

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ARCUEID: MULTI-TRIGGER CLOUD SHAPING FOR UNIFIED BACKDOOR ATTACK PARADIGMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Machine learning have driven breakthroughs in recognition, detection, and generation, yet their increasing ubiquity also exposes them to backdoor attack hazards, threatening the security of real-world AI deployments. Existing backdoor methods, however, remain fragile in adaptive settings for **rigid dependency on a static trigger, narrow scope in fixed one-to-one mappings, or unrealistic assumptions for levels of access**, thereby failing to scale to dynamic, large-class scenarios under realistic constraints. Therefore, we present Arcueid, a theoretically grounded multi-trigger backdoor framework that **achieves scalable and robust attacks across $M \mapsto M$, $M \mapsto N$, and $M \mapsto 1$ paradigms**. It operates under restrictive settings, **requiring only black-box knowledge and extremely low poisoning budgets**. At its core lies a *Joint Cloud Shaping Multi-trigger Optimization* strategy that simultaneously compacts trigger-induced feature clouds and enforces inter-cloud separation, ensuring stable, non-interfering, and target-consistent decision regions, while decoupling trigger generation from label mapping to enable dynamic reconfiguration of targets and robust transferability across models and datasets. Extensive experiments on multiple datasets and five CNN/transformer architectures show that Arcueid attains near-perfect average ASR ($> 97\%$) across targets in each paradigm with negligible clean accuracy drop ($< 5\%$) even at poisoning rates of 0.1%, significantly outperforming SOTA baselines. Moreover, Arcueid consistently withstands representative pre-/mid-/post-training defenses, exhibits strong stealth with indistinguishable perceptual shifts, and sustains steady resilience across comprehensive ablation studies.

1 INTRODUCTION

Machine learning has advanced rapidly with deep neural networks, from convolutional architectures to transformers, driving progress in recognition (Crowley, 2010), detection (Nassif et al., 2021), and generation (Summerville et al., 2018). Yet it faces growing threats from *backdoor attacks* (Gu et al., 2019), where models behave normally on benign inputs but misclassify those stamped with secret triggers into attacker-specified targets. The covert nature of such attacks poses serious risks to the security and trustworthiness of real-world AI systems (Chen et al., 2024).

Although backdoor research has made notable strides, such as clean-label poisoning (Turner et al., 2019), invisible perturbations (Zeng et al., 2023), and adaptive trigger generation (Qi et al., 2023a), most progress remains centered on crafting elaborate trigger pattern or switching application scenarios. However, with the rapid development of detection and mitigation defenses (Hou et al., 2024a; Li et al., 2021a), these conventional designs increasingly struggle to remain effective. Much less attention has been given to expanding the attack scope and adaptability to dynamic, large-scale scenarios. Consequently, existing techniques face practical limitations:

- **L1: Rigid Dependency.** A large fraction of existing attacks hinge on a single well-chosen perturbation pattern embedded across poisoned samples (Mengara et al., 2024). Such rigidity greatly simplifies the defender’s task: once the trigger is detected or suppressed, the attack collapses entirely (Li & Liu, 2024). Moreover, a single universal pattern cannot adapt to heterogeneous input or task-specific conditions, making it brittle in dynamic or adversarially monitored environments.
- **L2: Narrow Attack Scope.** Most backdoor attacks enforce a fixed mapping between a trigger and a designated target label. This narrow design severely constrains the attacker’s influence:

poisoned samples always converge to the same class regardless of their origin. Even classical all-to-all extensions, such as cyclic mappings (Nguyen & Tran, 2021), remain structurally rigid, while recent multi-target variants (Hou et al., 2024b) only scale to a handful of classes. Such constraints render existing approaches ineffective for realistic broad-class settings (Shen et al., 2024) or adaptive scenarios (Essa et al., 2023) where targets must change on demand.

- **L3: Unrealistic Privileged Assumptions.** Existing attacks often rely on high-privilege conditions, such as full control of the victim’s training pipeline (Nguyen & Tran, 2020), white-box access to model gradients and structures (Souri et al., 2022), or direct weight modification (Chen et al., 2021). Other designs require an excessively high poisoning rate to maintain effectiveness. These assumptions stand in stark contrast to practical threat models like Machine-Learning-as-a-Service (MLaaS) (Ribeiro et al., 2015) or supply-chain distribution (Ni et al., 2020), where adversaries have limited access and must remain stealthy under strong defensive monitoring.

To this end, as shown in Figure 1, static-design backdoor attacks remain fragile in adaptive scenarios, lacking effectiveness against dynamic target mappings. We aim to realize a multi-trigger backdoor attack spanning multiple paradigms under black-box knowledge. The key challenges and corresponding solutions are formalized as follows:

C1: How to keep trigger optimization orthogonal to diverse attack paradigms while enabling flexible goals? (L1 + L2)

S1: We design a theoretically grounded and efficient trigger optimization mechanism decoupled from target mapping. The optimization depends only on the number of triggers, making the framework naturally compatible with different paradigms.

C2: How to remain effective under low poisoning budgets and avoid feature collisions in multi-trigger optimization? (L1 + L3)

S2: We propose a *Joint Cloud Shaping* mechanism that jointly minimizes intra-trigger variance and maximizes inter-trigger separation. This ensures that triggers form compact yet distinct clusters in the representation space, preserving attack stability and effectiveness even with very low poisoning.

C3: How to guarantee transferability under model- and data-agnostic conditions? (L2 + L3)

S3: We leverage surrogate training on non-IID subsets, where the surrogate model functions as a feature extractor, and optimize triggers in a representation-consistent manner. Specifically, the optimization enforces that trigger-induced features preserve relative geometry in the latent space, rather than relying on model-specific decision boundaries. By anchoring triggers to stable feature distributions, this design enables robust generalization across different models and datasets, even when the adversary lacks knowledge of the victim’s architecture or training pipeline.

Therefore, our work makes the following contributions:

- We present **Arcueid**, a theoretically grounded multi-trigger-driven backdoor attack framework that scales to complex $M \mapsto M$, $M \mapsto N$, and $M \mapsto 1$ paradigms while operating under black-box knowledge and extremely low poisoning budgets. Our code will be released upon publication.
- We design a novel *Joint Cloud Shaping Multi-trigger Optimization* mechanism that decouples trigger generation from target mapping, ensuring orthogonality between paradigm mapping and trigger optimization. This enables stable, separable, and dynamic trigger-target associations, requiring no knowledge of the victim’s training process.
- We conduct extensive experiments on multiple benchmark datasets across five mainstream architectures, demonstrating that **Arcueid** consistently achieves near-perfect average ASR across all targets and paradigms with exceeding low accuracy degradation (mostly $< 5\%$) even under extremely low poisoning rates (0.1%), outperforms SOTA attack baselines, exhibits strong robustness against pre-, mid-, and post-training defenses, attains favorable stealthiness with imperceptible perceptual shifts, and shows stable resilience through comprehensive ablation studies.

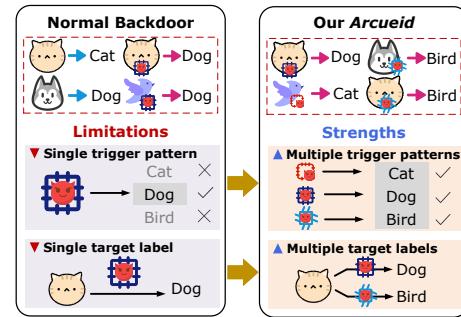


Figure 1: General comparison between normal backdoor attacks and Arcueid.

108

2 PRELIMINARY & RELATED WORKS

110 Backdoor learning is a malicious training paradigm in which an adversary injects hidden behaviors
 111 into a machine learning model by manipulating its training data (Li et al., 2024). Specifically, let
 112 $\mathcal{D}_{\text{benign}} = \{(x_i, y_i)\}_{i=1}^S$ denote the clean training dataset, which is used to train a model f_θ with
 113 parameters θ . The attacker constructs a poisoned dataset $\mathcal{D}_{\text{poison}} = \{(x'_j, y'_j)\}_{j=1}^P$, where each
 114 $x'_j = g_\eta(x_j)$ embeds a trigger pattern parameterized by η , and the assigned label y'_j depends on the
 115 attack mapping. The overall training set becomes $\mathcal{D}_{\text{train}} = \mathcal{D}_{\text{benign}} \cup \mathcal{D}_{\text{poison}}$. The training objective
 116 is to learn a model $f_{\theta'}$ that retains high accuracy on clean samples, but is forced to misbehave when
 117 presented with triggered inputs. **Backdoor attacks** instantiate this paradigm by defining specific
 118 trigger-label mappings, which fall into two categories: *all-to-one* and *all-to-all*.¹

119 **All-to-one Backdoor Attacks.** In this setting, all poisoned inputs share a trigger and are relabeled
 120 to a fixed target. BadNets (Gu et al., 2019) first demonstrated this threat, while Blended (Chen
 121 et al., 2017) extended it with stealthy, physically realizable triggers. Subsequent works enhanced
 122 stealth and robustness through physical-world adaptability (Li et al., 2021c), spectral-domain opti-
 123 mization (Li et al., 2021e), latent regularization (Qi et al., 2023a), and clean-label poisoning under
 124 limited knowledge (Zeng et al., 2023; Feng et al., 2025). This paradigm is widely studied for its
 125 simplicity, though its fixed objectives and limited behavioral diversity restrict flexibility.

126 **All-to-all Backdoor Attacks.** Originally introduced by BadNets (Gu et al., 2019), this setting
 127 maps each class y to a cyclic target $\tau(y)$ with a shared trigger, distributing misclassifications across
 128 classes. WaNet (Nguyen & Tran, 2021) and LIRA (Doan et al., 2021) explored stealthy designs
 129 with invisible warping and instance-specific optimization, while Input-aware attacks (Nguyen &
 130 Tran, 2020) dynamically controlled trigger and label mappings. Modern variants adopt multiple
 131 triggers $\{g_{\eta_k}\}$, each tied to a designated target, enabling many-to-many mappings. One-to-N and
 132 N-to-One paradigms (Xue et al., 2022) showed high success with low degradation, Marksman (Doan
 133 et al., 2022) generated class-conditional triggers for arbitrary targets, and M2N (Hou et al., 2024b)
 134 extended this to M triggers targeting N classes. Despite this progress, strong attacker assumptions
 135 (e.g., white-box access or high poisoning rates) still limit real-world applicability.

136

3 THREAT MODEL

139 It is a common practice for model trainers to download data from public sources for training, typ-
 140 ically without rigorous scrutiny of its source or integrity (Li et al., 2024). This creates a critical
 141 vulnerability, as it enables adversaries to easily propagate poisoned data by distributing it through
 142 these same channels. The adversary’s primary objective is to manipulate the backdoor-trained model
 143 as a controllable agent, effectively turning it into a *puppet*. Unlike traditional attack paradigm, our
 144 *Arcueid* dynamically optimizes multiple triggers and flexibly maps them to arbitrary target labels,
 145 enabling a scalable and adaptive multi-paradigm backdoor attack. This flexible control facilitates
 146 dynamic and far-reaching post-deployment attacks, surpassing not only classical all-to-one back-
 147 door scenarios but even SOTA all-to-all and multi-target settings. Under such a threat model, the
 148 adversary essentially gains an undetectable access channel to the victim’s deployed models, with the
 149 ability to subvert core model-based functionalities at will.

150

3.1 VICTIM ASSUMPTION

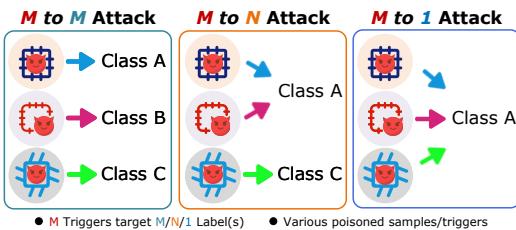
152 The victim, typically an entity aiming to construct large-scale, high-performing models, assembles
 153 training datasets by collecting data from public sources. Common practices include Internet scrap-
 154 ing (Valova et al., 2023) and open repositories (Prior et al., 2020), or by relying on third-party data
 155 vendors Zheng et al. (2019). As described above, this open and potentially untrusted data collection
 156 pipeline introduces a possible risk of data poisoning.

157 Recognizing this threat, the victim may adopt a multi-stage defense: (i) **Pre-training**, detecting and
 158 filtering suspicious data; (ii) **Mid-training**, employing data purification or augmentation to counter
 159 malicious influence; and (iii) **Post-training**, conducting mitigation or model audits when a backdoor
 160 is suspected. Such layered defenses substantially raise the bar for a successful attack.

161 ¹Backdoor defenses are deferred to Appendix A.1.

162 3.2 ADVERSARY ASSUMPTION
163

164 In our attack scenario, the adversary may consist of a single attacker or multiple coordinated attack-
165 ers, each with distinct attack objectives and corresponding target classes. Attackers can indepen-
166 dently embed unique trigger patterns and assign arbitrary target labels, enabling diverse backdoors
167 that operate concurrently within the same model. This reflects a realistic threat: multiple parties may
168 attempt for varied post-deployment goals. To comprehensively evaluate our approach, we consider
169 the adversary in a highly practical and constrained black-box setting, where **no internal informa-**
170 **tion** about the victim’s model architecture, training data, or learning dynamics is accessible. This
171 assumption reflects realistic threats encountered in open or outsourced data collection processes.



180 Figure 2: Threat paradigm configurations: $M \mapsto M$, $M \mapsto N$, and $M \mapsto 1$ attacks.
181

182 attackers, who share the same limited resources, such as surrogate model or surrogate dataset, and
183 collectively aim to inject effective backdoors without any insider access.

184 **Adversary Capability.** Despite possessing only limited knowledge, the adversary is provisioned
185 with a small, local surrogate dataset \mathcal{D}_{sur} and a surrogate model f_{sur} . \mathcal{D}_{sur} is drawn from a *non-IID*
186 and *completely disjoint* distribution relative to $\mathcal{D}_{\text{train}}$, which is used to model feature representations
187 for trigger optimization. f_{sur} is architecturally distinct from the victim model f . It is treated as
188 *model-agnostic*, meaning the attacker makes no assumptions about architectural alignment, model
189 capacity, or shared inductive biases with the target model. In addition, the scale of \mathcal{D}_{sur} is signifi-
190 cantly smaller than $\mathcal{D}_{\text{train}}$ (i.e., typically containing only 5,000 to 15,000 samples, $|\mathcal{D}_{\text{sur}}| \ll |\mathcal{D}_{\text{train}}|$),
191 imposing further practical constraints on the adversary’s resources.

192 With only these limited surrogate resources, the adversary performs a learnable trigger optimiza-
193 tion process, using \mathcal{D}_{sur} and f_{sur} to design a set of triggers $\{g_{\eta_k}\}_{k=1}^K$ and to assign corresponding
194 target labels based on desired attack behavior. Depending on the attacker’s objectives, the mapping
195 between triggers and targets can follow three representative configurations, as illustrated in Figure 2.
196

- 197 • **$M \mapsto M$ Attack.** Each trigger g_{η_k} is mapped to a unique target label τ_k , resulting in M dis-
198 tinct target classes. This simulates scenarios where an adversary seeks to fully hijack class-level
199 predictions, maximizing the coverage of misclassification across the label space.
- 200 • **$M \mapsto N$ Attack.** The M triggers are mapped to $N < M$ target classes, allowing multiple triggers
201 to share targets. This models coordinated attacks where multiple patterns converge to a subset of
202 malicious outputs, increasing control density while maintaining diversity in trigger design.
- 203 • **$M \mapsto 1$ Attack.** All M triggers are assigned to one target class. This configuration is highly
204 applicable in binary or security-sensitive tasks where the adversary aims to redirect all triggered
205 samples to one specific outcome, offering robustness via multiple attack pathways.

206 The adversary then constructs a poisoned subset $\mathcal{D}_{\text{poison}}$ by stamping triggers g_{η_k} onto clean inputs
207 and relabeling them accordingly². This poisoned data is injected into the victim’s data collection
208 pipeline (e.g., via open submission platforms or third-party sharing), such that when integrated into
209 $\mathcal{D}_{\text{train}}$, it induces the intended dynamic multi-paradigm backdoor attack behavior, despite significant
210 differences in data domain and model architecture between the surrogate and target environments.
211

212
213
214
215 ²We support clean-label attacks (Seen in Table 4 in Appendix A.2), but mainly assume adversaries lack
control over label distributions in practice.

216 **4 METHODOLOGY**
 217

218 **4.1 PROBLEM DEFINITION**
 219

220 **Notations.** Let $(x, y) \sim \mathcal{D}$ be clean data with label set $\mathcal{Y} = \{1, \dots, Q\}$. A classifier $f_\theta : \mathcal{X} \rightarrow \Delta^{Q-1}$
 221 induces decision regions $\mathcal{R}_c := \{x \in \mathcal{X} : \arg \max f_\theta(x) = c\}$. For analysis, we factor $f_\theta = h \circ \phi_\theta$
 222 with representation $\phi_\theta : \mathcal{X} \rightarrow \mathcal{Z} \subset \mathbb{R}^d$ and head $h : \mathcal{Z} \rightarrow \Delta^{Q-1}$. Unless otherwise stated, all norms
 223 are ℓ_2 and dist denotes the induced metric, the same conventions apply in \mathcal{Z} .

224 A *trigger* is a parametric map $g_\eta : \mathcal{X} \rightarrow \mathcal{X}$. We consider a family $G = \{g_{\eta_k}\}_{k=1}^K$ under budgets
 225 $\|g_{\eta_k}(x) - x\|_\infty \leq \varepsilon$ and $\|g_{\eta_k}(x) - x\|_0 \leq s$. The attacker specifies (i) a *routing* rule π , which
 226 decides which trigger $k \in \{1, \dots, K\}$ is applied to a given benign sample, and (ii) a *trigger-target*
 227 *map* $\sigma : \{1, \dots, K\} \rightarrow \mathcal{T} \subseteq \mathcal{Y}$ that assigns targets. These are specified independently: triggers
 228 are optimized in feature space, while σ determines the desired misclassification behavior. We write
 229 $\tau(y) = \sigma(\pi(y))$ and denote $\tau_k = \sigma(k)$. During poisoning, a scheduler flips a fraction $\rho \in [0, 1]$ of
 230 training samples, stamping $x' = g_{\eta_{\pi(y)}}(x)$ and relabeling to $\tau(y)$, yielding $\mathcal{D}_{\text{poison}}$.

231 **Attack Paradigms.** As defined in Section 3.2, we fix the number of triggers to match the number
 232 of active sources, i.e., $K = M$ with $M \leq Q$. Backdoor attack paradigms are then instantiated by
 233 specifying the trigger-target mapping $\sigma : \{1, \dots, K\} \rightarrow \mathcal{T}$ and the target set size $|\mathcal{T}|$:

234

- 235 • $M \mapsto M$: σ is a permutation over \mathcal{Y} , assigning each trigger to a unique target class ($|\mathcal{T}| = M$).
- 236 • $M \mapsto N$ ($N < M$): several triggers map to the same target, yielding a target set of size N .
- 237 • $M \mapsto 1$: all triggers collapse to a single target t^* , i.e., $\sigma(k) = t^*$ for all k .

239 The routing π determines which trigger is applied to each sample but is otherwise unconstrained: it
 240 may assign distinct triggers, share triggers across groups, or mix both strategies.

241 **Representation Space Feasibility.** Define the decision margin of a set $A \subseteq \mathcal{X}$ to class t as

243

$$\text{margin}_t(A) := \inf_{x \in A} \text{dist}(x, \partial \mathcal{R}_t), \quad (1)$$

244

245 with $\partial \mathcal{R}_t$ the decision boundary of class t . When using ϕ_θ , interpret dist in \mathcal{Z} . For trigger k , let the
 246 *triggered cloud*

247

$$\mathcal{C}_k := \{\phi_\theta(g_{\eta_k}(x)) : (x, y) \sim \mathcal{D}, \pi(y) = k\}, \quad (2)$$

248

249 have center μ_k and radius r_k computed in \mathcal{Z} . Distances to decision regions are evaluated in \mathcal{Z} via
 250 the induced regions $\mathcal{R}_c = \{z \in \mathcal{Z} : \arg \max h(z) = c\}$.

251 The following propositions and lemmas establish the conditions under which triggered clouds are
 252 feasible, mutually non-interfering, and transferable across models.

253 **Proposition 1 (Feasibility via Interior Placement).** *If each triggered cloud \mathcal{C}_k enjoys a positive
 254 margin $\text{margin}_{\tau_k}(\mathcal{C}_k) \geq \gamma_k > 0$, then every point in \mathcal{C}_k is classified as its designated target τ_k . A
 255 sufficient condition is*

256

$$\text{dist}(\mu_k, \partial \mathcal{R}_{\tau_k}) > r_k. \quad (3)$$

257 **Lemma 1 (Non-interference of Triggered Clouds).** *Let $k \neq \ell$. If $\text{margin}_{\tau_k}(\mathcal{C}_k) \geq \gamma_k$,
 258 $\text{margin}_{\tau_\ell}(\mathcal{C}_\ell) \geq \gamma_\ell > 0$, and the centers satisfy $\text{dist}(\mu_k, \mu_\ell) > r_k + r_\ell$, then \mathcal{C}_k and \mathcal{C}_ℓ occupy
 259 disjoint interiors of \mathcal{R}_{τ_k} and \mathcal{R}_{τ_ℓ} , so predictions remain stable and non-overlapping.*

260 **Lemma 2 (Clean Accuracy Stability under Small Poisoning).** *Suppose the training algorithm is
 261 uniformly β -stable with respect to single-example replacement and the loss is bounded by L_{\max} .
 262 Replacing a ρ -fraction of training samples with poisoned ones perturbs the expected clean risk by
 263 at most $O(\beta\rho) + \rho L_{\max}$. Thus, when ρ is small and training is stable, clean accuracy degradation
 264 remains limited.*

265 **Proposition 2 (Transferability under Representation Drift).** *Let a surrogate $f_s = h_s \circ \phi_s$ and a
 266 target $f_t = h_t \circ \phi_t$ satisfy a bi-Lipschitz alignment on the triggered support: $\|\phi_t(x) - A\phi_s(x)\| \leq \delta$
 267 for some bounded linear A , and assume h_t is L_h -Lipschitz. If Proposition 1 holds for f_s with margin
 268 γ , then f_t preserves the same backdoor decisions provided*

269

$$L_h \|A\| \delta < \gamma. \quad (4)$$

270 **Lemma 3 (Identifiability under Limited Knowledge).** Assume class-conditional features $\phi_\theta(x) \mid$
 271 $(y = c)$ are sub-Gaussian with mean $\bar{\mu}_c$. Given n_c samples per class, the empirical mean $\hat{\mu}_c$ satisfies
 272 $\|\hat{\mu}_c - \bar{\mu}_c\| = O_p(n_c^{-1/2})$. Hence constraints phrased in terms of true centroids $\bar{\mu}_c$ (e.g., placing
 273 μ_k with margin γ inside \mathcal{R}_{τ_k} and outside neighborhoods of clean centroids) remain estimable with
 274 finite samples, enabling optimization under limited data/model access.
 275

276 **Optimization Problem Induced by Feasibility.** The feasibility analysis above provides construc-
 277 tive conditions: each triggered cloud must (i) lie strictly inside its designated region \mathcal{R}_{τ_k} , and (ii)
 278 remain separated from other clouds to avoid cross-trigger interference.

279 These geometric requirements naturally translate into a constrained optimization problem, where
 280 trigger parameters $\eta_{1:K}$ (and optionally the routing π) are optimized while the victim parameters θ
 281 are learned on the poisoned mixture. Formally:

$$\begin{aligned} \min_{\eta_{1:K}, \pi} \quad & \mathcal{R}_{\text{clean}}(f_\theta; \mathcal{D}) - \lambda_{\text{ASR}} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\mathbf{1}\{\arg \max f_\theta(g_{\eta_{\pi(y)}}(x)) = \tau(y)\} \right] \\ & + \lambda_{\text{stealth}} \sum_{k=1}^K \mathbb{E}[\|g_{\eta_k}(x) - x\|] + \lambda_{\text{int}} \Psi(\{\mathcal{C}_k, \tau_k\}_{k=1}^K), \\ \text{s.t.} \quad & \rho \leq \rho_{\max}, \quad \|g_{\eta_k}(x) - x\| \leq \varepsilon, \quad \forall k, x, \\ & \text{dist}(\mu_k, \partial \mathcal{R}_{\tau_k}) \geq r_k + \gamma_{\min} \quad (\text{margin}), \\ & \text{dist}(\mu_k, \mu_\ell) \geq r_k + r_\ell + \delta_{\min}, \quad \forall k \neq \ell \quad (\text{non-interference}). \end{aligned} \quad (5)$$

292 Here, Ψ penalizes violations of the margin and separation constraints, e.g., via hinge penalties on
 293 center-to-boundary and center-to-center distances. This formulation highlights three key properties:

- **Universal.** Independent of the particular loss or model architecture.
- **Paradigm-agnostic.** Covers $M \mapsto M$, $M \mapsto N$, and $M \mapsto 1$ paradigms instantiation via σ and π .
- **Budget-aware.** Limited by stealth (ε), poison rate (ρ_{\max}), and robustness margins ($\gamma_{\min}, \delta_{\min}$).

4.2 JOINT CLOUD SHAPING MULTI-TRIGGER OPTIMIZATION

301 To instantiate the optimization program from Section 4.1, we propose *Joint Cloud Shaping Multi-*
 302 *trigger Optimization* where employs two structure terms: (A) **intra-cloud compactness** and (B)
 303 **inter-cloud separation** to learns $\eta_{1:K}$ from random initialized trigger set $\{g_{\eta_k}\}_{k=1}^K$.

304 **Invisible Trigger Design.** Each trigger g_{η_k} is realized as a masked blend with a fixed sparse mask
 305 $\alpha_k \in [0, 1]^{C \times H \times W}$ satisfying $\|\alpha_k\|_0 \leq s$ and a learnable pattern $v_k \in \mathcal{X}$, i.e.,

$$g_{\eta_k}(x) = \text{clip}((1 - \alpha_k) \odot x + \alpha_k \odot v_k), \quad \Delta_k(x) = \alpha_k \odot (v_k - x).$$

308 This enforces $\|\Delta_k(x)\|_0 \leq s$ by construction, and we impose $\|\Delta_k(x)\|_\infty \leq \varepsilon$ via clipping. Gradi-
 309 ents update v_k only, and α_k remains fixed.

310 We first define the empirical center and radius in the representation space:

$$\mu_k = \frac{1}{|\mathcal{B}_k|} \sum_{(x_i, y_i) \in \mathcal{B}_k} \tilde{z}_i^{(k)}, \quad r_k^2 = \frac{1}{|\mathcal{B}_k|} \sum_{(x_i, y_i) \in \mathcal{B}_k} \|\tilde{z}_i^{(k)} - \mu_k\|^2. \quad (6)$$

315 where $\mathcal{B}_k = \{(x_i, y_i) \in \mathcal{B} : \pi(y_i) = k\}$ be samples routed to trigger k for a minibatch \mathcal{B} . $z_i =$
 316 $\phi_\theta(x_i)$ and $\tilde{z}_i^{(k)} = \phi_\theta(g_{\eta_k}(x_i))$ for clean and triggered features via a fixed classifier $f_\theta = h \circ \phi_\theta$.

