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ABSTRACT

Machine learning have driven breakthroughs in recognition, detection, and gen-
eration, yet their increasing ubiquity also exposes them to backdoor attack haz-
ards, threatening the security of real-world Al deployments. Existing backdoor
methods, however, remain fragile in adaptive settings for rigid dependency on a
static trigger, narrow scope in fixed one-to-one mappings, or unrealistic as-
sumptions for levels of access, thereby failing to scale to dynamic, large-class
scenarios under realistic constraints. Therefore, we present Arcueid, a theo-
retically grounded multi-trigger backdoor framework that achieves scalable and
robust attacks across M — M, M — N, and M +— 1 paradigms. It op-
erates under restrictive settings, requiring only black-box knowledge and ex-
tremely low poisoning budgets. At its core lies a Joint Cloud Shaping Multi-
trigger Optimization strategy that simultaneously compacts trigger-induced fea-
ture clouds and enforces inter-cloud separation, ensuring stable, non-interfering,
and target-consistent decision regions, while decoupling trigger generation from
label mapping to enable dynamic reconfiguration of targets and robust transfer-
ability across models and datasets. Extensive experiments on multiple datasets and
five CNN/transformer architectures show that Arcueid attains near-perfect aver-
age ASR (> 97%) across targets in each paradigm with negligible clean accuracy
drop (< 5%) even at poisoning rates of 0.1%, significantly outperforming SOTA
baselines. Moreover, Arcueid consistently withstands representative pre-/mid-
/post-training defenses, exhibits strong stealth with indistinguishable perceptual
shifts, and sustains steady resilience across comprehensive ablation studies.

1 INTRODUCTION

Machine learning has advanced rapidly with deep neural networks, from convolutional architectures
to transformers, driving progress in recognition (Crowley} 2010), detection (Nassif et al.,|2021)), and
generation (Summerville et al.Ll 2018)). Yet it faces growing threats from backdoor attacks (Gu et al.,
2019), where models behave normally on benign inputs but misclassify those stamped with secret
triggers into attacker-specified targets. The covert nature of such attacks poses serious risks to the
security and trustworthiness of real-world Al systems (Chen et al.,2024).

Although backdoor research has made notable strides, such as clean-label poisoning (Turner et al.,
2019), invisible perturbations (Zeng et al.| 2023), and adaptive trigger generation (Q1 et al.| 2023a)),
most progress remains centered on crafting elaborate trigger pattern or switching application scenar-
ios. However, with the rapid development of detection and mitigation defenses (Hou et al., [2024a;
Li et al| |2021a), these conventional designs increasingly struggle to remain effective. Much less
attention has been given to expanding the attack scope and adaptivablity to dynamic, large-scale
scenarios. Consequently, existing techniques face practical limitations:

* L1: Rigid Dependency. A large fraction of existing attacks hinge on a single well-chosen per-
turbation pattern embedded across poisoned samples (Mengara et al., [2024). Such rigidity greatly
simplifies the defender’s task: once the trigger is detected or suppressed, the attack collapses en-
tirely (L1 & Liul 2024). Moreover, a single universal pattern cannot adapt to heterogeneous input
or task-specific conditions, making it brittle in dynamic or adversarially monitored environments.

* L2: Narrow Attack Scope. Most backdoor attacks enforce a fixed mapping between a trigger
and a designated target label. This narrow design severely constrains the attacker’s influence:
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poisoned samples always converge to the same class regardless of their origin. Even classical
all-to-all extensions, such as cyclic mappings (Nguyen & Tran, 2021)), remain structurally rigid,
while recent multi-target variants (Hou et al., 2024b)) only scale to a handful of classes. Such
constraints render existing approaches ineffective for realistic broad-class settings (Shen et al.
2024) or adaptive scenarios (Essa et al., | 2023)) where targets must change on demand.

* L3: Unrealistic Privileged Assumptions. Existing attacks often rely on high-privilege condi-
tions, such as full control of the victim’s training pipeline (Nguyen & Tran, [2020), white-box
access to model gradients and structures (Souri et al., 2022), or direct weight modification (Chen
et al.,[2021). Other designs require an excessively high poisoning rate to maintain effectiveness.
These assumptions stand in stark contrast to practical threat models like Machine-Learning-as-
a-Service (MLaaS) (Ribeiro et al.l [2015) or supply-chain distribution (N1 et al.l [2020), where
adversaries have limited access and must remain stealthy under strong defensive monitoring.

To this end, as shown in Figure[l} static-design back- - -
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C2: How to remain effective under low poisoning budgets and avoid feature collisions in multi-
trigger optimization? (L1 + L3)

S2: We propose a Joint Cloud Shaping mechanism that jointly minimizes intra-trigger variance and
maximizes inter-trigger separation. This ensures that triggers form compact yet distinct clusters in
the representation space, preserving attack stability and effectiveness even with very low poisoning.

C3: How to guarantee transferability under model- and data-agnostic conditions? (L2 + L3)

S3: We leverage surrogate training on non-1ID subsets, where the surrogate model functions as
a feature extractor, and optimize triggers in a representation-consistent manner. Specifically, the
optimization enforces that trigger-induced features preserve relative geometry in the latent space,
rather than relying on model-specific decision boundaries. By anchoring triggers to stable feature
distributions, this design enables robust generalization across different models and datasets, even
when the adversary lacks knowledge of the victim’s architecture or training pipeline.

Therefore, our work makes the following contributions:

* We present Arcueid, a theoretically grounded multi-trigger-driven backdoor attack framework
that scales to complex M — M, M — N, and M +— 1 paradigms while operating under black-box
knowledge and extremely low poisoning budgets. Our code will be released upon publication.

* We design a novel Joint Cloud Shaping Multi-trigger Optimization mechanism that decouples
trigger generation from target mapping, ensuring orthogonality between paradigm mapping and
trigger optimization. This enables stable, separable, and dynamic trigger—target associations, re-
quiring no knowledge of the victim’s training process.

* We conduct extensive experiments on multiple benchmark datasets across five mainstream ar-
chitectures, demonstrating that Arcueid consistently achieves near-perfect average ASR across
all targets and paradigms with exceeding low accuracy degradation (mostly < 5%) even under
extremely low poisoning rates (0.1%), outperforms SOTA attack baselines, exhibits strong robust-
ness against pre-, mid-, and post-training defenses, attains favorable stealthiness with impercepti-
ble perceptual shifts, and shows stable resilience through comprehensive ablation studies.
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2 PRELIMINARY & RELATED WORKS

Backdoor learning is a malicious training paradigm in which an adversary injects hidden behaviors
into a machine learning model by manipulating its training data (L1 et al., [2024). Specifically, let
Doenign = { (3, yi)}le denote the clean training dataset, which is used to train a model fy with

parameters ¢. The attacker constructs a poisoned dataset Dpoison = {(xi, yj) le, where each
v = gy(; ) embeds a trigger pattern parameterized by 7, and the assigned label Y; depends on the
attack mapping. The overall training set becomes Diin = Dpenign U Dpoison- The training objective
is to learn a model fy that retains high accuracy on clean samples, but is forced to misbehave when
presented with triggered inputs. Backdoor attacks instantiate this paradigm by defining specific

trigger-label mappings, which fall into two categories: all-to-one and all-to-allﬂ

All-to-one Backdoor Attacks. In this setting, all poisoned inputs share a trigger and are relabeled
to a fixed target. BadNets (Gu et al.l |2019) first demonstrated this threat, while Blended (Chen
et al., 2017) extended it with stealthy, physically realizable triggers. Subsequent works enhanced
stealth and robustness through physical-world adaptability (Li et al.| 2021c]), spectral-domain opti-
mization (Li et al., [2021e)), latent regularization (Qi et al.| 2023a), and clean-label poisoning under
limited knowledge (Zeng et al. 2023} [Feng et al.| [2025). This paradigm is widely studied for its
simplicity, though its fixed objectives and limited behavioral diversity restrict flexibility.

All-to-all Backdoor Attacks. Originally introduced by BadNets (Gu et all [2019), this setting
maps each class y to a cyclic target 7(y) with a shared trigger, distributing misclassifications across
classes. WaNet (Nguyen & Tran, [2021) and LIRA (Doan et al., [2021) explored stealthy designs
with invisible warping and instance-specific optimization, while Input-aware attacks (Nguyen &
Tran, 2020) dynamically controlled trigger and label mappings. Modern variants adopt multiple
triggers {g, }, each tied to a designated target, enabling many-to-many mappings. One-to-N and
N-to-One paradigms (Xue et al.,2022) showed high success with low degradation, Marksman (Doan
et al} |2022) generated class-conditional triggers for arbitrary targets, and M2N (Hou et al.| 2024b)
extended this to M triggers targeting IV classes. Despite this progress, strong attacker assumptions
(e.g., white-box access or high poisoning rates) still limit real-world applicability.

3 THREAT MODEL

It is a common practice for model trainers to download data from public sources for training, typ-
ically without rigorous scrutiny of its source or integrity (L1 et al.| |2024). This creates a critical
vulnerability, as it enables adversaries to easily propagate poisoned data by distributing it through
these same channels. The adversary’s primary objective is to manipulate the backdoor-trained model
as a controllable agent, effectively turning it into a puppet. Unlike traditional attack paradigm, our
Arcueid dynamically optimizes multiple triggers and flexibly maps them to arbitrary target labels,
enabling a scalable and adaptive multi-paradigm backdoor attack. This flexible control facilitates
dynamic and far-reaching post-deployment attacks, surpassing not only classical all-to-one back-
door scenarios but even SOTA all-to-all and multi-target settings. Under such a threat model, the
adversary essentially gains an undetectable access channel to the victim’s deployed models, with the
ability to subvert core model-based functionalities at will.

3.1 VICTIM ASSUMPTION

The victim, typically an entity aiming to construct large-scale, high-performing models, assembles
training datasets by collecting data from public sources. Common practices include Internet scrap-
ing (Valova et al., 2023)) and open repositories (Prior et al.,[2020), or by relying on third-party data
vendors Zheng et al.|(2019). As described above, this open and potentially untrusted data collection
pipeline introduces a possible risk of data poisoning.

Recognizing this threat, the victim may adopt a multi-stage defense: (i) Pre-training, detecting and
filtering suspicious data; (ii) Mid-training, employing data purification or augmentation to counter
malicious influence; and (iii) Post-training, conducting mitigation or model audits when a backdoor
is suspected. Such layered defenses substantially raise the bar for a successful attack.

"Backdoor defenses are deferred to Appendix
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3.2 ADVERSARY ASSUMPTION

In our attack scenario, the adversary may consist of a single attacker or multiple coordinated attack-
ers, each with distinct attack objectives and corresponding target classes. Attackers can indepen-
dently embed unique trigger patterns and assign arbitrary target labels, enabling diverse backdoors
that operate concurrently within the same model. This reflects a realistic threat: multiple parties may
attempt for varied post-deployment goals. To comprehensively evaluate our approach, we consider
the adversary in a highly practical and constrained black-box setting, where no internal informa-
tion about the victim’s model architecture, training data, or learning dynamics is accessible. This
assumption reflects realistic threats encountered in open or outsourced data collection processes.

MtoMAttack Mto N Attack M to 1 Attack Adversary Knowledge. The adversary oper-
ates under a black-box assumption: they have

@ P Class A @ R Clacs A @ - no access to the victim’s proprietary training
ass .
dataset Dy,n, model architecture f, or spe-
, N . .trama . £ L

C; = ClassB G G »CassAl i training procedures. The only information
@ Class C # Class C :{5]: available is awareness that the victim intends to
train a model for a certain task (e.g., image clas-

® M Triggers target M/N/1 Label(s) ~ ® Various poisoned samples/triggers Siﬁcation). Addltlonally, No details about data

distribution, preprocessing, or defense mecha-
Figure 2: Threat paradigm configurations: M — pjsms are revealed to the adversary. This set-
M, M~ N, and M —1 attacks. ting also accommodates multiple conspiratorial
attackers, who share the same limited resources, such as surrogate model or surrogate dataset, and
collectively aim to inject effective backdoors without any insider access.

Adversary Capability. Despite possessing only limited knowledge, the adversary is provisioned
with a small, local surrogate dataset Dy, and a surrogate model f,. Dy, is drawn from a non-IID
and completely disjoint distribution relative to Dyin, Which is used to model feature representations
for trigger optimization. f, is architecturally distinct from the victim model f. It is treated as
model-agnostic, meaning the attacker makes no assumptions about architectural alignment, model
capacity, or shared inductive biases with the target model. In addition, the scale of Dg,, is signifi-
cantly smaller than Dy, (i.e., typically containing only 5,000 to 15,000 samples, | Dyy| < |Dirainl)s
imposing further practical constraints on the adversary’s resources.

With only these limited surrogate resources, the adversary performs a learnable trigger optimiza-
tion process, using Dy, and fy to design a set of triggers {g,, }1_, and to assign corresponding
target labels based on desired attack behavior. Depending on the attacker’s objectives, the mapping
between triggers and targets can follow three representative configurations, as illustrated in Figure[2]

e M — M Attack. Each trigger g, is mapped to a unique target label 71 , resulting in M dis-
tinct target classes. This simulates scenarios where an adversary seeks to fully hijack class-level
predictions, maximizing the coverage of misclassification across the label space.

* M — N Attack. The M triggers are mapped to N < M target classes, allowing multiple triggers
to share targets. This models coordinated attacks where multiple patterns converge to a subset of
malicious outputs, increasing control density while maintaining diversity in trigger design.

* M — 1 Attack. All M triggers are assigned to one target class. This configuration is highly
applicable in binary or security-sensitive tasks where the adversary aims to redirect all triggered
samples to one specific outcome, offering robustness via multiple attack pathways.

The adversary then constructs a poisoned subset Dpison by stamping triggers gy, onto clean inputs
and relabeling them accordingly ﬂ This poisoned data is injected into the victim’s data collection
pipeline (e.g., via open submission platforms or third-party sharing), such that when integrated into
Dirain, it induces the intended dynamic multi-paradigm backdoor attack behavior, despite significant
differences in data domain and model architecture between the surrogate and target environments.

2We support clean-label attacks (Seen in Table 4| in Appendix [A.2)), but mainly assume adversaries lack
control over label distributions in practice.
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4 METHODOLOGY

4.1 PROBLEM DEFINITION

Notations. Let (z,y) ~ D be clean data with label set Y = {1, ..., Q}. A classifier fy : X —AQ~!
induces decision regions R. := {x € X : argmax fy(x) = c}. For analysis, we factor fy = h o ¢y
with representation ¢g : X - Z C R< and head h : Z — A®Q1, Unless otherwise stated, all norms
are {5 and dist denotes the induced metric, the same conventions apply in Z.

A trigger is a parametric map g, : X — X. We consider a family G = {gnk}k"{:1 under budgets
|G, () — z]|oo < € and || gy, () — z|lo < s. The attacker specifies (i) a routing rule 7, which
decides which trigger k € {1,..., K} is applied to a given benign sample, and (ii) a trigger—target
map o : {1,..., K} — T C ) that assigns targets. These are specified independently: triggers
are optimized in feature space, while ¢ determines the desired misclassification behavior. We write
7(y) = o(m(y)) and denote 73, = o(k). During poisoning, a scheduler flips a fraction p € [0, 1] of
training samples, stamping 2’ = g,, () and relabeling to 7(y), yielding Dyoison-

Attack Paradigms. As defined in Section [3.2] we fix the number of triggers to match the number
of active sources, i.e., K = M with M < . Backdoor attack paradigms are then instantiated by
specifying the trigger—target mapping o : {1,..., K} —7 and the target set size |T|:

* M+ M: o is a permutation over )/, assigning each trigger to a unique target class (|7 = M).
* M— N (N < M): several triggers map to the same target, yielding a target set of size V.
o M 1: all triggers collapse to a single target t*, i.e., o(k) = t* for all k.

The routing 7 determines which trigger is applied to each sample but is otherwise unconstrained: it
may assign distinct triggers, share triggers across groups, or mix both strategies.

