state the official name of the module.
 2. Module Functionality: Provide a thorough description of the module's primary functions and objectives. Include the types of signals it can
process, its behavior under normal operating conditions, and any potential exception handling mechanisms.
 3. Input/Output Port Specification: List and describe all input and output signals, control signals, and status signals. For each, specify the data type,
active level, timing relationships, purpose, and rules governing their changes.
 4. Internal Working Principles: Explain the module's internal mechanisms. Describe the logical implementation process, including:
 - Division of logic functionality (combinational and sequential logic)
 - Signal data flow and control flow
 - Special functional units (e.g., registers, arithmetic logic units, state machines)

 5. Algorithm and Logic Implementation Details: Provide a detailed explanation of the specific logic implemented in internal code blocks. This may
involve algorithmic principles, implementation steps, and parameter configurations.
 6. Internal Signal Definitions: List and explain all signals defined within the module. Include their purposes, lifecycles, rules governing their
changes, and relationships with other module components.
Please ensure that your explanation is clear, concise, and technically accurate, suitable for other engineers to understand and implement the design.

Specification to Functional Description Prompt

Please act as a professional Verilog designer. Your task is to summarize a concise yet accurate functional description of the provided Verilog code ('code' part),
along with its specification ('specification' part). This description should offer a detailed explanation of the overall functionality, highlighting the key elements
and operations of the code.
Summarize the functionality of the Verilog code using the 'code' part as the primary reference, with the 'specification' part serving as supplementary
information. In case of any conflicts between the two, prioritize the information from the 'code' part.
When summarizing the description, keep the following points in mind:
 1. Focus on clarity and precision, ensuring that the description is both easy to understand and technically accurate.
 2. Use professional terminology related to Verilog/EDA/RTL.
 3. Avoid detailed operation comments, and instead focus on the overall functionality and purpose of the module.
 4. Only include information that is explicitly mentioned or implemented within the code. Do not add extraneous information or make assumptions
about the module's characteristics or behavior that are not directly evident from the code.
 5. If submodules are found in the input code, provide a combined description of the general functionalities of all submodules. Avoid detailed
internal logic descriptions within submodules and use qualifiers like "maybe" to prevent specific functional assumptions based on names. Integrate the
functionality descriptions of all submodules into overall module functional description.
 6. Avoid speculation on specific product models, such as GPU manufacturer and model numbers.
 7. Do not mention any detailed internal logic or variable transformations.
The description should include answers to the following question with professional words/terms in Verilog/EDA/RTL:
Based on the functionality implemented by the provided Verilog code, what is the professional or functional term for this code? Please ensure the reply
accurately reflects the specific operation or module described by the code.
If the code cannot be described in terms of functionality, such as in cases of interface definitions or simple variable definitions, do not infer based on variable
or module names or specification I provided. Instead, format the output to end with "It does not perform any logical functions.", refer to the following example
for generating the response:
Must respond in one complete sentence and do not use bullet points or numbered lists. Try to keep the length of answer under 100 tokens. Format the output to
begin with: 'The module ... implements ...'.
Here's an example output format for your reference:
The module [module name] implements [overall function description].[Optional: If it cannot be described in terms of functionality, such as in cases of interface
definitions or simple variable definitions] It does not perform any logical functions.

Filtering Line-level Description Prompt

You are an expert in hardware design with a deep understanding of Verilog RTL codes. Now I want to train a large language model for code comment
generation tasks specifically focused on Verilog RTL codes.
Your task is to evaluate the relevance of the code and its corresponding comment. Please note that the comment should be directly related to the code, and the
comment should be explicitly stated in the code I provide.
Do not include any speculative information, such as inferring functionality from variable names that the code itself does not explicitly show. If so, generate
"*True*", otherwise, generate "*False*". Your answer should strictly be "*True*" or "*False*", no other content is allowed to be generated.

Figure 4: Detailed prompts used in the CoT annotation process.

C DISCARDING VERILOG CODE EXCEEDING 2048 TOKENS

In the main submission, we state that Verilog modules and blocks exceeding 2048 tokens are ex-
cluded, as 2048 is the maximum input length supported by CodeT5+. Beyond this limitation, several
additional factors motivate this decision:

15

Published as a conference paper at ICLR 2025

Figure 5: The distribution of the token lengths of the generation benchmark by Chang et al. (2024a).