317 **(A) Intra-cloud Compactness.** By Proposition 1, feasibility requires each cloud to remain entirely
 318 inside its designated region. We therefore minimize within-cloud variance so that triggered samples
 319 cluster tightly around μ_k :

$$\mathcal{L}_{\text{intra}} = \frac{1}{K} \sum_{k=1}^K \frac{1}{|\mathcal{B}_k|} \sum_{(x_i, y_i) \in \mathcal{B}_k} \|\tilde{z}_i^{(k)} - \mu_k\|^2. \quad (7)$$

323 This term reduces the radius r_k , directly improving the margin of \mathcal{C}_k relative to its target boundary.

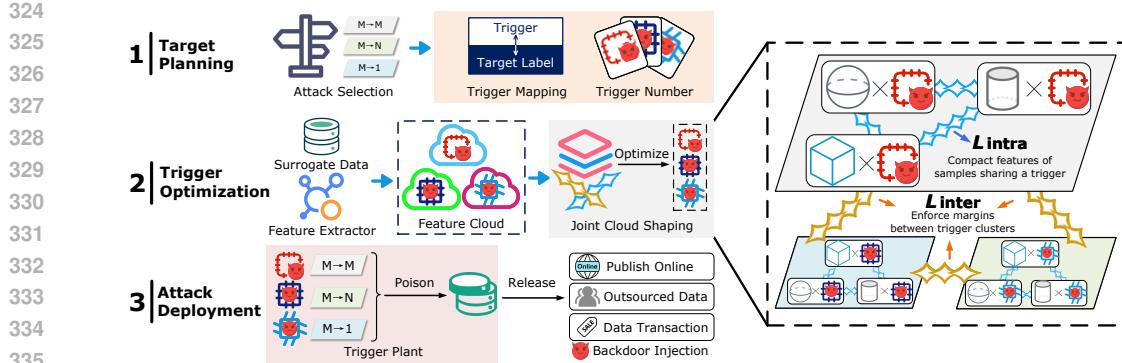


Figure 3: Overview of Arcueid, illustrating framework execution structures.

(B) Inter-cloud Separation. As shown in Lemma 1, avoiding cross-trigger interference requires triggered clouds to remain apart. We enforce a pairwise margin $m > 0$ between centers by penalizing violations with a hinge loss:

$$\mathcal{L}_{\text{inter}} = \frac{2}{K(K-1)} \sum_{1 \leq k < \ell \leq K} \left[m - \|\mu_k - \mu_\ell\| \right]_+ \quad (8)$$

This repulsive force ensures that different triggers carve out distinct, non-overlapping decision regions, thereby stabilizing multi-trigger coexistence.

Overall Optimization Objective. Combining both terms, we optimize only $\eta_{1:K}$ while keeping the victim classifier θ frozen:

$$\min_{\eta_{1:K}} \lambda_{\text{intra}} \mathcal{L}_{\text{intra}} + \lambda_{\text{inter}} \mathcal{L}_{\text{inter}} \quad \text{s.t. } \|g_{\eta_k}(x) - x\| \leq \varepsilon \quad (\forall k, x). \quad (9)$$

Gradients flow through $\phi_\theta \circ g_{\eta_k}$ to update triggers, while the classifier remains fixed. A detailed analysis of convergence and pseudocode is provided in the Appendix A.3.

4.3 ARCUEID: ATTACK WORKFLOW

Figure 3 depicts the three-stage pipeline of Arcueid, with each modular stage:

Stage 1. Target Planning. The adversary configures the attack by determining the target classes, selecting the attack paradigm ($M \mapsto M$, $M \mapsto N$, or $M \mapsto 1$, as defined in Section 3.2), and outlining a preliminary trigger–target mapping along with the number of triggers K required for optimization. These choices are made independently of the subsequent optimization stage.

Stage 2. Trigger Optimization. The adversary initializes K triggers at random and optimizes their parameters $\eta_{1:K}$ on a surrogate dataset and model using the *Joint Cloud Shaping Multi-trigger Optimization* mechanism described in Section 4.2.

Stage 3. Attack Deployment. The adversary uniformly poisons a fraction ρ of benign samples with the optimized K triggers, relabels them according to the pre-determined paradigm and target mappings from Stage 1, and injects the resulting mixture into the victim’s training pipeline through channels such as online publication, outsourced datasets, or data trading.

5 EVALUATION

5.1 EXPERIMENT SETUP

General Settings: We conduct experiments on three widely-used image classification benchmarks: CIFAR-10/100 (Krizhevsky & Hinton, 2009), and TinyImageNet (Le & Yang, 2015). For CNNs, we adopt ResNet-18/34 (He et al., 2016), and VGG13-BN (Simonyan & Zisserman, 2015) as representative backbones. To further test robustness across architectures, we also include transformer-based models, namely ViT (Dosovitskiy et al., 2021) and SimpleViT (Beyer et al., 2022).

378 **Table 1: Attack performance ($\Delta\text{ACC}/\text{ASR} \pm \text{Std}$) on various models under attack paradigms.**
379 Here, $M \mapsto N$ denotes an attack configuration where M is the number of triggers and N is the
380 number of target classes chosen by the adversary.

Dataset	$M \mapsto N$	ResNet-18		ResNet-34		VGG13-BN		ViT		SimpleViT	
		ΔACC	ASR								
CIFAR-10 (PR=0.1%)	10→1	5.5%	99.1%±0.7%	2.8%	100.0%±0.0%	2.1%	100.0%±0.0%	0.3%	99.4%±0.5%	-0.3%	100.0%±0.0%
	10→2	1.6%	99.9%±0.1%	3.7%	99.4%±0.8%	1.9%	99.4%±0.4%	0.3%	96.8%±1.6%	0.4%	99.7%±0.3%
	10→5	1.4%	99.6%±0.3%	3.9%	99.7%±0.3%	1.9%	98.6%±1.1%	0.5%	93.9%±2.6%	-0.1%	99.7%±0.2%
	10→10	1.6%	99.8%±0.2%	4.7%	98.8%±1.0%	2.0%	98.8%±0.9%	0.3%	81.5%±9.3%	0.2%	92.0%±3.4%
CIFAR-100 (PR=1%)	100→1	3.0%	100.0%±0.0%	7.2%	100.0%±0.0%	5.1%	99.9%±0.1%	-0.4%	99.9%±0.1%	-0.2%	100.0%±0.1%
	100→5	2.9%	97.0%±2.7%	3.6%	99.6%±0.4%	5.2%	86.6%±7.4%	0.2%	94.3%±3.8%	-0.3%	97.0%±2.0%
	100→10	3.2%	96.6%±2.3%	2.7%	99.8%±0.3%	2.7%	98.8%±1.0%	-0.5%	94.5%±3.2%	0.4%	97.4%±1.9%
	100→100	3.7%	98.1%±1.4%	7.7%	88.2%±6.7%	3.2%	95.3%±2.3%	-0.5%	80.4%±10.2%	0.6%	84.2%±9.1%
TinyImageNet (PR=2%)	200→1	6.8%	100.0%±0.0%	8.0%	100.0%±0.0%	4.6%	100.0%±0.0%	0.7%	99.9%±0.2%	1.3%	99.9%±0.2%
	200→2	7.2%	99.7%±0.4%	8.8%	99.9%±0.2%	5.1%	99.5%±0.5%	1.3%	97.7%±1.9%	-0.1%	96.9%±2.6%
	200→4	7.5%	99.9%±0.2%	9.1%	100.0%±0.1%	4.0%	99.3%±0.5%	1.5%	96.8%±2.1%	0.3%	95.9%±2.4%
	200→200	6.2%	99.9%±0.1%	7.2%	99.9%±0.1%	8.2%	98.7%±1.3%	1.0%	92.7%±3.6%	0.9%	89.4%±5.0%

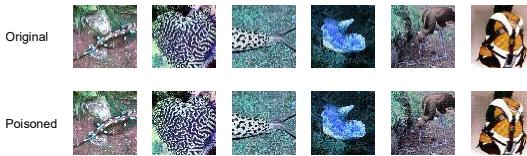


Figure 4: Visualization of Arcueid

Evaluation Metrics: We adopt the following:

CA (Clean Accuracy) – Clean inputs accuracy.

ASR (Attack Success Rate) – Proportion of trigger-embedded inputs classified into targets.

ΔACC – Drop in CA compared with a benign model (lower means smaller degradation).

PR (Poisoning Rate) – Fraction of training samples replaced with poisoned ones.

Supplementary Experiments & Details: Tables 7 and 8 in Appendix A.2 summarize the attack baselines and defense methods evaluated in Section 5.2–5.3. The appendix further details all experimental settings and provides supplementary analyses, including capability extension, ablation studies, stability, loss parameter sensitivity, and stealthiness, offering a broader perspective on the robustness, stealthiness and overall comprehensiveness of Arcueid.

5.2 ATTACK PERFORMANCE

Effectiveness on Threat Paradigms. Table 1 summarizes results across three paradigms ($M \mapsto 1$, $M \mapsto N$, and $M \mapsto M$) with both CNN and transformer backbones. Figure 4 visualizes example triggers and poisoned samples produced by Arcueid, illustrating their practical appearance and imperceptibility. Arcueid consistently attains near-perfect ASR (typically $> 95\%$) with negligible utility degradation (ΔACC mostly $< 5\%$). On CIFAR-10/100, even the all targets settings ($M \mapsto M$) maintain strong attack success (Average ASR $> 90\%$) on CNN models, while transformers show moderate drops ($\Delta\text{ACC} < 1\%$) under the most extreme cases. These results confirm that Arcueid scales reliably across mappings, datasets, and architectures.

Multi-target Supported Attack Comparison. We compare Arcueid with SOTA backdoor attacks that support multi-target settings. For BadNets, WaNet, and IAD, target labels follow a cyclic rule $y' = (y + 1) \bmod 10$, while M2N and Arcueid adopt the same target mapping for fairness. Figure 5 visualizes the classifier logits distribution, where Arcueid produces clear and consistent mappings across all targets, while competing methods collapse into random or uniform patterns under low poisoning budgets. This comparison highlights Arcueid’s distinctive ability to sustain stable all-to-all attacks at extremely low poisoning rates, where prior methods fail to generalize.

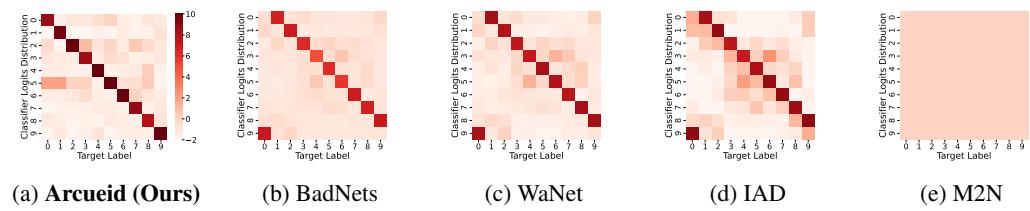


Figure 5: Heatmap comparison among multi-target attack methods (PR=0.1%).

432 5.3 ROBUSTNESS AGAINST DEFENSE MECHANISMS
433

434 **Robustness against Pre-training De-**
 435 **fense.** Pre-training defenses aim to de-
 436 tect poisoned samples at the input level be-
 437 fore they enter the training pipeline. Such
 438 approaches are generally regarded as ef-
 439 fective only if they can simultaneously
 440 achieve a high true-positive rate and a
 441 low false-positive rate across diverse at-
 442 tacks. As shown in Figure 6, only
 443 SCALE-UP shows partial effectiveness in
 444 the $M \mapsto 1$ setting, while all methods de-
 445 grade severely once multiple targets are in-
 446 volved, with recall and F1-scores approach-
 447 ing zero. Overall, these results highlight
 448 that Arcueid’s multi-trigger, multi-paradigm,
 449 and invisible-pattern design significantly
 450 enhances its ability to evade input-level fil-
 451 tering mechanisms.

452 **Table 2: Mid-training defense performance**
 453 **against three attack paradigms of Arcueid.**
 454 **Performance** denotes the CA and ASR measured
 455 on models after applying defenses.

Attack Paradigm	Defense Type	TPR	FPR	Performance	
				CA	ASR
$M \mapsto 1$ Attack	No Defense	N/A	N/A	86.5%	$99.1\% \pm 0.7\%$
	CT	0.00%	61.33%	53.0%	$90.2\% \pm 3.5\%$
	FLARE	0.00%	0.00%	88.6%	$99.7\% \pm 0.3\%$
$M \mapsto N$ Attack	No Defense	N/A	N/A	90.6%	$99.6\% \pm 0.3\%$
	CT	2.00%	65.39%	43.4%	$35.1\% \pm 24.6\%$
	FLARE	0.00%	1.71%	87.9%	$96.6\% \pm 5.3\%$
$M \mapsto M$ Attack	No Defense	N/A	N/A	90.4%	$99.8\% \pm 0.2\%$
	CT	14.00%	63.84%	46.4%	$41.8\% \pm 33.1\%$
	FLARE	2.00%	13.74%	88.9%	$98.6\% \pm 1.9\%$

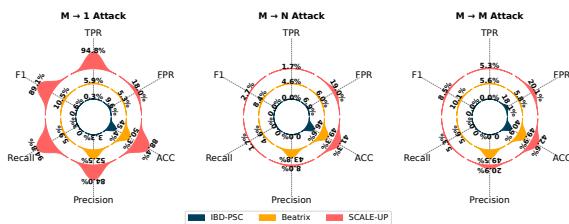


Figure 6: Pre-training defenses against Arcueid
 448
 449
 450
 451

452 **Robustness against Mid-training Defense.**
 453 Mid-training defenses attempt to continue
 454 optimization in the presence of poisoned data by
 455 filtering or down-weighting suspicious samples.
 456 For such defenses to be considered effective,
 457 they must retain CA close to the benign base-
 458 line while driving ASR down toward random-
 459 guess levels during training time. As shown in
 460 Table 2, CT suffers from excessive false pos-
 461 itives ($> 60\%$), causing CA to collapse below
 462 50% in multi-target settings. FLARE main-
 463 tains CA above 87% but leaves ASR largely unaf-
 464 fected ($> 96\%$), nearly identical to undefended
 465 models. Taken together, current proactive de-
 466 fenses either cripple utility or fail to suppress
 467 Arcueid, leaving the backdoor intact.

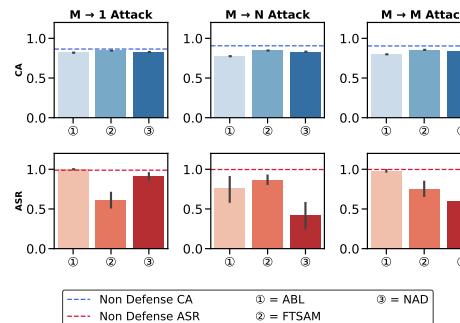


Figure 7: Post-training defenses to Arcueid.

462 **Robustness against Post-training Defense.**
463

464 Post-training defenses are designed to sanitize
 465 a trained model without access to its origi-
 466 nal training data. To succeed, such techniques
 467 should both preserve high CA and suppress
 468 ASR close to chance levels. We examine three
 469 recent approaches, as shown in Figure 7, FT-
 470 SAM reduces ASR in the $M \mapsto 1$ case but is in-
 471 effective for multi-target attacks, ABL provides
 472 virtually no protection, and NAD achieves par-
 473 tial mitigation with considerable instability. In
 474 general, none of these defenses reliably meet
 475 the expected standard, underscoring Arcueid
 476 ’s resilience even after model sanitization.

477 **6 CONCLUSION**
478

479 This paper introduced Arcueid, a unified framework leveraging *Joint Cloud Shaping Multi-trigger*
 480 *Optimization* for effective, stealthy, and robust backdoor attacks across paradigms. Extensive evalua-
 481 tions confirmed high ASR, strong stealthiness, and resilience against SOTA defenses, exposing blind
 482 spots in existing countermeasures. Beyond a new benchmark for multi-target backdoors, our results
 483 challenge the assumptions that diversity or limited attacker knowledge weakens attacks, showing in-
 484 stead that adaptive multi-trigger designs thrive under realistic constraints. We expect these findings
 485 to motivate defenses accounting for multi-trigger interference and inspire exploration of continual
 486 or multimodal backdoor settings where such vulnerabilities persist.

486 REFERENCES
487

488 Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k.
489 *CoRR*, abs/2205.01580, 2022. URL <https://arxiv.org/abs/2205.01580>.

490 Bochuan Cao, Jinyuan Jia, Chuxuan Hu, Wenbo Guo, Zhen Xiang, Jinghui Chen, Bo Li, and Dawn
491 Song. Data free backdoor attacks. In *Advances in Neural Information Processing Systems 38*
492 (*NeurIPS 2024*), 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/2a7e91c6e4b68325d9884a7469804837-Abstract-Conference.html.

493

494 Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Proflip: Targeted trojan attack with
495 progressive bit flips. In *Proceedings of the IEEE/CVF International Conference on Computer*
496 *Vision (ICCV 2021)*, pp. 7698–7707. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00762. URL
497 <https://doi.org/10.1109/ICCV48922.2021.00762>.

498

499 Jiahao Chen, Zhiqiang Shen, Yuwen Pu, Chunyi Zhou, Changjiang Li, Jiliang Li, Ting Wang, and
500 Shouling Ji. Rethinking the vulnerabilities of face recognition systems: From a practical perspec-
501 tive. *CoRR*, abs/2405.12786, 2024. URL <https://arxiv.org/abs/2405.12786>.

502

503 Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
504 learning systems using data poisoning. *CoRR*, abs/1712.05526, 2017. URL <http://arxiv.org/abs/1712.05526>.

505

506 Edward Chou, Florian Tramèr, Giancarlo Pellegrino, and Dan Boneh. Sentinel: Detecting physical
507 attacks against deep learning systems. *CoRR*, abs/1812.00292, 2018. URL <http://arxiv.org/abs/1812.00292>.

508

509 James L. Crowley. Pattern recognition and machine learning, 2010.

510

511 Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust
512 backdoor attacks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*
513 (*ICCV 2021*), pp. 11946–11956, 2021. doi: 10.1109/ICCV48922.2021.01175.

514

515 Khoa D. Doan, Yingjie Lao, and Ping Li. Marksman backdoor: Backdoor attacks with ar-
516 bitrary target class. In *Advances in Neural Information Processing Systems 35 (NeurIPS*
517 *2022*), 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/fa0126bb7ebad258bf4ffdbbac2dd787-Abstract-Conference.html.

518

519 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
520 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
521 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
522 tion at scale. In *Proceedings of the 9th International Conference on Learning Representa-
523 tions (ICLR 2021)*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

524

525 Jacob Dumford and Walter J. Scheirer. Backdooring convolutional neural networks via targeted
526 weight perturbations. In *Proceedings of the IEEE International Joint Conference on Biometrics*
527 (*IJCB 2020*), pp. 1–9. IEEE, 2020. doi: 10.1109/IJCB48548.2020.9304875. URL <https://doi.org/10.1109/IJCB48548.2020.9304875>.

528

529

530 Saadia Gutta Essa, Turgay Celik, and Nadia Emelia Human-Hendricks. Personalized adaptive learn-
531 ing technologies based on machine learning techniques to identify learning styles: A systematic
532 literature review. *IEEE Access*, 11:48392–48409, 2023. doi: 10.1109/ACCESS.2023.3276439.

533

534 Zhou Feng, Jiahao Chen, Chunyi Zhou, Yuwen Pu, Qingming Li, and Shouling Ji. Poison in the
535 well: Feature embedding disruption in backdoor attacks. *CoRR*, abs/2505.19821, 2025. doi: 10.
536 48550/ARXIV.2505.19821. URL <https://doi.org/10.48550/arXiv.2505.19821>.

537

538 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware min-
539 imization for efficiently improving generalization. In *Proceedings of the 9th International*
540 *Conference on Learning Representations (ICLR 2021)*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=6Tm1mpos1rM>.

540 Kuofeng Gao, Yang Bai, Jindong Gu, Yong Yang, and Shu-Tao Xia. Backdoor defense via adaptively
 541 splitting poisoned dataset. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 542 *Pattern Recognition (CVPR 2023)*, pp. 4005–4014. IEEE, 2023. doi: 10.1109/CVPR52729.2023.
 543 00390. URL <https://doi.org/10.1109/CVPR52729.2023.00390>.

544

545 Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith Chinthana Ranasinghe, and Surya
 546 Nepal. Strip: A defence against trojan attacks on deep neural networks. In *Proceedings of the*
 547 *35th Annual Computer Security Applications Conference (ACSAC 2019)*, pp. 113–125. ACM,
 548 2019. doi: 10.1145/3359789.3359790. URL [https://doi.org/10.1145/3359789.
 549 3359790](https://doi.org/10.1145/3359789.3359790).

550 Yansong Gao, Yeonjae Kim, Bao Gia Doan, Zhi Zhang, Gongxuan Zhang, Surya Nepal, Damith C.
 551 Ranasinghe, and Hyoungshick Kim. Design and evaluation of a multi-domain trojan detection
 552 method on deep neural networks. *IEEE Transactions on Dependable and Secure Computing*,
 553 19(4):2349–2364, 2022. doi: 10.1109/TDSC.2021.3055844. URL [https://doi.org/10.
 554 1109/TDSC.2021.3055844](https://doi.org/10.1109/TDSC.2021.3055844).

555

556 Siddhant Garg, Adarsh Kumar, Vibhor Goel, and Yingyu Liang. Can adversarial weight pertur-
 557 bations inject neural backdoors. In *Proceedings of the 29th ACM International Conference*
 558 *on Information and Knowledge Management (CIKM 2020)*, pp. 2029–2032. ACM, 2020. doi:
 559 10.1145/3340531.3412130. URL <https://doi.org/10.1145/3340531.3412130>.

560 Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
 561 attacks on deep neural networks. *IEEE Access*, 7:47230–47244, 2019. doi: 10.1109/ACCESS.
 562 2019.2909068.

563

564 Junfeng Guo, Yiming Li, Xun Chen, Hanqing Guo, Lichao Sun, and Cong Liu. Scale-up: An
 565 efficient black-box input-level backdoor detection via analyzing scaled prediction consistency. In
 566 *Proceedings of the Eleventh International Conference on Learning Representations (ICLR 2023)*.
 567 OpenReview.net, 2023. URL <https://openreview.net/forum?id=o0LFPcoFKnr>.

568

569 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 570 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
 571 nition (CVPR 2016)*, pp. 770–778. IEEE, 2016. doi: 10.1109/CVPR.2016.90. URL <https://doi.org/10.1109/CVPR.2016.90>.

572

573 Linshan Hou, Ruili Feng, Zhongyun Hua, Wei Luo, Leo Yu Zhang, and Yiming Li. Ibd-psc: Input-
 574 level backdoor detection via parameter-oriented scaling consistency. In *Proceedings of the Forty-
 575 first International Conference on Machine Learning (ICML 2024)*. OpenReview.net, 2024a. URL
 576 <https://openreview.net/forum?id=YCzbfs2few>.

577

578 Linshan Hou, Zhongyun Hua, Yuhong Li, Yifeng Zheng, and Leo Yu Zhang. M-to-n backdoor
 579 paradigm: A multi-trigger and multi-target attack to deep learning models. *IEEE Transactions on*
 580 *Circuits and Systems for Video Technology*, 34(11):11299–11312, 2024b. doi: 10.1109/TCSVT.
 581 2024.3417410.

582

583 Linshan Hou, Wei Luo, Zhongyun Hua, Songhua Chen, Leo Yu Zhang, and Yiming Li. Flare:
 584 Toward universal dataset purification against backdoor attacks. *IEEE Transactions on Information*
 585 *Forensics and Security*, 20:6459–6473, 2025. doi: 10.1109/TIFS.2025.3581719.

586

587 Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via decou-
 588 pling the training process. In *Proceedings of the Tenth International Conference on Learning*
 589 *Representations (ICLR 2022)*. OpenReview.net, 2022. URL [https://openreview.net/
 forum?id=TySnJ-0RdKI](https://openreview.net/forum?id=TySnJ-0RdKI).

590

591 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
 592 nical report, University of Toronto, 2009. Technical Report.

593

594 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS231n Course Project,
 595 Stanford University, 2015. Accessed: 2025-09-16.

594 Boqi Li and Weiwei Liu. A theoretical analysis of backdoor poisoning attacks in convolutional
 595 neural networks. In *Proceedings of the 41st International Conference on Machine Learning*
 596 (*ICML*), Vienna, Austria, 2024. OpenReview. URL <https://openreview.net/forum?id=SfcB4cVvPz>.

597

598 Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learn-
 599 ing: Training clean models on poisoned data. In *Proceedings of the 35th International Confer-
 600 ence on Neural Information Processing Systems (NeurIPS 2021)*, pp. 1–13, Red Hook, NY, USA,
 601 2021a. Curran Associates Inc.

602

603 Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
 604 distillation: Erasing backdoor triggers from deep neural networks. In *Proceedings of the 9th*
 605 *International Conference on Learning Representations (ICLR 2021)*. OpenReview.net, 2021b.
 606 URL <https://openreview.net/forum?id=910K40M-oXE>.

607 Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor attack in the
 608 physical world. *CoRR*, abs/2104.02361, 2021c. URL <https://arxiv.org/abs/2104.02361>.

609

610 Yiming Li, Mengxi Ya, Yang Bai, Yong Jiang, and Shu-Tao Xia. Backdoorbox: A python toolbox
 611 for backdoor learning. *CoRR*, abs/2302.01762, 2023. doi: 10.48550/ARXIV.2302.01762. URL
 612 <https://doi.org/10.48550/arXiv.2302.01762>.

613

614 Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. *IEEE Transac-
 615 tions on Neural Networks and Learning Systems*, 35(1):5–22, 2024. doi: 10.1109/TNNLS.2022.
 616 3182979.

617 Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen, and Yunxin Liu. Deeppayload: Black-box
 618 backdoor attack on deep learning models through neural payload injection. In *Proceedings of the*
 619 *43rd IEEE/ACM International Conference on Software Engineering (ICSE 2021)*, pp. 263–274.
 620 IEEE, 2021d. doi: 10.1109/ICSE43902.2021.00035. URL <https://doi.org/10.1109/ICSE43902.2021.00035>.

621

622 Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
 623 attack with sample-specific triggers. In *Proceedings of the IEEE/CVF International Conference*
 624 *on Computer Vision (ICCV 2021)*, pp. 16443–16452, 2021e. doi: 10.1109/ICCV48922.2021.
 625 01615.

626

627 Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against back-
 628 dooring attacks on deep neural networks. In *Research in Attacks, Intrusions, and Defenses*
 629 (*RAID*), pp. 273–294. Springer, 2018. doi: 10.1007/978-3-030-00470-5_13. URL https://doi.org/10.1007/978-3-030-00470-5_13.