Representation Space Feasibility. Define the decision margin of a set A C X to class ¢ as

margin, (A4) = xlrel,f4 dist (z,0R;), ey

with OR; the decision boundary of class t. When using ¢y, interpret dist in Z. For trigger k, let the
triggered cloud

Cr = {0(gn, () : (w,9)~D, 7(y) = k}, @

have center u, and radius r; computed in Z. Distances to decision regions are evaluated in Z via
the induced regions R, = {z € Z : argmax h(z) = c}.

The following propositions and lemmas establish the conditions under which triggered clouds are
feasible, mutually non-interfering, and transferable across models.

Proposition 1 (Feasibility via Interior Placement). If each triggered cloud Cy, enjoys a positive
margin margin_ (Cr.) > v, > 0, then every point in Cy, is classified as its designated target Ty. A
sufficient condition is

dist (px, OR7,) > 7. 3)

Lemma 1 (Non-interference of Triggered Clouds). Let k # (. If margin, (Cx) > 7k,
margin,, (C¢) > ¢ > 0, and the centers satisfy dist(py, jte) > ri + 7o, then Cy, and Cy occupy
disjoint interiors of R, and R+,, so predictions remain stable and non-overlapping.

Lemma 2 (Clean Accuracy Stability under Small Poisoning). Suppose the training algorithm is
uniformly (-stable with respect to single-example replacement and the loss is bounded by L, x.
Replacing a p-fraction of training samples with poisoned ones perturbs the expected clean risk by
at most O(Bp) + pLax. Thus, when p is small and training is stable, clean accuracy degradation
remains limited.

Proposition 2 (Transferability under Representation Drift). Let a surrogate fs = hso¢s and a
target f; = hioy satisfy a bi-Lipschitz alignment on the triggered support: ||pi(z) — Ads(z)|| < 0
for some bounded linear A, and assume hy is Ly,-Lipschitz. If Proposition[I|holds for fs with margin
7, then f; preserves the same backdoor decisions provided

Ly All6 <. (4)
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Lemma 3 (Identifiability under Limited Knowledge). Assume class-conditional features ¢g(x) |
(y = ¢) are sub-Gaussian with mean [i.. Given n. samples per class, the empirical mean i satisfies

lie — Bell = Op(ne Y 2). Hence constraints phrased in terms of true centroids [i. (e.g., placing
[k with margin vy inside R, and outside neighborhoods of clean centroids) remain estimable with
finite samples, enabling optimization under limited data/model access.

Optimization Problem Induced by Feasibility. The feasibility analysis above provides construc-
tive conditions: each triggered cloud must (i) lie strictly inside its designated region R, , and (ii)
remain separated from other clouds to avoid cross-trigger interference.

These geometric requirements naturally translate into a constrained optimization problem, where
trigger parameters 71.x (and optionally the routing 7) are optimized while the victim parameters 6
are learned on the poisoned mixture. Formally:

Inln Rdean(fg; D) — AASR E(ﬂ,y)ND[l{arg max fy (gnw(y) (z)) = T(y)}}

m:K,
K

+ Asteattn D E[llgn, () — 2] + Xine W({Ch, 7 }1s), (5)
k=1

S.t. 14 S Pmax ||g7]1€ (1’) - .I‘H S g, Vk,JT,
dist (pr, ORr,) > Tk + Ymin (margin),
dist(pg, te) > 15+ 7¢ + Omin, VEk # £ (non-interference).
Here, ¥ penalizes violations of the margin and separation constraints, e.g., via hinge penalties on

center-to-boundary and center-to-center distances. This formulation highlights three key properties:

* Universal. Independent of the particular loss or model architecture.
» Paradigm-agnostic. Covers M — M, M +— N, and M — 1 paradigms instantiation via o and .

* Budget-aware. Limited by stealth (&), poison rate (pmyax), and robustness margins (Viin, Omin)-

4.2 JOINT CLOUD SHAPING MULTI-TRIGGER OPTIMIZATION

To instantiate the optimization program from Section .I] we propose Joint Cloud Shaping Multi-
trigger Optimization where employs two structure terms: (A) intra-cloud compactness and (B)
inter-cloud separation to learns 7;. ¢ from random initialized trigger set {g,, }X_,.

Invisible Trigger Design. Each trigger g,, is realized as a masked blend with a fixed sparse mask
ay, €[0, 1JE*HXW gatisfying || |lo < s and a learnable pattern v € X, i.e.,

I (@) =clip (1 —ap) Oz + o Ovg), Ap(z) = ar © (v — ).

This enforces || Ak ()]0 < s by construction, and we impose ||A(2)]|c < € via clipping. Gradi-
ents update vy, only, and o remains fixed.

We first define the empirical center and radius in the representation space:
1 (k 1 k)
o= > A > -l ©)
|B| ~ B
(%4,y:) EBy (wi,yi)EBg

where B, = {(z;,v:) € B : n(y;) = k} be samples routed to trigger k for a minibatch B. z; =
¢o(x;) and fz'fk) = ¢6(gn, (;)) for clean and triggered features via a fixed classifier fo = h o ¢y .

(A) Intra-cloud Compactness. By Proposition [I] feasibility requires each cloud to remain entirely
inside its designated region. We therefore minimize within-cloud variance so that triggered samples
cluster tightly around pi:

K
1
mtra = ? § B E || (k) :ukH (7)
k=1

(wi \Yi ) EB

This term reduces the radius r, directly improving the margin of Cj, relative to its target boundary.
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Figure 3: Overview of Arcueid, illustrating framework execution structures.

(B) Inter-cloud Separation. As shown in Lemma [T} avoiding cross-trigger interference requires
triggered clouds to remain apart. We enforce a pairwise margin m > 0 between centers by penaliz-
ing violations with a hinge loss:

2
L = gy 2 |7 luw—nel] ®)
1<k<l<K *

This repulsive force ensures that different triggers carve out distinct, non-overlapping decision re-
gions, thereby stabilizing multi-trigger coexistence.

Overall Optimization Objective. Combining both terms, we optimize only 7;.x while keeping the
victim classifier § frozen:

211111(1 )\intra[fintra + /\interﬁinter s.t. ||gnk (l‘) - JZ‘H S 3 (Vk,x) (9)
Gradients flow through ¢g o g,, to update triggers, while the classifier remains fixed. A detailed
analysis of convergence and pseudocode is provided in the Appendix [A.3]

4.3 ARCUEID: ATTACK WORKFLOW

Figure 3| depicts the three-stage pipeline of Arcueid, with each modular stage:

Stage 1. Target Planning. The adversary configures the attack by determining the target classes,
selecting the attack paradigm (M+—M, M+— N, or M+ 1, as defined in Section @, and outlining
a preliminary trigger—target mapping along with the number of triggers K required for optimization.
These choices are made independently of the subsequent optimization stage.

Stage 2. Trigger Optimization. The adversary initializes K triggers at random and optimizes
their parameters 7;.x on a surrogate dataset and model using the Joint Cloud Shaping Multi-trigger
Optimization mechanism described in Section[4.2]

Stage 3. Attack Deployment. The adversary uniformly poisons a fraction p of benign samples
with the optimized K triggers, relabels them according to the pre-determined paradigm and target
mappings from Stage 1, and injects the resulting mixture into the victim’s training pipeline through
channels such as online publication, outsourced datasets, or data trading.

5 EVALUATION

5.1 EXPERIMENT SETUP

General Settings: We conduct experiments on three widely-used image classification benchmarks:
CIFAR-10/100 (Krizhevsky & Hintonl [2009), and TinyImageNet (Le & Yang,2015). For CNNs, we
adopt ResNet-18/34 (He et al., 2016), and VGG13-BN (Simonyan & Zisserman, [2015) as represen-
tative backbones. To further test robustness across architectures, we also include transformer-based
models, namely ViT (Dosovitskiy et al., 2021) and SimpleViT (Beyer et al.,|2022).
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Table 1: Attack performance (AACC/ASR+Std) on various models under attack paradigms.
Here, M +— N denotes an attack configuration where M is the number of triggers and N is the
number of target classes chosen by the adversary.

ResNet-18 ResNet-34 VGG13-BN ViT SimpleViT
Dataset M— N
AACC ASR AACC ASR AACC ASR AACC ASR AACC ASR
10—1 5.5% 99.1%40.7% 2.8% 100.0%+0.0%  2.1% 100.0%+0.0%  0.3% 99.4%40.5% -0.3%  100.0%=0.0%
CIFAR-10 10—2 1.6%  99.9%+0.1%  3.7%  99.4%=+0.8% 1.9%  99.4%+04%  03%  96.8%+1.6%  04%  99.7%+0.3%
(PR=0.1%) 10—5 14%  99.6%+03%  3.9%  99.7%+0.3% 1.9%  98.6%+1.1%  05%  93.9%+2.6% -0.1%  99.7%+0.2%

10—10 1.6% 99.8%+02%  4.7% 98.8%+1.0%  2.0% 98.8%+0.9%  0.3% 81.5%+93%  0.2% 92.0%+3.4%

100—1 3.0%  100.0%+0.0%  72%  100.0%+0.0%  5.1% 99.9%+0.1%  -04%  99.9%+0.1%  -0.2%  100.0%+0.1%

CIFAR-100 100—5 2.9% 97.0%+2.7% 3.6% 99.6%+0.4% 52% 86.6%+7.4% 0.2% 94.3%+38%  -0.3%  97.0%+2.0%
(PR=1%) 100—10 3.2% 96.6%+2.3% 2.7% 99.8%+0.3% 2.7% 98.8%+1.0%  -0.5%  94.5%+3.2% 0.4% 97.4%+1.9%
100—100  3.7% 98.1%+1.4% 7.7% 88.2%+6.7% 32% 953%4+23%  -0.5% 80.4%+£102%  0.6% 84.2%+9.1%

200—1 6.8%  100.0%+0.0% 8.0%  100.0%+0.0% 4.6%  100.0%+0.0% 0.7% 99.9%+0.2% 1.3% 99.9%+0.2%

TinyImageNet ~ 200—2 7.2% 99.7%+0.4% 8.8% 99.9%+0.2% 51% 99.5%+0.5% 1.3% 97.7%+19%  -0.1%  96.9%+2.6%
(PR=2%) 200—4 7.5% 99.9%+0.2% 91%  100.0%+0.1%  4.0% 99.3%+0.5% 1.5% 96.8%+2.1% 0.3% 95.9%+2.4%
200—200  6.2% 99.9%+0.1% 7.2% 99.9%+0.1% 8.2% 98.7%+1.3% 1.0% 92.7%+3.6% 0.9% 89.4%=+5.0%

Evaluation Metrics: We adopt the following:
Original
CA (Clean Accuracy) — Clean inputs accuracy.
ASR (Attack Success Rate) — Proportion of
trigger-embedded inputs classified into targets.
AACC - Drop in CA compared with a benign
model (lower means smaller degradation).

PR (Poisoning Rate) — Fraction of training
samples replaced with poisoned ones.

Supplementary Experiments & Details: Tables[7]and §]in Appendix [A.2]summarize the attack base-
lines and defense methods evaluated in Section[5.2H5.3] The appendix further details all experimen-
tal settings and provides supplementary analyses, including capability extension, ablation studies,
stability, loss parameter sensitivity, and stealthiness, offering a broader perspective on the robust-
ness, stealthiness and overall comprehensiveness of Arcueid.

Poisoned

Figure 4: Visualization of Arcueid

5.2 ATTACK PERFORMANCE

Effectiveness on Threat Paradigms. Table [I|summarizes results across three paradigms (M — 1,
M ~ N, and M — M) with both CNN and transformer backbones. Figure [ visualizes example
triggers and poisoned samples produced by Arcueid, illustrating their practical appearance and
imperceptibility. Arcueid consistently attains near-perfect ASR (typically >95%) with negligible
utility degradation (AACC mostly < 5%). On CIFAR-10/100, even the all targets settings (M — M)
maintain strong attack success (Average ASR > 90%) on CNN models, while transformers show
moderate drops (AACC < 1%) under the most extreme cases. These results confirm that Arcueid
scales reliably across mappings, datasets, and architectures.

Multi-target Supported Attack Comparison. We compare Arcueid with SOTA backdoor at-
tacks that support multi-target settings. For BadNets, WaNet, and IAD, target labels follow a cyclic
rule ¥’ = (y + 1) mod 10, while M2N and Arcueid adopt the same target mapping for fairness.
Figure 5] visualizes the classifier logits distribution, where Arcueid produces clear and consistent
mappings across all targets, while competing methods collapse into random or uniform patterns un-
der low poisoning budgets. This comparison highlights Arcueid ’s distinctive ability to sustain
stable all-to-all attacks at extremely low poisoning rates, where prior methods fail to generalize.
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Figure 5: Heatmap comparison among multi-target attack methods (PR=0.1%).
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5.3 ROBUSTNESS AGAINST DEFENSE MECHANISMS

Robustness against Pre-training De-

fense. Pre-training defenses aim to de- M- 1 Attack M N attack " M astack
tect poisoned samples at the input level be- ok T T

fore they enter the training pipeline. Such  n o A~ m a0 e onHE e
approaches are generally regarded as ef- : ff’%;**‘% Y ;y“%f:@" J;*??m{,* '%
fective only if they can simultaneously — A4%Alsl o5 Al a5 el
achieve a high true-positive rate and a ®=i® “gfp " Fac el e 7T e neal gy 7T A
low false-positive rate across diverse at- oo meckion eckon

tack mappings. As shown in Figure[6] only W orsC  ser W sCALEUP

SCALE-UP shows partial effectiveness in . . . .
the M + 1 setting, while all methods de- Figure 6: Pre-training defenses against Arcueid

grade severely once multiple targets are involved, with recall and F1-scores approaching zero. Over-
all, these results highlight that Arcueid ’s multi-trigger, multi-paradigm, and invisible-pattern de-
sign significantly enhances its ability to evade input-level filtering mechanisms.

Robustness against Mid-training Defense.
Mid-training defenses attempt to continue opti-
mization in the presence of poisoned data by fil-
tering or down-weighting suspicious samples.
For such defenses to be considered effective,
they must retain CA close to the benign base-

Table 2: Mid-training defense performance
against three attack paradigms of Arcueid.
Performance denotes the CA and ASR measured
on models after applying defenses.

Attack Paradigm Defense Type  TPR FPR Performance

cA ASR line while driving ASR down toward random-

NoDefense ~ N/A  NA  865% 99.1%+07%  guess levels during training time. As shown in

M 1 Attack CT 0.00% 61.33% 53.0% 90.2%=+3.5% Table @ CT Suffers from excessive false pOSi-
FLARE 0.00% 0.00% 88.6%  99.7%+0.3% . 60(7 . CA 11 b 1

NoDefense ~ N/A NA  90.6%  99.6%+0.3% tives ,(> _0)’ causmg to co apse. € QW

M — N Atiack cr 200% 6539% 434% 3sa%=246%  H0% in multi-target settings. FLARE maintains

FLARE  000% 171% 879% 9%.6%+53%  CA above 87% but leaves ASR largely unaf-
No Defense N/A N/A 90.4%  99.8%+0.2% . .
M +— M Attack CT 14.00% 63.84% 46.4% 41.8%+33.1% feCted (> 96%)7 nearly ldentlcal to unde.fended
FLARE  200% 1374% 889% 986%+19%  models. Taken together, current proactive de-
fenses either cripple utility or fail to suppress

Arcueid, leaving the backdoor intact.

Robustness against Post-training Defense.

M - 1 Attack M - N Attack M - M Attack

Post-training defenses are designed to sanitize wl ] Lol 104

a trained model without access to its origi- - ol B B
nal training data. To succeed, such techniques 37 37 037
: :

should both preserve high CA and suppress 0.0

0.0-— 0.0

e
®©
=}
©
®
=}
o
©-
[®)]

ASR close to chance levels. We examine three

recent approaches, as shown in Figure |7} FT- 1o 1o LB 1o I
SAM reduces ASR in the M — 1 case but is in- %05 | 0.5 0.5

effective for multi-target attacks, ABL provides * .
virtually no protection, and NAD achieves par- YT e e 8 o e 6 o
tial mitigation with considerable instability. In T ST 5w
general, none of these defenses reliably meet ~-= Non Defense ASR ® = FTsAM

the expected standard, underscoring Arcueid

’s resilience even after model sanitization. Figure 7: Post-training defenses to Arcueid.