1. Generation Capabilities of Existing LLMs Are Limited to Small Designs
Existing benchmarks for Verilog generation, including the one used in our work (Chang
et al., 2024a), do not include designs exceeding 2048 tokens, with the maximum token
length observed in the benchmark being 1851. As shown in Table 3 of the main submis-
sion, even the state-of-the-art LLM, o1-preview, is capable of accurately generating only
simple designs and struggles with more complex ones. Figure 5 illustrates the token length
distribution across the benchmark, further justifying our decision to exclude Verilog mod-
ules and blocks exceeding 2048 tokens.

2. Segmentation as a Common Practice
Segmenting longer code into smaller chunks that fit within the predefined context window
and discarding those that exceed it is a widely accepted practice in both Verilog-related
research (Chang et al., 2024b; Pei et al., 2024) and studies on software programming lan-
guage (Wang et al., 2023a). This approach ensures compatibility with current LLMs while
maintaining the integrity and usability of the dataset. It is worth noting that the default
maximum sequence length in CodeT5+ is 512 tokens, and our work extends this limit to
2048 tokens to better accommodate Verilog designs.

3. Empirical Findings and Practical Challenges
Our experiments reveal an important empirical observation: existing LLMs, such as GPT-
4, consistently produce accurate descriptions for shorter Verilog modules but struggle with
correctness when handling longer ones. Specifically, During the annotation process, we
divide the dataset into two sections: Verilog designs with fewer than 2048 tokens, and de-
signs with token lengths between 2048 and 4096 tokens. Our human evaluation finds that
descriptions for Verilog designs with fewer than 2048 tokens are approximately 90% accu-
rate, while descriptions for designs with token lengths between 2048 and 4096 tokens have
accuracy rates of only 60%–70%. And accuracy further decreases for designs exceeding
4096 tokens. Since our datasets rely on LLM-generated annotations, restricting the dataset
to Verilog modules within the 2048-token limit helps maintain the quality and accuracy
of annotations. This, in turn, facilitates higher-quality dataset creation and more efficient
fine-tuning. For the potential negative impact of incorporating Verilog designs larger than
2048 tokens, please refer to Appendix K. And we examine the impact of varying context
window lengths in Appendix L.

D STANDARDS AND PROCESSES FOR MANUAL CODE ANNOTATION

Given the industrial-grade quality of the proprietary code, we employ professional hardware engi-
neers for manual annotation. We have established the following standards and processes to guide
engineers in crafting accurate and detailed descriptions with example annotations shown in Figure 6:

16

Published as a conference paper at ICLR 2025

1. Standards: The hardware engineers are required to provide descriptions at both the module
and block levels.

• For module-level descriptions, two levels are defined:
i. H (High-level): The role of this module in the overall design (IP/Chip).

ii. D (Detailed): What functions this module performs (overview) and how it is im-
plemented (implementation details). This description should adhere to a top-down
structure and consist of approximately 2-5 sentences.

Note: If the summary statements for H and D are identical, both must be provided.
• For block-level descriptions, particularly always blocks, descriptions are required at

three distinct levels:
i. H (High-level): The role of this block in the overall design (e.g., across modules).

ii. M (Medium-detail): Contextual explanations.
iii. D (Detailed): Descriptions specific to the block following a top-down structure.

If details are absent, they may be omitted; do not guess based on signal names.
2. Processes: Initially, we provide engineers with a set of descriptions generated by GPT-4 for

reference. They are then expected to revise and enhance these GPT-generated descriptions
using their expertise and relevant supplementary materials, such as README files and
register tables.

// H: This module implements the UART FIFO's read and write logic.
// D: This Verilog module implements a parameterized RAM with configurable data width, depth, and memory mode. It supports both read
and write operations, with the ability to pipeline the read and write signals based on the memory mode. The module includes
combinational processes for generating the next memory state and a read multiplexer function for selecting the read data. It also has
a sequential process for updating the memory and pipelining signals based on the clock and reset signals.

module D_apb_uart_bcm57 (
 clk,
 rst_n,
 init_n,
 wr_n,
 data_in,
 wr_addr,
 rd_addr,
 data_out
);

...