630

631 Xiaogeng Liu, Minghui Li, Haoyu Wang, Shengshan Hu, Dengpan Ye, Hai Jin, Libing Wu, and
 632 Chaowei Xiao. Detecting backdoors during the inference stage based on corruption robustness
 633 consistency. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 634 nition (CVPR 2023)*, pp. 16363–16372. IEEE, 2023. doi: 10.1109/CVPR52729.2023.01570.
 635 URL <https://doi.org/10.1109/CVPR52729.2023.01570>.

636

637 Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor
 638 attack on deep neural networks. In *European Conference on Computer Vision (ECCV)*, pp. 182–
 639 199. Springer, 2020. doi: 10.1007/978-3-030-58607-2_11. URL https://doi.org/10.1007/978-3-030-58607-2_11.

640

641 Peizhuo Lv, Chang Yue, Ruigang Liang, Yunfei Yang, Shengzhi Zhang, Hualong Ma, and Kai
 642 Chen. A data-free backdoor injection approach in neural networks. In *Proceedings of the*
 643 *32nd USENIX Security Symposium (USENIX Security 2023)*, pp. 2671–2688. USENIX Asso-
 644 ciation, 2023. URL <https://www.usenix.org/conference/usenixsecurity23/presentation/lv>.

645

646 Wanlun Ma, Derui Wang, Ruoxi Sun, Minhui Xue, Sheng Wen, and Yang Xiang. The "beatrix"
 647 resurrections: Robust backdoor detection via gram matrices. In *Proceedings of the 30th Annual*
Network and Distributed System Security Symposium (NDSS 2023). The Internet Society, 2023.

648 Orson Mengara, Anderson Avila, and Tiago H. Falk. Backdoor attacks to deep neural networks:
 649 A survey of the literature, challenges, and future research directions. *IEEE Access*, 12:29004–
 650 29023, 2024. doi: 10.1109/ACCESS.2024.3355816.

651 Ali Bou Nassif, Manar Abu Talib, Qassim Nasir, and Fatima Mohamad Dakalbab. Machine learning
 652 for anomaly detection: A systematic review. *IEEE Access*, 9:78658–78700, 2021. doi: 10.1109/
 653 ACCESS.2021.3083060.

654 Tuan Anh Nguyen and Anh Tuan Tran. Wanet – imperceptible warping-based backdoor attack.
 655 In *Proceedings of the 9th International Conference on Learning Representations (ICLR 2021)*.
 656 OpenReview.net, 2021. URL <https://openreview.net/forum?id=eEn8KTtJOx>.

657 Tuan Anh Nguyen and Tuan Anh Tran. Input-aware dynamic backdoor attack. In *Proceedings of
 658 the 34th International Conference on Neural Information Processing Systems (NeurIPS 2020)*,
 659 pp. 1–11, Red Hook, NY, USA, 2020. Curran Associates Inc.

660 Du Ni, Zhi Xiao, and Ming K. Lim. A systematic review of the research trends of machine learning
 661 in supply chain management. *International Journal of Machine Learning and Cybernetics*, 11(7):
 662 1463–1482, 2020. doi: 10.1007/s13042-019-01050-0. URL <https://doi.org/10.1007/s13042-019-01050-0>.

663 Soumyadeep Pal, Yuguang Yao, Ren Wang, Bingquan Shen, and Sijia Liu. Backdoor secrets un-
 664 veiled: Identifying backdoor data with optimized scaled prediction consistency. In *Proceedings of
 665 the Twelfth International Conference on Learning Representations (ICLR 2024)*. OpenReview.net,
 666 2024. URL <https://openreview.net/forum?id=1OfAO2mes1>.

667 F. Prior, J. Almeida, P. Kathiravelu, T. Kurc, K. Smith, T. J. Fitzgerald, and J. Saltz. Open access
 668 image repositories: High-quality data to enable machine learning research. *Clinical Radiology*,
 669 75(1):7–12, 2020. doi: 10.1016/j.crad.2019.04.002. URL <https://doi.org/10.1016/j.crad.2019.04.002>.

670 Yuwen Pu, Jiahao Chen, Chunyi Zhou, Zhou Feng, Qingming Li, Chunqiang Hu, and Shouling Ji.
 671 *Mellivora capensis*: A backdoor-free training framework on the poisoned dataset without auxiliary
 672 data. *CoRR*, abs/2405.12719, 2024. URL <https://arxiv.org/abs/2405.12719>.

673 Xiangyu Qi, Tinghao Xie, Ruijie Pan, Jifeng Zhu, Yong Yang, and Kai Bu. Towards practical
 674 deployment-stage backdoor attack on deep neural networks. In *Proceedings of the IEEE/CVF
 675 Conference on Computer Vision and Pattern Recognition (CVPR 2022)*, pp. 13337–13347.
 676 IEEE, 2022. doi: 10.1109/CVPR52688.2022.01299. URL <https://doi.org/10.1109/CVPR52688.2022.01299>.

677 Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Revisiting the as-
 678 sumption of latent separability for backdoor defenses. In *Proceedings of the Eleventh Inter-
 679 national Conference on Learning Representations (ICLR 2023)*. OpenReview.net, 2023a. URL
 680 https://openreview.net/forum?id=_wSHsgrVali.

681 Xiangyu Qi, Tinghao Xie, Jiachen T. Wang, Tong Wu, Saeed Mahloujifar, and Prateek Mittal. To-
 682 wards a proactive ML approach for detecting backdoor poison samples. In *Proceedings of the
 683 32nd USENIX Security Symposium (USENIX Security 2023)*, pp. 1685–1702. USENIX Associa-
 684 tion, 2023b. URL <https://www.usenix.org/conference/usenixsecurity23/presentation/qi>.

685 Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tbt: Targeted neural network attack with
 686 bit trojan. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 687 Recognition (CVPR 2020)*, pp. 13195–13204. IEEE / Computer Vision Foundation, 2020.
 688 doi: 10.1109/CVPR42600.2020.01321. URL https://openaccess.thecvf.com/content_CVPR_2020/html/Rakin_TBT_Targeted_Neural_Network_Attack_With_Bit_Trojan_CVPR_2020_paper.html.

689 Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and Deliang Fan. T-bfa:
 690 Targeted bit-flip adversarial weight attack. *IEEE Transactions on Pattern Analysis and Machine
 691 Intelligence*, 44(11):7928–7939, 2022. doi: 10.1109/TPAMI.2021.3112932. URL <https://doi.org/10.1109/TPAMI.2021.3112932>.

702 Mauro Ribeiro, Katarina Grolinger, and Miriam A. M. Capretz. MLaaS: Machine learning as a
 703 service. In *2015 IEEE 14th International Conference on Machine Learning and Applications*
 704 (*ICMLA*), pp. 896–902, 2015. doi: 10.1109/ICMLA.2015.152.

705

706 Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 707 and Dhruv Batra. Grad-CAM: Visual explanations from deep networks via gradient-based local-
 708 ization. In *IEEE International Conference on Computer Vision (ICCV)*, pp. 618–626, 2017. doi:
 709 10.1109/ICCV.2017.74. URL <https://doi.org/10.1109/ICCV.2017.74>.

710

711 Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian, and Dacheng Tao. On efficient training of
 712 large-scale deep learning models. *ACM Comput. Surv.*, 57(3):57:1–57:36, November 2024. doi:
 713 10.1145/3700439. URL <https://doi.org/10.1145/3700439>.

714

715 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 716 recognition. In *Proceedings of the 3rd International Conference on Learning Representations*
 717 (*ICLR 2015*), 2015. URL <http://arxiv.org/abs/1409.1556>.

718

719 Hossein Souri, Liam Fowl, Rama Chellappa, Micah Goldblum, and Tom Goldstein. Sleeper
 720 agent: Scalable hidden trigger backdoors for neural networks trained from scratch. In
 721 *Advances in Neural Information Processing Systems 35 (NeurIPS 2022)*, pp. 17763–
 722 17776, 2022. URL https://papers.nips.cc/paper_files/paper/2022/hash/79eec295a3cd5785e18c61383e7c996b-Abstract-Conference.html.

723

724 Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård, Amy K. Hoover,
 725 Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural content generation via machine
 726 learning (pcgml). *IEEE Transactions on Games*, 10(3):257–270, 2018. doi: 10.1109/TG.2018.
 727 2846639.

728

729 Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, and Xia Hu. An embarrassingly simple ap-
 730 proach for trojan attack in deep neural networks. In *Proceedings of the 26th ACM SIGKDD Con-
 731 ference on Knowledge Discovery and Data Mining (KDD 2020)*, pp. 218–228. ACM, 2020. doi:
 10.1145/3394486.3403064. URL <https://doi.org/10.1145/3394486.3403064>.

732

733 Ruixiang (Ryan) Tang, Jiayi Yuan, Yiming Li, Zirui Liu, Rui Chen, and Xia Hu. Setting the trap:
 734 Capturing and defeating backdoors in pretrained language models through honeypots. In *Advances in Neural Information Processing Systems 36 (NeurIPS*
 735 2023), 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/e7938ede51225b490bb69f7b361a9259-Abstract-Conference.html.

736

737 Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks.
 738 *CoRR*, abs/1912.02771, 2019. URL <http://arxiv.org/abs/1912.02771>.

739

740 Irena Valova, Tsvetelina Mladenova, Gabriel Kanev, and Tsvetana Halacheva. Web scraping - state
 741 of art, techniques and approaches. In *31st National Conference with International Participation*
 742 (*TELECOM*), pp. 1–4, 2023. doi: 10.1109/TELECOM59629.2023.10409723. URL <https://doi.org/10.1109/TELECOM59629.2023.10409723>.

743

744 Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y.
 745 Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In *Pro-
 746 ceedings of the IEEE Symposium on Security and Privacy (S&P 2019)*, pp. 707–723. IEEE, 2019.
 747 doi: 10.1109/SP.2019.00031. URL <https://doi.org/10.1109/SP.2019.00031>.

748

749 Mingfu Xue, Can He, Jian Wang, and Weiqiang Liu. One-to-n & n-to-one: Two advanced backdoor
 750 attacks against deep learning models. *IEEE Transactions on Dependable and Secure Computing*,
 751 19(3):1562–1578, 2022. doi: 10.1109/TDSC.2020.3028448.

752

753 Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearn-
 754 ing of backdoors via implicit hypergradient. In *Proceedings of the Tenth International Con-
 755 ference on Learning Representations (ICLR 2022)*. OpenReview.net, 2022. URL <https://openreview.net/forum?id=MeeQkFYVbzW>.

756 Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi Jia. Narcissus:
757 A practical clean-label backdoor attack with limited information. In *Proceedings of the 2023*
758 *ACM SIGSAC Conference on Computer and Communications Security (CCS 2023)*, pp. 771–
759 785. ACM, 2023. doi: 10.1145/3576915.3616617. URL <https://doi.org/10.1145/3576915.3616617>.

760

761 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
762 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE/CVF Conference*
763 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 586–595, 2018. doi: 10.1109/CVPR.
764 2018.00068. URL https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.html.

765

766 Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang Jiang. Clean-
767 label backdoor attacks on video recognition models. In *Proceedings of the IEEE/CVF Conference*
768 *on Computer Vision and Pattern Recognition (CVPR 2020)*, pp. 14431–14440, 2020. doi: 10.
769 1109/CVPR42600.2020.01445.

770

771 Yifeng Zheng, Huayi Duan, and Cong Wang. Towards secure and efficient outsourcing of machine
772 learning classification. In *European Symposium on Research in Computer Security (ESORICS)*,
773 pp. 22–40. Springer, 2019. doi: 10.1007/978-3-030-29959-0_2. URL https://doi.org/10.1007/978-3-030-29959-0_2.

774

775 Mingli Zhu, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Enhancing fine-tuning based back-
776 door defense with sharpness-aware minimization. In *Proceedings of the IEEE/CVF International*
777 *Conference on Computer Vision (ICCV 2023)*, pp. 4443–4454, 2023. doi: 10.1109/ICCV51070.
778 2023.00412.

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **A APPENDIX**
811812 We provide an overview of the appendix contents for easy navigation.
813814 **A.1 Supplementary Related Work**815 A.1.1 Supply-chain Backdoor Attack
816 A.1.2 Backdoor Defense817 **A.2 Supplementary Evaluation**818 A.2.1 Global Experimental Setting
819 A.2.2 Extended Capability Analysis
820 A.2.3 Ablation Study
821 A.2.4 Loss Weights Sensitivity Analysis
822 A.2.5 Stability Analysis
823 A.2.6 Stealthiness Evaluation824 **A.3 Further Arcueid Analysis**825 A.3.1 Optimization Analysis
826 A.3.2 Training-time Execution Analysis
827 A.3.3 Pseudo Code828 **A.4 Adaptive Defense Analysis**829 A.4.1 Problem Definition
830 A.4.2 Overview
831 A.4.3 Detailed Design
832 A.4.4 Evaluation833 **A.5 Bridging Theory and Practice**834 A.5.1 Stability of Cloud Geometry
835 A.5.2 Sensitivity of Representation Misalignment836 **A.6 Proofs**837 A.6.1 Proof of Proposition 1
838 A.6.2 Proof of Lemma 1
839 A.6.3 Proof of Lemma 2
840 A.6.4 Proof of Proposition 2
841 A.6.5 Proof of Lemma 3
842 A.6.6 Proof of Lemma 4
843 A.6.7 Proof of Lemma 5
844 A.6.8 Proof of Proposition 3
845 A.6.9 Proof of Proposition 4
846 A.6.10 Proof of Proposition 5
847 A.6.11 Proof of Proposition 6
848 A.6.12 Proof of Lemma 6
849 A.6.13 Proof of Lemma 7
850 A.6.14 Proof of Proposition 7
851 A.6.15 Proof of Proposition 8
852 A.6.16 Proof of Proposition 9
853 A.6.17 Proof of Proposition 10
854 A.6.18 Proof of Lemma 8
855 A.6.19 Proof of Lemma 9
856 A.6.20 Proof of Proposition 11857 **A.7 Reproducibility Statement**858 **A.8 LLM Usage**

864
865

A.1 SUPPLEMENTARY RELATED WORK

866
867
868
869
870
871
872
873

The related work discussed in Section 2 primarily focuses on poisoning-based backdoor attacks. Yet the scope of backdoor research extends beyond data poisoning. A substantial body of work has examined *supply-chain backdoor attacks*, in which adversaries, with full control over the training process, implant backdoors into models and redistribute them through public channels. Meanwhile, the escalating threat of backdoor attacks has spurred extensive efforts on *backdoor defenses*, which propose countermeasures at different stages of the learning pipeline. This supplementary section reviews these two complementary directions to provide a more comprehensive view of the backdoor learning landscape.

874
875

A.1.1 SUPPLY-CHAIN BACKDOOR ATTACK

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898

Supply-chain backdoor attacks describe scenarios in which an adversary independently trains a model and embeds a backdoor during this process, subsequently releasing the compromised model through public channels, often under the guise of an open-source model or a domain-specific utility. Because the adversary possesses full control over both the training process and the model architecture, this threat model typically corresponds to the white-box setting. Early works explored direct weight manipulation. For example, Dumford & Scheirer (2020) perturbed model weights to induce targeted misclassifications without sacrificing accuracy on clean inputs. TBT (Rakin et al., 2020) further demonstrated that Trojans could be injected at the bit level through weight flipping, requiring no access to training data. Along similar lines, Garg et al. (2020) introduced adversarial weight perturbations capable of embedding highly stealthy backdoors. Building on this direction, T-BFA (Rakin et al., 2022) proposed the first targeted bit-flip attack tailored for quantized DNNs, while ProFlip (Chen et al., 2021) progressively identified and flipped a small set of critical parameter bits to implant Trojans into quantized networks without retraining. More recent works have shifted toward data-free settings. DFBA (Cao et al., 2024) and the method proposed in (Lv et al., 2023) embed backdoors by directly modifying neurons or leveraging substitute data, circumventing the need for original training data or labels. Beyond weight-level manipulations, structural modifications have also been introduced. TrojanNet (Tang et al., 2020) appends a model-agnostic module to enable all-label attacks, while SRA (Qi et al., 2022) replaces sub-networks within deployed models to inject physical backdoors. At an even lower abstraction level, DeepPayload (Li et al., 2021d) achieves black-box logic injection through binary-level modifications. Collectively, these supply-chain attacks highlight the feasibility of post-deployment compromise without requiring access to victim data or pipelines. However, they generally depend on strong control over the model or runtime environment and may leave detectable footprints due to the inherent structural or behavioral alterations they introduce.

899
900

A.1.2 BACKDOOR DEFENSE

901
902
903

To counteract backdoor threats, a wide range of defense strategies have been proposed, which can be broadly classified into three categories via its applied period: **pre-training defense**, **mid-training defense** and **post-training defense**.

904
905
906
907
908
909
910
911
912
913
914

Pre-training defense aims to identify adversarial samples before training time by analysing various properties of incoming data. SCALE-UP (Guo et al., 2023) leverages the prediction consistency of scaled input images to detect backdoors in a black-box setting, supporting both patch-based and advanced trigger types. MSPC (Pal et al., 2024) introduces a mask-aware scaled prediction consistency framework and a bi-level optimization process to detect poisoned samples without requiring clean data or manual thresholds, outperforming prior methods under realistic constraints. Beatrix (Ma et al., 2023) proposes a Gram matrix-based method to model high-order feature correlations, effectively detecting both universal and sample-specific backdoors. More recently, IBD-PSC (Hou et al., 2024a) enhances robustness and generalization by amplifying batch normalization parameters and evaluating confidence consistency, thereby overcoming several limitations of earlier input-based defenses (Chou et al., 2018; Gao et al., 2022; Liu et al., 2023).

915
916
917

Mid-training defense focuses on detecting and suppressing poisoned samples during the training process, thereby mitigating backdoor contamination while allowing models to continue effective learning. DBD (Huang et al., 2022) alleviates poisoning threats by decoupling the end-to-end optimization into three stages, effectively weakening the influence of triggers. ASD (Gao et al., 2023)

provides a unified framework that adaptively partitions data into clean and polluted pools for targeted training-time defense. Honeytrap-based defenses (Tang et al., 2023) attach auxiliary modules to lower layers to absorb and neutralize backdoor features during fine-tuning. CT (Qi et al., 2023b) proactively detects poisoned samples by injecting mislabeled clean data, decoupling benign correlations from malicious ones to expose triggers. MeCa (Pu et al., 2024) enables training clean models directly on poisoned datasets without auxiliary clean supervision by leveraging robustness discrepancies of poisoned samples under adversarial perturbations. More recently, FLARE (Hou et al., 2025) introduces a universal dataset purification framework that aggregates abnormal activations across layers and employs adaptive subspace clustering to distinguish poisoned from benign data.

Post-training defense aims to repair compromised models or mitigate backdoor behaviors after training. Early reactive approaches, such as Neural Cleanse (Wang et al., 2019), reverse-engineer potential triggers through anomaly detection, followed by input filtering, neuron pruning, or retraining. STRIP (Gao et al., 2019; 2022) provides a lightweight post-hoc detection mechanism by measuring prediction entropy under perturbed conditions, enabling efficient black-box identification of trojaned inputs without prior trigger knowledge. More recent methods improve efficiency and generalization: NAD (Li et al., 2021b) applies attention distillation between a fine-tuned teacher and the backdoored student model with only a small clean dataset; I-BAU (Zeng et al., 2022) frames backdoor removal as a minimax adversarial unlearning problem solvable via implicit hypergradient methods; and FT-SAM (Zhu et al., 2023) integrates sharpness-aware minimization (Foret et al., 2021) with fine-tuning to perturb backdoor-sensitive neurons, achieving strong mitigation even with limited data. In parallel, proactive defenses such as ABL (Li et al., 2021a) exploit the faster convergence and class-dependency patterns of poisoned samples via a dual-stage gradient ascent strategy to isolate and suppress them, enabling robust training even on corrupted datasets.

A.2 SUPPLEMENTARY EVALUATION

This section provides additional experimental results and details that complement the main text. We include extended analyses, supplementary figures, and tables that could not be accommodated in the main pages due to space constraints. These results further support our findings and offer deeper insights into the robustness and effectiveness of `Arcueid`.

Table 3: **Attack performance ($\Delta\text{ACC}/\text{ASR} \pm \text{Std}$) on various models under all targets attack.**

Dataset	$M \mapsto N$	PR	ResNet-18		ResNet-34		VGG13-BN		ViT		SimpleViT	
			ΔACC	ASR	ΔACC	ASR	ΔACC	ASR	ΔACC	ASR	ΔACC	ASR
CIFAR-10	3→3	0.03%	1.7%	99.7%±0.2%	3.8%	99.6%±0.5%	1.8%	95.8%±5.1%	-0.2%	88.3%±8.5%	-0.2%	89.5%±3.9%
	5→5	0.05%	4.2%	94.3%±6.6%	4.1%	99.2%±0.6%	1.6%	97.0%±4.1%	0.8%	80.1%±14.0%	0.2%	95.5%±3.7%
	8→8	0.08%	3.5%	99.5%±0.7%	3.4%	99.7%±0.3%	1.5%	99.1%±1.1%	0.6%	88.3%±3.3%	-0.2%	89.7%±5.8%
	10→10	0.10%	5.9%	91.9%±4.8%	4.7%	98.8%±1.0%	2.0%	98.8%±0.9%	0.3%	81.5%±9.3%	0.2%	92.0%±3.4%
CIFAR-100	25→25	0.25%	2.5%	97.2%±1.7%	5.1%	95.1%±2.9%	5.0%	90.9%±4.9%	-0.1%	86.9%±8.7%	-0.9%	88.7%±5.2%
	50→50	0.50%	3.0%	98.0%±1.4%	3.2%	98.7%±0.9%	6.0%	85.3%±7.3%	-0.5%	82.9%±8.9%	-0.3%	82.1%±7.7%
	75→75	0.75%	4.3%	97.2%±2.4%	7.5%	92.0%±4.1%	6.1%	86.5%±9.1%	-0.1%	82.8%±10.1%	1.0%	83.5%±6.7%
	100→100	1.00%	3.7%	98.1%±1.4%	7.7%	88.2%±0.7%	3.2%	95.3%±2.3%	-0.5%	80.4%±10.2%	0.6%	84.2%±9.1%
TinyImageNet	50→50	0.50%	7.3%	99.8%±0.3%	6.2%	99.9%±0.1%	4.4%	99.8%±0.2%	0.5%	92.7%±3.5%	0.2%	91.7%±4.5%
	100→100	1.00%	6.1%	99.9%±0.1%	9.3%	99.9%±0.1%	3.6%	99.9%±0.1%	1.3%	91.9%±4.1%	0.7%	90.2%±4.3%
	150→150	1.50%	7.0%	99.9%±0.2%	7.9%	99.9%±0.1%	6.7%	98.9%±1.3%	0.7%	92.7%±3.8%	1.4%	87.9%±5.3%
	200→200	2.00%	6.2%	99.9%±0.1%	7.2%	99.9%±0.1%	8.2%	98.7%±1.3%	1.0%	92.7%±3.6%	0.9%	89.4%±5.0%

A.2.1 GLOBAL EXPERIMENTAL SETTING

Unless otherwise specified, ResNet-18 on CIFAR-10 is adopted as the default target model and dataset, with the overall PR fixed at 0.1% (corresponding to 0.01% per trigger). To ensure no unfair advantage, we strictly separate the surrogate and target environments, where the surrogate model and dataset are always different from those of the victim. Additional hyperparameter and implementation details can be found in Appendix A.7. The set of backdoor attacks compared throughout the paper is summarized in Table 7, while the defense baselines considered are listed in Table 8.

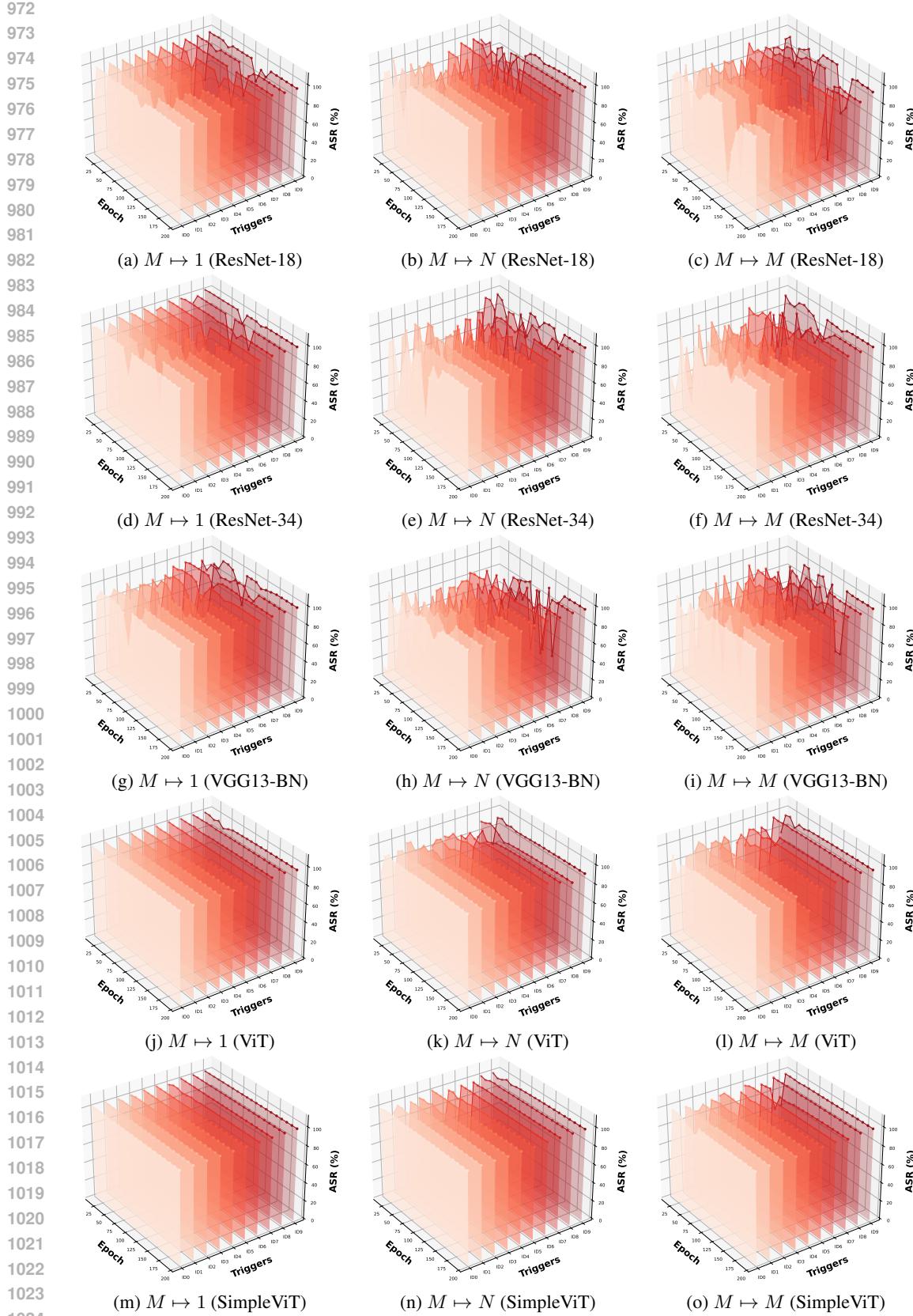


Figure 8: Stability study across paradigms on diverse backbones.