6 CONCLUSION

This paper introduced Arcueid, a unified framework leveraging Joint Cloud Shaping Multi-trigger
Optimization for effective, stealthy, and robust backdoor attacks across paradigms. Extensive evalua-
tions confirmed high ASR, strong stealthiness, and resilience against SOTA defenses, exposing blind
spots in existing countermeasures. Beyond a new benchmark for multi-target backdoors, our results
challenge the assumptions that diversity or limited attacker knowledge weakens attacks, showing in-
stead that adaptive multi-trigger designs thrive under realistic constraints. We expect these findings
to motivate defenses accounting for multi-trigger interference and inspire exploration of continual
or multimodal backdoor settings where such vulnerabilities persist.
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A.1 SUPPLEMENTARY RELATED WORK

The related work discussed in Section [2] primarily focuses on poisoning-based backdoor attacks.
Yet the scope of backdoor research extends beyond data poisoning. A substantial body of work has
examined supply-chain backdoor attacks, in which adversaries, with full control over the training
process, implant backdoors into models and redistribute them through public channels. Meanwhile,
the escalating threat of backdoor attacks has spurred extensive efforts on backdoor defenses, which
propose countermeasures at different stages of the learning pipeline. This supplementary section
reviews these two complementary directions to provide a more comprehensive view of the backdoor
learning landscape.

A.1.1 SUPPLY-CHAIN BACKDOOR ATTACK

Supply-chain backdoor attacks describe scenarios in which an adversary independently trains a
model and embeds a backdoor during this process, subsequently releasing the compromised model
through public channels, often under the guise of an open-source model or a domain-specific utility.
Because the adversary possesses full control over both the training process and the model architec-
ture, this threat model typically corresponds to the white-box setting. Early works explored direct
weight manipulation. For example, Dumford & Scheirer| (2020) perturbed model weights to in-
duce targeted misclassifications without sacrificing accuracy on clean inputs. TBT (Rakin et al.,
2020) further demonstrated that Trojans could be injected at the bit level through weight flipping,
requiring no access to training data. Along similar lines, |Garg et al.| (2020) introduced adversarial
weight perturbations capable of embedding highly stealthy backdoors. Building on this direction,
T-BFA (Rakin et al., 2022) proposed the first targeted bit-flip attack tailored for quantized DNNss,
while ProFlip (Chen et al.,2021) progressively identified and flipped a small set of critical parameter
bits to implant Trojans into quantized networks without retraining. More recent works have shifted
toward data-free settings. DFBA (Cao et al., [2024) and the method proposed in (Lv et al.| [2023)
embed backdoors by directly modifying neurons or leveraging substitute data, circumventing the
need for original training data or labels. Beyond weight-level manipulations, structural modifica-
tions have also been introduced. TrojanNet (Tang et al.,|2020) appends a model-agnostic module to
enable all-label attacks, while SRA (Qi et al., [2022) replaces sub-networks within deployed models
to inject physical backdoors. At an even lower abstraction level, DeepPayload (Li et al. 2021d)
achieves black-box logic injection through binary-level modifications. Collectively, these supply-
chain attacks highlight the feasibility of post-deployment compromise without requiring access to
victim data or pipelines. However, they generally depend on strong control over the model or run-
time environment and may leave detectable footprints due to the inherent structural or behavioral
alterations they introduce.

A.1.2 BACKDOOR DEFENSE

To counteract backdoor threats, a wide range of defense strategies have been proposed, which can be
broadly classified into three categories via its applied period: pre-training defense, mid-training
defense and post-training defense.

Pre-training defense aims to identify adversarial samples before training time by analysing various
properties of incoming data. SCALE-UP (Guo et al.| 2023)) leverages the prediction consistency of
scaled input images to detect backdoors in a black-box setting, supporting both patch-based and ad-
vanced trigger types. MSPC (Pal et al., 2024)) introduces a mask-aware scaled prediction consistency
framework and a bi-level optimization process to detect poisoned samples without requiring clean
data or manual thresholds, outperforming prior methods under realistic constraints. Beatrix (Ma
et al., [2023) proposes a Gram matrix-based method to model high-order feature correlations, ef-
fectively detecting both universal and sample-specific backdoors. More recently, IBD-PSC (Hou
et al.| |2024a) enhances robustness and generalization by amplifying batch normalization parameters
and evaluating confidence consistency, thereby overcoming several limitations of earlier input-based
defenses (Chou et al., 2018} |Gao et al.| [2022; [Liu et al., 2023).

Mid-training defense focuses on detecting and suppressing poisoned samples during the training
process, thereby mitigating backdoor contamination while allowing models to continue effective
learning. DBD (Huang et al., [2022) alleviates poisoning threats by decoupling the end-to-end opti-
mization into three stages, effectively weakening the influence of triggers. ASD (Gao et al., [2023))
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provides a unified framework that adaptively partitions data into clean and polluted pools for tar-
geted training-time defense. Honeypot-based defenses (Tang et al., 2023) attach auxiliary modules
to lower layers to absorb and neutralize backdoor features during fine-tuning. CT (Qi et al.| 2023b))
proactively detects poisoned samples by injecting mislabeled clean data, decoupling benign correla-
tions from malicious ones to expose triggers. MeCa (Pu et al.,|2024) enables training clean models
directly on poisoned datasets without auxiliary clean supervision by leveraging robustness discrep-
ancies of poisoned samples under adversarial perturbations. More recently, FLARE (Hou et al.
2025) introduces a universal dataset purification framework that aggregates abnormal activations
across layers and employs adaptive subspace clustering to distinguish poisoned from benign data.

Post-training defense aims to repair compromised models or mitigate backdoor behaviors after
training. Early reactive approaches, such as Neural Cleanse (Wang et al., 2019), reverse-engineer
potential triggers through anomaly detection, followed by input filtering, neuron pruning, or retrain-
ing. STRIP (Gao et al.,[2019;2022) provides a lightweight post-hoc detection mechanism by mea-
suring prediction entropy under perturbed conditions, enabling efficient black-box identification of
trojaned inputs without prior trigger knowledge. More recent methods improve efficiency and gen-
eralization: NAD (Li et al., [2021b)) applies attention distillation between a fine-tuned teacher and
the backdoored student model with only a small clean dataset; I-BAU (Zeng et al., |2022) frames
backdoor removal as a minimax adversarial unlearning problem solvable via implicit hypergradi-
ent methods; and FT-SAM (Zhu et al.| 2023)) integrates sharpness-aware minimization (Foret et al.,
2021)) with fine-tuning to perturb backdoor-sensitive neurons, achieving strong mitigation even with
limited data. In parallel, proactive defenses such as ABL (Li et al.|[2021a) exploit the faster conver-
gence and class-dependency patterns of poisoned samples via a dual-stage gradient ascent strategy
to isolate and suppress them, enabling robust training even on corrupted datasets.

A.2 SUPPLEMENTARY EVALUATION

This section provides additional experimental results and details that complement the main text. We
include extended analyses, supplementary figures, and tables that could not be accommodated in
the main pages due to space constraints. These results further support our findings and offer deeper
insights into the robustness and effectiveness of Arcueid.

Table 3: Attack performance (AACC/ASR+Std) on various models under all targets attack.

ResNet-18 ResNet-34 VGG13-BN ViT SimpleViT
AACC ASR AACC ASR AACC ASR AACC ASR AACC ASR

33 0.03% 1.7%  99.7%+02% 3.8%  99.6%+0.5% 18%  95.8%+5.1% -02%  88.3%+85% -02% 89.5%+3.9%
55 0.05% 42% 943%+6.6% 4.1%  992%+0.6% 1.6% 97.0%+4.1% 08%  80.1%+14.0%  02%  95.5%=+3.7%

Dataset M—N PR

CIFAR-10
8—8 0.08%  35% 99.5%+0.7% 3.4%  99.7%+03% 15% 99.1%+1.1%  0.6% 88.3%+33%  -02%  89.7%+5.8%
10—=10  0.10% 59% 91.9%+48% 4.7%  98.8%+1.0% 2.0% 98.8%+09% 0.3% 81.5%+9.3% 02%  92.0%=+3.4%
2525  025% 25% 972%+17% 5.1%  951%+29% 50%  90.9%+49% -0.1%  86.9%+8.7%  -09%  88.7%+52%
CIFAR-100 50—=50  0.50% 3.0% 98.0%+14% 32%  98.7%+09%  6.0% 853%+73% -0.5%  82.9%+89%  -03% 82.1%%7.7%
75=75  0.75%  43% 972%+24% 7.5%  92.0%+4.1% 6.1%  86.5%+9.1% -0.1% 828%=+10.1% 1.0%  83.5%+6.7%
100—100 1.00%  3.7%  98.1%+1.4% 1.7%  882%+6.7% 32%  953%+23% -05% 80.4%+102% 0.6%  84.2%+9.1%
50—=50 050% 73% 99.8%+03% 62%  99.9%+0.1% 44%  99.8%+02%  0.5% 92.7%+3.5% 02%  91.7%+4.5%
TinylmageNet 100—100 1.00%  6.1%  99.9%+0.1% 93%  99.9%+0.1% 3.6%  99.9%+0.1% 1.3% 91.9%+4.1% 0.7%  90.2%+4.3%

150—150 1.50% 7.0%  99.9%+02% 19%  99.9%+0.1% 6.7%  989%+13% 0.7% 92.7%+3.8% 1.4%  87.9%+5.3%
200—200 2.00% 62%  99.9%+0.1% 72%  99.9%+0.1% 82%  98.7%+13% 1.0% 92.7%+3.6% 09%  89.4%+5.0%

A.2.1 GLOBAL EXPERIMENTAL SETTING

Unless otherwise specified, ResNet-18 on CIFAR-10 is adopted as the default target model and
dataset, with the overall PR fixed at 0.1% (corresponding to 0.01% per trigger). To ensure no unfair
advantage, we strictly separate the surrogate and target environments, where the surrogate model and
dataset are always different from those of the victim. Additional hyperparameter and implementation
details can be found in Appendix The set of backdoor attacks compared throughout the paper
is summarized in Table |7} while the defense baselines considered are listed in Table
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(m) M — 1 (SimpleViT)

Figure 8: Stability study across paradigms on diverse backbones.
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Table 4: Attack performance (AACC/ASR=£Std) on various models under multiple paradigms
in clean-label attack setting.

. ResNet-18 ResNet-34 VGG13-BN ViT SimpleViT
Dataset M~ N
AACC ASR AACC ASR AACC ASR AACC ASR AACC ASR
10 —1 39%  912%+88%  34%  99.9%+0.1% 1.9%  99.5%+0.5%  04%  95.8%+38%  03%  99.9%=+0.1%
CIFAR-10 10 — 2 1.9% 98.8%+1.0% 3.5% 98.7%+1.4% 2.2% 98.1%+1.3% 0.7% 81.3%+9.1% 0.3% 99.1%+1.0%
(PR=0.1%) 10—=5 22%  993%+08%  42%  97.7%+1.5%  2.8% = 929%+54%  03%  88.9%+54%  -02%  99.3%+0.4%
10 — 10 1.3% 98.0%+1.7% 2.8% 98.8%+1.1% 2.6% 95.1%+3.7% 0.2% 86.2%+7.5% 0.4% 99.3%40.6%

100 — 1 25%  100.0%+0.0% 1.9%  100.0%+=0.0%  6.4% 99.7%+04%  -0.6%  99.9%+0.1% 0.4%  100.0%=0.0%
CIFAR-100 100 — 5 29%  80.1%*+17.7%  3.1%  80.1%*17.7%  5.6%  84.8%+183% -0.9% 85.9%+10.1% 0.0%  77.2%=+15.9%

(PR=1%) 100 — 10 29%  80.1%*x17.7% 39%  77.0%x195% 52%  84.9%+159% -09% 829%+16.1% 0.1% 83.3%+£11.1%
100 — 100  3.6%  82.3%+10.1% 52%  823%+10.1% 33% 82.8%+163% -0.9% 78.6%+18.3% 12%  80.6%+11.7%

200 = 1 6.8%  100.0%+0.0% 3.6%  100.0%+0.0% 7.9%  100.0%+0.0% 1.1% 99.1%+1.7% 0.4% 99.3%+1.1%

TinyImageNet 200 — 2 6.9%  86.5%+103% 4.0% 713%*162% 1.6% 92.2%+9.6% 1.1%  82.6%+103% 0.9%  83.3%+10.9%
(PR=2%) 200 — 4 7.7% 94.8%+4.4% 4.6% 98.9%+1.4% 6.1%  80.1%+14.8% 1.1% 85.9%+9.9% 08%  76.1%+15.9%

200 — 200 8.8%  79.8%+x183%  5.5%  84.6%+x13.7% 4.9% 98.8%+1.3% 13%  81.1%%+105% 0.6%  81.3%%10.5%

Table 5: Attack performance (AACC/ASR) in all-to-one attack paradigm under dirty-label
and clean-label settings.

ResNet-18 ResNet-34 VGG13-BN ViT SimpleViT
AACC ASR AACC ASR AACC ASR AACC ASR AACC ASR

CIFAR-10 Dirty-label ~ -2.7% 100.0% -48% 99.5% -1.9% 99.6% -05% 985% 1.0% 99.9%
(PR=0.01%) Clean-label  -4.1%  96.0% -4.6% 974% -14% 99.6% -02% 953% 0.4%  100.0%

CIFAR-100 Dirty-label -3.0%  90.0%  -40% 982%  -59%  853% 08% 999% -0.4% 100.0%
(PR=0.01%) Clean-label ~ -2.6%  85.5% -42% 852% -6.0%  82.4% 1.0% 994% -03% 100.0%

TinyImageNet  Dirty-label -6.8% 100.0% -83% 100.0% -8.6%  99.6% -0.5% 999% -04% 100.0%
(PR=0.01%) Clean-label  -6.6% 100.0% -9.8% 100.0% -3.8% 100.0% -09% 999% -0.5%  99.9%

Dataset Label Mode

A.2.2 EXTENDED CAPABILITY ANALYSIS

To assess the breadth and adaptability of Arcueid, we conduct extended analyses on three dimen-
sions: its effectiveness under clean-label constraints, its scalability across different target scopes,
and its competitiveness in the conventional all-to-one paradigm.

Clean-label Analysis. We further evaluate Arcueid under the more restrictive clean-label setting
(first defined by Turner et al|(2019)), where poisoned samples must retain their original ground-truth
labels. Table ] summarizes results across CIFAR-10, CIFAR-100, and TinyImageNet. Despite the
absence of label manipulation, Arcueid still delivers strong attack performance: on CIFAR-10,
ASR exceeds 95% in most cases with AACC under 4%, and even the challenging M — M setting
(10— 10) sustains over 90% ASR. On CIFAR-100 and TinyImageNet, ASR remains high in M — 1
and M — N configurations, while broader mappings show moderate degradation, yet still outper-
forming existing clean-label baselines reported in prior work. These results confirm that Arcueid
is not limited to dirty-label attacks but also retains effectiveness under clean-label constraints, sig-
nificantly broadening its potential threat scope.

Target Scope Analysis. We analyze the number of triggers K (mentioned in Section under
the most challenging M — M paradigm. Table [3] shows how attack performance changes as we
increase the number of triggers (PR is adjusted accordingly so that the per-trigger PR remains con-
stant). Arcueid scales gracefully: tiny budgets suffice for small-to-medium mappings (e.g., 3— 3
yields over 95% ASR on ResNet-18), and modest increases in PR sustain high ASR as the target set
grows. Larger target scopes require higher absolute PR but remain practical, CIFAR-100 reaches
near-perfect ASR for many intermediate scopes with PR in the 0.25-1.0% range, and TinyImageNet
attains 99% ASR for large-scale mappings when PR is increased to 0.5-2.0%. Across architectures,
CNN backbones are most susceptible, showing very high ASR with only small clean-accuracy drops.
Transformer models exhibit greater variance and larger declines in some extreme broad-target set-
tings, but remain attackable for most practical scopes. In short, expanding the target set does not
collapse attack effectiveness; instead, Arcueid presents a smooth, predictable trade-off between
trigger count and required poisoning budget, demonstrating practical scalability.
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Table 6: Comparison of backdoor attack performance (AACC/ASR) in all-to-one attack
paradigm across datasets. All results are reported on CIFAR-10, CIFAR-100, and TinyImageNet.
AACC denotes accuracy drop on clean samples, and ASR indicates the attack success rate on poi-
soned samples.