// H: This always block implements the logic of writing to the FIFO buffer when receiving a character or preparing for transmitting a
UART character.
// M: This always block is used to implement the logic of writing to the RAM, according to the data width and memory depth.
// D: This Verilog code is designed to manage the update process for a memory array named 'next_mem' with conditional write
operations. Initially, 'next_mem' is assigned the value of 'mem'. A write operation to 'next_mem' is only performed if 'write_en_n' is
active low. The memory address matching 'write_addr' is updated with the value of 'write_data'. Here, data is written bit-by-bit to
'next_mem' in a nested loop construct, maintaining the exact sequence as in 'write_data'. The address pointer 'k' increments by
'DATA_WIDTH' after each iteration.

always @(mem or write_en_n or write_addr or write_data) begin : PROC_mk_next_mem
 reg [15:0] i, j;
 reg [24:0] k;
 next_mem = mem;

 if (write_en_n == 1'b0) begin
 k = 0;
 for (i = 0; i < DEPTH; i = i + 1) begin
 if (write_addr == i) begin
 for (j = 0; j < DATA_WIDTH; j = j + 1) begin
 next_mem[k + j] = write_data[j];
 end
 end
 k = k + DATA_WIDTH;
 end
 end
end

...
endmodule

D_apb_uart_bcm57.v

Module-level comment

Block-level comment

Figure 6: Human-annotated examples for the proprietary code.

E EXAMPLES OF VERILOG UNDERSTANDING BENCHMARK

To construct a high-quality benchmark, we first remove comments from the original code, and then
submit it to experienced hardware engineers for annotation, ultimately producing the code and de-
scription pairs as shown in Figure 7.

17

Published as a conference paper at ICLR 2025

The module
`beh_vlog_ff_ce_clr_v8_2`
implements a D-type flip-flop
with clock enable and
asynchronous clear
functionality, incorporating a
simulation delay for data
capture on the rising edge of
the clock."

module beh_vlog_ff_ce_clr_v8_2 (
 Q,
 C,
 CE,
 CLR,
 D
);
parameter INIT = 0;
localparam FLOP_DELAY = 100;
output Q;
input C;
input CE;
input CLR;
input D;
reg Q;
initial Q = 1'b0;
always @(posedge C)
 if (CLR)
 Q <= 1'b0;
 else if (CE)
 Q <= #FLOP_DELAY D;
endmodule

module pcie_7x_v1_3_fast_cfg_init_cntr #(
 parameter PATTERN_WIDTH = 8,
 parameter INIT_PATTERN = 8'hA5,
 parameter TCQ = 1
)
(
 input clk,
 input rst,
 output reg [PATTERN_WIDTH-1:0] pattern_o
);

always @(posedge clk) begin
 if(rst) begin
 pattern_o <= #TCQ
{PATTERN_WIDTH{1'b0}};
 end else begin
 if(pattern_o != INIT_PATTERN) begin
 pattern_o <= #TCQ pattern_o + 1;
 end
 end
end
endmodule

The module
`pcie_7x_v1_3_fast_cfg_init_cntr`
implements a counter that operates on the
rising edge of the `clk` signal, resetting
`pattern_o` to zeros on `rst` assertion,
incrementing it by 1 on deassertion if not
equal to `INIT_PATTERN`, with a delay
specified by `TCQ`.

module Event_Pulse(
 input in,
 input clk,
 output rising_edge,
 output falling_edge,
 output both_edges
);

 reg [1:0] reg_i = 2'b0;
 assign rising_edge = (~reg_i[1]) &
reg_i[0];
 assign falling_edge = reg_i[1]
&(~reg_i[0]);
 assign both_edges = ((~reg_i[1]) &
reg_i[0]) | (reg_i[1] & (~reg_i[0]));

 always @(posedge clk)
 begin
 reg_i[0] <= in;
 reg_i[1] <= reg_i[0];
 end
endmodule

The module `Event_Pulse` implements a
detector for rising and falling edge
transitions of the input signal,
generating separate outputs for rising
edges, falling edges, and both edges
based on the sampled input signal at
the rising clock edge.

Manually verified
description

Qualified code

Figure 7: Examples from the Verilog understanding benchmark.