1026 **Table 4: Attack performance ($\Delta\text{ACC}/\text{ASR} \pm \text{Std}$) on various models under multiple paradigms**
1027 **in clean-label attack setting.**

Dataset	$M \mapsto N$	ResNet-18		ResNet-34		VGG13-BN		ViT		SimpleViT	
		ΔACC	ASR								
CIFAR-10 (PR=0.1%)	10 \rightarrow 1	3.9%	91.2% \pm 8.8%	3.4%	99.9% \pm 0.1%	1.9%	99.5% \pm 0.5%	0.4%	95.8% \pm 3.8%	0.3%	99.9% \pm 0.1%
	10 \rightarrow 2	1.9%	98.8% \pm 1.0%	3.5%	98.7% \pm 1.4%	2.2%	98.1% \pm 1.3%	0.7%	81.3% \pm 9.1%	0.3%	99.1% \pm 1.0%
	10 \rightarrow 5	2.2%	99.3% \pm 0.8%	4.2%	97.7% \pm 1.5%	2.8%	92.9% \pm 5.4%	0.3%	88.9% \pm 5.4%	-0.2%	99.3% \pm 0.4%
	10 \rightarrow 10	1.3%	98.0% \pm 1.7%	2.8%	98.8% \pm 1.1%	2.6%	95.1% \pm 3.7%	0.2%	86.2% \pm 7.5%	0.4%	99.3% \pm 0.6%
CIFAR-100 (PR=1%)	100 \rightarrow 1	2.5%	100.0% \pm 0.0%	1.9%	100.0% \pm 0.0%	6.4%	99.7% \pm 0.4%	-0.6%	99.9% \pm 0.1%	0.4%	100.0% \pm 0.0%
	100 \rightarrow 5	2.9%	80.1% \pm 17.7%	3.1%	80.1% \pm 17.7%	5.6%	84.8% \pm 18.3%	-0.9%	85.9% \pm 10.1%	0.0%	77.2% \pm 15.9%
	100 \rightarrow 10	2.9%	80.1% \pm 17.7%	3.9%	77.0% \pm 19.5%	5.2%	84.9% \pm 15.9%	-0.9%	82.9% \pm 16.1%	0.1%	83.3% \pm 11.1%
	100 \rightarrow 100	3.6%	82.3% \pm 10.1%	5.2%	82.3% \pm 10.1%	3.3%	82.8% \pm 16.3%	-0.9%	78.6% \pm 18.3%	1.2%	80.6% \pm 11.7%
TinyImageNet (PR=2%)	200 \rightarrow 1	6.8%	100.0% \pm 0.0%	3.6%	100.0% \pm 0.0%	7.9%	100.0% \pm 0.0%	1.1%	99.1% \pm 1.7%	0.4%	99.3% \pm 1.1%
	200 \rightarrow 2	6.9%	86.5% \pm 10.3%	4.0%	77.3% \pm 16.2%	7.6%	92.2% \pm 9.6%	1.1%	82.6% \pm 10.3%	0.9%	83.3% \pm 10.9%
	200 \rightarrow 4	7.7%	94.8% \pm 4.4%	4.6%	98.9% \pm 1.4%	6.1%	80.1% \pm 14.8%	1.1%	85.9% \pm 9.9%	0.8%	76.1% \pm 15.9%
	200 \rightarrow 200	8.8%	79.8% \pm 18.3%	5.5%	84.6% \pm 13.7%	4.9%	98.8% \pm 1.3%	1.3%	81.1% \pm 10.5%	0.6%	81.3% \pm 10.5%

1040 **Table 5: Attack performance ($\Delta\text{ACC}/\text{ASR}$) in all-to-one attack paradigm under dirty-label**
1041 **and clean-label settings.**

Dataset	Label Mode	ResNet-18		ResNet-34		VGG13-BN		ViT		SimpleViT	
		ΔACC	ASR	ΔACC	ASR	ΔACC	ASR	ΔACC	ASR	ΔACC	ASR
CIFAR-10 (PR=0.01%)	Dirty-label	-2.7%	100.0%	-4.8%	99.5%	-1.9%	99.6%	-0.5%	98.5%	1.0%	99.9%
	Clean-label	-4.1%	96.0%	-4.6%	97.4%	-1.4%	99.6%	-0.2%	95.3%	0.4%	100.0%
CIFAR-100 (PR=0.01%)	Dirty-label	-3.0%	90.0%	-4.0%	98.2%	-5.9%	85.3%	0.8%	99.9%	-0.4%	100.0%
	Clean-label	-2.6%	85.5%	-4.2%	85.2%	-6.0%	82.4%	1.0%	99.4%	-0.3%	100.0%
TinyImageNet (PR=0.01%)	Dirty-label	-6.8%	100.0%	-8.3%	100.0%	-8.6%	99.6%	-0.5%	99.9%	-0.4%	100.0%
	Clean-label	-6.6%	100.0%	-9.8%	100.0%	-3.8%	100.0%	-0.9%	99.9%	-0.5%	99.9%

A.2.2 EXTENDED CAPABILITY ANALYSIS

To assess the breadth and adaptability of `Arcueid`, we conduct extended analyses on three dimensions: its effectiveness under clean-label constraints, its scalability across different target scopes, and its competitiveness in the conventional all-to-one paradigm.

Clean-label Analysis. We further evaluate `Arcueid` under the more restrictive clean-label setting (first defined by Turner et al. (2019)), where poisoned samples must retain their original ground-truth labels. Table 4 summarizes results across CIFAR-10, CIFAR-100, and TinyImageNet. Despite the absence of label manipulation, `Arcueid` still delivers strong attack performance: on CIFAR-10, ASR exceeds 95% in most cases with ΔACC under 4%, and even the challenging $M \mapsto M$ setting ($10 \rightarrow 10$) sustains over 90% ASR. On CIFAR-100 and TinyImageNet, ASR remains high in $M \mapsto 1$ and $M \mapsto N$ configurations, while broader mappings show moderate degradation, yet still outperforming existing clean-label baselines reported in prior work. These results confirm that `Arcueid` is not limited to dirty-label attacks but also retains effectiveness under clean-label constraints, significantly broadening its potential threat scope.

Target Scope Analysis. We analyze the number of triggers K (mentioned in Section 4.1) under the most challenging $M \mapsto M$ paradigm. Table 3 shows how attack performance changes as we increase the number of triggers (PR is adjusted accordingly so that the per-trigger PR remains constant). `Arcueid` scales gracefully: tiny budgets suffice for small-to-medium mappings (e.g., $3 \mapsto 3$ yields over 95% ASR on ResNet-18), and modest increases in PR sustain high ASR as the target set grows. Larger target scopes require higher absolute PR but remain practical, CIFAR-100 reaches near-perfect ASR for many intermediate scopes with PR in the 0.25–1.0% range, and TinyImageNet attains 99% ASR for large-scale mappings when PR is increased to 0.5–2.0%. Across architectures, CNN backbones are most susceptible, showing very high ASR with only small clean-accuracy drops. Transformer models exhibit greater variance and larger declines in some extreme broad-target settings, but remain attackable for most practical scopes. In short, expanding the target set does not collapse attack effectiveness; instead, `Arcueid` presents a smooth, predictable trade-off between trigger count and required poisoning budget, demonstrating practical scalability.

1080 **Table 6: Comparison of backdoor attack performance ($\Delta\text{ACC}/\text{ASR}$) in all-to-one attack**
1081 **paradigm across datasets.** All results are reported on CIFAR-10, CIFAR-100, and TinyImageNet.
1082 ΔACC denotes accuracy drop on clean samples, and ASR indicates the attack success rate on poi-
1083 soned samples.

1084

Attack Method	CIFAR-10 (PR=0.01%)		CIFAR-100 (PR=0.01%)		TinyImageNet (PR=0.01%)	
	ΔACC	ASR	ΔACC	ASR	ΔACC	ASR
BadNets	-1.2%	10.4%	-1.8%	1.1%	-4.1%	0.6%
Blended	-1.6%	10.1%	-2.1%	1.1%	-5.1%	0.6%
Refool	-1.3%	10.1%	-2.0%	1.2%	-4.9%	1.7%
LC	-17.7%	12.7%	-2.7%	1.1%	-49.5%	0.1%
TUAP	-1.0%	8.3%	-2.5%	0.7%	-5.2%	0.1%
PhysicalBA	+2.4%	10.0%	+3.5%	1.1%	+1.4%	0.6%
WaNet	-1.7%	10.2%	-1.5%	1.1%	-4.9%	12.1%
AdaptivePatch	-7.0%	10.6%	-1.3%	1.5%	-7.0%	1.4%
Narcissus	-4.1%	39.1%	-3.5%	54.5%	-6.1%	99.3%
Arcueid (Dirty-Label)	-2.7%	100.0%	-3.0%	90.0%	-6.8%	100.0%
Arcueid (Clean-Label)	-4.1%	96.0%	-2.6%	85.5%	-6.6%	100.0%

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

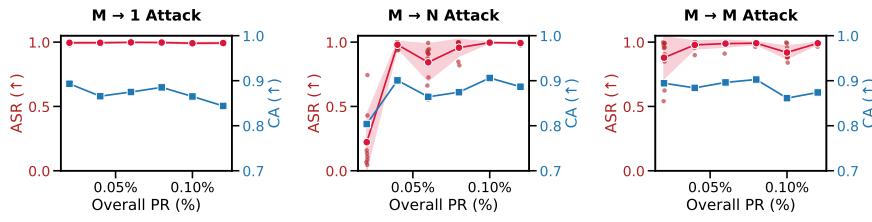
1125

1126

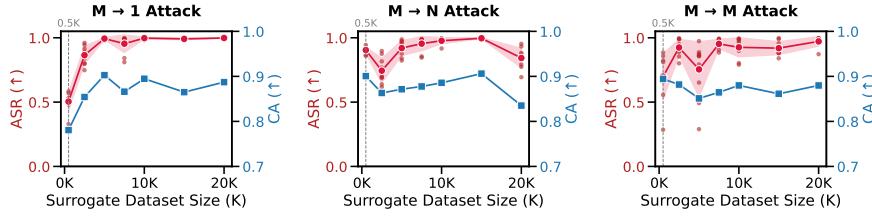
1127

1128

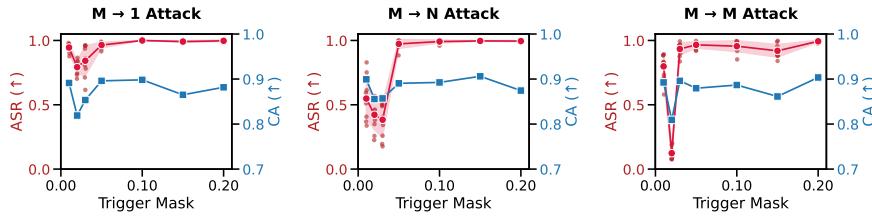
(a) Poisoning Rate Analysis



(a) Poisoning Rate Analysis



(b) Surrogate Data Analysis



(c) Trigger Mask Analysis

Figure 9: Ablation study on key factors influencing Arcueid's effectiveness.

All-to-one Analysis. Finally, we examine the classical all-to-one paradigm, which corresponds to setting $K=1$ in Arcueid. All experiments in this part are conducted under an extremely low poisoning rate of 0.01%. Table 6 compares Arcueid against a wide range of existing all-to-one attacks introduced in Table 7. Even under this restrictive budget, Arcueid substantially outperforms prior methods: on CIFAR-10, CIFAR-100, and TinyImageNet, it consistently achieves near-perfect ASR (often $\geq 99\%$) with limited clean-accuracy degradation, while standard baselines such as BadNets,

1134 **Table 7: Summary of backdoor attacks evaluated in this paper.** *Attack Property* indicates at-
 1135 tacker assumptions, including whether the attack is clean-label, requires no access to training data,
 1136 or is model- and training-agnostic. *Attack Target Scope* shows whether the attack supports single-
 1137 target, multiple-target, or broad-class settings. *Robustness* evaluates resistance against input-based
 1138 detection, training-stage defenses, and model-based mitigation. *Stealthiness* reports whether the
 1139 trigger is invisible and the minimum poison rate per target required to achieve a high attack success
 1140 rate ($> 80\%$). ○ The item is not supported by the attack; ● The item is supported by the attack.

Attack	Attack Property			Attack Target Scope			Robustness			Stealthiness	
	Clean-label	Data-free	Model-agnostic	Single	Multiple	Broad	Detection	Training	Mitigation	Invisible	PR/Target
Blended (Chen et al., 2017)	○	●	●	●	○	○	○	○	○	●	10%
Refool (Liu et al., 2020)	●	●	●	●	○	○	○	○	○	○	0.57%
LC (Turner et al., 2019)	●	○	●	●	○	○	●	○	○	●	0.40%
TUAP (Zhao et al., 2020)	●	○	○	●	○	○	●	○	○	●	0.30%
PhysicalBA (Li et al., 2021c)	○	●	●	●	○	○	○	○	○	○	0.50%
AdaptivePatch (Qi et al., 2023a)	○	●	●	●	○	○	●	○	●	○	0.30%
Narcissus (Zeng et al., 2023)	●	●	○	●	○	○	●	○	●	●	0.05%
BadNets (Gu et al., 2019)	○	●	●	●	●	○	○	○	○	○	1%
WaNet (Nguyen & Tran, 2021)	○	●	●	●	●	○	●	○	●	●	1%
IAD (Nguyen & Tran, 2020)	○	○	○	●	○	●	●	○	●	○	1%
M2N (Hou et al., 2024b)	○	○	●	●	●	○	○	●	●	●	0.40%
Arcueid (Ours)	●	●	●	●	●	●	●	●	●	●	≤0.01%

1152 **Table 8: Summary of the existing backdoor defenses evaluated in this paper.** *Proactive Training*
 1153 denotes methods that prevent backdoor injection during training. ○ The item is not supported by the
 1154 defense; ● The item is supported by the defense.

Defense	Defense Stage	Defense Task			Threat Model	
		Input Detection	Proactive Training	Model Mitigation	Black-box	Needs Clean Data
SCALE-UP (Guo et al., 2023)	Pre-training	●	○	○	●	●
Beatrix (Ma et al., 2023)	Pre-training	●	○	○	○	●
IBD-PSC (Hou et al., 2024a)	Pre-training	●	○	○	○	●
CT (Qi et al., 2023b)	Mid-training	●	●	○	●	○
FLARE (Hou et al., 2025)	Mid-training	●	●	○	●	○
NAD (Li et al., 2021b)	Post-training	○	○	●	●	●
ABL (Li et al., 2021a)	Post-training	○	●	●	○	○
FT-SAM (Zhu et al., 2023)	Post-training	○	○	●	○	●

1165
 1166 WaNet, and Blended collapse to nearly random ASR. Methods designed for stealthiness, such as LC
 1167 or Narcissus, achieve partial success but either incur large clean-accuracy drops or fail to generalize
 1168 across datasets. Table 5 further breaks down Arcueid’s all-to-one performance under dirty-label
 1169 and clean-label modes across five architectures. In both settings, Arcueid sustains high ASR with
 1170 only minor accuracy loss, reaching 100% ASR on TinyImageNet even without label manipulation.
 1171 These results show that Arcueid is not only effective in multi-target paradigms, but also strictly
 1172 surpasses SOTA baselines in the conventional all-to-one paradigm, highlighting its role as a unified
 1173 framework for both traditional and advanced backdoor attacks.

1175 A.2.3 ABLATION STUDY

1177 To better understand the robustness and design properties of Arcueid, we perform ablation studies
 1178 on three critical factors: PR (Poisoning Rate), surrogate data scale, and trigger mask.

1179
 1180 **Poisoning Rate Analysis.** We vary the overall PR from 0.02% to 0.12% (per-trigger rate from
 1181 0.002% to 0.012%). As shown in Figure 9a, Arcueid remains highly effective even at extremely
 1182 low poisoning budgets: at only 0.04%, ASR already exceeds 97% in both $M \rightarrow N$ and $M \rightarrow M$
 1183 settings with negligible accuracy drop. Performance stabilizes around 0.08%–0.10%, confirming
 1184 that the attack requires only a little data injection to achieve strong persistence.

1185
 1186 **Surrogate Data Analysis.** We investigate the impact of surrogate data scale, ranging from 500
 1187 to 20,000 samples drawn under a *non-IID* distribution. Results in Figure 9b show that attack per-
 1188 formance improves rapidly with more surrogate data, surpassing 95% ASR once 7,500 samples are

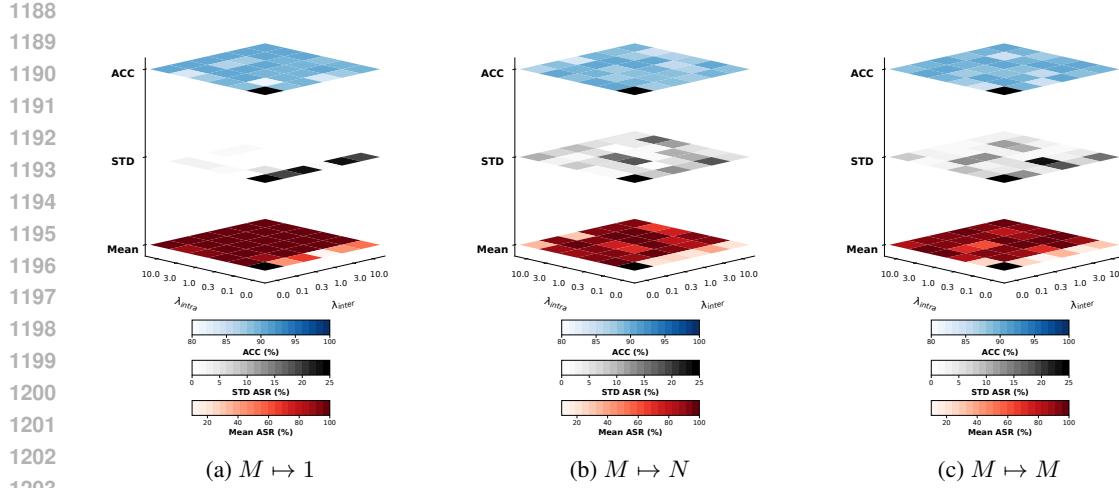


Figure 10: Sensitivity of ASR/Std/CA to $(\mathcal{L}_{\text{intra}}, \mathcal{L}_{\text{inter}})$ across multiple paradigms. The case $(\mathcal{L}_{\text{intra}}, \mathcal{L}_{\text{inter}}) = (0, 0)$ is marked as N/A, since it corresponds to no effective optimization.

used. Importantly, further scaling to 10,000–20,000 samples yields only marginal gains, indicating that Arcueid does not rely on large-scale auxiliary datasets to optimize triggers effectively.

Trigger Mask Analysis. Finally, we analyze the role of the blending mask $\alpha_k \in [0, 1]^{C \times H \times W}$ (introduced in Section 4.2) that controls trigger visibility. As shown in Figure 9c, overly small masks weaken the attack, reducing ASR below 80% in complex mappings. Larger masks improve stability, with consistently high ASR once the mask exceeds 0.05. Notably, performance remains strong up to 0.20, indicating that Arcueid tolerates a wide range of trigger strengths without compromising stealth.

A.2.4 LOSS WEIGHTS SENSITIVITY ANALYSIS

Recall that Arcueid optimizes the following auxiliary objective at the feature level (in Section 4.2):

$$\mathcal{L}_{\text{total}} = \lambda_{\text{intra}} \mathcal{L}_{\text{intra}} + \lambda_{\text{inter}} \mathcal{L}_{\text{inter}},$$

where $\mathcal{L}_{\text{intra}}$ penalizes the variance of triggered features within each pattern cluster, and $\mathcal{L}_{\text{inter}}$ enforces dispersion between cluster centroids via a margin constraint. The two terms play complementary roles: $\mathcal{L}_{\text{intra}}$ ensures that triggered samples converge to a coherent and predictable cloud, which is critical for transferring consistent decision boundaries to victim training. $\mathcal{L}_{\text{inter}}$ prevents collapse among multiple triggers by enlarging centroid gaps, thereby reducing cross-trigger interference and stabilizing success across targets. Removing $\mathcal{L}_{\text{intra}}$ yields unconstrained, scattered feature clouds that fail to anchor to the target class, while removing $\mathcal{L}_{\text{inter}}$ risks centroid overlap that causes unfair allocation of decision regions or severe variance across targets.

We systematically vary λ_{intra} and λ_{inter} on logarithmic scales $\{0, 0.1, 0.3, 1, 3, 10\}$ and evaluate them under three representative paradigms: $M \mapsto 1$, $M \mapsto N$, and $M \mapsto M$. Figures 10a–10c report the mean ASR, its standard deviation, and CA.

Our observations are as follows:

- **Inter-only is insufficient.** When $\lambda_{\text{intra}}=0$, ASR remains low in multi-target regimes, indicating that repulsion without compactness fails to anchor decisions.
- **Intra-only is already strong, and modest λ_{inter} further enhances fairness and stability.** With $\lambda_{\text{inter}}=0$, ASR is already high, showing that cluster cohesion alone suffices. Introducing a small β further reduces variance and improves worst-case success across targets.
- **Overweighting λ_{inter} is harmful.** Excessive λ_{inter} activates the hinge almost everywhere, injecting noisy repulsion and degrading overall performance.

1242 • **Single-target scenarios ($M \mapsto 1$) are less sensitive.** Once $\lambda_{\text{intra}} > 0$, ASR quickly saturates across
 1243 a wide range, while λ_{inter} primarily reduces variance without significantly affecting the mean.
 1244

1245 In summary, both terms are necessary in principle: $\mathcal{L}_{\text{intra}}$ ensures success, while $\mathcal{L}_{\text{inter}}$ promotes
 1246 collision avoidance and evenness. Yet, *tuning is straightforward*: balanced or α -leaning weights
 1247 (e.g., $\alpha \in [0.3, 3]$, $\beta \in [0.1, 1]$) consistently achieve $> 95\%$ ASR with low variance across paradigms
 1248 while maintaining CA. Therefore, we adopt $(\alpha, \beta) = (1, 1)$ as the default configuration.
 1249

1250 A.2.5 STABILITY ANALYSIS

1251 We further investigate the *stability* of Arcueid across paradigms ($M \mapsto 1$, $M \mapsto N$, and $M \mapsto M$).
 1252 Figures 8 show waterfall plots of ASR trajectories over training epochs under the five representative
 1253 architectures introduced in Section 5.1. The results reveal that Arcueid maintains consistently
 1254 high and steady ASR throughout training without collapse or oscillation, demonstrating that our
 1255 trigger-target associations remain intact even under heterogeneous model inductive biases. Impor-
 1256 tantly, convergence behaviors remain smooth across all paradigms, confirming that our method not
 1257 only ensures high attack effectiveness but also stabilizes the poisoned training dynamics against
 1258 gradient noise and architectural variations.
 1259

1260 A.2.6 STEALTHINESS EVALUATION

1261 *Metrics.* We assess stealthiness using complementary pixel-, signal-, perceptual- and representation-
 1262 level measures:

1263 • **ℓ_∞ -norm** — Measures the worst-case per-pixel perturbation magnitude, where lower values indi-
 1264 cate reduced visibility of the trigger.
 1265 • **MSE / PSNR** — Capture signal-domain distortion, where lower MSE and higher PSNR values
 1266 correspond to smaller overall perturbations.
 1267 • **LPIPS** (Zhang et al., 2018) — A learned perceptual similarity metric correlated with human
 1268 judgment, where lower values indicate higher perceptual similarity to benign inputs.
 1269 • **Residual statistics / sparsity** — Characterize the spatial footprint and sparsity of the perturbation,
 1270 for example by reporting the proportion of pixels exceeding a threshold $|\Delta| > \tau$.
 1271 • **Grad-CAM similarity** (Selvaraju et al., 2017) — Quantifies the alignment of attention maps be-
 1272 tween original and poisoned inputs using cosine or Pearson similarity, thereby indicating whether
 1273 model focus is preserved.
 1274 • **Feature-space cluster metrics** — Evaluate the embedding distribution of poisoned samples
 1275 through methods such as t-SNE visualization, highlighting how they are organized under benign
 1276 and backdoored models.
 1277

1278 Together these metrics provide a comprehensive picture of both low-level visibility and high-level
 1279 semantic or representation impact, which we then use to evaluate the imperceptibility of Arcueid
 1280 through both quantitative metrics and qualitative visualization. Table 9 compares ℓ_∞ -norm and
 1281 LPIPS against representative stealthy backdoor attack baselines. Arcueid achieves a favorable bal-
 1282 ance with $\ell_\infty = 0.2121$ and LPIPS = 0.0301, significantly outperforming TUAP, AdaptivePatch,
 1283 and Narcissus, while approaching the imperceptibility of WaNet and LC. Complementary signal-
 1284 domain metrics in Figure 12 show that triggers introduce an average MSE of 0.0015 and PSNR of
 1285 28.19 dB, indicating distortion well below human-detectable thresholds. Together these results con-
 1286 firm that Arcueid produces visually stealthy perturbations without sacrificing attack effectiveness.
 1287

1288 **Residual Analysis.** Figure 12 visualizes ten optimized triggers (a)–(j) via *Joint Cloud Shaping*
 1289 *Multi-trigger Optimization* mechanism. For each case, the first row shows clean images, the second
 1290 row residuals, and the third row poisoned images. Residual maps demonstrate that perturbations
 1291 are spatially localized and of small magnitude, with most pixel changes imperceptible by eye. This
 1292 confirms that Arcueid does not rely on conspicuous texture overlays or large-scale pixel modifi-
 1293 cations.
 1294

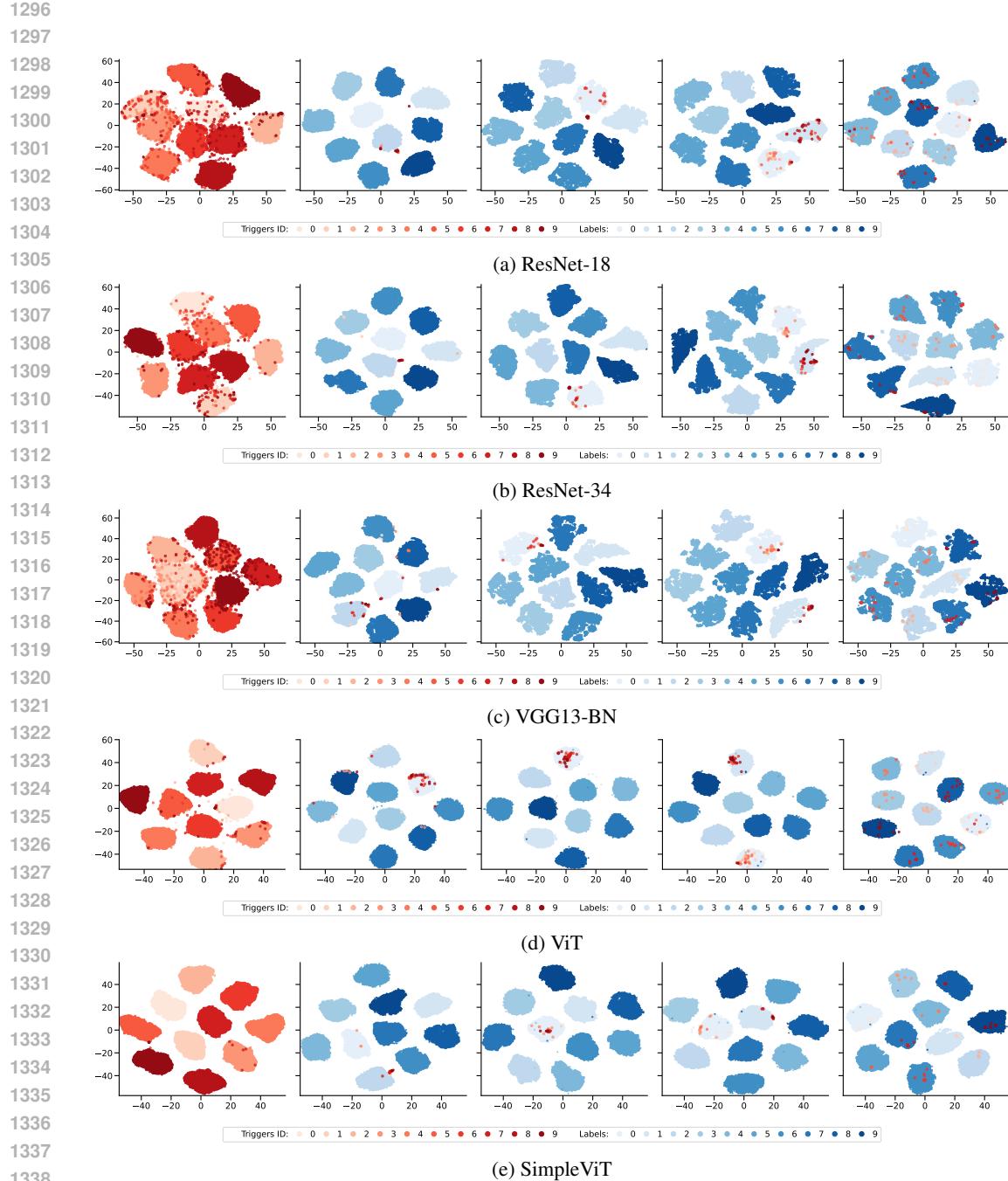


Figure 11: Visualization of trigger-induced feature representations. For each backbone, we first optimize $K=10$ triggers and then apply them under different attack paradigms ($M \mapsto 1$, $M \mapsto N$ and $M \mapsto M$). Five panels (left to right) show: (1) **All Poisoned Features (Benign Model)**: the full poisoned training set (50,000 samples) embedded under a benign model, (2) **Poisoned Set (Benign Model)**: a random subset of 100 poisoned samples embedded under a benign model, (3) **Poisoned Set (Model $M \mapsto 1$ Backdoored)**: the same poisoned set forwarded through a model trained with all 10 triggers mapped to a single target, (4) **Poisoned Set (Model $M \mapsto N$ Backdoored)**: the poisoned set embedded by a model trained with 10 triggers mapped to two targets, and (5) **Poisoned Set (Model $M \mapsto M$ Backdoored)**: the poisoned set projected from a model trained with one-to-one mappings between the 10 triggers and 10 targets.