CIFAR-10 (PR=0.01%) CIFAR-100 (PR=0.01%) TinyImageNet (PR=0.01%)

Attack Method

AACC ASR AACC ASR AACC ASR
BadNets -1.2% 10.4% -1.8% 1.1% -4.1% 0.6%
Blended -1.6% 10.1% -2.1% 1.1% -5.1% 0.6%
Refool -1.3% 10.1% -2.0% 1.2% -4.9% 1.7%
LC -17.7% 12.7% -2.7% 1.1% -49.5% 0.1%
TUAP -1.0% 8.3% -2.5% 0.7% -5.2% 0.1%
PhysicalBA +2.4% 10.0% +3.5% 1.1% +1.4% 0.6%
‘WaNet -1.7% 10.2% -1.5% 1.1% -4.9% 12.1%
AdaptivePatch -7.0% 10.6% -1.3% 1.5% -7.0% 1.4%
Narcissus -4.1% 39.1% -3.5% 54.5% -6.1% 99.3%
Arcueid (Dirty-Label) -2.7% 100.0% -3.0% 90.0% -6.8% 100.0%
Arcueid (Clean-Label)  -4.1% 96.0% -2.6% 85.5% -6.6% 100.0%
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(c) Trigger Mask Analysis

Figure 9: Ablation study on key factors influencing Arcueid ’s effectiveness.

All-to-one Analysis. Finally, we examine the classical all-to-one paradigm, which corresponds to
setting K'=1 in Arcueid. All experiments in this part are conducted under an extremely low poi-
soning rate of 0.01%. Table@compares Arcueid against a wide range of existing all-to-one attacks
introduced in Table[7} Even under this restrictive budget, Arcueid substantially outperforms prior
methods: on CIFAR-10, CIFAR-100, and TinyImageNet, it consistently achieves near-perfect ASR
(often >99%) with limited clean-accuracy degradation, while standard baselines such as BadNets,

21



Under review as a conference paper at ICLR 2026

Table 7: Summary of backdoor attacks evaluated in this paper. Attack Property indicates at-
tacker assumptions, including whether the attack is clean-label, requires no access to training data,
or is model- and training-agnostic. Attack Target Scope shows whether the attack supports single-
target, multiple-target, or broad-class settings. Robustness evaluates resistance against input-based
detection, training-stage defenses, and model-based mitigation. Stealthiness reports whether the
trigger is invisible and the minimum poison rate per target required to achieve a high attack success
rate (> 80%). O The item is not supported by the attack; @ The item is supported by the attack.

Attack Attack Property Attack Target Scope Robustness Stealthiness

Clean-label Data-free Model-agnostic ~ Single Multiple Broad Detection Training Mitigation Invisible PR/Target

Blended (Chen et al.{[2017) O [ ] [} [ ] O o] O O O [ ] 10%
Refool (Liu et al.||2020) [ ] [ ] [} [ ] O o O O O O 0.57%
LC (Turner et al.|2019} [ ) O [ ] [ ] O o] [ ] @] o [ ] 0.40%
TUAP (Zhao et al.[2020} [ ] O o [ ] O @] [ ] O O [ ] 0.30%
PhysicalBA (Li et al.||2021c) o L] L] ° @] @] @] @ @] @ 0.50%
AdaptivePatch (Qi et al.}[2023a) O [ ] [ ] [ ] O o] [ ] ®] [ ] @] 0.30%
Narcissus (Zeng et al.|2023) [ ] L] o [ ] @] o L] o [ ] [ ] 0.05%
BadNets (Gu et al.|[2019] O [ ] [ ] [ ] [ ] o] (o] @] O o 1%
WaNet (Nguyen & Tran/[2021} e} o o ° ° ) o o) [ ] [ ] 1%
IAD (Nguyen & Tran/[2020)} @] @] @] [ ] [ ] O o @ [ ] ) 1%
M2N (Hou et al.|[2024b} O O [ ] [ ] [ ] ®] (e} O [ ] [ ] 0.40%
Arcueid (Ours) ] [ ) [ ) ] ] [ ) [ ) [ ] ] ] <0.01%

Table 8: Summary of the existing backdoor defenses evaluated in this paper. Proactive Training
denotes methods that prevent backdoor injection during training. O The item is not supported by the
defense; @ The item is supported by the defense.

Defense Def Stage Defense Task Threat Model
Input Detection  Proactive Training Model Mitigation ~ Black-box Needs Clean Data
SCALE-UP (Guo et al.|[2023) [ ] O (@] ® [ ]
Beatrix (Ma et al.|[2023) Pre-training ) @] O @] )
IBD-PSC (Hou et al.|[2024a) [} O O O [ ]
CT (Qi et al.}[2023b) : Mid-training [} [ ] (@] (] o
FLARE (Hou et al.|[2025) [ ] [ ] (@] ® (@]
NAD (Li et al.|[2021b) (@] O [ ] (] [ ]
ABL (Li et al.||2021a) Post-training O [ [ (@] @)
FT-SAM (Zhu et al.}[2023) (@] D [ ] O [ ]

WaNet, and Blended collapse to nearly random ASR. Methods designed for stealthiness, such as LC
or Narcissus, achieve partial success but either incur large clean-accuracy drops or fail to generalize
across datasets. Table 5 further breaks down Arcueid ’s all-to-one performance under dirty-label
and clean-label modes across five architectures. In both settings, Arcueid sustains high ASR with
only minor accuracy loss, reaching 100% ASR on TinyImageNet even without label manipulation.
These results show that Arcueid is not only effective in multi-target paradigms, but also strictly
surpasses SOTA baselines in the conventional all-to-one paradigm, highlighting its role as a unified
framework for both traditional and advanced backdoor attacks.

A.2.3 ABLATION STUDY

To better understand the robustness and design properties of Arcueid, we perform ablation studies
on three critical factors: PR (Poisoning Rate), surrogate data scale, and trigger mask.

Poisoning Rate Analysis. We vary the overall PR from 0.02% to 0.12% (per-trigger rate from
0.002% to 0.012%). As shown in Figure 92} Arcueid remains highly effective even at extremely
low poisoning budgets: at only 0.04%, ASR already exceeds 97% in both M — N and M — M
settings with negligible accuracy drop. Performance stabilizes around 0.08%-0.10%, confirming
that the attack requires only a little data injection to achieve strong persistence.

Surrogate Data Analysis. We investigate the impact of surrogate data scale, ranging from 500
to 20,000 samples drawn under a non-IID distribution. Results in Figure [9b] show that attack per-
formance improves rapidly with more surrogate data, surpassing 95% ASR once 7,500 samples are
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Figure 10: Sensitivity of ASR/Std/CA to (Linya, Linter) across multiple paradigms. The case
(Lintra, Linter) = (0, 0) is marked as N/A, since it corresponds to no effective optimization.

used. Importantly, further scaling to 10,000-20,000 samples yields only marginal gains, indicating
that Arcueid does not rely on large-scale auxiliary datasets to optimize triggers effectively.
Trigger Mask Analysis. Finally, we analyze the role of the blending mask ay, € [0, 1]¢>*HxW
(introduced in Section[4.2)) that controls trigger visibility. As shown in Figure[0c| overly small masks
weaken the attack, reducing ASR below 80% in complex mappings. Larger masks improve stability,
with consistently high ASR once the mask exceeds 0.05. Notably, performance remains strong up
to 0.20, indicating that Arcueid tolerates a wide range of trigger strengths without compromising
stealth.

A.2.4 Lo0SS WEIGHTS SENSITIVITY ANALYSIS
Recall that Arcueid optimizes the following auxiliary objective at the feature level (in Section[4.2)):
Elotal = )\intraﬁintra + )\interﬁintery

where Ly, penalizes the variance of triggered features within each pattern cluster, and Liye, en-
forces dispersion between cluster centroids via a margin constraint. The two terms play comple-
mentary roles: Linr, ensures that triggered samples converge to a coherent and predictable cloud,
which is critical for transferring consistent decision boundaries to victim training. Liye, prevents
collapse among multiple triggers by enlarging centroid gaps, thereby reducing cross-trigger interfer-
ence and stabilizing success across targets. Removing Ling, yields unconstrained, scattered feature
clouds that fail to anchor to the target class, while removing L;n., risks centroid overlap that causes
unfair allocation of decision regions or severe variance across targets.

We systematically vary Aipgra and Ajpger on logarithmic scales {0,0.1,0.3,1,3,10} and evaluate
them under three representative paradigms: M — 1, M — N, and M — M. Figures|10aH10c
report the mean ASR, its standard deviation, and CA.

Our observations are as follows:
¢ Inter-only is insufficient. When \j;;;=0, ASR remains low in multi-target regimes, indicating
that repulsion without compactness fails to anchor decisions.

 Intra-only is already strong, and modest )\, further enhances fairness and stability. With
Ainer=0, ASR is already high, showing that cluster cohesion alone suffices. Introducing a small 3
further reduces variance and improves worst-case success across targets.

* Overweighting \jy.r is harmful. Excessive \jp; activates the hinge almost everywhere, injecting
noisy repulsion and degrading overall performance.
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* Single-target scenarios (M — 1) are less sensitive. Once A, >0, ASR quickly saturates across
a wide range, while i, primarily reduces variance without significantly affecting the mean.

In summary, both terms are necessary in principle: Ly, ensures success, while Liy, promotes
collision avoidance and evenness. Yet, tuning is straightforward: balanced or a-leaning weights
(e.g., € [0.3,3], B € [0.1,1]) consistently achieve >95% ASR with low variance across paradigms
while maintaining CA. Therefore, we adopt («, 3) = (1, 1) as the default configuration.

A.2.5 STABILITY ANALYSIS

We further investigate the stability of Arcueid across paradigms (M — 1, M — N, and M — M).
Figures 8| show waterfall plots of ASR trajectories over training epochs under the five representative
architectures introduced in Section [5.1} The results reveal that Arcueid maintains consistently
high and steady ASR throughout training without collapse or oscillation, demonstrating that our
trigger—target associations remain intact even under heterogeneous model inductive biases. Impor-
tantly, convergence behaviors remain smooth across all paradigms, confirming that our method not
only ensures high attack effectiveness but also stabilizes the poisoned training dynamics against
gradient noise and architectural variations.

A.2.6 STEALTHINESS EVALUATION

Metrics. We assess stealthiness using complementary pixel-, signal-, perceptual- and representation-
level measures:

* {--norm — Measures the worst-case per-pixel perturbation magnitude, where lower values indi-
cate reduced visibility of the trigger.

* MSE / PSNR — Capture signal-domain distortion, where lower MSE and higher PSNR values
correspond to smaller overall perturbations.

e LPIPS (Zhang et all [2018) — A learned perceptual similarity metric correlated with human
judgment, where lower values indicate higher perceptual similarity to benign inputs.

* Residual statistics / sparsity — Characterize the spatial footprint and sparsity of the perturbation,
for example by reporting the proportion of pixels exceeding a threshold |A| > 7.

* Grad-CAM similarity (Selvaraju et al.,[2017) — Quantifies the alignment of attention maps be-
tween original and poisoned inputs using cosine or Pearson similarity, thereby indicating whether
model focus is preserved.

* Feature-space cluster metrics — Evaluate the embedding distribution of poisoned samples
through methods such as t-SNE visualization, highlighting how they are organized under benign
and backdoored models.

Together these metrics provide a comprehensive picture of both low-level visibility and high-level
semantic or representation impact, which we then use to evaluate the imperceptibility of Arcueid
through both quantitative metrics and qualitative visualization. Table 9] compares {,-norm and
LPIPS against representative stealthy backdoor attack baselines. Arcueid achieves a favorable bal-
ance with ¢, = 0.2121 and LPIPS = 0.0301, significantly outperforming TUAP, AdaptivePatch,
and Narcissus, while approaching the imperceptibility of WaNet and LC. Complementary signal-
domain metrics in Figure [[2]show that triggers introduce an average MSE of 0.0015 and PSNR of
28.19dB, indicating distortion well below human-detectable thresholds. Together these results con-
firm that Arcueid produces visually stealthy perturbations without sacrificing attack effectiveness.

Residual Analysis. Figure [12] visualizes ten optimized triggers (a)—(j) via Joint Cloud Shaping
Multi-trigger Optimization mechanism. For each case, the first row shows clean images, the second
row residuals, and the third row poisoned images. Residual maps demonstrate that perturbations
are spatially localized and of small magnitude, with most pixel changes imperceptible by eye. This
confirms that Arcueid does not rely on conspicuous texture overlays or large-scale pixel modifi-
cations.
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Figure 11: Visualization of trigger-induced feature representations. For each backbone, we first
optimize K=10 triggers and then apply them under different attack paradigms (M — 1, M — N
and M — M). Five panels (left to right) show: (1) All Poisoned Features (Benign Model): the full
poisoned training set (50,000 samples) embedded under a benign model, (2) Poisoned Set (Benign
Model): a random subset of 100 poisoned samples embedded under a benign model, (3) Poisoned
Set (Model M — 1 Backdoored): the same poisoned set forwarded through a model trained with
all 10 triggers mapped to a single target, (4) Poisoned Set (Model M/ — N Backdoored): the
poisoned set embedded by a model trained with 10 triggers mapped to two targets, and (5) Poisoned
Set (Model M — M Backdoored): the poisoned set projected from a model trained with one-to-
one mappings between the 10 triggers and 10 targets.
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Table 9: Visual quality comparison across attack methods.

TUAP WaNet AdaptivePatch LC Narcissus  Arcueid(Ours)

loo-norm  0.7021 0.1229 0.8992 0.9400  0.1255 0.2121
LPIPS 0.0480 0.0047 0.1295 0.0048 0.1047 0.0301

Figure 12: Visualization of ten different triggers (a)—(j) for the stealthiness study. For each case, the
first row shows the original images, the third row shows the images with triggers added, and
the second row presents the residuals between the original and the triggered images. The fourth
and fifth rows display the Grad-CAM heatmaps, generated from the benign pre-trained model,
for the original and triggered images, respectively. The average distortion introduced by the triggers
is small, with an average MSE of 0.0015 and an average PSNR of 28.19 dB.

Grad-CAM Consistency. The fourth and fifth rows of Figure [I2] compare Grad-CAM
heatmaps (Selvaraju et al.} 2017) of original and poisoned images. Saliency patterns remain highly
correlated, showing that triggers do not divert model attention toward conspicuous image regions.
Instead, they subtly modulate internal features while preserving natural attribution patterns, rein-
forcing the covert nature of our perturbations.

Representation Structure. We further analyze stealthiness in representation space using t-SNE
visualizations across CNNs (ResNet-18/34, VGGI13-BN) and Transformers (ViT, SimpleViT),
shown in Figure[T1] Each panel depicts the distribution of poisoned samples under different models
and paradigms. In benign embeddings, poisoned samples remain distributed within their original
class manifolds, hindering simple outlier-based detection. Under backdoored models, poisoned
samples form compact, target-aligned clusters: collapsing into a single region in M — 1, splitting
into two stable groups in M — N (IN = 2), and separating into ten distinct clusters in M — M.
This cluster behavior directly results from our optimization objective and ensures that stealthiness is
maintained even in representation dimension.

Overall Stealthiness Summary. Across pixel, perceptual, saliency, and feature embedding views,
Arcueid consistently achieves high imperceptibility. Perturbations remain subtle in the image
domain, preserve natural attention maps, evade simple anomaly detectors, and embed smoothly
within benign feature manifolds while constructing robust, paradigm-consistent decision regions.
These results confirm that Arcueid is not only effective but also covert, a crucial property for
realistic adaptive backdoor attacks.
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A.3 FURTHER ARCUEID ANALYSIS

This section complements Section ] by filling in details and providing a formal analysis of both the
optimization stage and the training-time execution stage. All proofs refer to Appendix [A.6]

A.3.1 OPTIMIZATION ANALYSIS

Building on Section[4.2} we now provide a more formal analysis of the optimization stage, notations
and assumptions follow the main text.