F MODEL SELECTION

In this work, we choose CodeT5+, a family of encoder-decoder code foundation models, as the
base model for training DeepRTL for two primary reasons. First, as we aim to develop a unified
model for Verilog understanding and generation, T5-like models are particularly well-suited due
to their ability to effectively handle both tasks, as evidenced by Wang et al. (2023a). Second, the
encoder component of CodeT5+ enables the natural extraction of Verilog representations, which can
be potentially utilized for various downstream tasks in EDA at the RTL stage. Examples include PPA
(Power, Performance, Area) prediction, which estimates the power consumption, performance, and
area of an RTL design, and verification, which ensures that the RTL design correctly implements its
intended functionality and meets specification requirements. Both tasks are crucial in the hardware
design process. This capability distinguishes it from decoder-only models, which are typically less
suited for producing standalone, reusable intermediate representations. In future work, we plan to
explore how DeepRTL can further enhance productivity in the hardware design process.

To further demonstrate the superiority of CodeT5+ as a base model, we fine-tune two additional
models, deepseek-coder-1.3b-instruct4 (deepseek-coder) (Guo et al., 2024) and Llama-3.2-1B-
Instruct5 (llama-3.2) (Dubey et al., 2024), using the same dataset as DeepRTL and the adopted
curriculum learning strategy.

In Table 4 and Table 5, we present the performance of both the original base models and their fine-
tuned counterparts on Verilog understanding and generation tasks. The improvement in performance
from the original base models to the fine-tuned models highlights the effectiveness of our dataset
and the curriculum learning-based fine-tuning strategy. Compared to the results in Table 2 and
Table 3, the superior performance of DeepRTL-220m on both tasks, despite its smaller model size,
underscores the architectural advantages of our approach.

G INSTRUCTIONS FOR DIFFERENT SCENARIOS

Figure 8 presents detailed instruction samples for different scenarios, following the instruction con-
struction process illustrated in Figure 3. Additionally, it includes a special module-level task, which
involves completing the source code based on the functional descriptions of varying granularity and
the predefined module header.

4https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct
5https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct

18

https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct

Published as a conference paper at ICLR 2025

Table 4: Evaluation results on Verilog understanding using the benchmark proposed in Section 3.4.
BLEU-4 denotes the smoothed BLEU-4 score, and Emb. Sim. represents the embedding similarity
metric. Specifically, this table presents the performance of decoder-only models, where “long”
indicates models fine-tuned on the dataset containing longer Verilog designs, and those fine-tuned
specifically on Verilog. † indicates performance evaluated on designs shorter than 512 tokens.

Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L Emb. Sim. GPT Score

deepseek-coder (original) 1.04 21.43 4.38 19.77 0.678 0.557
deepseek-coder (fine-tuned) 11.96 40.49 19.77 36.14 0.826 0.664
deepseek-coder (long) 11.27 40.28 18.95 35.93 0.825 0.649

llama-3.2 (original) 0.88 19.26 3.60 17.64 0.615 0.449
llama-3.2 (fine-tuned) 12.11 39.95 19.47 35.29 0.825 0.620
llama-3.2 (long) 11.32 39.60 18.67 34.94 0.814 0.610

RTLCoder 1.08 21.83 4.68 20.30 0.687 0.561
VeriGen 0.09 6.54 0.35 6.08 0.505 0.311

DeepRTL-220m-512† 14.98 44.27 23.11 40.08 0.780 0.567
DeepRTL-220m† 18.74 48.41 29.82 45.01 0.855 0.743

Table 5: Evaluation results on Verilog generation. Each cell displays the percentage of code sam-
ples, out of five trials, that successfully pass compilation (syntax column) or functional unit tests
(function column). This table presents the performance of decoder-only models, where “o” denotes
the original model and “f” denotes the fine-tuned model.

Benchmark deepseek-coder (o) deepseek-coder (f) llama-3.2 (o) llama-3.2 (f)
syntax function syntax function syntax function syntax function

Logic

Johnson Counter 100% 0% 100% 0% 100% 0% 100% 0%
alu 0% 0% 0% 0% 0% 0% 0% 0%
edge detect 60% 0% 80% 20% 60% 0% 80% 0%
freq div 80% 0% 100% 0% 80% 0% 100% 0%
mux 60% 0% 100% 100% 60% 0% 60% 60%
parallel2serial 80% 0% 100% 0% 80% 0% 100% 0%
pulse detect 60% 0% 80% 40% 60% 20% 60% 40%
right shifter 20% 0% 80% 80% 20% 0% 40% 40%
serial2parallel 100% 0% 100% 0% 100% 0% 100% 0%
width 8to16 100% 0% 100% 0% 100% 0% 100% 0%