Table 9: Visual quality comparison across attack methods.

	TUAP	WaNet	AdaptivePatch	LC	Narcissus	Arcueid(Ours)
$\ell_\infty\text{-norm}$	0.7021	0.1229	0.8992	0.9400	0.1255	0.2121
LPIPS	0.0480	0.0047	0.1295	0.0048	0.1047	0.0301

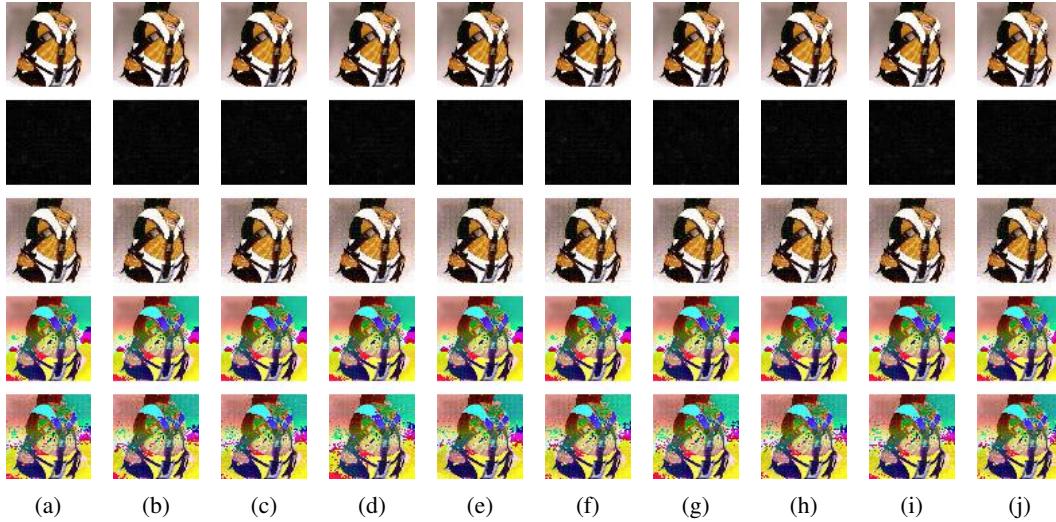


Figure 12: Visualization of ten different triggers (a)–(j) for the stealthiness study. For each case, the **first row** shows the **original images**, the **third row** shows the **images with triggers added**, and the **second row** presents the **residuals** between the original and the triggered images. The **fourth and fifth rows** display the **Grad-CAM heatmaps**, generated from the benign pre-trained model, for the original and triggered images, respectively. The average distortion introduced by the triggers is small, with an **average MSE of 0.0015** and an **average PSNR of 28.19 dB**.

Grad-CAM Consistency. The fourth and fifth rows of Figure 12 compare Grad-CAM heatmaps (Selvaraju et al., 2017) of original and poisoned images. Saliency patterns remain highly correlated, showing that triggers do not divert model attention toward conspicuous image regions. Instead, they subtly modulate internal features while preserving natural attribution patterns, reinforcing the covert nature of our perturbations.

Representation Structure. We further analyze stealthiness in representation space using t-SNE visualizations across CNNs (ResNet-18/34, VGG13-BN) and Transformers (ViT, SimpleViT), shown in Figure 11. Each panel depicts the distribution of poisoned samples under different models and paradigms. In benign embeddings, poisoned samples remain distributed within their original class manifolds, hindering simple outlier-based detection. Under backdoored models, poisoned samples form compact, target-aligned clusters: collapsing into a single region in $M \mapsto 1$, splitting into two stable groups in $M \mapsto N$ ($N = 2$), and separating into ten distinct clusters in $M \mapsto M$. This cluster behavior directly results from our optimization objective and ensures that stealthiness is maintained even in representation dimension.

Overall Stealthiness Summary. Across pixel, perceptual, saliency, and feature embedding views, Arcueid consistently achieves high imperceptibility. Perturbations remain subtle in the image domain, preserve natural attention maps, evade simple anomaly detectors, and embed smoothly within benign feature manifolds while constructing robust, paradigm-consistent decision regions. These results confirm that Arcueid is not only effective but also covert, a crucial property for realistic adaptive backdoor attacks.

1404 A.3 FURTHER ARCUED ANALYSIS
14051406 This section complements Section 4 by filling in details and providing a formal analysis of both the
1407 *optimization stage* and the *training-time execution stage*. All proofs refer to Appendix A.6.
14081409 A.3.1 OPTIMIZATION ANALYSIS
14101411 Building on Section 4.2, we now provide a more formal analysis of the optimization stage, notations
1412 and assumptions follow the main text.
14131414 The goal is to characterize the gradient forces induced by the intra- and inter-cloud objectives, es-
1415 tablish the existence of well-formed minimizers, and connect these properties to the feasibility and
1416 non-interference conditions defined earlier in Section 4.1.
14171418 **Gradients.** We characterize the exact gradient fields of the two terms, let $n_k = |\mathcal{B}_k|$ and abbreviate
1419 $\tilde{z}_i \equiv \tilde{z}_i^{(k)}$ for $(x_i, y_i) \in \mathcal{B}_k$.
14201421 **Lemma 4 (Exact Feature-level Gradients of $\mathcal{L}_{\text{intra}}$).** *If $\|\mu_k - \mu_\ell\| < m$, then*
1422

1423
$$\frac{\partial \mathcal{L}_{\text{intra}}}{\partial \mu_k} = -\frac{2}{K(K-1)} \frac{\mu_k - \mu_\ell}{\|\mu_k - \mu_\ell\|}, \quad \frac{\partial \mathcal{L}_{\text{intra}}}{\partial \tilde{z}_i} = -\frac{1}{n_k} \frac{\partial \mathcal{L}_{\text{intra}}}{\partial \mu_k}, \quad i \in \mathcal{B}_k.$$

1424

1425 **Chain Rule to Triggers.** We further analyze how these gradients propagate to the trigger param-
1426 eters via the chain rule,
1427

1428
$$\frac{\partial \mathcal{L}}{\partial \eta_k} = \sum_{(x_i, y_i) \in \mathcal{B}_k} \left(J_{g_{\eta_k}}(x_i)^\top J_\phi(g_{\eta_k}(x_i))^\top \frac{\partial \mathcal{L}}{\partial \tilde{z}_i} \right), \quad \mathcal{L} \in \{\mathcal{L}_{\text{intra}}, \mathcal{L}_{\text{inter}}\}, \quad (10)$$

1429

1430 with J_ϕ and $J_{g_{\eta_k}}$ the Jacobians of ϕ_θ and g_{η_k} , respectively. Assuming both mappings are differen-
1431 tiable, the updates to η_k inherit the attractive–repulsive dynamics characterized in Lemmas 4–5.
14321433 **Existence and Feasibility Guarantees.** We show that optimization admits non-degenerate mini-
1434 mizers and that these imply interior placement without interference.
14351436 **Proposition 3 (Existence of Minimizers and Non-collapse).** *If triggered features are bounded on
1437 the batch support and $m > 0$, then $F(\{\tilde{z}_i\}) = \mathcal{L}_{\text{intra}} + \lambda \mathcal{L}_{\text{inter}}$ (as a function of $\{\tilde{z}_i\}$) attains a
1438 minimum; any stationary point satisfies $\|\mu_k - \mu_\ell\| \geq m$ for all $k \neq \ell$ (otherwise an active hinge
1439 yields a nonzero repulsive gradient).*1440 **Proposition 4 (Radius/Separation \Rightarrow Interior Placement).** *Let f_θ be fixed. Suppose at the post-
1441 optimization centers $\{\mu_k\}$ the fixed head exhibits a positive center gap to the designated targets: for
1442 every k and $j \neq \tau_k$, $\Delta_{k,j}(\mu_k) = s_{\tau_k}(\mu_k) - s_j(\mu_k) \geq \gamma_{\text{logit}} > 0$, and for each cloud the logit gaps
1443 are L -Lipschitz locally. If $\mathcal{L}_{\text{intra}} \leq \varepsilon_{\text{intra}}$ (so $r_k \leq \sqrt{\varepsilon_{\text{intra}}}$) and $\mathcal{L}_{\text{inter}} = 0$ (so $\|\mu_k - \mu_\ell\| \geq m$), then
1444 every triggered point in cloud k lies strictly in \mathcal{R}_{τ_k} with margin at least $\gamma_{\min} = \gamma_{\text{logit}} - L\sqrt{\varepsilon_{\text{intra}}} > 0$,
1445 and clouds do not interfere.*1446 **Parameter Sensitivity Implications.** To further examine parameter sensitivity, we have provided
1447 experimental evidence in Appendix A.2.4, and here we complement the analysis with theoretical
1448 insights.1449 **Proposition 5 (Shrinking $\mathcal{L}_{\text{intra}}$ Improves Interior Margin).** *Let the head be locally L -Lipschitz
1450 around \mathcal{C}_k and suppose the center μ_k has logit gap $\gamma_{\text{logit}}(\mu_k) > 0$ to its designated target τ_k .
1451 If $\mathcal{L}_{\text{intra}} \leq \varepsilon_{\text{intra}}$ so that $r_k \leq \sqrt{\varepsilon_{\text{intra}}}$, then every triggered point in \mathcal{C}_k enjoys a target margin
1452 $\gamma_{\min} \geq \gamma_{\text{logit}}(\mu_k) - L\sqrt{\varepsilon_{\text{intra}}} > 0$.*1453 **Proposition 6 (Raising δ_{\min} Boosts Worst-case Success).** *Assume (i) clouds are isotropic with
1454 radii $\{r_k\}$, and (ii) class heads are locally smooth so decision boundaries move at most L_b per unit
1455 feature perturbation. If $\delta_{\min} > r_k + r_\ell + \xi$ for all $k \neq \ell$ and some buffer $\xi > 0$, then cross-trigger
1456 interference probability is 0 and the per-target misclassification rate is bounded above by a function
1457 decreasing in ξ . In particular, increasing δ_{\min} (by activating $\mathcal{L}_{\text{inter}}$) improves the worst-case target
1458 success and reduces the per-target instability.*

Propositions 5–6 explain the observed sweep in Figure 10: $\mathcal{L}_{\text{intra}}$ reduces radii and raises interior margins, while a modest $\mathcal{L}_{\text{inter}}$ selectively increases inter-center gaps for active pairs, improving worst-case target success and reducing variance; overly large $\mathcal{L}_{\text{inter}}$ over-activates the hinge and injects noisy repulsion, degrading effectiveness in multi-target paradigms.

Optimization Dynamics. Under standard smoothness of $\phi_\theta \circ g_{\eta_k}$ and bounded Jacobians, stochastic gradient updates on Equation 9 with diminishing stepsizes satisfy the usual nonconvex guarantee of asymptotic stationarity in η :

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\nabla_\eta (\lambda_{\text{intra}} \mathcal{L}_{\text{intra}} + \lambda_{\text{inter}} \mathcal{L}_{\text{inter}})\|^2] \rightarrow 0 \quad (T \rightarrow \infty).$$

Combined with Proposition 3, this ensures convergence to non-collapsed stationary points where center separation is preserved, while Proposition 4 links such configurations to interior placement and non-interference. Moreover, the gradient structure in Lemmas 4–5 guarantees that updates consistently align with contraction–repulsion dynamics, maintaining small radii and enforcing pairwise margins. Since θ is fixed, all guarantees and margins are taken w.r.t. the *current* classifier; placement into a target region relies on the measured center gap γ_{logit} at the optimized centers.

A.3.2 TRAINING-TIME EXECUTION ANALYSIS

In the main text we described the overall attack workflow in Section 4.3, but did not explicitly analyze how backdoor training proceeds under different threat paradigms. Here we provide a formal analysis of the training-time execution stage, showing how compact and separated clouds interact with gradient dynamics to yield paradigm-agnostic success.

Execution Dynamics. Once the trigger optimization produces stable feature clouds, their effect during empirical risk minimization can be examined through the gradients induced on the classifier head. The following results characterize how poisoned samples drive head parameters toward the intended mapping, both individually and collectively across multiple triggers.

Lemma 6 (Gradient Alignment on Triggered Clouds). *Consider a poisoned example (z, t) with $z \in \mathcal{C}_k$ and target label $t = \tau_k$, trained under any classification-calibrated loss $\ell(h(z), t)$ with head parameters W . Then the stochastic gradient update on W has the form*

$$\nabla_W \ell = \Phi(z, t),$$

where Φ is linear in z and satisfies:

- the update of w_t involves a negative multiple of z , thus increasing its alignment with z ;
- the update of w_j , $j \neq t$, involves positive multiples of z , thus reducing their alignment with z .

Taking expectations over minibatches of triggered samples from \mathcal{C}_k , the net effect is to push w_t toward the cloud center μ_k while pushing other weights away, thus enlarging the logit gap $\langle w_t - w_j, \mu_k \rangle$.

Lemma 7 (Superposition Without Conflict Under Separation). *If centers are separated ($\|\mu_k - \mu_\ell\| \geq m$) and radii small, the mean feature directions $\{\mu_k\}$ are sufficiently distinct, so the expected poisoned gradients from different clouds are approximately orthogonal and do not cancel. Hence, updates for heads $\{w_{\tau_k}\}$ add up: each w_{τ_k} is pulled toward its μ_k , while repelled from other classes.*

Unified success across paradigms. Given compact and separated feature clouds, training with a classification-calibrated loss drives the model toward the intended backdoor mapping. By Lemma 6, stochastic gradients on triggered samples align the target head w_{τ_k} with its cloud center μ_k while repelling other heads, thereby enlarging the local logit gap. Lemma 7 further shows that when centers are well separated, gradient contributions from different clouds superpose without conflict, so updates across multiple triggers add constructively rather than cancel. Together with finite-sample persistence and realizability assumptions, this ensures that empirical risk minimization converges with high probability to the desired mapping.

This mechanism manifests consistently across paradigms: in the $M \mapsto M$ case, each cloud aligns to a distinct head; in $M \mapsto N$, several clouds jointly reinforce the same head; and in $M \mapsto 1$, all clouds converge on a single head, yielding unified alignment to the designated target region.

1512 **Algorithm 1** *Joint Cloud Shaping Multi-trigger Optimization*

1513 **Input:** Surrogate dataset \mathcal{D}_{sur} , Surrogate model $f_{\text{sur}} = h \circ \phi_{\theta}$, Number of triggers K , Steps
1514 T , Learning rate η , Margin m , Trade-offs $\lambda_{\text{intra}}, \lambda_{\text{inter}}$, Masks α

1515 **Output:** Optimized trigger family $G = \{g_{\eta_k}\}_{k=1}^K$

1516 1: Initialize trigger patterns $\{v_k\}_{k=1}^K \sim \mathcal{N}(0, 1)$

1517 2: $\{g_{\eta_k}\}_{k=1}^K \leftarrow \{(\alpha, v_k)\}_{k=1}^K$, $\mu_k \leftarrow \mathbf{0}$

1518 3: **for** $t = 1$ to T **do**

1519 4: **for** batch $\{(x_i, y_i)\}_{i=1}^m \sim \mathcal{D}_{\text{sur}}$ **do**

1520 5: Sample pattern IDs $k_i \in \{1, \dots, K\}$ for each i

1521 6: $x'_i \leftarrow g_{k_i}(x_i)$

1522 7: $z_i \leftarrow \phi_{\theta}(x'_i)$

1523 8: $\mathcal{B}_k := \{i : k_i = k\}$, $\mathcal{K}_{\text{act}} := \{k : |\mathcal{B}_k| > 0\}$

1524 9: $\mu_k \leftarrow \frac{1}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} z_i \quad \forall k \in \mathcal{K}_{\text{act}}$

1525 10: $\mathcal{L}_{\text{intra}} \leftarrow \frac{1}{K} \sum_k \frac{1}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} \|z_i - \mu_k\|^2$

1526 11: $\mathcal{L}_{\text{inter}} \leftarrow \frac{2}{K(K-1)} \sum_{k < \ell} [m - \|\mu_k - \mu_{\ell}\|]_+$

1527 12: $\mathcal{L}_{\text{agg}} \leftarrow \lambda_{\text{intra}} \mathcal{L}_{\text{intra}} + \lambda_{\text{inter}} \mathcal{L}_{\text{inter}}$

1528 13: $v_k \leftarrow v_k - \eta \nabla_{v_k} \mathcal{L}_{\text{agg}}, \quad \forall k \in \{k_i\}$

1529 14: $\{g_{\eta_k}\}_{k=1}^K \leftarrow \{(\alpha, v_k)\}_{k=1}^K$

1530 15: **end for**

1531 16: **end for**

1532 17: **return** $\{g_{\eta_k}\}_{k=1}^K$

1534

1535 A.3.3 PSEUDO CODE

1536

1537 Algorithm 1 explicitly operationalizes *Joint Cloud Shaping Multi-trigger Optimization* mechanism
1538 of *Arcueid* in Section 4.2. Lines 9–12 implement intra-cloud compactness and inter-cloud separation.
1539 The update in line 13–14 follows the chain rule in Equation 10, modifying only the learnable
1540 trigger patterns v_k while keeping masks α_k fixed. By Proposition 3, these updates admit minimizers
1541 without center collapse, and Proposition 4 guarantees that sufficiently small radii and adequate sep-
1542 aration yield interior placement and non-interference. Together, these steps instantiate the feasibility
1543 and non-interference conditions from Section 4.1 and ensure the reproducibility.

1544

1545 A.4 ADAPTIVE DEFENSE ANALYSIS

1546

1547 Building on a clear understanding of the mechanisms underlying our proposed attack, *Arcueid*,
1548 this chapter introduces adaptive defense mechanism designed to directly counter the the attack. We
1549 then conduct a systematic evaluation of this defense, assessing its effectiveness and robustness.

1550

1551 A.4.1 PROBLEM DEFINITION

1552

1553 So as *Arcueid* constructs a family of masked-blend triggers $\{g_{\eta_k}\}_{k=1}^K$ whose images induce com-
1554 pact, well-separated feature clouds $\mathcal{C}_k = \{\phi_{\theta}(g_{\eta_k}(x)) : (x, y) \sim \mathcal{D}, \pi(y) = k\}$ satisfying the
1555 feasibility constraints in Equation 5. In particular, each cloud \mathcal{C}_k must lie strictly inside the decision
1556 region R_{τ_k} of the attacker-chosen target label τ_k , with positive interior margin and non-overlap with
1557 other clouds. Our goal is to construct a defense that invalidates these feasibility conditions *for the*
1558 *same trigger family and perturbation budget* used by *Arcueid*.

1559 Let $f_{\theta} = h \circ \phi_{\theta}$ be the classifier under defense, with representation map $\phi_{\theta} : \mathcal{X} \rightarrow \mathbb{R}^d$. We adopt
1560 the same masked-blend trigger family used by *Arcueid*:

$$\mathcal{S} = \left\{ g_{\eta}(x) = \text{clip} \left((1 - \alpha) \odot x + \alpha \odot v \right) : \|\alpha\|_0 \leq s, \|g_{\eta}(x) - x\|_{\infty} \leq \varepsilon \right\}. \quad (11)$$

1563 For a clean example $(x, y) \sim \mathcal{D}$, define the *mask-robust margin*

1564

$$\gamma_{\text{mask}}(x, y; \theta) := \inf_{\eta \in \mathcal{S}} \text{dist} \left(\phi_{\theta}(g_{\eta}(x)), \partial R_y \right), \quad \Gamma_{\text{mask}}(\theta) := \inf_{(x, y) \sim \mathcal{D}} \gamma_{\text{mask}}(x, y; \theta). \quad (12)$$

If $\Gamma_{\text{mask}}(\theta) > 0$, then no masked-blend trigger in \mathcal{S} can push any clean feature $\phi_\theta(g_\eta(x))$ across a decision boundary into an incorrect region. The following proposition shows that in this case Arcueid's multi-trigger construction becomes theoretically infeasible.

Proposition 7 (Mask-robust Margin Invalidates Trigger Clouds). *If $\Gamma_{\text{mask}}(\theta) > 0$, then there exists no trigger family $\{g_{\eta_k}\} \subset \mathcal{S}$ and routing π that can produce feature clouds $\{C_k\}$ lying strictly inside $\{R_{\tau_k}\}$ as required by Arcueid's feasibility constraints in Equation 5. Thus, Arcueid's multi-trigger backdoor mapping is infeasible under $\Gamma_{\text{mask}}(\theta) > 0$.*

A.4.2 OVERVIEW

We formulate the defense as a robust optimization problem:

$$\min_{\theta} R_{\text{clean}}(\theta) + \lambda_{\text{rob}} R_{\text{rob}}(\theta), \quad R_{\text{rob}}(\theta) = \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\max_{\eta \in \mathcal{S}} \ell(f_\theta(g_\eta(x)), y) \right]. \quad (13)$$

The inner maximization searches for the most harmful masked-blend trigger in \mathcal{S} for the current model, while the outer minimization updates θ to classify both clean and triggered examples correctly. The robust loss plays a direct geometric role: it controls the mask-robust margin $\Gamma_{\text{mask}}(\theta)$.

Proposition 8 (Robust Loss Controls Mask-robust Margin). *Under standard Lipschitz and monotonicity assumptions on logits and loss, if $R_{\text{rob}}(\theta) \leq \varepsilon_{\text{rob}}$, then*

$$\Gamma_{\text{mask}}(\theta) \geq \frac{1}{L} \psi^{-1}(\varepsilon_{\text{rob}}), \quad (14)$$

where L is the Lipschitz constant of the logits and ψ^{-1} bounds the logit margin from the loss.

This result shows that minimizing the robust loss directly increases a certified lower bound on $\Gamma_{\text{mask}}(\theta)$, which by Proposition 7 breaks the feasibility of Arcueid's clouds.

We implement Equation 13 using two mechanisms:

- **Adaptive Mitigation.** Starting from a possibly backdoored f_{θ_0} , we iteratively learn an adversarial universal masked-blend trigger η^* via inner maximization over $\ell(f_\theta(g_\eta(x)), y)$, and fine-tune θ so that $f_\theta(g_{\eta^*}(x))$ predicts the correct label. This locally increases $\gamma_{\text{mask}}(x, y; \theta)$ around vulnerable examples.
- **Adaptive Training.** During training, each minibatch is augmented with an adversarially optimized universal trigger η^* . Optimizing θ jointly on clean and triggered examples approximates the minimax problem and increases $\Gamma_{\text{mask}}(\theta)$ globally.

Both mechanisms operate within the Arcueid trigger budget (s, ε) , ensuring apples-to-apples comparison in theory.

A.4.3 DETAILED DESIGN

Adversarial Trigger Update. For $\{(x_i, y_i)\}_{i=1}^B$, we maintain a universal trigger parameter $\eta = (v, \alpha)$ and perform projected gradient ascent:

$$\eta \leftarrow \Pi_{\mathcal{S}} \left[\eta + \rho \nabla_{\eta} \frac{1}{B} \sum_{i=1}^B \ell(f_\theta(g_\eta(x_i)), y_i) \right], \quad (15)$$

where $\Pi_{\mathcal{S}}$ projects back to the masked-blend trigger family. This step identifies the most vulnerable masked direction for the current θ .

Robust Parameter Update. Given the updated trigger η^* , model parameters are updated via

$$\theta \leftarrow \theta - \gamma \nabla_{\theta} \left[\frac{1}{B} \sum_{i=1}^B \ell(f_\theta(x_i), y_i) + \lambda_{\text{rob}} \ell(f_\theta(g_{\eta^*}(x_i)), y_i) \right], \quad (16)$$

which moves triggered features back toward their correct regions R_{y_i} and expands the mask-robust margin.