The goal is to characterize the gradient forces induced by the intra- and inter-cloud objectives, es-
tablish the existence of well-formed minimizers, and connect these properties to the feasibility and
non-interference conditions defined earlier in Section .11

Gradients. We characterize the exact gradient fields of the two terms, let nj, = |Bj;| and abbreviate
I
Z Ezf ) for (i, i) € Bk.

a'Cin ra 2 ~
Lemma 4 (Exact Feature-level Gradients of L;,;..). bra (zz — uk).

0z Kny
Lemma 5 (Active-pair Gradients of Line,). If || — || < m, then
8fcinter _ _ 2 M — He a‘cinter _ _i 8fcinter ic Bk;
Opu K(K = 1) [|pe — pell” 0z n Oy

Chain Rule to Triggers. We further analyze how these gradients propagate to the trigger param-
eters via the chain rule,
aﬁ T T (9£
o > (Jgnk () " T (g (1)) 87)’

(zi,yi)EB

Le {Lintraa ‘Cinter}; (10)

with Jg and Jg, ~the Jacobians of ¢ and gy, , respectively. Assuming both mappings are differen-
tiable, the updates to 7, inherit the attractive-repulsive dynamics characterized in Lemmas H5]

Existence and Feasibility Guarantees. We show that optimization admits non-degenerate mini-
mizers and that these imply interior placement without interference.

Proposition 3 (Existence of Minimizers and Non-collapse). If triggered features are bounded on
the batch support and m > 0, then F({Z;}) = Lintra + A Linter (as a function of {z;}) attains a
minimum; any stationary point satisfies ||, — puel| > m for all k # ¢ (otherwise an active hinge
yields a nonzero repulsive gradient).

Proposition 4 (Radius/Separation = Interior Placement). Let fy be fixed. Suppose at the post-
optimization centers { . } the fixed head exhibits a positive center gap to the designated targets: for
every k and j # T, A (1) = Sr, (k) — 8 (1) > Yiogit > 0, and for each cloud the logit gaps
are L'LiPSChitZ lOCCllly. Ifﬁintra <Cintra (SO T < m) and Cinter =0 (SO ”:uk - M@H > m)’ then
every triggered point in cloud k lies strictly in R, with margin at least ymin = Yiogit —L+/Eintra > 0,
and clouds do not interfere.

Parameter Sensitivity Implications. To further examine parameter sensitivity, we have provided
experimental evidence in Appendix and here we complement the analysis with theoretical
insights.

Proposition 5 (Shrinking £;.;,, Improves Interior Margin). Let the head be locally L-Lipschitz
around Ci, and suppose the center i, has logit gap “ogit (k) > 0 to its designated target Ty.
If Lintra < Eintra S0 that vy, < \/Eintra, then every triggered point in Cy, enjoys a target margin
Ymin Z ’Ylogit (,Uk) - L\/ Eintra > 0.

Proposition 6 (Raising ¢,,;, Boosts Worst-case Success). Assume (i) clouds are isotropic with
radii {ry}, and (ii) class heads are locally smooth so decision boundaries move at most Ly, per unit
Sfeature perturbation. If iy > 1 + ¢ + & for all k # 0 and some buffer & > 0, then cross-trigger
interference probability is 0 and the per-target misclassification rate is bounded above by a function
decreasing in £. In particular, increasing Oy (by activating Linter) improves the worst-case target
success and reduces the per-target instability.
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Propositions [5H6| explain the observed sweep in Figure [[0} Linga reduces radii and raises interior
margins, while a modest Ly selectively increases inter-center gaps for active pairs, improving
worst-case target success and reducing variance; overly large Liyes Over-activates the hinge and
injects noisy repulsion, degrading effectiveness in multi-target paradigms.

Optimization Dynamics. Under standard smoothness of ¢g0g,, and bounded Jacobians, stochas-
tic gradient updates on Equation 9| with diminishing stepsizes satisfy the usual nonconvex guarantee
of asymptotic stationarity in 7:

1 X

f Z E[an (Aintraﬁintra + )\interﬁinter) Hﬂ - 0 (T — OO)

t=1

Combined with Proposition [3] this ensures convergence to non-collapsed stationary points where
center separation is preserved, while Proposition 4| links such configurations to interior placement
and non-interference. Moreover, the gradient structure in Lemmas #H5| guarantees that updates con-
sistently align with contraction—repulsion dynamics, maintaining small radii and enforcing pairwise
margins. Since 6 is fixed, all guarantees and margins are taken w.r.t. the current classifier; placement
into a target region relies on the measured center gap 7iogi¢ at the optimized centers.

A.3.2 TRAINING-TIME EXECUTION ANALYSIS

In the main text we described the overall attack workflow in Section but did not explicitly
analyze how backdoor training proceeds under different threat paradigms. Here we provide a formal
analysis of the training-time execution stage, showing how compact and separated clouds interact
with gradient dynamics to yield paradigm-agnostic success.

Execution Dynamics. Once the trigger optimization produces stable feature clouds, their effect
during empirical risk minimization can be examined through the gradients induced on the classifier
head. The following results characterize how poisoned samples drive head parameters toward the
intended mapping, both individually and collectively across multiple triggers.

Lemma 6 (Gradient Alignment on Triggered Clouds). Consider a poisoned example (z,t) with
z € Cy, and target label t = Ty, trained under any classification-calibrated loss £(h(z),t) with head
parameters W. Then the stochastic gradient update on W has the form

Vil = ®(z,1),

where ® is linear in z and satisfies:
* the update of wy involves a negative multiple of z, thus increasing its alignment with z;
* the update of w;, j # t, involves positive multiples of z, thus reducing their alignment with z.

Taking expectations over minibatches of triggered samples from Cy, the net effect is to push w
toward the cloud center py while pushing other weights away, thus enlarging the logit gap (w; —
Lemma 7 (Superposition Without Conflict Under Separation). If centers are separated (|| —
we|| > m) and radii small, the mean feature directions {u, } are sufficiently distinct, so the expected
poisoned gradients from different clouds are approximately orthogonal and do not cancel. Hence,
updates for heads {w., } add up: each w., is pulled toward its jiy, while repelled from other classes.

Unified success across paradigms. Given compact and separated feature clouds, training with a
classification-calibrated loss drives the model toward the intended backdoor mapping. By Lemmal6]
stochastic gradients on triggered samples align the target head w,, with its cloud center u;, while
repelling other heads, thereby enlarging the local logit gap. Lemma [/| further shows that when
centers are well separated, gradient contributions from different clouds superpose without conflict,
so updates across multiple triggers add constructively rather than cancel. Together with finite-sample
persistence and realizability assumptions, this ensures that empirical risk minimization converges
with high probability to the desired mapping.

This mechanism manifests consistently across paradigms: in the M — M case, each cloud aligns to
a distinct head; in M — N, several clouds jointly reinforce the same head; and in M + 1, all clouds
converge on a single head, yielding unified alignment to the designated target region.
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Algorithm 1 Joint Cloud Shaping Multi-trigger Optimization

Input: Surrogate dataset Dy, Surrogate model fg, = h o ¢9, Number of triggers K, Steps
T ,Learning rate 1, Margin m, Trade-offs Aiyra, Ainter, Masks «

Output: Optimized trigger family G = {g,, }_,

1: Initialize trigger patterns {vg } 5, ~ N (0,1)

2 {gn ey { (o, o)}y, pi <0
3: fort =1toT do

4:  for batch {(x;,y;)}"; ~ Dy do

5: Sample pattern IDs k; € {1,..., K} foreach ¢
6: xl < gr,; (x;)

7: zi < ¢g(x})

8: B, ::{%':k:i:k‘}, Kot = {k : |B| > 0}
9: Kk < W ZiEBk Zg Vk S Kac[

10: Lintra < % Zk ﬁ ZiEBk ”Zl - :u’k”2

11: Einter — m2k<l[m - ”/J’k? - /j’fH ]Jr
12: l:agg — )\intraﬁintra + Ainterﬁinter

13: Vg $— Vg — ﬁvvkﬁagg, Vk € {kz}

14: {gﬂk }IcKzl <;{(O‘avk)}kK:I

15:  end for

16: end for

17: return {g,, }X_,

A.3.3 PSEuDO CODE

Algorithm [T] explicitly operationalizes Joint Cloud Shaping Multi-trigger Optimization mechanism
of Arcueid in Section.2] Lines 9-12 implement intra-cloud compactness and inter-cloud sepa-
ration. The update in line 13-14 follows the chain rule in Equation modifying only the learnable
trigger patterns v, while keeping masks «, fixed. By Proposition 3] these updates admit minimizers
without center collapse, and Proposition 4] guarantees that sufficiently small radii and adequate sep-
aration yield interior placement and non-interference. Together, these steps instantiate the feasibility
and non-interference conditions from Section{.T|and ensure the reproducibility.

A.4 ADAPTIVE DEFENSE ANALYSIS

Building on a clear understanding of the mechanisms underlying our proposed attack, Arcueid,
this chapter introduces adaptive defense mechanism designed to directly counter the the attack. We
then conduct a systematic evaluation of this defense, assessing its effectiveness and robustness.

A.4.1 PROBLEM DEFINITION

So as Arcueid constructs a family of masked—blend triggers {g,, }szl whose images induce com-
pact, well-separated feature clouds C,, = {¢g(gn, (z)) : (z,y) ~ D,m(y) = k} satisfying the
feasibility constraints in Equation[5} In particular, each cloud Cj, must lie strictly inside the decision
region I, of the attacker-chosen target label 75, with positive interior margin and non-overlap with
other clouds. Our goal is to construct a defense that invalidates these feasibility conditions for the
same trigger family and perturbation budget used by Arcueid.

Let fo = h o ¢g be the classifier under defense, with representation map ¢g : X — RY. We adopt
the same masked-blend trigger family used by Arcueid:

§={g@) =dip(1-a) 0 +a0v): Jalo <5, lgg(x) —allw <=} (A1)

For a clean example (z,y) ~ D, define the mask—robust margin

’Vmask(xa Y; 0) = %Ielg‘ dist (¢0 (gn(x))v aRy)a Fmdsk(e) = inf ’Ymask(xa Y; 9) (12)

(z,y)~D
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If T'mask (6) > 0, then no masked-blend trigger in S can push any clean feature ¢¢(g,(x)) across
a decision boundary into an incorrect region. The following proposition shows that in this case
Arcueid ’s multi-trigger construction becomes theoretically infeasible.

Proposition 7 (Mask-robust Margin Invalidates Trigger Clouds). If T',,x(0) > 0, then there
exists no trigger family {g,, } C S and routing m that can produce feature clouds {Cy} lying strictly
inside {R., } as required by Arcueid ’s feasibility constraints in Equation Thus, Arcueid’s
multi-trigger backdoor mapping is infeasible under T,,,5.(0) > 0.

A.4.2 OVERVIEW

We formulate the defense as a robust optimization problem:
Inein Rclean(e) + Arob Rrob(g)a Rrob(e) = E(m,y)ND [r;leag,( E(fG (gn ({L‘)), y):| . (13)

The inner maximization searches for the most harmful masked-blend trigger in S for the current
model, while the outer minimization updates 6 to classify both clean and triggered examples cor-
rectly. The robust loss plays a direct geometric role: it controls the mask—robust margin I'pas (6).

Proposition 8 (Robust Loss Controls Mask-robust Margin). Under standard Lipschitz and
monotonicity assumptions on logits and loss, if Ryon(6) < €10b, then

1
Cinask(0) > ﬂ,l(%b), (14)

where L is the Lipschitz constant of the logits and 1)~ bounds the logit margin from the loss.

This result shows that minimizing the robust loss directly increases a certified lower bound on
Tinask (8), which by Proposition breaks the feasibility of Arcueid ’s clouds.

We implement Equation [T3]using two mechanisms:

* Adaptive Mitigation. Starting from a possibly backdoored fy,, we iteratively learn an adversarial
universal masked-blend trigger n* via inner maximization over £( fo(g,(x)), v), and fine-tune 6 so
that fy(gy (x)) predicts the correct label. This locally increases Ymask(, y; @) around vulnerable
examples.

* Adaptive Training. During training, each minibatch is augmented with an adversarially opti-
mized universal trigger n*. Optimizing 6 jointly on clean and triggered examples approximates
the minimax problem and increases I'a5¢ (0) globally.

Both mechanisms operate within the Arcueid trigger budget (s, €), ensuring apples-to-apples com-
parison in theory.

A.4.3 DETAILED DESIGN

B
1=1°

Adversarial Trigger Update. For {(z;,v;)}
(v, @) and perform projected gradient ascent:

we maintain a universal trigger parameter n =

B
n+ Ils [n+pvn]13Zf(fe(gn(wi)),yi)], (15)

i=1

where IIs projects back to the masked-blend trigger family. This step identifies the most vulnerable
masked direction for the current 6.

Robust Parameter Update. Given the updated trigger n*, model parameters are updated via

B
00—~V “3 > U o) yi) + Manl(folgns (z:)), yi):| ; (16)

i=1

which moves triggered features back toward their correct regions R, and expands the mask—robust
margin.
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Table 10: Mitigation defense extension.

Attack Type Defense Type CA ASR
No Defense 87.8%  99.6%=+0.3%
Mo 1 Attack FmeTu'nlng 87.3%  99.8%=+0.2%
Pruning 87.3%  99.8%=+0.2%
Adaptive Mitigation 664% 21.8%=+7.7%
No Defense 87.7%  99.7%=+0.4%
Mo N Attack FmeTu.mng 86.8%  99.7%=%0.5%
Pruning 86.7%  99.6%+0.5%
Adaptive Mitigation 52.5% 16.4%+12.9%
No Defense 89.2%  99.4%=+0.8%
Mo M Attack FmeTu.nlng 88.6%  99.2%=*1.1%
Pruning 88.4%  98.5%+2.2%

Adaptive Mitigation 58.2% 7.5%+5.8%

Table 11: Adaptive training analysis.

Attack Type Defense type CA ASR
M s 1 Attack No-Defens‘e ' 87.8%  99.6%%0.3%
Adaptive Training 65.2%  7.8%+2.4%
No Defense 87.7%  99.7%=%0.4%
M — N Attack
4% Adaptive Training  63.4%  10.0%6.8%
M s M Attack No Defense 89.2%  99.4%+0.8%

Adaptive Training 66.8%  6.8%+8.3%

Effect on Trigger Cloud Geometry. Under the smoothness assumptions used in Section |4} in-
creasing I'mas(6) prevents any collection of masked triggers {g,,} C S from generating wrong-
label clouds {C}, } that are (i) compact, (ii) mutually separated, and (iii) strictly inside attacker-chosen
regions { R, } with positive interior margin. Thus Equation [5|becomes infeasible and Arcueid ’s
multi-trigger backdoor mechanism collapses.

Robustness—accuracy Tradeoff. Because Equation [16] forces the classifier to be insensitive to
all masked—blend perturbations in S, it necessarily suppresses certain localized directions that are
genuinely discriminative in clean data. The following proposition formalizes this inherent cost.

Proposition 9 (Robustness—accuracy Tradeoff under Masked-blend Defense). If the Bayes-
optimal classifier f* is not robust to S on a subset of A C X of probability mass v > 0, then
any model fg with T .5k(0) > v > 0 must incur strictly higher standard risk:

Rclean(e) Z Rclean(f*) + av, (17)

for some o > 0 depending on the geometry of {R.}. Hence substantial robustness necessarily
induces a drop in clean accuracy.

A.4.4 EVALUATION

For evaluation, we instantiated both adaptive defenses on default setting aligned with the detail in
Appendix and compare them with standard mitigation such as FineTuning (Liu et al., 2018)
and Pruning (Liu et al., [2018])

As shown in Tables[I0]and[TT] these generic mitigations have negligible effect and the ASR remains
above 98% across all paradigms. In contrast, Adaptive Mitigation reduces ASR to 21.8% and Adap-
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tive Training further lowers it to 7.8% in the M +— 1 setting. However, these reductions come with
a severe cost. CA drops from approximately 88% to the range 52% to 67%. This reflects an inherent
phenomenon: attacker-aware adaptive defenses must train the model to be insensitive to an entire
family of masked blend perturbations, which inevitably suppresses discriminative features required
for normal classification. Consequently, such defenses reduce ASR only by incurring a substantial
degradation in CA, far beyond what practical and attack agnostic defenses would accept.