Arithmetic

accu 80% 0% 100% 0% 80% 0% 100% 0%
adder 16bit 20% 0% 40% 20% 20% 0% 20% 20%
adder 16bit csa 0% 0% 0% 20% 0% 20% 20% 20%
adder 32bit 0% 0% 20% 0% 0% 0% 20% 20%
adder 64bit 0% 0% 20% 0% 0% 0% 40% 0%
adder 8bit 40% 0% 80% 20% 40% 0% 60% 20%
div 16bit 0% 0% 20% 0% 0% 0% 0% 0%
multi 16bit 60% 0% 80% 0% 60% 0% 80% 0%
multi booth 40% 0% 60% 0% 40% 0% 60% 0%
multi pipe 4bit 100% 0% 100% 100% 100% 0% 100% 100%
multi pipe 8bit 0% 0% 0% 0% 0% 0% 0% 0%

Advanced

1x2nocpe 60% 0% 20% 40% 60% 20% 60% 20%
1x4systolic 20% 0% 100% 100% 20% 0% 20% 20%
2x2systolic 0% 0% 0% 0% 0% 0% 0% 0%
4x4spatialacc 0% 0% 0% 0% 0% 0% 0% 0%
fsm 80% 0% 100% 100% 80% 0% 100% 100%
macpe 0% 0% 0% 0% 0% 0% 0% 0%
5state fsm 80% 0% 100% 20% 80% 0% 100% 100%
3state fsm 0% 0% 100% 80% 20% 20% 100% 100%
4state fsm 80% 0% 100% 40% 80% 20% 100% 20%
2state fsm 60% 0% 100% 20% 60% 0% 100% 20%

Success Rate 44.52% 0.00% 63.87% 25.81% 45.16% 3.23% 58.71% 22.58%
Pass @ 1 12.90% 0.00% 61.29% 22.58% 12.90% 0.00% 54.84% 19.35%
Pass @ 5 67.74% 0.00% 80.65% 48.39% 70.97% 16.13% 80.65% 48.39%

H FURTHER EXPLANATION OF THE ADOPTED CURRICULUM LEARNING
STRATEGY

Our dataset includes three levels of annotation: line, block, and module, with each level containing
descriptions that span various levels of detail—from detailed specifications to high-level functional

19

Published as a conference paper at ICLR 2025

Instruction:
Generate a high-level summary for the given
Verilog module.
Input:
<Qualified Verilog module>
Output:
<High-level module summary>

Instruction:
Based on the high-level module summary, generate
the corresponding Verilog code for the described
module.
Input:
<High-level module summary>
Output:
<Qualified Verilog module>

Understanding Task Generation Task

Module
Level

Instruction:
Based on the <Level of Granularity> functional description and defined module head, complete the
Verilog code.
Input:
<Module summary> + <Module head>
Output:
<Qualified module code>

Block
Level

Line
Level

Special
Case

Instruction:
Generate a high-level summary for the given
Verilog block.
Input:
<Qualified Verilog block>
Output:
<High-level block summary>

Instruction:
Based on the high-level block summary, generate
the corresponding Verilog code for the described
block.
Input:
<High-level block summary>
Output:
<Qualified Verilog block>

Instruction:
Generate a detailed summary for the given Verilog
module.
Input:
<Qualified Verilog module>
Output:
<Detailed module summary>

Instruction:
Based on the detailed module summary, generate
the corresponding Verilog code for the described
module.
Input:
<Medium-level module summary>
Output:
<Qualified Verilog module>

Instruction:
Generate a medium-level summary for the given
Verilog block.
Input:
<Qualified Verilog block>
Output:
<Medium-level block summary>

Instruction:
Based on the medium-level block summary, generate
the corresponding Verilog code for the described
block.
Input:
<Medium-level block summary>
Output:
<Qualified Verilog block>

Instruction:
Generate a detailed summary for the given Verilog
block.
Input:
<Qualified Verilog block>
Output:
<Detailed block summary>

Instruction:
Based on the detailed block summary, generate
the corresponding Verilog code for the
described block.
Input:
<Medium-level block summary>
Output:
<Qualified Verilog block>

Instruction:
Generate a single-line comment for the given
Verilog single-line code.
Input:
<Single-line code>
Output:
<Single-line comment>

Instruction:
Based on the single-line comment, generate the
corresponding Verilog code for the described
single-line code.
Input:
<Single-line comment>
Output:
<Single-line code>

Figure 8: Instruction tuning data samples for different scenarios.

descriptions. And the entire dataset is utilized for training. To fully leverage the potential of this
dataset, we employ a curriculum learning strategy, enabling the model to incrementally build knowl-
edge by starting with simpler cases and advancing to more complex ones.