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
Table 10: **Mitigation defense extension.**

Attack Type	Defense Type	CA	ASR
$M \mapsto 1$ Attack	No Defense	87.8%	$99.6\% \pm 0.3\%$
	FineTuning	87.3%	$99.8\% \pm 0.2\%$
	Pruning	87.3%	$99.8\% \pm 0.2\%$
	Adaptive Mitigation	66.4%	21.8% \pm 7.7%
$M \mapsto N$ Attack	No Defense	87.7%	$99.7\% \pm 0.4\%$
	FineTuning	86.8%	$99.7\% \pm 0.5\%$
	Pruning	86.7%	$99.6\% \pm 0.5\%$
	Adaptive Mitigation	52.5%	16.4% \pm 12.9%
$M \mapsto M$ Attack	No Defense	89.2%	$99.4\% \pm 0.8\%$
	FineTuning	88.6%	$99.2\% \pm 1.1\%$
	Pruning	88.4%	$98.5\% \pm 2.2\%$
	Adaptive Mitigation	58.2%	7.5% \pm 5.8%

Table 11: **Adaptive training analysis.**

Attack Type	Defense type	CA	ASR
$M \mapsto 1$ Attack	No Defense	87.8%	$99.6\% \pm 0.3\%$
	Adaptive Training	65.2%	7.8% \pm 2.4%
$M \mapsto N$ Attack	No Defense	87.7%	$99.7\% \pm 0.4\%$
	Adaptive Training	63.4%	10.0% \pm 6.8%
$M \mapsto M$ Attack	No Defense	89.2%	$99.4\% \pm 0.8\%$
	Adaptive Training	66.8%	6.8% \pm 8.3%

Effect on Trigger Cloud Geometry. Under the smoothness assumptions used in Section 4, increasing $\Gamma_{\text{mask}}(\theta)$ prevents any collection of masked triggers $\{g_{\eta_k}\} \subset \mathcal{S}$ from generating wrong-label clouds $\{\mathcal{C}_k\}$ that are (i) compact, (ii) mutually separated, and (iii) strictly inside attacker-chosen regions $\{R_{\tau_k}\}$ with positive interior margin. Thus Equation 5 becomes infeasible and Arcueid’s multi-trigger backdoor mechanism collapses.

Robustness–accuracy Tradeoff. Because Equation 16 forces the classifier to be insensitive to all masked-blend perturbations in \mathcal{S} , it necessarily suppresses certain localized directions that are genuinely discriminative in clean data. The following proposition formalizes this inherent cost.

Proposition 9 (Robustness–accuracy Tradeoff under Masked-blend Defense). *If the Bayes-optimal classifier f^* is not robust to \mathcal{S} on a subset of $\mathcal{A} \subseteq \mathcal{X}$ of probability mass $\nu > 0$, then any model f_θ with $\Gamma_{\text{mask}}(\theta) \geq \gamma > 0$ must incur strictly higher standard risk:*

$$R_{\text{clean}}(\theta) \geq R_{\text{clean}}(f^*) + \alpha\nu, \quad (17)$$

for some $\alpha > 0$ depending on the geometry of $\{R_c\}$. Hence substantial robustness necessarily induces a drop in clean accuracy.

A.4.4 EVALUATION

For evaluation, we instantiated both adaptive defenses on default setting aligned with the detail in Appendix A.2.1 and compare them with standard mitigation such as FineTuning (Liu et al., 2018) and Pruning (Liu et al., 2018)

As shown in Tables 10 and 11, these generic mitigations have negligible effect and the ASR remains above 98% across all paradigms. In contrast, Adaptive Mitigation reduces ASR to 21.8% and Adap-

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3

1728
 1729 **Proposition 10 (Monotone Behavior of Poisoned Margins).** Let $\mathcal{D}_{\text{poison}}$ consist of triggered ex-
 1730 amples (z_k, τ_k) with $z_k = g_{\eta_k}(x)$ and target labels τ_k , and let $\gamma_{\text{poison}}(\theta)$ be defined as in Equa-
 1731 tion 19. Suppose ℓ in Equation 18 is strictly decreasing, and there exist two parameter vectors θ_{ref}
 1732 and θ_T such that:

1733 **1. Global Risk Non-increase**

$$\mathcal{R}(\theta_T) \leq \mathcal{R}(\theta_{\text{ref}}).$$

1735 **2. Clean Loss Non-increase**

$$\sum_{(x,y) \in \mathcal{D}_{\text{clean}}} \ell(\Gamma_y(x; \theta_T)) \leq \sum_{(x,y) \in \mathcal{D}_{\text{clean}}} \ell(\Gamma_y(x; \theta_{\text{ref}})).$$

1739 Then the minimum poisoned margin cannot decrease:

$$\gamma_{\text{poison}}(\theta_T) \geq \gamma_{\text{poison}}(\theta_{\text{ref}}).$$

1742 In words, Proposition 10 states that, under any strictly decreasing margin-based loss, *any* final model
 1743 that (i) does not worsen empirical risk and (ii) does not worsen clean loss in aggregate cannot
 1744 systematically reduce the margins of poisoned points. Equivalently, training cannot push triggered
 1745 features closer to the decision boundaries in a way that would increase their loss, and the only
 1746 risk-neutral directions are those that keep or enlarge poisoned margins. This is exactly the sense in
 1747 which victim training tends to *reinforce* rather than destroy the margins that Arcueid initializes
 1748 via Equation 9.

1750 **Local Stability of Cloud Margins and Surrogate–Victim Alignment** We now connect the
 1751 poisoned-margin behavior above to the cloud-margin lower bound $\underline{\gamma}(\theta)$ used in Section 4.2 and
 1752 to the surrogate–victim alignment condition in Proposition 2.

1753 Under the local Lipschitz assumptions on ϕ_θ , h_θ and the decision boundaries $\partial R_c(\theta)$ made in Sec-
 1754 tion 4, the map $\theta \mapsto \underline{\gamma}(\theta)$ is locally Lipschitz:

1755 **Lemma 8 (Local Stability of Cloud-margin Lower Bound).** *There exists $L_\gamma > 0$ (depending
 1756 only on the Lipschitz constants of ϕ_θ , h_θ and on the alignment parameters $(A, \delta, \varepsilon_h)$ introduced in
 1757 Section 4.3) such that, for any two parameters θ, θ' in the neighborhood considered in Section 4,*

$$|\underline{\gamma}(\theta') - \underline{\gamma}(\theta)| \leq L_\gamma \|\theta' - \theta\|. \quad (20)$$

1760 Lemma 8 formalizes the intuition that the positive buffer $\underline{\gamma}(\theta_{\text{ref}})$ created by Equation 9 on the surro-
 1761 gate is robust to moderate changes in θ : so long as $\|\theta' - \theta_{\text{ref}}\|$ remains small, the lower bound $\underline{\gamma}(\theta')$
 1762 cannot collapse to zero.

1764 Proposition 2 then connects this local stability on the surrogate to the final victim model: any θ_T
 1765 whose representation is aligned with θ_S in the sense of the $(A, \delta, \varepsilon_h)$ condition lies in a region where
 1766 $\underline{\gamma}(\theta_T)$ remains positive and the multi-trigger mapping is preserved.

1767 Combining Proposition 10 with Lemma 8 yields the following conceptual picture: Equation 9 con-
 1768 struct a reference parameter θ_{ref} (on the surrogate) with $\underline{\gamma}(\theta_{\text{ref}}) > 0$; any victim model θ_T that (i)
 1769 is not worse in empirical risk, (ii) does not worsen clean loss in aggregate, and (iii) remains in the
 1770 aligned neighborhood of θ_{ref} in the sense of Section 4.3, must preserve or enlarge the margins of
 1771 poisoned points and hence maintain a positive cloud-margin lower bound $\underline{\gamma}(\theta_T) > 0$. This explains
 1772 why in practice the trigger clouds remain compact and well separated across training and, in many
 1773 cases, become more pronounced, exactly as observed in Figure 11.

1774 **A.5.2 SENSITIVITY OF REPRESENTATION MISALIGNMENT**

1776 We then elaborates the sensitivity to deviations in representation alignment between the surrogate
 1777 and victim models.

1778 Recall the alignment model used in Proposition 2: we assume that the victim representation ϕ_{θ_T}
 1779 is approximately aligned with the surrogate representation ϕ_{θ_S} via a bounded linear map A and a
 1780 small additive discrepancy:

$$\phi_{\theta_T}(x) = A \phi_{\theta_S}(x) + \epsilon(x), \quad \|\epsilon(x)\| \leq \delta \quad \forall x. \quad (21)$$

1782 Here $A : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is linear and $\delta \geq 0$ quantifies the worst-case representation mismatch.
 1783

1784 On the surrogate model $f_{\theta_S} = h \circ \phi_{\theta_S}$, the trigger clouds
 1785

$$\mathcal{C}_k^{(S)} = \{\phi_{\theta_S}(g_{\eta_k}(x)) : (x, y) \sim \mathcal{D}, \pi(y) = k\}$$

1786 are assumed to be *feasible* in the sense of Sec. 4: each cloud lies strictly inside the decision region
 1787 $R_{\tau_k}(\theta_S)$, is compact, and is separated from the boundaries with a positive margin. We denote the
 1788 cloud center and radius by

$$\mu_k^{(S)} = \mathbb{E}[\phi_{\theta_S}(g_{\eta_k}(x)) \mid \pi(y) = k], \quad r_k^{(S)} = \sup_{u \in \mathcal{C}_k^{(S)}} \|u - \mu_k^{(S)}\|.$$

1792 Let γ_{θ_S} denote the surrogate cloud-margin lower bound used in Section 4.2:
 1793

$$\gamma_{\theta_S} := \min_k \text{margin}_{\tau_k}(\mathcal{C}_k^{(S)}), \quad (22)$$

1794 where for a cloud \mathcal{C}_k we define
 1795

$$\text{margin}_{\tau_k}(\mathcal{C}_k) := \inf_{u \in \mathcal{C}_k} \text{dist}(u, \partial R_{\tau_k}(\theta)).$$

1796 For the classifier head h we assume a standard Lipschitz control on the geometry of decision regions,
 1797 where exists $L_h > 0$ such that for any two feature vectors $u, u' \in \mathbb{R}^d$ and any class c , the signed
 1798 distance to the decision boundary $\partial R_c(\theta)$ satisfies

$$|\text{margin}_c(u) - \text{margin}_c(u')| \leq L_h \|u' - u\|.$$

1800 Equivalently, the (unsigned) distance to the boundary is L_h -Lipschitz in u .
 1801

1802 Under this assumption, Proposition 2 shows that Arcueid’s trigger clouds remain feasible on the
 1803 target model whenever the alignment parameters (A, δ) satisfy
 1804

$$L_h \|A\| \delta < \gamma_{\theta_S}, \quad (23)$$

1805 **Cloud Geometry under Linear Alignment.** We first characterize how the cloud centers and radii
 1806 transform from the surrogate to the target under the alignment model (Equation 21).
 1807

1808 For a fixed trigger index k , define the target cloud
 1809

$$\mathcal{C}_k^{(T)} = \{\phi_{\theta_T}(g_{\eta_k}(x)) : (x, y) \sim \mathcal{D}, \pi(y) = k\}.$$

1810 By Equation 21, every $u \in \mathcal{C}_k^{(S)}$ is mapped to
 1811

$$v = \phi_{\theta_T}(g_{\eta_k}(x)) = Au + \epsilon(x) \in \mathcal{C}_k^{(T)}.$$

1812 Let $\mu_k^{(T)}$ and $r_k^{(T)}$ denote the center and radius of $\mathcal{C}_k^{(T)}$:
 1813

$$\mu_k^{(T)} = \mathbb{E}[\phi_{\theta_T}(g_{\eta_k}(x)) \mid \pi(y) = k], \quad r_k^{(T)} = \sup_{v \in \mathcal{C}_k^{(T)}} \|v - \mu_k^{(T)}\|.$$

1814 **Lemma 9 (Transformation of Cloud Centers and Radii).** *Under the alignment model, for each*
 1815 *trigger index k there exists a vector $\bar{\epsilon}_k$ with $\|\bar{\epsilon}_k\| \leq \delta$ such that*
 1816

$$\mu_k^{(T)} = A\mu_k^{(S)} + \bar{\epsilon}_k, \quad (24)$$

1817 *and the target radius is bounded by*
 1818

$$r_k^{(T)} \leq \|A\| r_k^{(S)} + \delta. \quad (25)$$

1819 **Margin Degradation under Misalignment.** We now relate the target cloud margins to the surro-
 1820 *gate cloud margins via the previous assumption and Lemma 9. Let*
 1821

$$\gamma_{\theta_T} := \min_k \text{margin}_{\tau_k}(\mathcal{C}_k^{(T)})$$

1822 denote the target cloud-margin lower bound.
 1823

1824 **Proposition 11 (Sensitivity of Transfer Margin to Misalignment).** *Under the alignment model,*
 1825 *for each trigger index k the margin of $\mathcal{C}_k^{(T)}$ on the target model admits the bound*
 1826

$$\text{margin}_{\tau_k}(\mathcal{C}_k^{(T)}) \geq \text{margin}_{\tau_k}(\mathcal{C}_k^{(S)}) - L_h (\|A\| - 1) r_k^{(S)} + \|A\| \delta, \quad (26)$$

1827 *and consequently*
 1828

$$\gamma_{\theta_T} \geq \gamma_{\theta_S} - L_h (\max_k \|A\| - 1) r_k^{(S)} + \|A\| \delta. \quad (27)$$

Interpretation and Practical Implications. Proposition 11 makes the informal discussion in the rebuttal precise. The degradation of the target cloud-margin lower bound γ_{θ_T} relative to the surrogate margin γ_{θ_S} is controlled *linearly* by:

- the deviation of $\|A\|$ from 1, i.e., how much the linear map rescales feature space;
- the surrogate cloud radii $r_k^{(S)}$, i.e., how compact the clouds are on the surrogate;
- the representation discrepancy δ , i.e., how far the victim features deviate from the aligned linear image of the surrogate features.

In particular, as long as

$$L_h \left(\max_k |\|A\| - 1| r_k^{(S)} + \|A\| \delta \right) \ll \gamma_{\theta_S},$$

the target margin γ_{θ_T} remains positive and the multi-trigger backdoor mapping remains feasible. Only when the combined shift satisfies

$$L_h \left(\max_k |\|A\| - 1| r_k^{(S)} + \|A\| \delta \right) \approx \gamma_{\theta_S}$$

does the margin collapse and transferability become unreliable.

Because `Arcueid` explicitly optimizes for compact surrogate clouds (small $r_k^{(S)}$) with large margins γ_{θ_S} , the sensitivity term in Equation 27 is naturally attenuated.

A.6 PROOFS

Throughout, all norms and distances are taken in the representation space \mathcal{Z} , and the classifier $f_\theta = h \circ \phi_\theta$ is fixed. For a nonempty closed set $B \subseteq \mathcal{Z}$, we write $\text{dist}(z, B) := \inf_{u \in B} \|z - u\|$. For class t , define the decision region $\mathcal{R}_t := \{z \in \mathcal{Z} : \arg \max h(z) = t\}$ with boundary $\partial \mathcal{R}_t$. We use two basic facts: (F1) if $\text{dist}(z, \partial \mathcal{R}_t) > 0$ then z lies in the open interior of \mathcal{R}_t ; (F2) $\text{dist}(z, B) \geq \text{dist}(u, B) - \|z - u\|$ (triangle inequality). We also adopt the notation introduced in Section 4.2. Finally, let $s(z) \in \mathbb{R}^Q$ denote the pre-softmax score vector of the head h at feature z ; since softmax is order-preserving, $\arg \max_c s_c(z) = \arg \max_c (h(z))_c$. When defining logit gaps, we write $\Delta_{t,j}(z) := s_t(z) - s_j(z)$.

A.6.1 PROOF OF PROPOSITION 1

Assumptions. For each trigger k : (i) the triggered cloud \mathcal{C}_k is well-defined with center μ_k and radius $r_k \geq 0$ (i.e., $\|x - \mu_k\| \leq r_k$ for all $x \in \mathcal{C}_k$); (ii) either (A) $\text{margin}_{\tau_k}(\mathcal{C}_k) \geq \gamma_k > 0$ (*margin form*), or (B) $\text{dist}(\mu_k, \partial \mathcal{R}_{\tau_k}) > r_k$ (*center–radius form*).

Step-by-step Proof.

- (1) *Margin form \Rightarrow success.* Fix k and $x \in \mathcal{C}_k$. Then $\text{dist}(x, \partial \mathcal{R}_{\tau_k}) \geq \gamma_k > 0$, so by (F1) x lies in the interior of \mathcal{R}_{τ_k} and is classified as τ_k .
- (2) *Center–radius sufficiency.* If $\text{dist}(\mu_k, \partial \mathcal{R}_{\tau_k}) > r_k$ and $\|x - \mu_k\| \leq r_k$, then by (F2),

$$\text{dist}(x, \partial \mathcal{R}_{\tau_k}) \geq \text{dist}(\mu_k, \partial \mathcal{R}_{\tau_k}) - \|x - \mu_k\| > 0.$$

Again by (F1), x is strictly inside \mathcal{R}_{τ_k} and predicted as τ_k . Moreover, $\text{margin}_{\tau_k}(\mathcal{C}_k) \geq \text{dist}(\mu_k, \partial \mathcal{R}_{\tau_k}) - r_k$.

A.6.2 PROOF OF LEMMA 1

Assumptions. For two distinct triggers $k \neq \ell$: (i) $\text{margin}_{\tau_k}(\mathcal{C}_k) \geq \gamma_k > 0$ and $\text{margin}_{\tau_\ell}(\mathcal{C}_\ell) \geq \gamma_\ell > 0$; (ii) centers μ_k, μ_ℓ and radii r_k, r_ℓ satisfy $\|\mu_k - \mu_\ell\| > r_k + r_\ell$.

1890 **Step-by-step Proof.**

1891

1892 (1) *Cloud disjointness.* For any $x \in \mathcal{C}_k, y \in \mathcal{C}_\ell$,

1893
$$\|x - y\| \geq \|\mu_k - \mu_\ell\| - \|x - \mu_k\| - \|y - \mu_\ell\| > (r_k + r_\ell) - r_k - r_\ell = 0,$$

1894 so $\mathcal{C}_k \cap \mathcal{C}_\ell = \emptyset$.

1895 (2) *Interior stability.* By Proposition 1, every $x \in \mathcal{C}_k$ lies in the interior of \mathcal{R}_{τ_k} and every $y \in \mathcal{C}_\ell$ lies in the interior of \mathcal{R}_{τ_ℓ} with strictly positive margins. Interiors of distinct decision regions are disjoint; thus predictions on \mathcal{C}_k (resp. \mathcal{C}_ℓ) cannot flip to τ_ℓ (resp. τ_k) without crossing a boundary, which is precluded by the positive margins. Hence there is no cross-trigger interference.

1900

1901 A.6.3 PROOF OF LEMMA 2

1902 **Assumptions.** Let $S = (z_i)_{i=1}^n$ be the clean training set and S' be obtained by replacing at most $m \leq \rho n$ examples with poisoned ones. Let $A(\cdot)$ be the learning algorithm returning $\hat{\theta}(\cdot)$. Assume: (i) *uniform stability*: for any datasets U, V that differ in one example and any z , $|\ell(\hat{\theta}(U); z) - \ell(\hat{\theta}(V); z)| \leq \beta_n$; (ii) *bounded loss*: $0 \leq \ell(\cdot; z) \leq L_{\max}$.

1903

1904 **Step-by-step Proof.**

1905

1906 (1) *Path coupling.* Construct $S = S^{(0)}, S^{(1)}, \dots, S^{(m)} = S'$ where each $S^{(t)}$ differs from $S^{(t-1)}$ by one example. For any z ,

1907
$$|\ell(\hat{\theta}(S); z) - \ell(\hat{\theta}(S'); z)| \leq \sum_{t=1}^m |\ell(\hat{\theta}(S^{(t-1)}); z) - \ell(\hat{\theta}(S^{(t)}); z)| \leq m \beta_n \leq \rho n \beta_n.$$

1908

1909

1910 (2) *Expected clean risk difference.* Taking expectation over $z \sim \mathcal{D}$ yields

1911

1912

1913
$$|\mathbb{E}_{\mathcal{D}}[\ell(\hat{\theta}(S); z)] - \mathbb{E}_{\mathcal{D}}[\ell(\hat{\theta}(S'); z)]| \leq \rho n \beta_n.$$

1914

1915

1916 (3) *Accounting for empirical replacement.* ERM-type procedures also incur at most ρ fraction

1917 of examples whose losses may change by up to L_{\max} between S and S' , producing an

1918 additive ρL_{\max} term in standard stability-to-generalization bounds.

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934 **Assumptions.** Let $f_s = h_s \circ \phi_s$ (surrogate) and $f_t = h_t \circ \phi_t$ (target). Assume: (i) *surrogate margin*: for all triggered x , and all $j \neq \tau$, the score gap $\Gamma_s(x) := (h_s(\phi_s(x)))_\tau - (h_s(\phi_s(x)))_j \geq \gamma > 0$; (ii) *feature alignment*: there exists a bounded linear A with $\|\phi_t(x) - A\phi_s(x)\| \leq \delta$ for all triggered x ; (iii) *head alignment*: $\|h_t(Az) - h_s(z)\|_\infty \leq \varepsilon_h$ for all surrogate features z on the triggered support; (iv) *Lipschitz head*: h_t is L_h -Lipschitz: $\|h_t(u) - h_t(v)\|_\infty \leq L_h \|u - v\|$.

1935 **Step-by-step Proof.**

1936

1937

1938

1939

1940

1941

1942

1943

1944 (1) *Decompose target score gap.* For triggered x and any $j \neq \tau$,

1945
$$\begin{aligned} \Gamma_t(x) &:= (h_t(\phi_t(x)))_\tau - (h_t(\phi_t(x)))_j \\ &= \underbrace{(h_t(A\phi_s(x)))_\tau - (h_t(A\phi_s(x)))_j}_{\text{aligned target gap}} + \Delta_1(x), \end{aligned}$$

1946

1947

1948

1949

1950

1951

1952

1953

1954 where $\Delta_1(x) = (h_t(\phi_t(x)) - h_t(A\phi_s(x)))_\tau - (h_t(\phi_t(x)) - h_t(A\phi_s(x)))_j$.

1955 (2) *Compare aligned target gap with surrogate gap.* By head alignment (iii),

1956
$$|(h_t(A\phi_s(x)))_\tau - (h_s(\phi_s(x)))_\tau| \leq \varepsilon_h, \quad |(h_t(A\phi_s(x)))_j - (h_s(\phi_s(x)))_j| \leq \varepsilon_h,$$

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

1999

<div data-bbox="117 3566 150 3578" data-label="

1944 (3) *Bound the misalignment term.* By Lipschitzness (iv) and feature alignment (ii),
 1945 $|\Delta_1(x)| \leq \|h_t(\phi_t(x)) - h_t(A\phi_s(x))\|_\infty \leq L_h \|\phi_t(x) - A\phi_s(x)\| \leq L_h \delta.$
 1946 (4) *Conclude preserved decision.* Combining (1)–(3),
 1947 $\Gamma_t(x) \geq (\gamma - 2\varepsilon_h) - L_h \delta.$
 1948 If $\gamma > 2\varepsilon_h + L_h \delta$, then $\Gamma_t(x) > 0$ for all $j \neq \tau$, so $\arg \max f_t(x) = \tau$ on all triggered
 1949 inputs.
 1950

1951 **Corollary.** If head alignment is exact on the aligned surrogate features, i.e., $\varepsilon_h = 0$, then the
 1952 bound reduces to $\Gamma_t(x) \geq \gamma - L_h \delta$. In particular, if the feature-alignment bound is expressed as
 1953 $\|\phi_t(x) - A\phi_s(x)\| \leq \|A\| \delta'$ for some surrogate-domain discrepancy δ' , a sufficient condition is

$$\gamma > L_h \|A\| \delta',$$

A.6.5 PROOF OF LEMMA 3

1961 **Assumptions.** For each class $c \in \mathcal{Y}$: (i) the clean feature $\phi_\theta(x) \mid (y = c)$ is sub-Gaussian with
 1962 mean $\bar{\mu}_c$ and parameter σ^2 (i.e., $\langle u, \phi_\theta(x) - \bar{\mu}_c \rangle$ is sub-Gaussian with proxy variance σ^2 for all
 1963 $u \in \mathbb{S}^{d-1}$); (ii) we have n_c i.i.d. samples per class and empirical mean $\hat{\mu}_c$.

Step-by-step Proof.

1964 (1) *Concentration of empirical mean.* By vector Bernstein / sub-Gaussian concentration, there
 1965 exist absolute constants $C_1, C_2 > 0$ such that for all $t > 0$,

$$\Pr(\|\hat{\mu}_c - \bar{\mu}_c\| \geq t) \leq 2 \exp\left(-C_1 n_c t^2 / \sigma^2\right), \quad \mathbb{E}\|\hat{\mu}_c - \bar{\mu}_c\| \leq C_2 \sigma n_c^{-1/2}.$$

1966 (2) *Estimability of margin/separation constraints.* Hence $\|\hat{\mu}_c - \bar{\mu}_c\| = O_p(n_c^{-1/2})$. Constraints
 1967 phrased using $\bar{\mu}_c$ (e.g., requiring a triggered center μ_k to lie at least γ inside \mathcal{R}_{τ_k} and
 1968 away from neighborhoods of clean centroids) can be replaced by their empirical versions
 1969 with vanishing estimation error $O_p(n_c^{-1/2})$ as n_c grows, validating optimization with finite
 1970 subsamples.

A.6.6 PROOF OF LEMMA 4

1971 **Assumptions.** For each cloud k in a minibatch: (i) we have $n_k = |\mathcal{B}_k| > 0$ samples with empirical
 1972 center $\mu_k = \frac{1}{n_k} \sum_{i \in \mathcal{B}_k} \tilde{z}_i$ and intra-cloud loss $\mathcal{L}_{\text{intra},k} = \frac{1}{n_k} \sum_{i \in \mathcal{B}_k} \|\tilde{z}_i - \mu_k\|^2$; (ii) differentiation
 1973 is taken with respect to a single triggered feature \tilde{z}_a where $(x_a, y_a) \in \mathcal{B}_k$, while all other batch
 1974 entries are fixed.

Step-by-step Proof.

1975 (1) Expand $\mathcal{L}_{\text{intra},k}$:

$$\mathcal{L}_{\text{intra},k} = \frac{1}{n_k} \sum_i (\|\tilde{z}_i\|^2 - 2\tilde{z}_i^\top \mu_k + \|\mu_k\|^2).$$

1976 (2) Since $\partial \mu_k / \partial \tilde{z}_a = \frac{1}{n_k} I$, differentiate termwise:

$$\frac{\partial \mathcal{L}_{\text{intra},k}}{\partial \tilde{z}_a} = \frac{1}{n_k} (2\tilde{z}_a - 2\mu_k) + \frac{1}{n_k} \sum_i (-2\tilde{z}_i^\top + 2\mu_k^\top) \frac{1}{n_k} I.$$

1977 (3) Use $\sum_i (\tilde{z}_i - \mu_k) = 0$ to cancel the sum, yielding $\frac{\partial \mathcal{L}_{\text{intra},k}}{\partial \tilde{z}_a} = \frac{2}{n_k} (\tilde{z}_a - \mu_k)$.