A.5 BRIDGING THEORY AND PRACTICE

This section expands on the discussion in Section[d]and addresses in more formal terms the relation
between the static formulation in Equation [0 and the practical setting where the victim model is
obtained by training on poisoned data.

A.5.1 STABILITY OF CLOUD GEOMETRY

Recall that Section[4]is intentionally stated in a static form: for a fixed parameter vector 6, Proposi-
tions 1-6 and Equation [9]characterize when the trigger-induced clouds

Ck(a) = {qsa(gnk(x)) : (m,y) ~ D, ﬂ'(y) = k}

are (i) compact, (ii) mutually separated, and (iii) strictly contained in the target decision regions
R, (). The victim’s training procedure is treated as a black-box map from the poisoned dataset
to a final parameter 7, and the guarantees of Section are conditional on 1 satisfying the
representation-alignment assumptions with the surrogate parameter .

Observation. We make explicit two ingredients that connect this static picture to practice: a
margin-based perspective showing that, under any generic margin-based loss, a final model that does
not increase empirical risk or aggregate clean loss cannot reduce the minimum margin over poisoned
points, and therefore cannot push triggered features back toward decision boundaries, while a local
stability property of the cloud-margin lower bound 7(6) under parameter perturbations, together
with the alignment condition of Proposition 2] N

Together, these observations formalize why the cloud structure created by Equation [9] on the surro-
gate is not destroyed, and in many cases is reinforced, by subsequent training of the victim model
on poisoned data.

Margin-based Reinforcement of Poisoned Margins For any fixed parameter 6, Section de-
fines the per-trigger margins and the aggregate lower bound

~(0) := mkin margin,, (Cx(0)),
which appears in Equation [0 as the quantity that Arcueid seeks to enlarge on the surrogate model
Jos = hog © dos.

We now consider a generic margin-based training objective that jointly accounts for clean and poi-
soned examples.

Let the training set be split into clean and poisoned subsets Dgjean and Dppison. For any parameter
vector 6, define the empirical risk

R(6) ! > 0(Ty(z;6)), (18)

| Detean U Dpoi
clean oison
| P |(x7y)EDcle311UDpoisoxl

where I'y (x; 0) is the decision margin for label y at , and £ : R — Ry is any strictly decreasing,
continuous margin-based surrogate (a standard assumption in classification).

We do not assume any particular optimizer or update rule, we only assume that the victim training
procedure outputs a parameter 87 whose empirical risk R(67) is not larger than that of a reference
parameter 0,.¢ and does not worsen the total loss on clean points.

We focus on the minimum margin over poisoned points:

Ypoison (0) = min Ly (z;6). (19)

(a:,y) EDpoisox)
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Proposition 10 (Monotone Behavior of Poisoned Margins). Let Dy, qison consist of triggered ex-
amples (zy,T;) with zi, = gy, (x) and target labels Ty, and let Ypoison(6) be defined as in Equa-
tion[I9) Suppose { in Equation[I8|is strictly decreasing, and there exist two parameter vectors O,
and O such that:

1. Global Risk Non-increase
R(GT) < 'R(@ref).

2. Clean Loss Non-increase

> 4Ty (x:0r)) > Ty (5 Oer)).

(z,9)€Declean (z,9)€Dclean

IN

Then the minimum poisoned margin cannot decrease:

’Ypoison (GT) Z ’Ypoison (Qref) .

In words, Proposition[I0|states that, under any strictly decreasing margin-based loss, any final model
that (i) does not worsen empirical risk and (ii) does not worsen clean loss in aggregate cannot
systematically reduce the margins of poisoned points. Equivalently, training cannot push triggered
features closer to the decision boundaries in a way that would increase their loss, and the only
risk-neutral directions are those that keep or enlarge poisoned margins. This is exactly the sense in
which victim training tends to reinforce rather than destroy the margins that Arcueid initializes
via Equation 9]

Local Stability of Cloud Margins and Surrogate—Victim Alignment We now connect the
poisoned-margin behavior above to the cloud-margin lower bound () used in Section and
to the surrogate—victim alignment condition in Proposition

Under the local Lipschitz assumptions on ¢y, hy and the decision boundaries R (#) made in Sec-
tion the map 6 — ~(9) is locally Lipschitz:

Lemma 8 (Local Stability of Cloud-margin Lower Bound). There exists L, > 0 (depending
only on the Lipschitz constants of ¢g, hg and on the alignment parameters (A, 6, ey,) introduced in
Section such that, for any two parameters 0,0’ in the neighborhood considered in Section

|90 —(0)| < L [|6' — 0. (20)

Lemmaformalizes the intuition that the positive buffer (6.t ) created by Equation|9[on the surro-

gate is robust to moderate changes in 6: so long as ||" — 0[] remains small, the lower bound (¢’)
cannot collapse to zero.

Proposition [2| then connects this local stability on the surrogate to the final victim model: any 6,
whose representation is aligned with 6 in the sense of the (A4, §, £ ) condition lies in a region where
7(0) remains positive and the multi-trigger mapping is preserved.

Combining Proposition [I0] with Lemma 8] yields the following conceptual picture: Equation [0 con-
structs a reference parameter 6,.¢ (on the surrogate) with v(6,c¢) > 0; any victim model 6 that (i)
is not worse in empirical risk, (ii) does not worsen clean loss in aggregate, and (iii) remains in the
aligned neighborhood of 6, in the sense of Section [4.3] must preserve or enlarge the margins of
poisoned points and hence maintain a positive cloud-margin lower bound v (67) > 0. This explains
why in practice the trigger clouds remain compact and well separated across training and, in many
cases, become more pronounced, exactly as observed in Figure[TT]

A.5.2 SENSITIVITY OF REPRESENTATION MISALIGNMENT

We then elaborates the sensitivity to deviations in representation alignment between the surrogate
and victim models.

Recall the alignment model used in Proposition [2} we assume that the victim representation ¢g,.
is approximately aligned with the surrogate representation ¢, via a bounded linear map A and a
small additive discrepancy:

bor () = Ay () +e(x), (@) <6 Ve @21

33



Under review as a conference paper at ICLR 2026

Here A : R? — R? is linear and § > 0 quantifies the worst-case representation mismatch.

On the surrogate model fp, = h o ¢y, the trigger clouds
s
O = {06: (9. () : (@,9) ~ D, m(y) = k}

are assumed to be feasible in the sense of Sec. 4: each cloud lies strictly inside the decision region
R, (0s), is compact, and is separated from the boundaries with a positive margin. We denote the
cloud center and radius by

1D = E[pos (gn (@) [ 7() = k], T = sup [ju—pl?.
weel

Let 75, denote the surrogate cloud-margin lower bound used in Section 4.2}

Yoy 1= mkin margin,, (C,(CS)), (22)

where for a cloud C;, we define
margin_ (Cy) := 1é1£ dist (u, OR,, (9)).
ueCy

For the classifier head h we assume a standard Lipschitz control on the geometry of decision regions,
where exists Lj, > 0 such that for any two feature vectors u,u’ € R?% and any class c, the signed
distance to the decision boundary OR,(#) satisfies

|marginc(u) — marginc(u/)| < Ly v —ul.
Equivalently, the (unsigned) distance to the boundary is Lj-Lipschitz in u.

Under this assumption, Proposition [2] shows that Arcueid’s trigger clouds remain feasible on the
target model whenever the alignment parameters (A4, §) satisfy

Lp||All6 < vog, (23)
Cloud Geometry under Linear Alignment. We first characterize how the cloud centers and radii
transform from the surrogate to the target under the alignment model (Equation 21)).
For a fixed trigger index k, define the target cloud
" = {G0r (90 (@) : (2.9) ~ D, 7(y) = k}.
By Equation every u € C ,gs) is mapped to
v = g, (gn, (2)) = Au+ €(x) € C,(CT).

Let u,(CT) and r,(CT) denote the center and radius of C ,iT):

" = E[oy (gn, (2)) | w(y) = k], i) = sup o — 1™
veEC,

Lemma 9 (Transformation of Cloud Centers and Radii). Under the alignment model, for each
trigger index k there exists a vector &, with ||&|| < d such that

n = A + &, (24)
and the target radius is bounded by
rD < A 45 (25)

Margin Degradation under Misalignment. We now relate the target cloud margins to the surro-
gate cloud margins via the previous assumption and Lemma[9} Let

—mi : (1)
Yor = minmargin,, (Ck )
denote the target cloud-margin lower bound.

Proposition 11 (Sensitivity of Transfer Margin to Misalignment). Under the alignment model,
for each trigger index k the margin of C,iT) on the target model admits the bound

margin, (C,ET)) > margin, (C,(CS)) — Lh(|||AH — 1‘ T,(CS) + ||A||5)7 (26)
and consequently
Yor = Yos — Ln(max| | Al - 1 r{ +]|4]15). @7)
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Interpretation and Practical Implications. Proposition |1 1| makes the informal discussion in the
rebuttal precise. The degradation of the target cloud-margin lower bound -y, relative to the surro-
gate margin yy is controlled linearly by:

* the deviation of || A|| from 1, i.e., how much the linear map rescales feature space;
* the surrogate cloud radii r,(cs), i.e., how compact the clouds are on the surrogate;

* the representation discrepancy 4, i.e., how far the victim features deviate from the aligned
linear image of the surrogate features.

In particular, as long as
Lo (max 4]l = 1/ +1|14]16) < s,

the target margin 7y, remains positive and the multi-trigger backdoor mapping remains feasible.
Only when the combined shift satisfies

S
Lo (max |4l = 11 +14]16) ~ 7o

does the margin collapse and transferability become unreliable.

Because Arcueid explicitly optimizes for compact surrogate clouds (small r,(gs)) with large mar-
gins 7y, the sensitivity term in Equation [27]is naturally attenuated.

A.6 PROOEFS

Throughout, all norms and distances are taken in the representation space Z, and the classifier
fo = h o ¢y is fixed. For a nonempty closed set B C Z, we write dist(z, B) := inf,ep ||z — ull.
For class t, define the decision region R; = {z € Z : argmaxh(z) = t} with boundary OR;.
We use two basic facts: (F1) if dist(z,0R;) > 0 then z lies in the open interior of R;; (F2)
dist(z, B) > dist(u, B) — ||z — u/| (triangle inequality). We also adopt the notation introduced in
Section Finally, let s(z) € R denote the pre-softmax score vector of the head & at feature z;
since softmax is order-preserving, arg max. s.(z) = argmax.(h(z)).. When defining logit gaps,
we write A ;(2) == s¢(2) — s;(2).

A.6.1 PROOF OF PROPOSITION[]

Assumptions. For each trigger k: (i) the triggered cloud Cy, is well-defined with center u; and
radius 7 > 0 (i.e., ||z — pr|| < 7 for all z € Cy); (ii) either (A) margin,, (Cx) > v > 0 (margin
form), or (B) dist(p, OR+,) > 7k (center—radius form).

Step-by-step Proof.

(1) Margin form = success. Fix k and © € Ci. Then dist(z,0R,,) > v > 0, so by (F1) z
lies in the interior of R, and is classified as 7.

(2) Center—radius sufficiency. If dist(ux, OR 7, ) > 1 and ||z — ug|| < rg, then by (F2),
dist(x,0R,,) > dist(pr, OR+,) — ||z — prl| > 0.

Again by (F1), x is strictly inside R, and predicted as 7. Moreover, margin,, (Cx) >
dist(pr, OR7,) — k.

A.6.2 PROOF oF LEMMA[I]

Assumptions. For two distinct triggers k& # £: (i) margin_, (Cx) > 7% > 0 and margin_ (C;) >
~e > 0; (ii) centers pug, p¢ and radii ry,, ry satisfy ||pug — pel|| > 75 + 74
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Step-by-step Proof.

(1) Cloud disjointness. For any x € Cy, y € Cy,
e =yl = llpr = pell = llz = prell = ly = pell > (e +70) =16 =70 =0,
soCrLNCy = @.
(2) Interior stability. By Proposition [I} every € Cy, lies in the interior of R, and every
y € Cy lies in the interior of R -, with strictly positive margins. Interiors of distinct decision
regions are disjoint; thus predictions on Cy, (resp. Cy) cannot flip to 7, (resp. 73,) without

crossing a boundary, which is precluded by the positive margins. Hence there is no cross-
trigger interference.

A.6.3 PROOF OF LEMMA 2]

Assumptions. Let S = (z;)_; be the clean training set and S’ be obtained by replacing at most
m < pn examples with poisoned ones. Let A(-) be the learning algorithm returning 6(-). Assume:
(i) uniform stability: for any datasets U, V' that differ in one example and any z, [(A(U);z) —
UO(V); 2)| < Bns (ii) bounded loss: 0 < £(+; z) < Liax.

Step-by-step Proof.

(1) Path coupling. Construct S = S© S §(m) — & where each SO differs from
S(=1) by one example. For any z,

m

[6(0(S); 2) = €(0("); 2)] < D 1(O(SUV);2) = £(B(SW); 2)| < m B, < pn B

(2) Expected clean risk difference. Taking expectation over z ~ D yields
[En[6(6(S): 2)] — En[€(8(S); 2)]| < pn B

(3) Accounting for empirical replacement. ERM-type procedures also incur at most p fraction
of examples whose losses may change by up to Ly, between S and S’, producing an
additive pLy,,x term in standard stability-to-generalization bounds.

Combining (2) and (3): the expected clean risk changes by at most pn 8, + pLmax, Which is O(p)
when 3, = O(1/n).

A.6.4 PROOF OF PROPOSITION 2]

Assumptions. Let fs = hg o, (surrogate) and f; = hyo¢, (target). Assume: (i) surrogate margin:
for all triggered «, and all j # 7, the score gap I's(z) = (hs(¢s(2)))r — (hs(Ps(2))); = v > 05 (ii)
feature alignment: there exists a bounded linear A with ||¢:(z) — Ags(x)|| < ¢ for all triggered z;
(iil) head alignment: |hy(Az) — hs(2)]|0o < €y, for all surrogate features z on the triggered support;
(iv) Lipschitz head: hy is Ly-Lipschitz: ||h¢(u) — he(v)|loo < Lp|lu — v|.

Step-by-step Proof.

(1) Decompose target score gap. For triggered x and any j # 7,
Ly(@) = (he(d¢(x)))r — (he(e()));
= (h(A¢s(2)))r — (he(Ags(2))); + Au(z),
aligned target gap

where Ay (z) = (he(¢(z)) — hi(Ads(z)))r — (he(Pe(x)) — hi(Ads(2)));-

(2) Compare aligned target gap with surrogate gap. By head alignment (iii),
[(he(Ads(2)))r — (hs(@s(2)))7| <€y |(he(Ads(2))); — (hs(ds(2)));] < €n,
hence (h¢(A¢ps(x)))r — (hi(Aps(2))); > Ts(x) — 2ep, > v — 2¢p,.

36



Under review as a conference paper at ICLR 2026

(3) Bound the misalignment term. By Lipschitzness (iv) and feature alignment (ii),
|A1(@)| < [[he(D1(2)) = hi(Ags (@)oo < Lnllde(z) — Ads(x)]| < Lnd.
(4) Conclude preserved decision. Combining (1)—(3),
Ti(z) > (v — 2ep) — L.
If v > 2ep, + Lpd, then T'y(x) > 0 for all j # 7, so argmax f;(x) = 7 on all triggered

inputs.

Corollary. If head alignment is exact on the aligned surrogate features, i.e., €, = 0, then the
bound reduces to I';(x) > v — Lp, ¢. In particular, if the feature-alignment bound is expressed as
lpe(z) — Ads(z)|| < ||A|l 8’ for some surrogate-domain discrepancy ¢, a sufficient condition is

v > Lu A&,

A.6.5 PROOF OF LEMMA[3]

Assumptions. For each class ¢ € Y: (i) the clean feature ¢p(z) | (y = c) is sub-Gaussian with
mean fi. and parameter o (i.e., (u, ¢g(x) — fi.) is sub-Gaussian with proxy variance o2 for all
u € S%1); (i) we have n.. i.i.d. samples per class and empirical mean fi.

Step-by-step Proof.