The curriculum learning strategy involves transitioning from more granular to less granular annota-
tions across hierarchical levels, which can be conceptualized as a tree structure with the following
components (as shown in Figure 9):

1. Hierarchical Levels (First Layer)
The training process transitions sequentially across the three hierarchical levels—line,
block, and module. Each level is fully trained before moving to the next, ensuring a solid
foundation at simpler levels before addressing more complex tasks.

2. Granularity of Descriptions (Second Layer)
Within each hierarchical level, the annotations transition from detailed descriptions to high-
level descriptions. This progression ensures that the model learns finer details first and then
builds an understanding of higher-level abstractions.

20

Published as a conference paper at ICLR 2025

Line Level Block Level Module Level

Detailed
Descriptions

Medium-Detailed
Descriptions

High-Level
Descriptions

Detailed
Specifications

High-Level
Functional

Descriptions

GPT-
Annotated

Human-
Annotated

Training Process

GPT-
Annotated

Human-
Annotated

GPT-
Annotated

Human-
Annotated

GPT-
Annotated

Human-
Annotated

GPT-
Annotated

Human-
Annotated

1

4 5

3

2

6 9

7 8 10 11

12

13 16

14 15 17 18

Training Data

Figure 9: The adopted curriculum learning strategy visualized as a tree structure. Specifically,
the terminals of the tree, enclosed by blue dotted boxes, represent specific training datasets. Our
curriculum learning strategy follows a pre-order traversal of this tree structure.

3. Annotation Source Transition (Third Layer)
At each level and granularity, training starts with GPT-annotated data and is followed by
human-annotated data. This sequence leverages large-scale machine-generated annotations
first and refines the model with high-quality, human-curated data.

4. Instruction Blending
Each terminal node in this tree represents a specific training dataset, which blends tasks
for Verilog understanding and Verilog generation. This enables the model to perform well
across diverse tasks.

The training process mirrors a pre-order traversal of this tree structure:

1. Starting at the root, training begins with the line level.

2. The model progresses through the second layer (detailed, medium-detail, and high-level
descriptions).

3. Within each granularity, training transitions through the third layer (GPT-annotated data
first, followed by human-annotated data).

4. Once the line level is complete, the process repeats for the block level and then the module
level.

To validate the effectiveness of this strategy, we conduct an ablation study where the model is trained
on the entire dataset all at once without progression. The results, presented in Table 2 of the main
submission, demonstrate that the curriculum learning strategy significantly outperforms this base-
line approach. Moreover, to the best of our knowledge, this is one of the first applications of a
curriculum-like training strategy in the code-learning domain. Unlike existing Verilog-related mod-
els that establish simple and weak alignments between natural language and Verilog code (Chang
et al., 2024b), or general software code datasets like CodeSearchNet6 (Husain et al., 2019) that
only provide single-level docstring annotations, our approach incorporates multi-level and multi-
granularity annotations in a structured training process.

I PROMPT FOR CALCULATING GPT SCORE

To calculate the GPT score, we input the model’s generated descriptions (model output) and the
ground truth annotations (ground truth) to GPT-4, using the prompt displayed in Figure 10. This
metric is designed to assess the semantic accuracy of the generated functional descriptions.

6https://huggingface.co/datasets/code-search-net/code_search_net

21

https://huggingface.co/datasets/code-search-net/code_search_net

Published as a conference paper at ICLR 2025

You are a professional Verilog designer that needs to evaluate the similarity between

two textual functional summaries describing Verilog code.
The first summary is the ground truth description of the Verilog code, and the second

summary is the generated description of the Verilog code.