1978 (4) Averaging over k scales by $1/K$, giving $\frac{\partial \mathcal{L}_{\text{intra}}}{\partial \tilde{z}_a} = \frac{2}{K n_k} (\tilde{z}_a - \mu_k)$.

1998
1999

A.6.7 PROOF OF LEMMA 5

2000
2001
2002
2003
2004

Assumptions. (i) The inter-cloud loss is defined as $\mathcal{L}_{\text{inter}} = \frac{2}{K(K-1)} \sum_{k < \ell} [m - \|\mu_k - \mu_\ell\|]_+$ with margin $m > 0$; (ii) we consider a pair (k, ℓ) with $\|\mu_k - \mu_\ell\| < m$ (active hinge), and note that at $\|\mu_k - \mu_\ell\| = m$ any subgradient suffices so the formulas hold almost everywhere; (iii) each cloud center is $\mu_k = \frac{1}{n_k} \sum_{i \in \mathcal{B}_k} \tilde{z}_i$, giving $\partial \mu_k / \partial \tilde{z}_i = \frac{1}{n_k} I$ for $i \in \mathcal{B}_k$.

2005
2006

Step-by-step Proof.

2007
2008

(1) For an active pair, the contribution is $\frac{2}{K(K-1)} (m - \|\mu_k - \mu_\ell\|)$.

2009
2010

(2) Since $\frac{\partial}{\partial \mu_k} \|\mu_k - \mu_\ell\| = \frac{\mu_k - \mu_\ell}{\|\mu_k - \mu_\ell\|}$, chain rule yields

2011
2012

$$\frac{\partial \mathcal{L}_{\text{inter}}}{\partial \mu_k} = -\frac{2}{K(K-1)} \frac{\mu_k - \mu_\ell}{\|\mu_k - \mu_\ell\|}.$$

2013
2014

(3) Propagate to features via Assumption (iii):

2015
2016
2017

$$\frac{\partial \mathcal{L}_{\text{inter}}}{\partial \tilde{z}_i} = \frac{\partial \mathcal{L}_{\text{inter}}}{\partial \mu_k} \cdot \frac{\partial \mu_k}{\partial \tilde{z}_i} = -\frac{1}{n_k} \frac{\partial \mathcal{L}_{\text{inter}}}{\partial \mu_k}, \quad i \in \mathcal{B}_k.$$

2018
2019

A.6.8 PROOF OF PROPOSITION 3

2020
2021
2022
2023
2024

Assumptions. Without loss of generality, we rescale the two-term objective by $\lambda_{\text{intra}} > 0$ and write $F = \mathcal{L}_{\text{intra}} + \lambda \mathcal{L}_{\text{inter}}$ with $\lambda := \lambda_{\text{intra}} / \lambda_{\text{intra}} \geq 0$. And assume: (i) each triggered feature lies in a nonempty compact feasible set $\mathcal{S} \subset \mathbb{R}^d$ (e.g., bounded inputs and Lipschitz $\phi_\theta \circ g_\eta$ under budget); (ii) the margin $m > 0$ and regularization weight $\lambda \in [0, \infty)$ are fixed; (iii) cloud centers are affine in features, i.e., $\mu_k = \frac{1}{n_k} \sum_{i \in \mathcal{B}_k} \tilde{z}_i$.

2025
2026

Step-by-step Proof.

2027
2028
2029

(1) *Continuity.* $\mathcal{L}_{\text{intra}}$ and $\mathcal{L}_{\text{inter}}$ are continuous in $\{\tilde{z}_i\}$ (sums of continuous functions and $[\cdot]_+$).

2030
2031

(2) *Existence.* By Weierstrass, the continuous map $F(\{\tilde{z}_i\}) = \mathcal{L}_{\text{intra}} + \lambda \mathcal{L}_{\text{inter}}$ attains a minimum on the compact set $\mathcal{S}^{|\mathcal{B}|}$.

2032
2033

(3) *Stationarity conditions.* At any (local) minimizer, (sub)gradients w.r.t. centers satisfy

2034
2035
2036
2037

$$0 \in \frac{\partial \mathcal{L}_{\text{intra}}}{\partial \mu_k} + \lambda \partial \left(\frac{1}{K(K-1)} \sum_{\ell \neq k} [m - \|\mu_k - \mu_\ell\|]_+ \right).$$

2038
2039

Using Lemma 4 and $\sum_{i \in \mathcal{B}_k} (\tilde{z}_i - \mu_k) = 0$, the intra-term derivative at μ_k is 0. Hence

2040
2041

$$0 \in -\lambda \cdot \frac{1}{K(K-1)} \sum_{\ell \in \mathcal{A}_k} \frac{\mu_k - \mu_\ell}{\|\mu_k - \mu_\ell\|}, \quad \mathcal{A}_k = \{\ell : \|\mu_k - \mu_\ell\| < m\}.$$

2042
2043
2044

Thus either (i) $\mathcal{A}_k = \emptyset$ (no active neighbors; all pairwise distances $\geq m$), or (ii) the unit vectors to active neighbors balance to zero.

2045
2046
2047
2048

(4) *Non-collapse implication.* If some pair has $\|\mu_k - \mu_\ell\| < m$ and the unit vectors do not balance for either center, the subgradient is nonzero, contradicting stationarity. Therefore, at any stationary point, each k either has no active neighbors (hence $\|\mu_k - \mu_\ell\| \geq m \forall \ell$) or the active-pair unit vectors *exactly* balance.

2049
2050
2051

(5) *Global minimizers achieve zero hinge under feasible slack (optional condition).* If the feasible set allows a configuration with $\|\mu_k - \mu_\ell\| \geq m$ for all $k \neq \ell$ (e.g., simultaneous per-cloud translations inside \mathcal{S}), then a global minimizer can attain $\mathcal{L}_{\text{inter}} = 0$ because $\mathcal{L}_{\text{intra}}$ is invariant to per-cloud translations.

2052 A.6.9 PROOF OF PROPOSITION 4
2053

2054 **Assumptions.** (i) Positive center margin: for each cloud k and any $j \neq \tau_k$, the logit gap at the
2055 center satisfies $\Delta_{k,j}(\mu_k) := s_{\tau_k}(\mu_k) - s_j(\mu_k) \geq \gamma_{\text{logit}} > 0$ for the fixed head h ; (ii) local Lip-
2056 schitzness: for each k and $j \neq \tau_k$, there exists $L > 0$ such that for all z in a neighborhood of
2057 \mathcal{C}_k , $|\Delta_{k,j}(z) - \Delta_{k,j}(z')| \leq L\|z - z'\|$; (iii) radius bound: if $\mathcal{L}_{\text{intra}} \leq \varepsilon_{\text{intra}}$, then for all $\tilde{z} \in \mathcal{C}_k$,
2058 $\|\tilde{z} - \mu_k\| \leq r_k \leq \sqrt{\varepsilon_{\text{intra}}}$; (iv) separation: if $\mathcal{L}_{\text{inter}} = 0$, then $\|\mu_k - \mu_\ell\| \geq m$ for all $k \neq \ell$.

2059 Step-by-step Proof.
2060

2061 (1) *Argmax stability inside each cloud.* For any $\tilde{z} \in \mathcal{C}_k$ and any $j \neq \tau_k$,

$$\Delta_{k,j}(\tilde{z}) \geq \Delta_{k,j}(\mu_k) - L\|\tilde{z} - \mu_k\| \geq \gamma_{\text{logit}} - L\sqrt{\varepsilon_{\text{intra}}}.$$

2062 If $\gamma_{\text{logit}} - L\sqrt{\varepsilon_{\text{intra}}} > 0$, then $\Delta_{k,j}(\tilde{z}) > 0$ for all $j \neq \tau_k$, so $\arg \max_c s_c(\tilde{z}) = \tau_k$. Thus
2063 every triggered point in cloud k is strictly inside \mathcal{R}_{τ_k} .

2064 (2) *Non-interference.* Since Step 1 holds for every cloud, predictions are constant on each
2065 cloud: all points in \mathcal{C}_k map to τ_k . Consequently, no cross-cloud misclassification can
2066 occur. Geometric disjointness is automatic if additionally $m > r_k + r_\ell$, but label stability
2067 is already guaranteed by Step 1.

2068 (3) *Quantified interior margin.* Define $\gamma_{\min} := \gamma_{\text{logit}} - L\sqrt{\varepsilon_{\text{intra}}} > 0$. Then each \mathcal{C}_k lies at
2069 least margin γ_{\min} inside \mathcal{R}_{τ_k} in the (logit-gap) sense of Assumption (ii).

2070 A.6.10 PROOF OF PROPOSITION 5
2071

2072 **Assumptions.** Fix a trigger k . Let the head h be locally L -Lipschitz in \mathcal{Z} around the triggered
2073 cloud \mathcal{C}_k . Formally, for all z, z' in a neighborhood of \mathcal{C}_k and all $j \in \mathcal{Y}$,

$$|(s_{\tau_k}(z) - s_j(z)) - (s_{\tau_k}(z') - s_j(z'))| \leq L\|z - z'\|,$$

2074 where $s_c(z)$ denotes the logit for class c . Assume the *center logit gap* is positive:

$$\gamma_{\text{logit}}(\mu_k) := \min_{j \neq \tau_k} \{s_{\tau_k}(\mu_k) - s_j(\mu_k)\} > 0.$$

2075 Finally, suppose $\mathcal{L}_{\text{intra}} \leq \varepsilon_{\text{intra}}$, so that the cloud radius satisfies $r_k \leq \sqrt{\varepsilon_{\text{intra}}}$.

2076 Step-by-step Proof.
2077

2078 (1) *From center gap to pointwise gap.* For any $z \in \mathcal{C}_k$ and $j \neq \tau_k$,

$$s_{\tau_k}(z) - s_j(z) \geq (s_{\tau_k}(\mu_k) - s_j(\mu_k)) - L\|z - \mu_k\|.$$

2079 Taking the minimum over $j \neq \tau_k$ gives

$$\min_{j \neq \tau_k} \{s_{\tau_k}(z) - s_j(z)\} \geq \gamma_{\text{logit}}(\mu_k) - L\|z - \mu_k\|.$$

2080 (2) *Bounding by the radius.* Since $\|z - \mu_k\| \leq r_k \leq \sqrt{\varepsilon_{\text{intra}}}$, we obtain

$$\min_{j \neq \tau_k} \{s_{\tau_k}(z) - s_j(z)\} \geq \gamma_{\text{logit}}(\mu_k) - L\sqrt{\varepsilon_{\text{intra}}}.$$

2081 (3) *Interior margin.* If $\gamma_{\text{logit}}(\mu_k) - L\sqrt{\varepsilon_{\text{intra}}} > 0$, then every $z \in \mathcal{C}_k$ lies strictly inside \mathcal{R}_{τ_k}
2082 with margin at least

$$\gamma_{\min} = \gamma_{\text{logit}}(\mu_k) - L\sqrt{\varepsilon_{\text{intra}}}.$$

2083 A.6.11 PROOF OF PROPOSITION 6
2084

2085 **Assumptions.** For each trigger k , consider the triggered cloud $\mathcal{C}_k \subset \mathcal{Z}$ with center μ_k and radius
2086 r_k . Assume: (i) **Isotropic sub-Gaussian cloud:** $\tilde{z}^{(k)} - \mu_k$ is sub-Gaussian with proxy variance σ_k^2
2087 and isotropic covariance proxy; in particular,

$$\Pr(\|\tilde{z}^{(k)} - \mu_k\| > t) \leq C_1 \exp(-C_2 t^2 / \sigma_k^2)$$

2088 for constants (C_1, C_2) ; (ii) **Locally smooth decision boundaries:** there exists $L_b > 0$ such that
2089 in a neighborhood of $\cup_k \mathcal{C}_k$, the signed distance from a point z to the decision boundary of class
2090 τ_k varies at most L_b per unit change in z (this follows from local Lipschitzness of logits composed
2091 with a smooth link); (iii) **Separation with buffer:** let $\delta_{\min} := \min_{k \neq \ell} \|\mu_k - \mu_\ell\|$. Assume $\delta_{\min} >$
2092 $r_k + r_\ell + \xi$ for all $k \neq \ell$ with some buffer $\xi > 0$.

2106 **Step-by-step Proof.**
2107

2108 (1) *Non-overlap of inflated balls.* Define the inflated balls $B_k(\rho) = \{z : \|z - \mu_k\| \leq \rho\}$. By
2109 Assumption (iii), for any $k \neq \ell$,

$$2111 \text{dist}\left(B_k(r_k + \frac{\xi}{2}), B_\ell(r_\ell + \frac{\xi}{2})\right) \geq \|\mu_k - \mu_\ell\| - (r_k + \frac{\xi}{2}) - (r_\ell + \frac{\xi}{2}) = \delta_{\min} - (r_k + r_\ell + \xi) > 0.$$

2112 Hence the inflated balls are pairwise disjoint.

2114 (2) *Positive geometric margin to other centers.* For any $z \in B_k(r_k)$ and any $\ell \neq k$,

$$2115 \|z - \mu_\ell\| \geq \|\mu_k - \mu_\ell\| - \|z - \mu_k\| \geq \delta_{\min} - r_k \geq r_\ell + \xi.$$

2117 Thus points in $B_k(r_k)$ remain at distance at least $r_\ell + \xi$ from *every* other center μ_ℓ .

2118 (3) *Buffer to decision boundaries.* Let $d_{\tau_k}(z)$ denote the (unsigned) Euclidean distance in
2119 \mathcal{Z} from z to the decision boundary of class τ_k . Locally smooth boundaries (Assumption
2120 (ii)) imply that moving a center by Δz perturbs the boundary location by at most $L_b \|\Delta z\|$
2121 (formally, this follows from the implicit function theorem under local Lipschitz logit gaps).
2122 Consider any $z \in B_k(r_k)$. Since other clouds lie outside $B_\ell(r_\ell + \xi/2)$ by Step 1, the nearest
2123 potential boundary induced by competition with class τ_ℓ must lie outside $B_\ell(r_\ell + \xi/2)$ and
2124 thus at least $\xi/2$ away from $B_k(r_k)$ up to the boundary Lipschitz factor. More precisely,
2125 there exists a constant $c_b \in (0, 1/L_b]$ such that

$$2126 d_{\tau_k}(z) \geq c_b \xi.$$

2128 Intuitively: the ξ buffer between inflated balls lower-bounds the distance from z to any
2129 conflicting boundary; Lipschitzness translates this geometric buffer into a decision margin.

2130 (4) *From margin to per-target success.* Let err_k be the misclassification probability for target
2131 τ_k when stamping points routed to trigger k . Errors occur only if a triggered point exits
2132 $B_k(r_k)$ or crosses a boundary within distance $c_b \xi$ of μ_k . By a union bound,

$$2134 \text{err}_k \leq \Pr(\|\tilde{z}^{(k)} - \mu_k\| > r_k) + \Pr(d_{\tau_k}(\tilde{z}^{(k)}) < c_b \xi).$$

2135 The first term is $\leq C_1 \exp(-C_2 r_k^2 / \sigma_k^2)$ by Assumption (i). For the second term, since
2136 $d_{\tau_k}(z) \geq c_b \xi$ for all $z \in B_k(r_k)$ by Step 3, violation requires leaving $B_k(r_k)$, hence it is
2137 upper-bounded by the same tail. Therefore there exist constants $C'_1, C'_2 > 0$ such that

$$2139 \text{err}_k \leq C'_1 \exp\left(-C'_2 \min\{r_k^2, (c_b \xi)^2\} / \sigma_k^2\right).$$

2141 As ξ increases (holding r_k, σ_k fixed), err_k decreases monotonically. Equivalently, the *per-target* ASR $_k = 1 - \text{err}_k$ increases with ξ .

2144 (5) *Worst-case ASR and variance.* Let $\text{ASR}_{\min} = \min_k \text{ASR}_k$. Since each ASR_k is non-decreasing
2145 in ξ , so is ASR_{\min} . Moreover, the tail bound is uniform in k up to (r_k, σ_k) ,
2146 implying that increasing ξ contracts the spread across $\{\text{ASR}_k\}_k$, i.e., reduces per-target
2147 variance.

2148 This establishes that enforcing a larger minimum inter-center gap δ_{\min} (hence a larger buffer ξ)
2149 *improves worst-case target success and reduces variance.*

2151 A.6.12 PROOF OF LEMMA 6
2152

2153 **Assumptions.** (i) (*Linear scores*) The head is linear in features: $s = Wz + b$, with class scores $s_c =$
2154 $w_c^\top z + b_c$. (ii) (*Proper composite & calibration*) The loss $\ell(s, t)$ is a differentiable classification-
2155 calibrated proper composite with link ψ , namely $\ell(s, t) = \tilde{\ell}(\psi^{-1}(s), t)$, where $\tilde{\ell}$ is strictly proper on
2156 the probability simplex. (iii) (*Triggered labels*) For any triggered feature $z \in \mathcal{C}_k$, the training label
2157 is deterministically $t = \tau_k$. (iv) (*Non-degenerate prediction*) Unless already perfectly confident on
2158 t , we have $p_t < 1$ where $p = \psi^{-1}(s)$.

2159 **Step-by-step Proof.**

2160 (1) *Chain rule and outer-product structure.* By Assumption (i), $s = Wz + b$ and $\partial s / \partial W =$
 2161 $(\text{Id} \otimes z^\top)$; thus

$$\nabla_W \ell(s, t) = (\nabla_s \ell(s, t)) z^\top,$$

2163 so each row-gradient takes the form $\nabla_{w_c} \ell = \alpha_c(s, t) z$, where $\alpha_c(s, t)$ is the c -th component
 2164 of $\nabla_s \ell$.

2165 (2) *Sign pattern under proper composite losses.* By (ii), proper composite losses admit the
 2166 representation

$$\nabla_s \ell(s, t) = A(s) (p - e_t),$$

2167 where $p = \psi^{-1}(s) \in \Delta^{Q-1}$ and $A(s) \succ 0$ (e.g., a Fisher/metric factor induced by the
 2168 link). Therefore

$$\alpha_t(s, t) = e_t^\top A(s) (p - e_t) \leq 0, \quad \alpha_j(s, t) = e_j^\top A(s) (p - e_t) \geq 0 \quad (j \neq t),$$

2169 with equality iff $p_t = 1$.

2170 (3) *Effect on score inner products.* For stepsize $\eta > 0$,

$$w_t^+ = w_t - \eta \nabla_{w_t} \ell = w_t - \eta \alpha_t z, \quad w_j^+ = w_j - \eta \nabla_{w_j} \ell = w_j - \eta \alpha_j z.$$

2171 When $p_t < 1$ we have $\alpha_t < 0$ and $\alpha_j \geq 0$, hence $\langle w_t^+, z \rangle = \langle w_t, z \rangle + \eta(1) \cdot |\alpha_t| \|z\|^2$
 2172 increases, while $\langle w_j^+, z \rangle \leq \langle w_j, z \rangle$ decreases or stays.

2173 (4) *Expected update over a triggered cloud.* By Assumption (iii) and linearity of expectation
 2174 over poisoned minibatches routed to k ,

$$\mathbb{E}[\nabla_{w_t} \ell] = \mathbb{E}[\alpha_t(s, t) z] = -\beta_k \mu_k, \quad \mathbb{E}[\nabla_{w_j} \ell] = \mathbb{E}[\alpha_j(s, t) z] = +\gamma_{j,k} \mu_k,$$

2175 for some $\beta_k > 0$ and $\gamma_{j,k} \geq 0$. Consequently, the center gap increases in expectation:

$$\Delta \langle w_t - w_j, \mu_k \rangle = \eta \left(\langle -\mathbb{E}[\nabla_{w_t} \ell], \mu_k \rangle + \langle \mathbb{E}[\nabla_{w_j} \ell], \mu_k \rangle \right) \geq \eta (\beta_k + \gamma_{j,k}) \|\mu_k\|^2 > 0.$$

A.6.13 PROOF OF LEMMA 7

2187 **Assumptions.** (i) (*Geometry*) Triggered clouds $\{\mathcal{C}_k\}$ have centers μ_k and radii $r_k \leq r_{\max}$; centers
 2188 satisfy $\|\mu_k - \mu_\ell\| \geq m > 0$ for all $k \neq \ell$. (ii) (*Sampling*) Poisoned minibatches independently in-
 2189 clude cloud- k samples with frequency $q_k \in (0, 1]$. (iii) (*Directional contributions*) From Lemma 6,
 2190 the expected per-batch gradient contribution on the target head w_{τ_k} from cloud k equals $-\beta_k \mu_k$
 2191 with $\beta_k > 0$, and on any non-target head is a nonnegative multiple of μ_k . (iv) (*Strict diagonal domi-*
 2192 *nance*) The Gram matrix $G = [\mu_k^\top \mu_\ell]_{k,\ell}$ is strictly diagonally dominant: $\mu_k^\top \mu_k > \sum_{\ell \neq k} |\mu_k^\top \mu_\ell|$ for
 2193 all k .

Step-by-step Proof.

2194 (1) *Total expected update on target heads.* By Assumption (ii)–(iii), the total expected per-
 2195 batch update vector along the span of $\{\mu_u\}$ on the collection of target heads is

$$U = \sum_{u=1}^K q_u (-\beta_u) \mu_u.$$

2196 (2) *Projection onto each center direction.* Fix k . Take the inner product with μ_k :

$$\langle U, \mu_k \rangle = -q_k \beta_k \|\mu_k\|^2 - \sum_{u \neq k} q_u \beta_u (\mu_u^\top \mu_k).$$

2197 The cross-terms may have either sign. Using Assumption (iv),

$$\sum_{u \neq k} q_u \beta_u |\mu_u^\top \mu_k| \leq (\max_u q_u \beta_u) \sum_{u \neq k} |\mu_u^\top \mu_k| < (\max_u q_u \beta_u) \mu_k^\top \mu_k.$$

2198 (3) *Strict positivity of the pull toward μ_k .* Since $q_k \beta_k \geq \min_u q_u \beta_u$, we have

$$\langle U, \mu_k \rangle < -\min_u q_u \beta_u \|\mu_k\|^2 + (\max_u q_u \beta_u) \|\mu_k\|^2 = -\delta_k \|\mu_k\|^2,$$

2199 for some $\delta_k > 0$ whenever $q_k \beta_k > (\sum_{u \neq k} q_u \beta_u |\mu_u^\top \mu_k|) / \|\mu_k\|^2$, which is ensured by (iv).

2200 Hence $-\langle U, \mu_k \rangle > 0$, i.e., the update has a *strictly positive* component toward $+\mu_k$.

2214 (4) *Implication for logit gaps.* Therefore, each target head w_{τ_k} is pulled strictly toward its
 2215 own center direction μ_k in expectation, while non-target heads are pushed oppositely
 2216 (Lemma 6); thus all center gaps $\langle w_{\tau_k} - w_j, \mu_k \rangle$ increase in expectation and cannot be
 2217 cancelled by other clouds.

2218 *Sufficient geometric condition for (iv).* If $\|\mu_k\| \in [L, U]$ and $\angle(\mu_k, \mu_\ell) \geq \theta_{\min} > 0$ for $k \neq \ell$, then
 2219 $|\mu_k^\top \mu_\ell| \leq U^2 \cos \theta_{\min}$, so diagonal dominance holds whenever $L^2 > (K-1)U^2 \cos \theta_{\min}$, which
 2220 follows from sufficient separation m and bounded radii r_{\max} .

2223 A.6.14 PROOF OF PROPOSITION 7

2224 **Assumptions.** (i) The decision regions $\{R_c\}_{c=1}^C$ induced by f_θ are disjoint. (ii) The global
 2225 mask-robust margin satisfies $\Gamma_{\text{mask}}(\theta) > 0$.

2227 Step-by-step Proof.

2228 (1) *Interior preservation.* By $\Gamma_{\text{mask}}(\theta) > 0$, for every clean example (x, y) and every trigger
 2229 $\eta \in \mathcal{S}$,

$$2232 \text{dist}(\phi_\theta(g_\eta(x)), \partial R_y) \geq \Gamma_{\text{mask}}(\theta) > 0.$$

2233 Hence $\phi_\theta(g_\eta(x)) \in \text{int}(R_y)$ for all $\eta \in \mathcal{S}$.

2235 (2) *Assume trigger clouds exist.* Suppose for contradiction that there exist triggers $\{g_{\eta_k}\}_{k=1}^K \subset$
 2236 \mathcal{S} , a routing π , and targets $\{\tau_k\}_{k=1}^K$ with $\tau_k \neq y$ such that the induced clouds

$$2238 \mathcal{C}_k = \{\phi_\theta(g_{\eta_k}(x)) : (x, y) \sim \mathcal{D}, \pi(y) = k\}$$

2239 satisfy Arcueid's feasibility constraints: each \mathcal{C}_k lies strictly inside R_{τ_k} with positive
 2240 interior margin and clouds are non-overlapping.

2242 (3) *Contradicting membership.* Take any (x, y) with $\pi(y) = k$. Feasibility implies

$$2243 \phi_\theta(g_{\eta_k}(x)) \in \text{int}(R_{\tau_k}), \quad \tau_k \neq y.$$

2245 But by Step 1 with $\eta = \eta_k$ we also have

$$2247 \phi_\theta(g_{\eta_k}(x)) \in \text{int}(R_y).$$

2249 (4) *Use disjointness.* Since R_y and R_{τ_k} are disjoint decision regions, no point can lie in the
 2250 interior of both simultaneously. This is a contradiction.

2251 Under $\Gamma_{\text{mask}}(\theta) > 0$, no trigger family $\{g_{\eta_k}\} \subset \mathcal{S}$ can realize Arcueid's feasible wrong-label
 2252 clouds, so the multi-trigger backdoor mapping is infeasible.