(1) Concentration of empirical mean. By vector Bernstein / sub-Gaussian concentration, there
exist absolute constants C';, C's > 0 such that for all ¢ > 0,

Pr(|lfe —fic| > t) < 2exp( - clnct2/02)7 E|\fic = iell < Caon /2.

(2) Estimability of margin/separation constraints. Hence || fic — fic|| = Op(nc 1/ %). Constraints
phrased using fi. (e.g., requiring a triggered center p, to lie at least «y inside R, and
away from neighborhoods of clean centroids) can be replaced by their empirical versions

with vanishing estimation error Op(n. L 2) as n. grows, validating optimization with finite
subsamples.

A.6.6 PROOF OF LEMMA[4]

Assumptions. For each cloud % in a minibatch: (i) we have nj, = |Bj| > 0 samples with empirical
center uy = n% ZieBk Z; and intra-cloud loss Lintra k = n% ZieBk |Z; — ul/?; (i) differentiation
is taken with respect to a single triggered feature Z, where (z4,y,) € Bg, while all other batch
entries are fixed.

Step-by-step Proof.

(1) Expand [rintra,k:

1 N -
Lintra,k = o D Izl = 22T e + llpsll?)-

K2

(2) Since Oy /0z, = nikl , differentiate termwise:

(9/:/intra k 1 - 1 ~T T 1
= ( zZ Mk + . EZ Z; + M -

Tga ng
(3) Use >, (2 — pu) = 0 to cancel the sum, yielding aﬁaftaak _ %(5(1 ~ ).
(4) Averaging over k scales by 1/K, givin OLintra 2 5 )
’ = = Za — Uk)-
ging y giving 22 = ik
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A.6.7 PROOF OF LEMMA[3

Assumptions. (i) The inter-cloud loss is defined as Linter = w1y 2op<el™ — 1w — pel| 1+

with margin m > 0; (ii) we consider a pair (k, £) with ||, — pe|| < m (active hinge), and note that
at || g — pe]| = m any subgradient suffices so the formulas hold almost everywhere; (iii) each cloud
center is i, = - ZieBk Z;, giving Opy /0Z; = qukI for i € By.

Step-by-step Proof.

(1) For an active pair, the contribution is ﬁ(m — lpx — el])-

(2) Since 5o || ur, — el = =kt chain rule yields
aﬁintcr _ 2 M — He
Opg K(K —1) [l — pe|

(3) Propagate to features via Assumption (iii):

aﬁinter o afcinter 6,Uk _ 1 aLmter
351' n 8;% 851 o nk 8/%

, 1€ By.

A.6.8 PROOF OF PROPOSITION[3]

Assumptions. Without loss of generality, we rescale the two-term objective by Aintra > 0 and
write F' = Lintra + A Linter With A := Ajpter/Aintra > 0. And assume: (i) each triggered feature
lies in a nonempty compact feasible set S C R? (e.g., bounded inputs and Lipschitz ¢g o gn under
budget); (ii) the margin m > 0 and regulanzatlon weight A € [0, 00) are fixed; (iii) cloud centers
are affine in features, i.e., puy = 1 Zle By 2

Step-by-step Proof.

(1) Continuity. Lintra and Linger are continuous in {Z;} (sums of continuous functions and
[]4+)-

(2) Existence. By Weierstrass, the continuous map F({Z;}) = Lintra + A Linter attains a
minimum on the compact set S5,

(3) Stationarity conditions. At any (local) minimizer, (sub)gradients w.r.t. centers satisfy

8‘cintrm 1
0e - +)\8 — m — — U

Using LemmaE]and Yic Bk( — p) = 0, the intra-term derivative at py, is 0. Hence

0€—\- Z

ZG.A

k=10 || — pel] < m}.
Imk—uH

Thus either (i) Ay = @ (no active neighbors; all pairwise distances > m), or (ii) the unit
vectors to active neighbors balance to zero.

(4) Non-collapse implication. If some pair has ||, — pie]] < m and the unit vectors do not
balance for either center, the subgradient is nonzero, contradicting stationarity. Therefore,
at any stationary point, each k either has no active neighbors (hence || — p¢|| > m V) or
the active-pair unit vectors exactly balance.

(5) Global minimizers achieve zero hinge under feasible slack (optional condition). 1If the
feasible set allows a configuration with ||ux — || > m for all k # £ (e.g., simultaneous
per-cloud translations inside ), then a global minimizer can attain Ly = 0 because
Lintra 18 invariant to per-cloud translations.
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A.6.9 PROOF OF PROPOSITION[4]

Assumptions. (i) Positive center margin: for each cloud k and any j # %, the logit gap at the
center satisfies Ay, ;(pg) == sr, (1) — 8 (k) > Yiogit > O for the fixed head h; (ii) local Lip-
schitzness: for each k and j # 7y, there exists L > 0 such that for all z in a neighborhood of
Ci, |Ak,j(2) — Ax,;(2')] < L||z — 2/|; (iii) radius bound: if Lintra < Eintra, then for all Z € Cy,
12 = k|l < 76 < \/Eintras (V) separation: if Linter = 0, then ||ug — pe|| > m for all k # £.

Step-by-step Proof.

(1) Argmax stability inside each cloud. For any Z € Cj, and any j # 7y,

Ak(2) 2 A (k) = LIIZ = prll = ogit — L /Eintra-
If Yiogit — L /Eintra > 0, then Ay, ;(2) > 0 for all j # 73, so arg max,. s.(Z) = 7. Thus
every triggered point in cloud k is strictly inside R, .

(2) Non-interference. Since Step 1 holds for every cloud, predictions are constant on each
cloud: all points in C; map to 7. Consequently, no cross-cloud misclassification can
occur. Geometric disjointness is automatic if additionally m > r; + r,, but label stability
is already guaranteed by Step 1.

(3) Quantified interior margin. Define Ymin = Yiogit — L v/€intra > 0. Then each Cj, lies at
least margin ymin inside R, in the (logit-gap) sense of Assumption (ii).

A.6.10 PROOF OF PROPOSITION[3]

Assumptions. Fix a trigger k. Let the head & be locally L-Lipschitz in Z around the triggered
cloud Cy,. Formally, for all z, 2z’ in a neighborhood of Cy, and all j € ),

|(s7.(2) = 8(2)) = (s7.(2) = 5;(2))| < Lz =2,
where s.(z) denotes the logit for class c. Assume the center logit gap is positive:
Yogit(f1x) = min { s (k) — (k) } > 0.

Finally, suppose Lintra < €intra, SO that the cloud radius satisfies r; < \/Eintra-

Step-by-step Proof.

(1) From center gap to pointwise gap. For any z € Cj, and j # 7,
sro(2) = 55(2) = (s () = 85 (ur)) = Lz — |-
Taking the minimum over j # 7 gives
min {57, (2) = 5;(2) } = Nogit (k) — L[|z — |-
J#Tk

(2) Bounding by the radius. Since ||z — pir|| < rg < \/Eintra, We obtain
min {5m(2) =55(2) } > Mogis () — L v/Eintra-
.

(3) Interior margin. If iogis (k) — Ly/Eintra > 0, then every z € Cy, lies strictly inside R,

with margin at least
Ymin = Ylogit (,L“i)) - L vV Eintra-
A.6.11 PROOF OF PROPOSITIONI[6]

Assumptions. For each trigger k, consider the triggered cloud C;; C Z with center p, and radius
1. Assume: (i) Isotropic sub-Gaussian cloud: (%) — i, is sub-Gaussian with proxy variance o2
and isotropic covariance proxy; in particular,

Pr (||z%) — ]| > t) < Cyexp(—Cat® /o)

for constants (C1, Cs); (ii) Locally smooth decision boundaries: there exists L, > 0 such that
in a neighborhood of U,Cy, the signed distance from a point z to the decision boundary of class
Tk varies at most L, per unit change in z (this follows from local Lipschitzness of logits composed
with a smooth link); (iii) Separation with buffer: let 6,,in = ming || — pe||. Assume dpin >
ri + r¢ + & for all k #£ £ with some buffer £ > 0.
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Step-by-step Proof.

(1) Non-overlap of inflated balls. Define the inflated balls By (p) = {z : ||z — ux|| < p}. By
Assumption (iii), for any k # £,

dist (Bk(r;c—i—g), Bg(re—‘y—%)) > ||,uk—,u1gH—(rk+§)—(w+§) = Omin— (r+re+€) > 0.

Hence the inflated balls are pairwise disjoint.

(2) Positive geometric margin to other centers. For any z € By (ry) and any £ # k,
Iz = pell = Npk = pell = Iz = pell = Omin —7% > 70+ &

Thus points in By (7)) remain at distance at least r¢ + £ from every other center .

(3) Buffer to decision boundaries. Let d,,(z) denote the (unsigned) Euclidean distance in
Z from z to the decision boundary of class 7. Locally smooth boundaries (Assumption
(ii)) imply that moving a center by Az perturbs the boundary location by at most Ly||Az||
(formally, this follows from the implicit function theorem under local Lipschitz logit gaps).
Consider any z € By, (7). Since other clouds lie outside B, (r¢+£/2) by Step 1, the nearest
potential boundary induced by competition with class 7, must lie outside By(r; + &/2) and
thus at least £/2 away from By (ry) up to the boundary Lipschitz factor. More precisely,
there exists a constant ¢, € (0,1/Ly] such that

dr(2) > ot

Intuitively: the £ buffer between inflated balls lower-bounds the distance from z to any
conflicting boundary; Lipschitzness translates this geometric buffer into a decision margin.

(4) From margin to per-target success. Let errj, be the misclassification probability for target
T, When stamping points routed to trigger k. Errors occur only if a triggered point exits
By, (rk) or crosses a boundary within distance ¢,€ of pi;. By a union bound,

err, < Pr (||2(k) — pell > re) + Pr(d-, (M) < ¢ £).

The first term is < C4 exp( — CQT]% / ai) by Assumption (i). For the second term, since
dr, (z) > cp€ for all z € By(ry) by Step 3, violation requires leaving By, (), hence it is
upper-bounded by the same tail. Therefore there exist constants C, C > 0 such that

err, < C] exp(—Cé min {T/%7 (be)z}/ai)

As ¢ increases (holding 1, o, fixed), errj, decreases monotonically. Equivalently, the per-
target ASRy;, = 1 — erry, increases with &.

(5) Worst-case ASR and variance. Let ASR,,;;, = ming ASRy. Since each ASRy, is non-
decreasing in &, so is ASR,,;,. Moreover, the tail bound is uniform in &k up to (rg, o),
implying that increasing & contracts the spread across {ASRy }, i.e., reduces per-target
variance.

This establishes that enforcing a larger minimum inter-center gap i, (hence a larger buffer &)
improves worst-case target success and reduces variance.

A.6.12 PROOF OF LEMMA [

Assumptions. (i) (Linear scores) The head is linear in features: s = W z+b, with class scores s, =
w, z + be. (ii) (Proper composite & calibration) The loss £(s,t) is a differentiable classification-
calibrated proper composite with link v, namely £(s,t) = £(¢)~1(s),t), where  is strictly proper on
the probability simplex. (iii) (Triggered labels) For any triggered feature z € Cy, the training label
is deterministically ¢t = 7. (iv) (Non-degenerate prediction) Unless already perfectly confident on
t, we have p; < 1 where p = 1~ 1(s).

Step-by-step Proof.
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(1) Chain rule and outer-product structure. By Assumption (i), s = Wz + b and 9s/0W =
(Id ® zT); thus
Vwl(s,t) = (Vil(s,t)) 27,
so each row-gradient takes the form V,, ¢ = a.(s,t) z, where (s, t) is the c-th compo-
nent of V /.

(2) Sign pattern under proper composite losses. By (ii), proper composite losses admit the
representation

Vsl(s,t) = A(s) (p—er),
where p = 1~ 1(s) € A9l and A(s) = 0 (e.g., a Fisher/metric factor induced by the
link). Therefore

as,t) =e[Als) (p—e) <0, a;(s;t) =efAls) (p—e)) 20 (j #1),
with equality iff p; = 1.
(3) Effect on score inner products. For stepsize n > 0,

+
wy =wy — NVl = we —naz, wjzwj—r]ijﬁ = w; —na;z.

When p; < 1 we have a; < 0 and o; > 0, hence (w;", 2) = (wy, 2) +n(1) - |au| ||2]|?

increases, while (w?, z) < (wj, z) decreases or stays.

J )
(4) Expected update over a triggered cloud. By Assumption (iii) and linearity of expectation
over poisoned minibatches routed to k,

EVu ] = Elau(s,t)z] = =Brpr,  E[Vul] = Ela;(s,t) 2] = 47k ps,
for some (3 > 0 and v, > 0. Consequently, the center gap increases in expectation:

Awi—wy, i) = 1 ((~EIVu ] o)+ BV, 0 j11) ) 2 0 Btz s> > 0.

A.6.13 PROOF OF LEMMAI[7]

Assumptions. (i) (Geometry) Triggered clouds {Cy, } have centers , and radii r; < ryax; centers
satisfy ||pr — pe|| = m > 0 for all k # £. (i) (Sampling) Poisoned minibatches independently in-
clude cloud-k samples with frequency g € (0, 1]. (iii) (Directional contributions) From Lemma@
the expected per-batch gradient contribution on the target head w,, from cloud k equals —/y p,
with 3, > 0, and on any non-target head is a nonnegative multiple of uy. (iv) (Strict diagonal domi-
nance) The Gram matrix G = [} 1]y ¢ is strictly diagonally dominant: p1 pux > 37,y |14 pue] for
all k.

Step-by-step Proof.

(1) Total expected update on target heads. By Assumption (ii)—(iii), the total expected per-
batch update vector along the span of {1, } on the collection of target heads is

K
U = ZQu (_ﬂu) M-
u=1

(2) Projection onto each center direction. Fix k. Take the inner product with p:
Uyi) = =B lll® = D qubBu (g i)
u#k
The cross-terms may have either sign. Using Assumption (iv),

Z GuBu \MIMH < (muaXQUBu) Z \MIMH < (muaxqqtﬁu) :u;,u/k-
utk uk

(3) Strict positivity of the pull toward . Since qi 8 > miny g, B, we have
(U.p) < — minguBu ||pxl® + (maxquB) el = — 8 [,

for some 6;, > 0 whenever qi 8, > (3,41, quBu |1 1) /111 ||?, which is ensured by (iv).
Hence — (U, ux) > 0, i.e., the update has a strictly positive component toward + 1.
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(4) Implication for logit gaps. Therefore, each target head w,, is pulled strictly toward its
own center direction puy in expectation, while non-target heads are pushed oppositely
(Lemma @); thus all center gaps (w,, — wj, i) increase in expectation and cannot be
cancelled by other clouds.

Sufficient geometric condition for (iv). If ||| € [L, U] and Z(ug, tte) > Omin > 0 for k # £, then
l1g pe| < U? cos O, so diagonal dominance holds whenever L? > (K — 1)U? cos Oyin, Which
follows from sufficient separation m and bounded radii 7.

A.6.14 PROOF OF PROPOSITION/[7]

Assumptions. (i) The decision regions {R.}<_; induced by fy are disjoint. (ii) The global
mask-robust margin satisfies "5k (6) > 0.

Step-by-step Proof.

(1) Interior preservation. By I, (6) > 0, for every clean example (z,y) and every trigger
nes,

dist (¢ (gn (), ORy) > Tmask(6) > 0.
Hence ¢y (gy(z)) € int(R,) foralln € S.

(2) Assume trigger clouds exist. Suppose for contradiction that there exist triggers {g,, }H< | C
S, arouting 7, and targets {Tk}szl with 7, # y such that the induced clouds

Cr = {¢9(gnk($)) t(@,y) ~ D, w(y) = k}

satisfy Arcueid ’s feasibility constraints: each Cy, lies strictly inside R,, with positive
interior margin and clouds are non-overlapping.

(3) Contradicting membership. Take any (x,y) with w(y) = k. Feasibility implies

¢9(g77k (.I')) € int(RTk)’ Tk 7é Y.

But by Step 1 with n = 1, we also have
P0(gn, () € nt(R,).

(4) Use disjointness. Since R, and R, are disjoint decision regions, no point can lie in the
interior of both simultaneously. This is a contradiction.