Please read the following summaries and provide a similarity score between 0 and 1 based
on how similar the two summaries are in terms of describing the functionality of the

Verilog code, where 0 means completely dissimilar and 1 means identical.
Note that you should strictly only output the score without any additional information.

Summary 1: {ground_truth}

Summary 2: {model_output}

Figure 10: Prompt used to calculate the GPT score.

J COMPARISON WITH MODELS SPECIFICALLY TRAINED ON VERILOG

To further demonstrate the superiority of DeepRTL, we conduct experiments comparing it with mod-
els specifically trained on Verilog. We do not select (Chang et al., 2024b; Zhang et al., 2024) for com-
parison, as their models are not open-sourced, and it is non-trivial to reproduce their experiments.
Additionally, the reported performance in their original papers is either comparable to, and in some
cases inferior to, that of GPT-3.5. In Table 4 and Table 6, we show the performance of two state-
of-the-art Verilog generation models, RTLCoder-Deepseek-v1.17 (RTLCoder) (Liu et al., 2024) and
fine-tuned-codegen-16B-Verilog8 (VeriGen) (Thakur et al., 2024) on both Verilog understanding
and generation benchmarks. It is noteworthy that RTLCoder is fine-tuned on DeepSeek-coder-6.7B,
and VeriGen is fine-tuned on CodeGen-multi-16B, both of which have significantly larger param-
eter sizes than DeepRTL-220m. Despite this, the superior performance of DeepRTL-220m further
underscores the effectiveness of our proposed dataset and the adopted curriculum learning strategy.

Table 6: Evaluation results on Verilog generation. Each cell displays the percentage of code samples,
out of five trials, that successfully pass compilation (syntax column) or functional unit tests (function
column). This table presents the performance of models specifically trained on Verilog.

Benchmark RTLCoder VeriGen
syntax function syntax function

Logic

Johnson Counter 40% 0% 100% 0%
alu 0% 0% 0% 0%
edge detect 100% 100% 100% 20%
freq div 60% 0% 100% 0%
mux 60% 40% 80% 20%
parallel2serial 60% 0% 100% 0%
pulse detect 20% 0% 40% 0%
right shifter 80% 80% 100% 100%
serial2parallel 60% 0% 80% 0%
width 8to16 60% 0% 100% 0%

Arithmetic

accu 0% 0% 0% 0%
adder 16bit 40% 20% 20% 0%
adder 16bit csa 80% 80% 0% 0%
adder 32bit 80% 0% 0% 0%
adder 64bit 40% 0% 40% 0%
adder 8bit 80% 40% 40% 40%
div 16bit 0% 0% 0% 0%
multi 16bit 80% 0% 80% 0%
multi booth 20% 0% 20% 0%
multi pipe 4bit 60% 20% 80% 20%
multi pipe 8bit 0% 0% 0% 0%

Advanced

1x2nocpe 40% 40% 100% 100%
1x4systolic 100% 100% 20% 20%
2x2systolic 0% 0% 0% 0%
4x4spatialacc 0% 0% 0% 0%
fsm 100% 60% 80% 20%
macpe 0% 0% 0% 0%
5state fsm 60% 40% 80% 0%
3state fsm 80% 0% 80% 20%
4state fsm 80% 0% 80% 20%
2state fsm 20% 0% 60% 0%

Success Rate 48.39% 20.00% 50.97% 12.26%
Pass @ 1 41.94% 16.13% 48.39% 9.68%
Pass @ 5 77.42% 35.48% 70.97% 32.26%

7https://huggingface.co/ishorn5/RTLCoder-Deepseek-v1.1
8https://huggingface.co/shailja/fine-tuned-codegen-16B-Verilog

22

https://huggingface.co/ishorn5/RTLCoder-Deepseek-v1.1
https://huggingface.co/shailja/fine-tuned-codegen-16B-Verilog

Published as a conference paper at ICLR 2025

Table 7: Evaluation results on Verilog generation. Each cell displays the percentage of code samples,
out of five trials, that successfully pass compilation (syntax column) or functional unit tests (function
column). This table presents the performance of decoder-only models fine-tuned on the dataset
containing longer Verilog designs.