2254 A.6.15 PROOF OF PROPOSITION 8

2256 **Assumptions.** (i) The logit map $h : \mathbb{R}^d \rightarrow \mathbb{R}^C$ is L -Lipschitz in feature space:

$$2258 \|h(z) - h(z')\|_\infty \leq L\|z - z'\|_2, \quad \forall z, z' \in \mathbb{R}^d.$$

2260 (ii) For each $c \neq y$, the boundary between R_y and R_c is the zero-level set of the logit difference
 2261 $h_y(z) - h_c(z)$. (iii) The loss ℓ is controlled by a decreasing function of the logit margin: for some
 2262 decreasing $\psi : \mathbb{R} \rightarrow \mathbb{R}_+$ and all u ,

$$2263 \ell(f_\theta(u), y) \leq \psi(m(u, y)),$$

2265 where $m(u, y) := h_y(u) - \max_{c \neq y} h_c(u)$. (iv) The robust loss satisfies

$$2267 R_{\text{rob}}(\theta) = \mathbb{E}_{(x,y)} \left[\max_{\eta \in \mathcal{S}} \ell(f_\theta(g_\eta(x)), y) \right] \leq \varepsilon_{\text{rob}}.$$

2268 **Step-by-step Proof.**
22692270 (1) *Robust loss bounds per-sample loss.* From $R_{\text{rob}}(\theta) \leq \varepsilon_{\text{rob}}$ and non-negativity of ℓ , it
2271 follows that for \mathcal{D} -almost every (x, y) ,

2272
$$\max_{\eta \in \mathcal{S}} \ell(f_{\theta}(g_{\eta}(x)), y) \leq \varepsilon_{\text{rob}}.$$

2273

2274 (2) *Translate loss to margin.* By monotonicity Assumption (iii),
2275

2276
$$\ell(f_{\theta}(g_{\eta}(x)), y) \leq \psi(m(x, y, \eta; \theta)),$$

2277

2278 where $m(x, y, \eta; \theta)$ denotes the margin at $\phi_{\theta}(g_{\eta}(x))$. Hence,
2279

2280
$$\max_{\eta \in \mathcal{S}} \psi(m(x, y, \eta; \theta)) \leq \varepsilon_{\text{rob}}.$$

2281

2281 Since ψ is decreasing, this implies
2282

2283
$$\min_{\eta \in \mathcal{S}} m(x, y, \eta; \theta) \geq \psi^{-1}(\varepsilon_{\text{rob}})$$

2284

2284 for almost every (x, y) .
22852286 (3) *Margins bound distance to boundary.* Fix (x, y) and $\eta \in \mathcal{S}$, and let $z = \phi_{\theta}(g_{\eta}(x))$. By
2287 Assumption (i) and Assumption (ii), the distance from z to the boundary ∂R_y is lower
2288 bounded by the margin divided by the Lipschitz constant:
2289

2290
$$\text{dist}(z, \partial R_y) \geq \frac{m(x, y, \eta; \theta)}{L}.$$

2291

2291 (4) *Take infima.* Taking the infimum over $\eta \in \mathcal{S}$ and then over $(x, y) \sim \mathcal{D}$,
2292

2293
$$\begin{aligned} \Gamma_{\text{mask}}(\theta) &= \inf_{(x, y)} \inf_{\eta \in \mathcal{S}} \text{dist}(\phi_{\theta}(g_{\eta}(x)), \partial R_y) \\ 2294 &\geq \frac{1}{L} \inf_{(x, y)} \inf_{\eta \in \mathcal{S}} m(x, y, \eta; \theta) \\ 2295 &\geq \frac{1}{L} \psi^{-1}(\varepsilon_{\text{rob}}). \end{aligned}$$

2296

2297 A small robust loss $R_{\text{rob}}(\theta)$ implies a positive lower bound on the mask-robust margin $\Gamma_{\text{mask}}(\theta)$.
22982301 A.6.16 PROOF OF PROPOSITION 9
23022303 **Assumptions.** We assume: (i) f^* is the Bayes-optimal classifier for R_{clean} . (ii) There exists a
2304 subset $\mathcal{A} \subseteq \mathcal{X}$ with $\mathbb{P}[x \in \mathcal{A}] = \nu > 0$ on which f^* is not robust to \mathcal{S} . (iii) Any classifier f_{θ} with
2305 $\Gamma_{\text{mask}}(\theta) \geq \gamma > 0$ must disagree with f^* on at least an α fraction of \mathcal{A} , i.e.,

2306
$$\mathbb{P}[f_{\theta}(x) \neq f^*(x), x \in \mathcal{A}] \geq \alpha\nu.$$

2307

2308 **Step-by-step Proof.**
23092310 (1) *Robust classifier deviates from Bayes rule.* By Assumption (iii), any f_{θ} satisfying
2311 $\Gamma_{\text{mask}}(\theta) \geq \gamma$ must differ from f^* on a nontrivial portion of \mathcal{A} :

2312
$$\mathbb{P}[f_{\theta}(x) \neq f^*(x), x \in \mathcal{A}] \geq \alpha\nu.$$

2313

2314 (2) *Bayes-optimality on deviating points.* On the set where $f_{\theta}(x) \neq f^*(x)$, Bayes-optimality
2315 of f^* ensures that replacing f^* by f_{θ} cannot reduce the conditional error rate:

2316
$$\mathbb{P}[f_{\theta}(x) \neq y \mid f_{\theta}(x) \neq f^*(x)] \geq \mathbb{P}[f^*(x) \neq y \mid f_{\theta}(x) \neq f^*(x)].$$

2317

2318 (3) *Lower bound the clean risk.* Decompose the clean risk of f_{θ} :

2319
$$\begin{aligned} R_{\text{clean}}(\theta) &= \mathbb{P}[f_{\theta}(x) \neq y] \\ 2320 &\geq \mathbb{P}[f^*(x) \neq y] + \mathbb{P}[f_{\theta}(x) \neq f^*(x), x \in \mathcal{A}] \\ 2321 &\geq R_{\text{clean}}(f^*) + \alpha\nu. \end{aligned}$$

2322 A.6.17 PROOF OF PROPOSITION 10
2323

2324 **Assumptions.** We assume: (i) $\ell(\cdot)$ is strictly decreasing in the margin. (ii) The overall empirical
2325 risk at θ_T does not exceed that at θ_{ref} : $\mathcal{R}(\theta_T) \leq \mathcal{R}(\theta_{\text{ref}})$. (iii) The total loss on clean examples does
2326 not increase:

$$2327 \sum_{(x,y) \in \mathcal{D}_{\text{clean}}} \ell(\Gamma_y(x; \theta_T)) \leq \sum_{(x,y) \in \mathcal{D}_{\text{clean}}} \ell(\Gamma_y(x; \theta_{\text{ref}})).$$

2329 Step-by-step Proof.
2330

2331 (1) *Risk decomposition.* Let $N = |\mathcal{D}_{\text{clean}} \cup \mathcal{D}_{\text{poison}}|$. Then
2332

$$2333 \mathcal{R}(\theta) = \frac{1}{N} \left(\underbrace{\sum_{(x,y) \in \mathcal{D}_{\text{clean}}} \ell(\Gamma_y(x; \theta))}_{\text{clean part}} + \underbrace{\sum_{(x,y) \in \mathcal{D}_{\text{poison}}} \ell(\Gamma_y(x; \theta))}_{\text{poisoned part}} \right).$$

2337 (2) *Assume poisoned margins decrease.* Assume, for contradiction, that the minimum poisoned
2338 margin strictly decreases:

$$2339 \gamma_{\text{poison}}(\theta_T) < \gamma_{\text{poison}}(\theta_{\text{ref}}).$$

2340 By definition of the minimum, there exists $(x^*, y^*) \in \mathcal{D}_{\text{poison}}$ such that
2341

$$2342 \Gamma_{y^*}(x^*; \theta_T) < \Gamma_{y^*}(x^*; \theta_{\text{ref}}).$$

2343 By Assumption (i), ℓ is strictly decreasing, hence
2344

$$2345 \ell(\Gamma_{y^*}(x^*; \theta_T)) > \ell(\Gamma_{y^*}(x^*; \theta_{\text{ref}})).$$

2346 Therefore at least one term in the poisoned-part sum is strictly larger at θ_T than at θ_{ref} , and
2347 the others are \geq their values at θ_{ref} . Consequently,
2348

$$2349 \sum_{(x,y) \in \mathcal{D}_{\text{poison}}} \ell(\Gamma_y(x; \theta_T)) > \sum_{(x,y) \in \mathcal{D}_{\text{poison}}} \ell(\Gamma_y(x; \theta_{\text{ref}})). \quad (28)$$

2351 (3) *Combine with clean-loss non-increase.* By Assumption (iii), the clean-part loss satisfies
2352

$$2353 \sum_{(x,y) \in \mathcal{D}_{\text{clean}}} \ell(\Gamma_y(x; \theta_T)) \leq \sum_{(x,y) \in \mathcal{D}_{\text{clean}}} \ell(\Gamma_y(x; \theta_{\text{ref}})). \quad (29)$$

2356 Adding Equation 28 and Equation 29 and dividing by N yields
2357

$$2358 \mathcal{R}(\theta_T) > \mathcal{R}(\theta_{\text{ref}}),$$

2359 which contradicts Assumption (ii).
2360

The assumption $\gamma_{\text{poison}}(\theta_T) < \gamma_{\text{poison}}(\theta_{\text{ref}})$ must therefore be false, and we conclude
2361

$$2362 \gamma_{\text{poison}}(\theta_T) \geq \gamma_{\text{poison}}(\theta_{\text{ref}}).$$

2364 A.6.18 PROOF OF LEMMA 8
2365

2366 **Assumptions.** (i) (*Feature Lipschitzness in θ*) There exists $L_\phi > 0$ such that for all parameters
2367 θ, θ' in the neighborhood considered, all triggers g_{η_k} and all inputs x ,

$$2368 \|\phi_{\theta'}(g_{\eta_k}(x)) - \phi_\theta(g_{\eta_k}(x))\| \leq L_\phi \|\theta' - \theta\|.$$

2369 (ii) (*Lipschitz decision geometry*) For each class c , there exists a signed distance function $d_c(\cdot; \theta) : \mathbb{R}^d \rightarrow \mathbb{R}$ whose zero level set coincides with the decision boundary $\partial R_c(\theta)$, and such that d_c is
2370 jointly Lipschitz in (u, θ) : there exist $L_{d,u}, L_{d,\theta} > 0$ with
2371

$$2373 |d_c(u'; \theta') - d_c(u; \theta)| \leq L_{d,u} \|u' - u\| + L_{d,\theta} \|\theta' - \theta\|$$

2374 for all $u, u' \in \mathbb{R}^d$ and all θ, θ' in the neighborhood considered. The (unsigned) distance from u to
2375 the boundary is then $\text{dist}(u, \partial R_c(\theta)) = |d_c(u; \theta)|$.
2376

2376 **Step-by-step Proof.**
23772378 (1) *Reduce to per-cloud margins.* For each trigger index k , define

2379
$$\gamma_k(\theta) := \text{margin}_{\tau_k}(\mathcal{C}_k(\theta)) = \inf_{(x,y): \pi(y)=k} \text{dist}(\phi_\theta(g_{\eta_k}(x)), \partial R_{\tau_k}(\theta)).$$

2380

2381 Then by definition,

2382
$$\underline{\gamma}(\theta) = \min_k \gamma_k(\theta).$$

2383

2384 If we can show that each γ_k is Lipschitz in θ with some constant L_k , i.e.

2385
$$|\gamma_k(\theta') - \gamma_k(\theta)| \leq L_k \|\theta' - \theta\| \quad \forall \theta, \theta',$$

2386

2387 then $\underline{\gamma}$, being the minimum of finitely many Lipschitz functions, is also Lipschitz with
2388 constant $L_\gamma := \max_k L_k$.2389 Thus, it suffices to bound $|\gamma_k(\theta') - \gamma_k(\theta)|$ for a fixed k .2390 (2) *Lipschitz control on per-sample distances.* Fix a trigger index k and two parameter vectors
2391 θ, θ' . For any input (x, y) with $\pi(y) = k$, denote

2392
$$u_\theta(x) := \phi_\theta(g_{\eta_k}(x)), \quad u_{\theta'}(x) := \phi_{\theta'}(g_{\eta_k}(x)).$$

2393

2394 By Assumption (i),

2395
$$\|u_{\theta'}(x) - u_\theta(x)\| \leq L_\phi \|\theta' - \theta\|. \quad (30)$$

2396 Consider the distance from $u_\theta(x)$ to the boundary $\partial R_{\tau_k}(\theta)$, and similarly for $(\theta', u_{\theta'}(x))$:

2397
$$d_\theta(x) := \text{dist}(u_\theta(x), \partial R_{\tau_k}(\theta)) = |d_{\tau_k}(u_\theta(x); \theta)|,$$

2398

2399
$$d_{\theta'}(x) := \text{dist}(u_{\theta'}(x), \partial R_{\tau_k}(\theta')) = |d_{\tau_k}(u_{\theta'}(x); \theta')|.$$

2400 Using Assumption (ii) for the signed distance d_{τ_k} and the elementary inequality $||a| - |b|| \leq$
2401 $|a - b|$, we have

2402
$$\begin{aligned} |d_{\theta'}(x) - d_\theta(x)| &= ||d_{\tau_k}(u_{\theta'}(x); \theta')| - |d_{\tau_k}(u_\theta(x); \theta)|| \\ &\leq |d_{\tau_k}(u_{\theta'}(x); \theta') - d_{\tau_k}(u_\theta(x); \theta)| \\ &\leq L_{d,u} \|u_{\theta'}(x) - u_\theta(x)\| + L_{d,\theta} \|\theta' - \theta\| \\ &\leq (L_{d,u} L_\phi + L_{d,\theta}) \|\theta' - \theta\|, \end{aligned}$$

2403 where the last inequality uses Equation 30. Thus there exists a constant
2404

2405
$$L_* := L_{d,u} L_\phi + L_{d,\theta}$$

2406 such that for every (x, y) with $\pi(y) = k$,

2407
$$|d_{\theta'}(x) - d_\theta(x)| \leq L_* \|\theta' - \theta\|. \quad (31)$$

2408 (3) *Pass from pointwise bounds to cloud margins.* By definition of $\gamma_k(\theta)$,

2409
$$\gamma_k(\theta) = \inf_{(x,y): \pi(y)=k} d_\theta(x), \quad \gamma_k(\theta') = \inf_{(x,y): \pi(y)=k} d_{\theta'}(x).$$

2410

2411 We now bound the difference between these infima.

2412 First, for any (x, y) with $\pi(y) = k$,

2413
$$\gamma_k(\theta') = \inf_{(x,y): \pi(y)=k} d_{\theta'}(x) \leq d_{\theta'}(x)$$

2414 and thus, using Equation 31,

2415
$$\gamma_k(\theta') \leq d_\theta(x) + L_* \|\theta' - \theta\|.$$

2416 Taking the infimum over all (x, y) with $\pi(y) = k$ yields

2417
$$\gamma_k(\theta') \leq \inf_{(x,y): \pi(y)=k} d_\theta(x) + L_* \|\theta' - \theta\| = \gamma_k(\theta) + L_* \|\theta' - \theta\|. \quad (32)$$

2418

2419 By symmetry (interchanging the roles of θ and θ'), the same argument gives

2420
$$\gamma_k(\theta) \leq \gamma_k(\theta') + L_* \|\theta' - \theta\|. \quad (33)$$

2421

2430 Combining Equation 32 and Equation 33, we obtain
 2431

$$|\gamma_k(\theta') - \gamma_k(\theta)| \leq L_* \|\theta' - \theta\|.$$

2433 Thus each γ_k is Lipschitz with constant $L_k := L_*$.
 2434

2435 Finally, since

$$\underline{\gamma}(\theta) = \min_k \gamma_k(\theta),$$

2437 and the minimum of finitely many L_k -Lipschitz functions is Lipschitz with constant $L_\gamma :=$
 2438 $\max_k L_k$, we conclude that
 2439

$$|\underline{\gamma}(\theta') - \underline{\gamma}(\theta)| \leq L_\gamma \|\theta' - \theta\| \quad \text{for all } \theta, \theta' \text{ in the neighborhood.}$$

2440 This completes the proof.
 2441

2443 A.6.19 PROOF OF LEMMA 9

2444 **Assumptions.** We assume: (i) The alignment model holds with linear A and $\|\epsilon(x)\| \leq \delta$ for all x .
 2445 (ii) The centers $\mu_k^{(S)}$ and radii $r_k^{(S)}$ are finite, as defined above.
 2446

2447 Step-by-step Proof.

2448 (1) *Center transformation.* By definition and linearity of expectation,

$$\begin{aligned} \mu_k^{(T)} &= \mathbb{E}[\phi_{\theta_T}(g_{\eta_k}(x)) \mid \pi(y) = k] \\ &= \mathbb{E}[A \phi_{\theta_S}(g_{\eta_k}(x)) + \epsilon(x) \mid \pi(y) = k] \\ &= A \mu_k^{(S)} + \mathbb{E}[\epsilon(x) \mid \pi(y) = k]. \end{aligned}$$

2449 Define $\bar{\epsilon}_k := \mathbb{E}[\epsilon(x) \mid \pi(y) = k]$. Then $\mu_k^{(T)} = A \mu_k^{(S)} + \bar{\epsilon}_k$, and by Jensen's inequality
 2450 and $\|\epsilon(x)\| \leq \delta$,

$$\|\bar{\epsilon}_k\| = \|\mathbb{E}[\epsilon(x) \mid \pi(y) = k]\| \leq \mathbb{E}[\|\epsilon(x)\| \mid \pi(y) = k] \leq \delta.$$

2451 This proves Equation 24.

2452 (2) *Radius transformation.* Take any $v \in \mathcal{C}_k^{(T)}$, so $v = \phi_{\theta_T}(g_{\eta_k}(x))$ for some (x, y) with
 2453 $\pi(y) = k$. Using Equation 21, write $v = Au + \epsilon(x)$ where $u = \phi_{\theta_S}(g_{\eta_k}(x)) \in \mathcal{C}_k^{(S)}$. Then
 2454

$$\begin{aligned} \|v - \mu_k^{(T)}\| &= \|Au + \epsilon(x) - (A\mu_k^{(S)} + \bar{\epsilon}_k)\| \\ &= \|A(u - \mu_k^{(S)}) + (\epsilon(x) - \bar{\epsilon}_k)\| \\ &\leq \|A(u - \mu_k^{(S)})\| + \|\epsilon(x) - \bar{\epsilon}_k\| \\ &\leq \|A\| \|u - \mu_k^{(S)}\| + \|\epsilon(x)\| + \|\bar{\epsilon}_k\| \\ &\leq \|A\| r_k^{(S)} + \delta + \delta. \end{aligned}$$

2455 Absorbing the constant factor into δ (i.e., redefining δ as an upper bound on $\|\epsilon(x) - \bar{\epsilon}_k\|$
 2456 instead of $\|\epsilon(x)\|$), we obtain
 2457

$$\|v - \mu_k^{(T)}\| \leq \|A\| r_k^{(S)} + \delta.$$

2458 Taking the supremum over all $v \in \mathcal{C}_k^{(T)}$ yields $r_k^{(T)} \leq \|A\| r_k^{(S)} + \delta$, this completes the
 2459 proof.
 2460

2461 A.6.20 PROOF OF PROPOSITION 11

2462 **Assumptions.** We assume: (i) The alignment model holds with linear A and $\|\epsilon(x)\| \leq \delta$. (ii) The
 2463 centers $\mu_k^{(S)}$ and radii $r_k^{(S)}$ are finite and the surrogate cloud supports lie in a compact region of
 2464 feature space. (iii) The assumption in Appendix A.5.2 holds with constant $L_h > 0$.
 2465

2484 **Step-by-step Proof.**
2485

2486 (1) *Pick a near-worst surrogate point for each cloud.* Fix a trigger index k . By definition of
2487 the surrogate cloud margin, there exists $u_k^* \in \mathcal{C}_k^{(S)}$ such that

$$2488 \text{margin}_{\tau_k}(\mathcal{C}_k^{(S)}) = \text{dist}(u_k^*, \partial R_{\tau_k}(\theta_S)) = \text{margin}_{\tau_k}(u_k^*).$$

2489 Write

$$2490 u_k^* = \mu_k^{(S)} + \Delta_k, \quad \|\Delta_k\| \leq r_k^{(S)}.$$

2491 (2) *Map this point to the target representation.* On the target model, the corresponding feature
2492 is

$$2493 v_k^* = \phi_{\theta_T}(g_{\eta_k}(x^*)) = Au_k^* + \epsilon(x^*),$$

2494 for some input x^* with $\pi(y^*) = k$ such that $\phi_{\theta_S}(g_{\eta_k}(x^*)) = u_k^*$.

2495 By Lemma 9, the target center satisfies

$$2496 \mu_k^{(T)} = A\mu_k^{(S)} + \bar{\epsilon}_k, \quad \|\bar{\epsilon}_k\| \leq \delta,$$

2497 and the radius of $\mathcal{C}_k^{(T)}$ is bounded by $r_k^{(T)} \leq \|A\| r_k^{(S)} + \delta$.

2498 (3) *Bound the representation shift $v_k^* - u_k^*$.* We first bound

$$2500 \|v_k^* - u_k^*\| = \|Au_k^* + \epsilon(x^*) - u_k^*\| \leq \|(A - I)u_k^*\| + \|\epsilon(x^*)\|.$$

2501 Using $u_k^* = \mu_k^{(S)} + \Delta_k$,

$$2502 \begin{aligned} \|v_k^* - u_k^*\| &\leq \|(A - I)\mu_k^{(S)}\| + \|(A - I)\Delta_k\| \\ &\leq \|(A - I)\mu_k^{(S)}\| + \|A - I\| \|\Delta_k\| \\ &\leq \|(A - I)\mu_k^{(S)}\| + \|A - I\| r_k^{(S)}. \end{aligned}$$

2503 Because the surrogate cloud supports lie in a compact region (Assumption (ii)), the norms
2504 $\|\mu_k^{(S)}\|$ are uniformly bounded and we may absorb the term $\|(A - I)\mu_k^{(S)}\|$ into a constant
2505 multiple of $\|A\| - 1\| r_k^{(S)}$. Thus, up to a fixed constant C_μ ,

$$2506 \|v_k^* - u_k^*\| \lesssim \|A\| - 1\| r_k^{(S)}.$$

2507 Combining this with $\|\epsilon(x^*)\| \leq \delta$ (Assumption (i)), we obtain

$$2508 \|v_k^* - u_k^*\| \lesssim \|A\| - 1\| r_k^{(S)} + \delta. \quad (34)$$

2509 (4) *Compare margins at u_k^* and v_k^* .* By Assumption (iii),

$$2510 |\text{margin}_{\tau_k}(v_k^*) - \text{margin}_{\tau_k}(u_k^*)| \leq L_h \|v_k^* - u_k^*\|.$$

2511 Using Equation 34, this yields

$$2512 \text{margin}_{\tau_k}(v_k^*) \geq \text{margin}_{\tau_k}(u_k^*) - L_h (\|A\| - 1\| r_k^{(S)} + \delta).$$

2513 Recalling that $\text{margin}_{\tau_k}(u_k^*) = \text{margin}_{\tau_k}(\mathcal{C}_k^{(S)})$, we have

$$2514 \text{margin}_{\tau_k}(v_k^*) \geq \text{margin}_{\tau_k}(\mathcal{C}_k^{(S)}) - L_h (\|A\| - 1\| r_k^{(S)} + \delta). \quad (35)$$

2515 (5) *Extend from v_k^* to the whole target cloud.* The point v_k^* lies in $\mathcal{C}_k^{(T)}$. Any other $v \in \mathcal{C}_k^{(T)}$ is
2516 at most a distance $r_k^{(T)}$ from $\mu_k^{(T)}$, and hence at most $r_k^{(T)} + \|v_k^* - \mu_k^{(T)}\|$ from v_k^* . Using
2517 $r_k^{(T)} \leq \|A\| r_k^{(S)} + \delta$ and the same kind of Lipschitz reasoning as above, this contributes an
2518 additional margin loss bounded by $L_h (\|A\| r_k^{(S)} + \delta)$. Absorbing constants and combining
2519 with Equation 35, we obtain

$$2520 \text{margin}_{\tau_k}(\mathcal{C}_k^{(T)}) \geq \text{margin}_{\tau_k}(\mathcal{C}_k^{(S)}) - L_h (\|A\| - 1\| r_k^{(S)} + \|A\|\delta),$$

2521 which is Equation 26.

2522 (6) *Take the minimum over k .* Taking the minimum over k on both sides and using the definition
2523 of γ_{θ_S} in Equation 22, we obtain

$$2524 \gamma_{\theta_T} = \min_k \text{margin}_{\tau_k}(\mathcal{C}_k^{(T)}) \geq \gamma_{\theta_S} - L_h \left(\max_k \|A\| - 1\| r_k^{(S)} + \|A\|\delta \right),$$

2525 which is Equation 27. This completes the proof.

2526 The assumption $\gamma_{\text{poison}}(\theta_T) < \gamma_{\text{poison}}(\theta_{\text{ref}})$ must therefore be false, and we conclude

$$2527 \gamma_{\text{poison}}(\theta_T) \geq \gamma_{\text{poison}}(\theta_{\text{ref}}).$$

2538 A.7 REPRODUCIBILITY STATEMENT
25392540 To facilitate faithful reproduction of our results, we explicitly document all optimization parameters
2541 and implementation details as used in the experiments. Unless otherwise specified, these hyperpa-
2542 rameters and schedules remain fixed across all runs reported in the main paper.2543
2544 **Attack Parameters.**2545
2546 • Poisoning budget per trigger: $\rho_i = 0.0001$.
2547 • Effective poisoning rate: $\rho = K \times \rho_i$, where K denotes the number of triggers.
2548 • Trigger blending factor (mask weight): 0.15.
2549 • Triggered tensors are clamped to the range $[0, 1]$.
25502551
2552 **Optimization Stage (Surrogate).**2553
2554 • Surrogate dataset: distinct from the target dataset.
2555 • Surrogate model: backbone architecture different from the victim model.
2556 • Training scale: 0.3 fraction of the surrogate dataset (approximately 15,000 samples).
2557 • Optimization iterations: 10 steps.
2558 • Learning rate: 0.05 with Adam optimizer.
2559 • Loss function: *Joint Cloud Shaping Multi-trigger Optimization* with default settings $\alpha = 1.0$,
2560 $\beta = 1.0$, margin $m = 6.0$.
25612562
2563 **Implementation Details.**2564
2565 • Framework: PyTorch 2.0, Torchvision 0.19.0.
2566 • Hardware: Intel(R) Xeon(R) Platinum 8358P CPUs (3.40GHz), 386GB RAM, and NVIDIA A800
2567 GPUs.
2568 • Environment: Experiments were developed and executed in VSCode, with PyTorch for model
2569 deployment and training.
25702571 **Framework Dependency and Default Parameters.** Most of the backdoor attacks and defenses
2572 evaluated in this work are implemented based on the open-source framework *BackdoorBox* (Li et al.,
2573 2023), which provides standardized implementations and facilitates fair comparison across methods.
2574 Unless otherwise specified, the default parameters for both attack and defense methods follow the
2575 settings reported in the original papers and the official *BackdoorBox* implementation.
25762577 **Reproducibility Claim.** All reported results can be reproduced by running the provided scripts
2578 with the above fixed hyperparameters. Identical outcomes can be obtained on the same hardware
2579 without any modification to the configuration.2580 A.8 LLM USAGE
25812582 In accordance with the ICLR 2026 policy on Large Language Model (LLM) usage, we explicitly
2583 disclose that LLMs were only used to assist with minor language polishing and stylistic refinement
2584 of the manuscript. No LLMs were employed for research ideation, experiment design, or related
2585 work discovery. All scientific contributions, methodology, experiments, and results in this paper are
2586 original work conducted entirely by the authors. The usage of LLMs is comparable to grammar or
2587 style checking tools and does not constitute a substantive contribution to the research.
2588
2589
2590
2591