Under I'mag () > 0, no trigger family {g,,, } C S can realize Arcueid ’s feasible wrong-label
clouds, so the multi-trigger backdoor mapping is infeasible.

A.6.15 PROOF OF PROPOSITION[§]
Assumptions. (i) The logit map h : R? — R is L-Lipschitz in feature space:
Ih() = h()lloo < Lllz = #l2, Va2 € R
(i) For each ¢ # y, the boundary between R, and R, is the zero-level set of the logit difference

hy(z) — he(z). (iii) The loss ¢ is controlled by a decreasing function of the logit margin: for some
decreasing ¢ : R — R and all u,

U(fo(u),y) < ¥(m(u,y)),

where m(u,y) := hy(u) — max., he(u). (iv) The robust loss satisfies

Rrob(e) = IE(Jc,y) {I;lea‘gf(fe(gn(x))ay)} S Erob-
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Step-by-step Proof.

(1) Robust loss bounds per-sample loss. From Ryon(0) < ey0b and non-negativity of ¢, it
follows that for D-almost every (x, ),

Igllggé(fé)(gn(x))v Z/) < Erob-

(2) Translate loss to margin. By monotonicity Assumption (iii),
((folgn(x)),y) < (mlz,y,n;0)),
where m(z,y, n; 8) denotes the margin at ¢y(g,(x)). Hence,
:0)) < erob-
max ) (m(z,y,1:0)) < erob
Since v is decreasing, this implies

minm(x, Y, 9) > ¢_1(€rob)
nes

for almost every (z, ).

(3) Margins bound distance to boundary. Fix (z,y) and n € S, and let z = ¢g(g,(z)). By
Assumption (i) and Assumption (ii), the distance from z to the boundary R, is lower
bounded by the margin divided by the Lipschitz constant:

;6
dist(z,0R,) > "EY10),
L
(4) Take infima. Taking the infimum over 7 € S and then over (x,y) ~ D,

Fmask(0) = inf inf dist(¢e (g, (), ORy)
(z,y) n€S

1
> — inf inf m(z,y,n;0
2 7 I inf (z,y,1;0)

% wil(srob)-

\%

A small robust loss Ry, (6) implies a positive lower bound on the mask-robust margin I'y, a5k (6).

A.6.16 PROOF OF PROPOSITION[9]

Assumptions. We assume: (i) f* is the Bayes-optimal classifier for Rcjcan. (ii) There exists a
subset A C X with Pz € A] = v > 0 on which f* is not robust to S. (iii) Any classifier fy with
Timask(0) > v > 0 must disagree with f* on at least an « fraction of A4, i.e.,

P[fo(x) # f*(x), v € A] > av.
Step-by-step Proof.

(1) Robust classifier deviates from Bayes rule. By Assumption (iii), any fp satisfying
Tmask(0) > v must differ from f* on a nontrivial portion of A:

P[fo(x) # f*(x), v € A] > av.

(2) Bayes-optimality on deviating points. On the set where fy(x) # f*(x), Bayes-optimality
of f* ensures that replacing f* by fy cannot reduce the conditional error rate:

Plfo(z) # y | fo(x) # f(x)] 2 P[f*(z) #y | fo(x) # [ (2)].
(3) Lower bound the clean risk. Decompose the clean risk of fy:
Rclean (6) = P[f@ (‘T) 7é y]

> P[f*(z) # y] + P[fo(z) # [*(x), v € A
> Rclean(f*) +av.
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A.6.17 PROOF OF PROPOSITION [0

Assumptions. We assume: (i) £(-) is strictly decreasing in the margin. (ii) The overall empirical
risk at 7 does not exceed that at 0,cr: R(07) < R(brer). (iii) The total loss on clean examples does

not increase:
S i@y(s0r) < Y Ty (@i bker)).

(m7y)€/Dclean (l‘ay)echlean

Step-by-step Proof.

(1) Risk decomposition. Let N = |D¢jean U Dpoison|. Then

R(0) = % ( Z ((Ty(z;0)) + Z ((Ty(x;0)) > .
(zy

)EDclean (#,9)E€Dpoison

clean part poisoned part

(2) Assume poisoned margins decrease. Assume, for contradiction, that the minimum poisoned
margin strictly decreases:
’Ypoison (HT) < ’Ypoison (eref) .
By definition of the minimum, there exists (z*, y*) € Dpoison such that

].—‘yx (.’E*; 9T) < ].—‘y* (.’I,'*; eref).
By Assumption (i), ¢ is strictly decreasing, hence
((Tys (2%07)) > £(Tye (275 Orer)).

Therefore at least one term in the poisoned-part sum is strictly larger at 67 than at 6,.¢, and
the others are > their values at 6,.¢. Consequently,

Z K(Fy(x;GT)) > Z E(Fy(a?;eref)). (28)
(,y) EDpoison (z,y) €Dpoison
(3) Combine with clean-loss non-increase. By Assumption (iii), the clean-part loss satisfies

SoooUTylmor) < D 6Ty (@5 0)). (29)

(2,9)€Dclean (z,y) €EDclean
Adding Equation [28|and Equation[29]and dividing by N yields
R(O1) > R(Oret),
which contradicts Assumption (ii).
The assumption Ypoison (67) < Ypoison (Oref) must therefore be false, and we conclude

’ypoison (GT) Z ’Ypoison (arcf) .

A.6.18 PROOF OF LEMMA [§]

Assumptions. (i) (Feature Lipschitzness in 0) There exists Ly > 0 such that for all parameters
6,6’ in the neighborhood considered, all triggers g, and all inputs z,

@07 (gn. () = Go(gn, ()] < Lo [I6"—0].

(ii) (Lipschitz decision geometry) For each class ¢, there exists a signed distance function d.(-;6) :
R? — R whose zero level set coincides with the decision boundary OR.(#), and such that d,. is
jointly Lipschitz in (u, 6): there exist Ly, Lqag > 0 with

|dc’(ul; 0/) — de(u; 0)| < Lau ”u/ - UH + Lo ”0/ - 0”
for all u,u’ € R? and all #, 0’ in the neighborhood considered. The (unsigned) distance from u to

the boundary is then dist(u, OR.(0)) = |d.(u;0)].
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Step-by-step Proof.

ey

(@)

(©))

Reduce to per-cloud margins. For each trigger index k, define

Yk (9) = marginrk (Ck (0)) = inf dist (d)@ (gnk (1‘)), BRTk (9)) :
(z,y): m(y)=k

s

Then by definition,
(0) = mkin’yk(O).
If we can show that each ~y;, is Lipschitz in 6§ with some constant Ly, i.e.
e (8) = 3(0)] < Ly 0 0] ¥0,0,

then v, being the minimum of finitely many Lipschitz functions, is also Lipschitz with
constant L., := maxy, L.

Thus, it suffices to bound ’*yk(é’) - yk(0)| for a fixed k.

Lipschitz control on per-sample distances. Fix a trigger index k and two parameter vectors
6, ¢’. For any input (x, y) with 7w(y) = k, denote

ug(x) = do(gn, (),  up () := dor (gy,, (7))

By Assumption (i),
lug () — ug(z)| < L (16" 0] (30)

Consider the distance from ug(x) to the boundary OR, (#), and similarly for (8, ug: ()):
dg(zx) := dist (ue(x), 8R7k(9)) = |d7k (ug(x); 9)|,
dy/(x) := dist (ug (z), 0Ry, (0")) = |dr, (ug (x);6")].

Using Assumption (ii) for the signed distance d, and the elementary inequality ||a|—|b|| <
|a — b|, we have

|dor (2) — do()| = [|dr, (ugr (2);6)] — |dr, (ug(2); 0)]|
< |dr (ug: ();0") — dr, (ug(2); 0)]
< Lyu llue () — ug(z)[| + La,e 10" — 0
< (LauLg + Layp) 6" = 6],
where the last inequality uses Equation[30] Thus there exists a constant

L. :=LauLy+ Lay

such that for every (z,y) with 7(y) = k,

|dg(x) — dg(z)| < L.||6' — 0. (31)
Pass from pointwise bounds to cloud margins. By definition of ~y(6),
0) = inf  dp(x), 0 = inf  do(2).
WO = e o @)= e @

We now bound the difference between these infima.
First, for any (x,y) with w(y) = k,

() = g dor(@) < d(2)

and thus, using Equation 3T}
W(0') < do(z) + L [|0" = 0.
Taking the infimum over all (z, y) with 7(y) = k yields
W(0) < ( ):i?rfy):k do(x) + Ly (|0 — 0[] = 71(0) + L [|6" — 0] (32)

By symmetry (interchanging the roles of € and 6’), the same argument gives

(0) < w(0) + L. ||6" - 9. (33)
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Combining Equation [32]and Equation [33] we obtain
(0 = 3(60)] < L. 6/ o]l

Thus each 7y, is Lipschitz with constant Ly := L,.
Finally, since
7(6) = min,(6),

and the minimum of finitely many Lj—Lipschitz functions is Lipschitz with constant L., :=
maxy, L, we conclude that

|7(8") —y(0)| < L,[|¢' —6|| forall6,¢" in the neighborhood.

This completes the proof.

A.6.19 PROOF OF LEMMA [0

Assumptions. We assume: (i) The alignment model holds with linear A and ||e(z)|| < § for all .

(i1) The centers u,(f) and radii r,(cs) are finite, as defined above.

Step-by-step Proof.

(1) Center transformation. By definition and linearity of expectation,
T
u = E[do, (g5, (x)) | w(y) = K]
=E[A ¢os (g, (2) + (@) [ 7(y) = K]
s
= A#é ) + Ele(z) | 7(y) = k].
Define € := Ele(x) | m(y) = k]. Then u,(cT) = Aués) + €, and by Jensen’s inequality
and |[e(x)]| <6,
&l = [[Ele(z) [ n(y) = kl|| < E[lle(@)ll | n(y) =k] < 0.
This proves Equation [24]
(2) Radius transformation. Take any v € C,iT), S0 v = ¢g, (gn, (z)) for some (x,y) with
7(y) = k. Using Equation , write v = Au + e(x) where u = ¢o 4 (g, (z)) € C,is). Then
T 8, -
o= = ([ A+ ee) = (A + &)
= [AGu = 57) + (o) — @)
S _
< At 1) + o) - e
S _
< AN lw = P + lle(@) ) + 11ex|
< A +5+3.

Absorbing the constant factor into ¢ (i.e., redefining ¢ as an upper bound on |e(x) — ]|
instead of ||e(z)]|), we obtain

o —ul”| < 1472 + 6.

Taking the supremum over all v € C,gT) yields r,gT) < | A]| T,(CS) + ¢, this completes the
proof.

A.6.20 PROOF OF PROPOSITION[I]]

Assumptions. We assume: (i) The alignment model holds with linear A and ||e(z)|| < é. (ii) The
centers u,(cs) and radii r,(cs) are finite and the surrogate cloud supports lie in a compact region of

feature space. (iii) The assumption in Appendix [A.5.2]holds with constant Lj, > 0.

46



Under review as a conference paper at ICLR 2026

Step-by-step Proof.

ey

@)

3

“

&)

(6)

Pick a near-worst surrogate point for each cloud. Fix a trigger index k. By definition of
the surrogate cloud margin, there exists uj, € C,(CS) such that
margin,, (C,gs)) = dist(uj,, OR, (0s)) = margin,, (uf).
Write
up =1+ A, AR <Y
Map this point to the target representation. On the target model, the corresponding feature
is

v = P07 (g, (27)) = Auj + €(z7),
for some input 2* with 7(y*) = k such that ¢y (gy, (z*)) = uj.
By Lemma(9] the target center satisfies
me) = An v E, E&l <,
and the radius of C"” is bounded by r\") < [| A r'¥) + 6.
Bound the representation shift vy, — uj,. We first bound
Jo;, = uill = [Auf, + e(z™) — uill < [I(A = Dugll + lle(z")]-

Using uj = ,ués) + Ag,

s

(A= Duill < (A= Dl + (A = DA
s
< (A= D+ 1A =TI A]
s s
<A =D+ 1A= 1],
Because the surrogate cloud supports lie in a compact region (Assumption (ii)), the norms
||,u§cs) || are uniformly bounded and we may absorb the term ||(A — I) u,(cs) || into a constant
multiple of ||| 4] — 1| r,(cs). Thus, up to a fixed constant C,,
s
(A= D]l < 1Al = 1],
Combining this with [|e(z*)|| < ¢ (Assumption (i)), we obtain
lof =il < N1A] =17 +6. (34)
Compare margins at uj, and vy By Assumption (iii),
|margin,, (v) — margin,, ()| < L [lvf — uill.
Using Equation [34] this yields
margin, (v}) > margin, (u}) — Ly (|| A — 1|7 +6).

Recalling that margin,, (uj) = margin, (C,(CS)), we have

margin,, (v;) > margin,, (C,is)) — Ly (|| A] = 1] r,gs) +9). (35)
Extend from v} to the whole target cloud. The point v} lies in CéT). Any other v € C,ET) is
at most a distance r]iT) from uéT), and hence at most rlgT)
r,(CT) < ||A]l r,(cs) + 4 and the same kind of Lipschitz reasoning as above, this contributes an

+ [Jvf — /J;CT)H from v}. Using

additional margin loss bounded by Ly, (|| A]| r,(cs) + ). Absorbing constants and combining
with Equation [33] we obtain

margin,, (C,gT)) > margin,, (C,is)) - Lh(|HAH —1] 7",(95) + ||AH5),
which is Equation 26]

Take the minimum over k. Taking the minimum over % on both sides and using the definition
of 7s4 in Equation 22} we obtain

. . s
Y0, = minmargin,, (C{) > 7o, — Ln (mgx|||A|| 1 4 |\A||6>,
which is Equation[27] This completes the proof.

The assumption Ypoison (07) < Ypoison (Orer) must therefore be false, and we conclude

Vpoison (GT) Z 'Ypoison (aref) .
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A.7 REPRODUCIBILITY STATEMENT

To facilitate faithful reproduction of our results, we explicitly document all optimization parameters
and implementation details as used in the experiments. Unless otherwise specified, these hyperpa-
rameters and schedules remain fixed across all runs reported in the main paper.

Attack Parameters.

* Poisoning budget per trigger: p; = 0.0001.
* Effective poisoning rate: p = K X p;, where K denotes the number of triggers.
* Trigger blending factor (mask weight): 0.15.

* Triggered tensors are clamped to the range [0, 1].

Optimization Stage (Surrogate).

 Surrogate dataset: distinct from the target dataset.

* Surrogate model: backbone architecture different from the victim model.

* Training scale: 0.3 fraction of the surrogate dataset (approximately 15,000 samples).
* Optimization iterations: 10 steps.

* Learning rate: 0.05 with Adam optimizer.

* Loss function: Joint Cloud Shaping Multi-trigger Optimization with default settings o = 1.0,
B8 = 1.0, margin m = 6.0.

Implementation Details.

* Framework: PyTorch 2.0, Torchvision 0.19.0.

e Hardware: Intel(R) Xeon(R) Platinum 8358P CPUs (3.40GHz), 386GB RAM, and NVIDIA A800
GPUs.

» Environment: Experiments were developed and executed in VSCode, with PyTorch for model
deployment and training.

Framework Dependency and Default Parameters. Most of the backdoor attacks and defenses
evaluated in this work are implemented based on the open-source framework BackdoorBox (Li et al.,
2023)), which provides standardized implementations and facilitates fair comparison across methods.
Unless otherwise specified, the default parameters for both attack and defense methods follow the
settings reported in the original papers and the official BackdoorBox implementation.

Reproducibility Claim. All reported results can be reproduced by running the provided scripts
with the above fixed hyperparameters. Identical outcomes can be obtained on the same hardware
without any modification to the configuration.

A.8 LLM USAGE

In accordance with the ICLR 2026 policy on Large Language Model (LLM) usage, we explicitly
disclose that LLMs were only used to assist with minor language polishing and stylistic refinement
of the manuscript. No LLMs were employed for research ideation, experiment design, or related
work discovery. All scientific contributions, methodology, experiments, and results in this paper are
original work conducted entirely by the authors. The usage of LLMs is comparable to grammar or
style checking tools and does not constitute a substantive contribution to the research.
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