Benchmark deepseek-coder llama-3.2
syntax function syntax function

Logic

Johnson Counter 100% 0% 100% 0%
alu 0% 0% 0% 0%
edge detect 80% 0% 80% 0%
freq div 100% 0% 100% 0%
mux 100% 100% 60% 60%
parallel2serial 100% 0% 100% 0%
pulse detect 80% 40% 60% 40%
right shifter 80% 80% 40% 40%
serial2parallel 100% 0% 100% 0%
width 8to16 100% 0% 100% 0%

Arithmetic

accu 100% 0% 100% 0%
adder 16bit 20% 20% 20% 20%
adder 16bit csa 20% 20% 20% 20%
adder 32bit 0% 0% 20% 20%
adder 64bit 0% 0% 0% 0%
adder 8bit 80% 20% 60% 20%
div 16bit 20% 0% 0% 0%
multi 16bit 80% 0% 80% 0%
multi booth 60% 0% 60% 0%
multi pipe 4bit 100% 100% 100% 100%
multi pipe 8bit 0% 0% 0% 0%

Advanced

1x2nocpe 40% 40% 60% 20%
1x4systolic 20% 20% 20% 20%
2x2systolic 0% 0% 0% 0%
4x4spatialacc 0% 0% 0% 0%
fsm 100% 100% 100% 100%
macpe 0% 0% 0% 0%
5state fsm 100% 0% 100% 100%
3state fsm 80% 80% 100% 100%
4state fsm 100% 0% 100% 0%
2state fsm 100% 20% 100% 20%

Success Rate 60.00% 20.65% 57.42% 21.94%
Pass @ 1 38.71% 19.35% 38.71% 19.35%
Pass @ 5 77.42% 38.71% 77.42% 45.16%

K NEGATIVE IMPACT OF INCORPORATING VERILOG DESIGNS EXCEEDING
2048 TOKENS

Notably, the maximum input length for DeepSeek-coder is 16k tokens, while for LLaMA-3.2, it
is 128k tokens. To assess the potential negative impact of including Verilog designs exceeding
2048 tokens, we conduct an ablation study in which we do not exclude such modules for these two
models and instead use the dataset containing longer designs for training. As shown in Table 7,
and by comparing the results in Table 4, the performance of the fine-tuned models on both Verilog
understanding and generation tasks significantly degrades compared to the results in Table 5, where
these models are fine-tuned using the same dataset as DeepRTL. This further validates the rationale
behind our decision to exclude Verilog modules and blocks exceeding 2048 tokens.

L ADDITIONAL EXPERIMENTS INVESTIGATING THE IMPACT OF VARYING
CONTEXT WINDOW LENGTHS

To address concerns regarding the potential bias introduced by excluding examples longer than 2048
tokens, we investigate the impact of context window length. Specifically, we exclude all Verilog
modules exceeding 512 tokens and use the truncated dataset to train a new model, DeepRTL-220m-
512 utilizing the curriculum learning strategy, which has a maximum input length of 512 tokens. We
then evaluate both DeepRTL-220m-512 and DeepRTL-220m on Verilog understanding benchmark
samples, where the module lengths are below 512 tokens, and present the results in Table 4. For the
generation task, DeepRTL-220m-512 shows near-zero performance, with nearly 0% accuracy for
both syntax and functional correctness. This result refutes the concern that “a model accommodating
longer context windows could potentially offer superior performance on the general task, but not for
this tailored dataset,” as it does not hold true in our case.

23

	Introduction
	Related Works
	Dataset and Understanding Benchmark
	Dataset Source
	Dataset Annotation
	Dataset Evaluation
	Understanding Benchmark

	Model and Evaluation
	Model
	Instruction Tuning Dataset
	Curriculum Learning for DeepRTL
	Understanding Evaluation
	Generation Evaluation

	Experimental Results
	Baseline Models
	Verilog Understanding
	Verilog Generation

	Conclusion
	Introduction of Verilog
	Prompt Details for CoT Annotation
	Discarding Verilog Code Exceeding 2048 Tokens
	Standards and Processes for Manual Code Annotation
	Examples of Verilog Understanding Benchmark
	Model Selection
	Instructions for Different Scenarios
	Further Explanation of the Adopted Curriculum Learning Strategy
	Prompt for Calculating GPT Score
	Comparison with Models Specifically Trained on Verilog
	Negative Impact of Incorporating Verilog Designs Exceeding 2048 Tokens
	Additional Experiments Investigating the Impact of Varying Context Window Lengths

